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Abstract

The focus of this thesis is to study distributed event-triggered control for multi-
agent systems (MASs) facing constraints in practical applications. We consider sev-
eral problems in the field, ranging from event-triggered consensus with information
quantization, event-triggered edge agreement under synchronized/unsynchronized
clocks, event-triggered leader-follower consensus with Euler-Lagrange agent dynam-
ics and cooperative event-triggered rigid formation control.

The first topic is named as event-triggered consensus with quantized relative state
measurements. In this topic, we develop two event-triggered controllers with quan-
tized relative state measurements to achieve consensus for an undirected network
where each agent is modelled by single integrator dynamics. Both uniform and log-
arithmic quantizers are considered, which, together with two different controllers,
yield four cases of study in this topic. The quantized information is used to up-
date the control input as well as to determine the next trigger event. We show that
approximate consensus can be achieved by the proposed algorithms and Zeno be-
haviour can be completely excluded if constant offsets with some computable lower
bounds are added to the trigger conditions.

The second topic considers event-triggered edge agreement problems. Two cases,
namely the synchronized clock case and the unsynchronized clock case, are studied.
In the synchronized clock case, all agents are activated simultaneously to measure
the relative state information over edge links under a global clock. Edge events are
defined and their occurrences trigger the update of control inputs for the two agents
sharing the link. We show that average consensus can be achieved with our proposed
algorithm. In the unsynchronized clock case, each agent executes control algorithms
under its own clock which is not synchronized with other agents’ clocks. An edge
event only triggers control input update for an individual agent. It is shown that all
agents will reach consensus in a totally asynchronous manner.

In the third topic, we propose three different distributed event-triggered con-
trol algorithms to achieve leader-follower consensus for a network of Euler-Lagrange
agents. We firstly propose two model-independent algorithms for a subclass of Euler-
Lagrange agents without the vector of gravitational potential forces. A variable-gain
algorithm is employed when the sensing graph is undirected; algorithm parameters
are selected in a fully distributed manner with much greater flexibility compared to
all previous work concerning event-triggered consensus problems. When the sensing
graph is directed, a constant-gain algorithm is employed. The control gains must be
centrally designed to exceed several lower bounding inequalities which require lim-
ited knowledge of bounds on the matrices describing the agent dynamics, bounds on
network topology information and bounds on the initial conditions. When the Euler-
Lagrange agents have dynamics which include the vector of gravitational potential
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forces, an adaptive algorithm is proposed. This requires more information about the
agent dynamics but allows for the estimation of uncertain agent parameters.

The last topic discusses cooperative stabilization control of rigid formations via
an event-triggered approach. We first design a centralized event-triggered formation
control system, in which a central event controller determines the next triggering
time and broadcasts the event signal to all the agents for control input update. We
then build on this approach to propose a distributed event control strategy, in which
each agent can use its local event trigger and local information to update the control
input at its own event time. For both cases, the trigger condition, event function
and trigger behaviour are discussed in detail, and the exponential convergence of
the formation system is guaranteed.
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Chapter 1

Introduction

1.1 Research background

Multi-agent systems (MASs) in general refer to a large-scale system consisting of
multiple autonomous agents, which coordinate their actions to achieve a group ob-
jective. The word "agent" can refer to autonomous robots, unmanned aerial vehicles
(UAVs), or mobile sensors, depending on different control context. The control algo-
rithms designed for MASs are usually required to be implemented in a distributed
manner, since it is undesirable to collect and process the global information, compute
and allocate the control tasks, within a centralized processor. Over the past decade,
the development and investigation of MASs has become extremely popular in var-
ious research communities (e.g. control, power systems, computer science, social
science) due to their great capacity for a broad applications [Ren and Beard, 2008;
Nagata and Sasaki, 2002; Ferber, 1999; Pan et al., 2007].

In control community, there are two fundamental tasks in the study of MASs:

• Consensus, where the aim is to reach an agreement regarding certain quan-
tities of interest that depend on the states of all agents via local interaction
rules. Successful applications of consensus algorithms are found in spacecraft
attitude alignment [VanDyke and Hall, 2006; Ren and Beard, 2004], in smart
grids [Zhang and Chow, 2012; Rahbari-Asr et al., 2014] and in wireless sensor
networks (see [Oliva et al., 2013; Qin et al., 2017a] for a clustering problem) and
[Carli and Zampieri, 2010; Seyboth and Allgower, 2013] for a clock synchro-
nization problem). Some excellent surveys of recent progress on the research
of multi-agent consensus can be found in [Cao et al., 2013; Knorn et al., 2016].

• Formation control aims to design distributed control algorithms such that a
group of agents can achieve some pre-defined formations defined by geometric
relationships between the agents. The distributed formation control strategies
are usually classified into two types: displacement-based approach [Ren, 2007;
Dong and Hu, 2016], in which the desired formation is specified by a set of
inter-agent relative positions, and distance-based approach [Anderson et al.,
2008; Sun et al., 2015b; Oh and Ahn, 2014] 1, in which the desired formation is

1In this thesis, we use ’rigid formation control’ to represent formation control using a distance-based
approach.

1
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specified by a set of inter-agent distances. The two approaches have their own
distinct properties. We refer the readers to an excellent survey paper [Oh et al.,
2015] for detailed discussions on formation control.

In practical applications, agents in MASs are usually resource limited. The re-
source here mainly refers to the agents’ on-board devices, such as microprocessors
(for processing information and generating control signals), wireless communication
devices (for exchanging information among agents), sensors (for measuring relative
information between neighbouring agents) and actuators (for driving the agents).
The resource limitations partly arise from the fact that these on-board devices are
composed of digital components whose performance are restricted by the frequency
of the clock references. Thus the procedures of information collection, exchange and
processing as well as the generations of control signals can only be implemented in
a discrete-time manner even though the agents’ self dynamics are continuous. Ac-
cording to the above observations, it is necessary to design distributed algorithms
with discrete updating time instants for MASs. The classical approach is to use
time-scheduled control scheme (or sampled control scheme) [Isermann, 2013]. When
using time-scheduled control scheme, the control updates are determined by a con-
stant sampling period, and between updates the control signals are held constant
via zero-order hold techniques. Some recent effort regarding the application of time-
scheduled control in MASs can refer to [Xie et al., 2009; Liu et al., 2010; Yu et al.,
2011; Gao and Wang, 2011; Xiao and Chen, 2012]. However, using time-scheduled
control may be conservative in terms of the number of control updates, since the
constant sampling period has to guarantee stability in the worst-case scenario [Sey-
both, 2010]. Under this background, the event-scheduled control scheme [Tabuada,
2007; Heemels et al., 2008; Lehmann and Lunze, 2009; Donkers and Heemels, 2012;
Wang and Lemmon, 2011] have been introduced into the field of MASs. While both
schemes update at discrete time instants, in comparison with the time-scheduled
scheme, the event-scheduled scheme has a distinctive advantage when applied in
MASs as it can generate updating events aperiodically and adaptively, which has the
potential to reduce as much the requirement of processing and actuating resources as
possible. Some brief introduction for the recent progress regarding event-triggered
control in MASs can be found in [Qin et al., 2016]. In Chapter 2, we will also provide
a detailed review on the basic event-triggered schemes for MASs, appeared in recent
literature. We note that there also have been some work that reports successful appli-
cations of event-triggered strategies in different coordination tasks [Guinaldo et al.,
2013; Araújo et al., 2014; Wang et al., 2017a].

Event-triggered control for MASs is a relatively new research direction with nu-
merous problems to be explored. In this thesis, we hope to extend this research direc-
tion by following its original motivation, that event-triggered control is introduced
to be applied on practical agents. Thus we introduce several practical constraints
in this thesis, ranging from information quantization, unsynchronized agent clocks
and non-linear agent dynamics, which are commonly existed in practical applica-
tion scenarios. These practical constraints are mainly proposed in combination with
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consensus tasks (results are presented in Chapters 3-5). We then solve a distance-
based formation control problem, by using event-triggered control algorithms. Note
that the distance-based formation control problem was proposed under a practical
constraint that agents cannot share a knowledge of a global coordinate system. Our
proposed event-triggered algorithms can deal with this practical constraint, as well.

1.2 Contributions and Outline

In this section, we present the outline and summarize the main contributions, of the
thesis. We remark that at the beginning of each main chapter, a more detailed lit-
erature review with comparison to existing work will be provided for each research
topic.

Chapter 1 presents a general introduction to the research background and some mo-
tivations for the research topics to be discussed in this thesis.

Chapter 2 provides mathematical notations and theoretical preliminaries on graph
theory (which focuses on undirected graphs). A general revisit to the event-triggered
consensus problem with the review of relevant literature is also provided in this
chapter.

Chapter 3 develops two event-triggered control algorithms with quantized relative
state measurements to achieve consensus for a multi-agent system where each agent is
modelled by single integrator dynamics and the network topology is captured by an
undirected graph. Both uniform and logarithmic quantizers are considered.

The main contributions of this chapter are summarised as follows:

• We propose event-triggered control algorithms in which the updates of the
control inputs and calculations of the trigger conditions are both implemented
with only quantized relative information.

• We establish the fact that the offsets added to the trigger conditions are neces-
sary to eliminate Zeno behaviour for each agent when designing distributed,
event-triggered consensus algorithms with quantized information and presents
detailed discussions on how to design constant offsets with a priori knowledge
of the graph topology and quantization gain.

Chapter 4 presents novel edge-event-triggered algorithms to achieve multi-agent con-
sensus with Zeno-free trigger events. The control inputs and triggering conditions
for each agent are designed based only on relative state measurements in each agent’s
own local coordinate system. Two cases, namely the synchronized clock case and the
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unsynchronized clock case, are studied. In the synchronized clock case, all agents
are activated simultaneously to measure the relative state information over edge links
under a global clock. Edge events are defined and their occurrences trigger the up-
date of control inputs for the two agents sharing a link. We show that average con-
sensus can be achieved with our proposed algorithm. In the unsynchronized clock
case, each agent executes its control algorithm under its own clock which is not
synchronized with other agents’ clocks. An edge event only triggers control input
update for an individual agent. We show that all agents will reach consensus in a
totally asynchronous manner.

The main contributions of this chapter are two-fold:

• The synchronized clock case provides new insights to the edge-event-triggered
consensus problem with much simpler trigger conditions. Moreover, when em-
ploying our algorithm, agents only need to use relative information measured
in its own local coordinate frame.

• The unsynchronized clock case provides a generalised framework for edge-
event-triggered algorithms where agents can be activated to execute the con-
sensus task at different starting times. The case involving synchronized clocks
thus can be regarded as a special case.

Chapter 5 proposes three different distributed event-triggered control algorithms to
achieve leader-follower consensus for a network of Euler-Lagrange agents. We first
propose two model-independent algorithms for a subclass of Euler-Lagrange agents
whose dynamics do not have the vector of gravitational potential forces. A variable-
gain algorithm is employed when the sensing graph is undirected. When the sensing
graph is directed, a constant-gain algorithm is employed. When the Euler-Lagrange
agents have dynamics which include the vector of gravitational potential forces, an
adaptive algorithm is proposed.

Our main contributions in this chapter are the following:

• A globally asymptotically stable variable-gain model-independent algorithm is
proposed for agents on undirected graphs. The variable-gain controller allows
for fully distributed and arbitrary design of parameters in both the control
algorithm and trigger function.

• A model-independent, constant-gain algorithm applicable for directed graphs
is proposed to achieve leader-follower consensus for networked Euler-Lagrange
agents semi-globally, exponentially fast. The control gains are designed to ex-
ceed several lower bounding inequalities which require limited knowledge of
bounds on the matrices describing the agent dynamics, bounds on network
topology information and bounds on the initial conditions.

• We propose a globally asymptotically stable adaptive algorithm for use when
the gravitational term is present in the agent self-dynamics on directed net-
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works. The algorithm requires more information about the agent dynamics but
allows for uncertain agent parameters.

• All three proposed algorithms use only piecewise constant control inputs, which
have the benefit of reducing actuator updates and thus conserving energy re-
sources. Furthermore, each agent only updates its control inputs at its own
event times, and does not require knowledge of the trigger times of neighbour-
ing agents.

Chapter 6 discusses cooperative stabilization control of distance-based formations
via an event-triggered approach. We first design a centralized event-triggered forma-
tion control system, in which a central event controller determines the next trigger-
ing time and broadcasts the event signal to all the agents for control inputs update.
We then build on this centralized approach to propose a distributed event control
strategy, in which each agent can use its local trigger events and local information
to update the control inputs at its own event times. For both cases, the triggering
condition, triggering behaviour and system convergence are discussed in detail.

The contributions of this chapter are stated as follows:

• For the first time, we propose and apply event-triggered strategies to distance-
based formation control tasks.

• We prove local stability of the formation system for both centralized and dis-
tributed event-based controllers, and show that, in fact, convergence is expo-
nentially fast. The exponential stability of the formation control system has
important implications relating to robustness issues.

Chapter 7 presents a short summary of the main results and contributions of this
thesis, and indicates some possible topics/directions for future research.
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Chapter 2

Preliminary

2.1 Notations

The notations used in this thesis are those standard in systems and control literature.
We use N to denote the set of all natural numbers. Let Rn denote the n-dimensional
Euclidean space and Rm×n denote the set of m× n real matrices. The transpose of a
vector or matrix M is given by M>. The rank, image and null space of a matrix M are
denoted by rank(M), Im(M) and ker(M), respectively.The i-th smallest eigenvalue
of a symmetric matrix M is denoted by λi(M). Let x = [x1, . . . , xn]> where xi ∈
Rn×n and n > 1. Then diag{x} denotes a (block) diagonal matrix with the (block)
elements of x on its diagonal, i.e. diag{x1, ..., xn}. A symmetric matrix A ∈ Rn×n

which is positive definite (respectively, non-negative definite) is denoted by A > 0
(respectively, A ≥ 0). For two symmetric matrices A, B, the expression A > B is
equivalent to A− B > 0. The n× n identity matrix is In and 1n denotes an n-tuple
column vector of all ones. The n × 1 column vector of all zeros is denoted by 0n.
The symbol ⊗ denotes the Kronecker product. The Euclidean norm of a vector, and
the matrix norm induced by the Euclidean norm, is denoted by ‖ · ‖. We let ‖M‖F
denote the Frobenius norm for a matrix M. Note that there holds ‖M‖ ≤ ‖M‖F
for any matrix M. For the space of piecewise continuous, bounded vector functions,
the norm is defined as ‖ f ‖L∞ = sup ‖ f (t)‖ < ∞ and the space is denoted by L∞.
The space Lp for 1 ≤ p < ∞ is defined as the set of all piecewise continuous vector

functions such that ‖ f ‖Lp =
(∫ ∞

0 ‖ f (t)‖pdt
)1/p

< ∞ where p refers to the type of
p-norm.

2.2 Event-triggered consensus: a revisit

2.2.1 The consensus problem

Consider a MAS consisting of n agents with continuous-time single-integrator dy-
namics

ẋi(t) = ui(t) (2.1)

7
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where xi(t) ∈ R is the state of agent i and ui(t) is the control input. The objective of
consensus is to ensure all agents reach a common state value, i.e. x1 = x2 = · · · = xn.

It is required that agent i can only take local information (information between
agent i and its neighbours) into account to reach consensus. For this purpose, we
need to describe the interactions between the agents. A well-known approach is to
model the neighbouring relations by a graph G with vertex set V = {v1, v2, . . . , vn}
and edge set E = {ε1, ε2, . . . , εm} ⊂ V × V 1. The neighbour set Ni of vertex vi
is defined as Ni := {vj ∈ V : (vi, vj) ∈ E}. The unweighted adjacency matrix
A = A(G) = (aij) is a n × n matrix given by aij = 1, if and only if (vi, vj) ∈ E ,
and aij = 0, otherwise. If there is an edge (vi, vj) ∈ E , then vertexes vi, vj are said
to be adjacent. A path of length r from a vertex vi to a vertex vj is a sequence
of r + 1 distinct vertices starting with vi and ending with vj such that consecutive
vertices are adjacent. If there is a path between any two vertices of the graph G,
then G is called connected. Let D be the n × n diagonal matrix of di’s, where the
degree di of each vertex i is defined as di = ∑n

j=1 aij. The Laplacian matrix of G is
a symmetric positive semi-definite matrix given by L = D − A. For a connected
graph, the Laplacian matrix L has a single zero eigenvalue and the corresponding
eigenvector is the vector of ones. All other eigenvalues are positive and real. The
eigenvalues of L can be ordered as 0 = λ1(L) < λ2(L) ≤ . . . ≤ λn(L) [Ren and
Beard, 2008].

We define an auxiliary variable gi(t) for agent i:

gi(t) = ∑
j∈Ni

(xi(t)− xj(t)) (2.2)

The consensus controller is typically designed as follows:

ui(t) = −gi(t) (2.3)

or some variation of the above. By using the Laplacian matrix L, the closed loop
form of the MAS with agents having dynamics (2.1) and control inputs (2.3) can be
written as

ẋ(t) = −g(t) = −Lx(t) (2.4)

where g(t) = [g1(t) · · · gn(t)]> ∈ Rn and x(t) = [x1(t) · · · xn(t)]> ∈ Rn.

Another important matrix representation of an undirected graph G is the inci-
dence matrix H = hri ∈ Rm×n (for more information, see [Zelazo and Mesbahi, 2011;
Bapat, 2010; Mesbahi and Egerstedt, 2010]. The incidence matrix relates the edges to
the vertexes, whose entries are defined as (with arbitrarily chosen edge orientations):

1For simplicity and because it is for illustrative purposes, we assume G is undirected in this chapter.
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hri =


−1, if vertex vi is the terminal vertex of edge εr

1, if vertex vi is the initial vertex of edge εr

0, otherwise

(2.5)

Note that the Laplacian matrix for an undirected graph can be written as L = H>H.
The incidence matrixH can be divided into two sub matrices: the in-incidence matrix
and the out-incidence matrix. Following the definitions in [Zeng et al., 2016], each
entry of the m× n in-incidence matrix H⊙ is denoted as

(h⊙)ri =

{
−1, if vertex vi is the terminal node of r-th edge

0, otherwise
(2.6)

and each entry of the m× n out-incidence matrix H⊗ is denoted as

(h⊗)ri =

{
1, if vertex vi is the initial node of r-th edge

0, otherwise
(2.7)

It is obvious that H = H⊙ +H⊗.
By using the incidence matrix H, we can construct the relative state vector as an

image of H from the state vector x:

z(t) = Hx(t) (2.8)

where z(t) = [z1(t) · · · zm(t)]> ∈ Rm with zr ∈ R being the relative state for the
vertex pair defined by the r-th edge εr. Then, the consensus dynamics (2.4) can also
be reformulated as:

ẋ(t) = −H>z(t) (2.9)

We use Example 1 to show how to construct the Laplacian matrix, incidence
matrix, in-incidence matrix and out-incidence matrix for a given undirected graph.

For an undirected graph G and its corresponding Laplacian matrix and incidence
matrix, we have the following lemmas.

Lemma 1 ([Dimarogonas and Johansson, 2010]). If G is undirected and connected, the
matrix HH> and the Laplacian matrix L both have non-negative eigenvalues and moreover
the same positive ones.

Lemma 2 ([Guo and Dimarogonas, 2013]). If G is undirected and connected, then z>HH>z ≥
λ2(L)‖z‖2.

Remark 1. Though the continuous-time controller (2.3) only involves relative information,
how the controller is implemented on practical agents, e.g. ground robots or UAVs, results
in different requirements of the coordinate systems. There are two approaches to implement
the control algorithms. The first one is to equip wireless communication devices to each agent
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and broadcast the self-state (xi(t)) to its neighbours. This approach requires agents to be
aligned with a common coordinate system. Another approach is to let each agent sense the
relative states (xj(t)− xi(t)) between its neighbours and itself by using sensors, for example,
stereo cameras. In this approach, only local coordinate systems are required. To equip both
wireless communication devices and relative state sensors on agents for consensus tasks can be
regarded as a waste of resources on hardware cost and energy/process resource consumption,
since we usually assume low cost and limited on-board resources for one agent when studying
a distributed multi-robot system.

Example 1. An example of the Laplacian matrix and the incidence matrix:

1

2 3 4

5

6

1

2 3 4

5

6

Figure 2.1: Left: An undirected graph. Right: A corresponding directed graph with
arbitrarily chosen edge orientations for constructing the incidence matrix.

The Laplacian matrix of the undirected graph in Fig. 2.1 can be written as

L =



2 −1 0 0 0 −1
−1 2 0 −1 0 0
0 0 2 0 −1 −1
0 −1 0 2 −1 0
0 0 −1 −1 3 −1
−1 0 −1 0 −1 3


By defining

z =



x1 − x2

x2 − x4

x3 − x5

x3 − x6

x4 − x5

x5 − x6

x1 − x6


we can construct an incidence matrix as follows:

H =



1 −1 0 0 0 0
0 1 0 −1 0 0
0 0 1 0 −1 0
0 0 1 0 0 −1
0 0 0 1 −1 0
0 0 0 0 1 −1
1 0 0 0 0 −1
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where the in-incidence matrix and out-incidence matrix can be separately constructed as

H⊙ =



0 −1 0 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 −1


H⊗ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0


It can be verified that L = H>H and H = H⊙ +H⊗.

2.2.2 Basic trigger schemes

Event-triggered consensus algorithms are usually designed based on the fundamen-
tal continuous-time controller (2.3), for which there are two main steps:

• Design a control input which only uses the agents’ state values (xi or zi) at some
discrete-time instants.

• Define a state mismatch between the continuous states and the discrete-time
state values, then design trigger conditions to determine the time instants for
updating the control input.

How to define the state mismatch variable (it is called measurement error in some pa-
pers) plays a very important role in the design of event-triggered algorithms, accord-
ing to which we can classify widely-adopted event-triggered consensus algorithms
in the vast number of literature regarding event-triggered consensus into three types,
namely self-measurement-based, edge-measurement-based and local-measurement-
based schemes.

2.2.2.1 Self-measurement-based scheme

The self-measurement-based scheme is the first trigger scheme reported in the liter-
ature (see [Dimarogonas and Johansson, 2009a,b; Dimarogonas et al., 2012] for some
early work) and has been widely developed in the studies of event-triggered consen-
sus problem investigating different agent dynamics [Mu et al., 2015; Yang et al., 2016;
Garcia et al., 2014; Liu et al., 2016d], and information constraints (e.g. graph topol-
ogy, information quantization, communication delays) [Seyboth et al., 2013; Garcia
et al., 2013; Yi et al., 2016; Mu et al., 2015; Zhang et al., 2015].

In this scheme, each agent is required to monitor its own state (xi(t)) continuously
in a global coordinate system. The interactions among the agents rely on on-board
wireless communication devices. Let the event time instants for agent i be denoted
as ti

0 = 0, · · · , ti
ki , · · · . The state mismatch for agent i is defined as

ei(t) = xi(ti
ki)− xi(t), t ∈ [ti

ki , ti
ki+1) (2.10)
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Every time an event is triggered, ei(t) is reset to be equal to zero. The control input
is described by

ui(t) = − ∑
j∈Ni

(
xi(ti

ki)− xj(t
j
kj)
)

(2.11)

where kj = arg minl∈N : t ≥ tj
l . For t ∈ [ti

ki , ti
ki+1), tj

kj is the last event time of agent
j. Each agent takes into account the last update value of each of its neighbours in its
control law (see Example 2). The control input for agent i is updated both at its own
event times ti

0, ti
1, . . ., as well as at the event times of its neighbours tj

0, tj
1, . . ., j ∈ Ni.

The closed loop form of the MAS with agent dynamics (2.1) and control input (2.11)
can be written as

ẋ(t) = −L


x1(t1

k1)

x2(t2
k2)

...
xn(tn

kn)


Note that xi(ti

ki) = xi(t) + ei(t). By substituting this to the above closed-loop form,
we obtain

ẋ(t) = −Lx(t)−Le(t) (2.12)

This closed loop form is of great importance for the design of trigger conditions and
represents the main difference of the self-measurement-based scheme from the other
two triggering schemes. We now show how to design a basic, distributed trigger
function by using Lyapunov analysis and the closed loop form (2.12).

Consider the following Lyapunov function

V(t) =
1
2

x(t)>Lx(t) (2.13)

Its time derivative along the solution of (2.12) is

V̇(t) = x(t)>Lẋ(t)

= −x(t)>LLx(t)− x(t)>LLe(t)

Since L is symmetric, we obtain g(t)> = x(t)>L. Then we can upper bound V̇(t) as

V̇(t) ≤ −‖g(t)‖2 + ‖L‖‖g(t)‖‖e(t)‖

To guarantee V̇(t) < 0 (V̇(t) < 0 means limt→∞ Lx(t) = 0, which implies consen-
sus), we must ensure that ‖e(t)‖ ≤ ‖g(t)‖/‖L‖. For this purpose, we can design a
distributed trigger function as follows:

fi(t) = ‖ei(t)‖ − βi‖gi(t)‖ (2.14)
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where βi > 0. The trigger condition can be simply formulated as follows: an event for
agent i is triggered as soon as the trigger function fi(t) = 0 is satisfied. Note that ei(t)
is reset at each event time, the trigger condition thus ensures ‖ei(t)‖ ≤ βi‖gi(t)‖. By
using a properly selected βi, the trigger condition can ensure ‖e(t)‖ ≤ ‖g(t)‖/‖L‖
holds for all t ≥ 0, meaning consensus can be achieved.

Remark 2. The above design procedures follow the ideas proposed in [Dimarogonas and Jo-
hansson, 2009a,b; Dimarogonas et al., 2012]. The trigger function (2.14) involves two terms,
the error term ei and the comparison term gi, where gi can be calculated by using continuous
communication or measured by relative state sensors (e.g. cameras). To avoid continuous
communication, [Dimarogonas and Johansson, 2009a,b; Dimarogonas et al., 2012] assumes
each agent monitors the relative states using additional sensors. However, this assumption
increases the cost for constructing the system since both wireless communication devices
and relative state sensors are equipped. We note that the requirement of continuous relative
measurement has been removed in [Garcia et al., 2013; Seyboth et al., 2013], by replacing the
comparison term (gi) with state values measured at discrete-time instants and time-dependent
functions, respectively. The two ideas were then widely adopted in the follow-up work (e.g.
[Yang et al., 2016; Liu et al., 2016d]) using agent-measurement-based scheme. According to
this, we choose to say that, when using the self-measurement-based scheme, each agent only
needs to monitor its self state continuously rather than measuring relative states continu-
ously.

Now we record two features of the self-measurement-based scheme and present
both its advantages and disadvantages.

• Each agent uses discrete-time state values at both its own and its neighbours’
event time instants to update the control input. For this purpose, each agent is
assumed to be equipped with wireless communication devices to broadcast the
discrete-time state values to its neighbours.

• Each agent monitors its own state continuously to calculate the state mismatch
(2.10) and determine event time instants. The state measurement for each agent
has to be with respect to a global coordinate system. For example, UAVs use
Global Positioning System (GPS) to measure their own position information.

Advantages: Each agent only needs to broadcast its discrete-time state values at
specific time instants, and therefore continuous communications among the agents
are avoided. On-board communication resources can be saved significantly.

Disadvantages: The control input (2.11) of each agent has to be updated at its
own event times, as well as at the event times of its neighbours. This may result in a
very frequent control input updates, especially when one agent has a large number of
neighbours. Moreover, though measuring the self state in a continuous-time manner
is simpler from the viewpoint of practical applications, the requirement of a global
coordinate system restricts the application circumstances of the self-measurement-
based scheme, for example, in a GPS-denied area.
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2.2.2.2 Edge-measurement-based scheme

The edge-measurement-based scheme is firstly proposed in [Xiao et al., 2012, 2015]
and has been further developed by numerous papers, e.g. [Cao et al., 2015; Wei et al.,
2016; Cao et al., 2016; Wei et al., 2017; Xu et al., 2017].

In the edge-measurement-based scheme, it is assumed that for each edge εr con-
necting agents i and j, both agents i and j measure the relative state zr over εr con-
tinuously. The sequence of event-triggered executions for edge εr (meaning agents
i, j linked by εr) is denoted by t0r = 0, tr

1r
, · · · , tr

kr
, · · · . At tr

kr
, the two linked agents

update their control inputs simultaneously. For time t ∈ [tr
kr

, tr
kr+1), the relative state

mismatch over edge εr is defined as

er(t) = zr(tr
kr
)− zr(t), r = 1, . . . , m (2.15)

We note that er(t) is actually calculated by agents i and j linked by εr separately
using their own on-board processors. For agent i, which is one of the agent pair (i, j)
linked by εr, the control input is designed as follows:

ui(t) = ∑
j∈Ni

(
xj(tr

kr
)− xi(tr

kr
)
)

(2.16)

for t ∈ [tr
kr

, tr
kr+1). Note that only partial information xj(tr

kr
)− xi(tr

kr
) in the control

input is updated at tr
kr

(see Example 2).

According to (2.9), we can construct the closed loop form of agent (2.1) with
control input (2.16) as

ẋ(t) = −H>


z1(t1

k1
)

z2(t2
k2
)

...
zm(tm

km
)

 (2.17)

Substituting the state mismatch (2.15) into (2.17) leads to

ẋ(t) = −H>z(t)−H>e(t) (2.18)

where z(t) = [z1(t), z2(t), . . . , zm(t)]> ∈ Rm and e(t) = [e1(t), e2(t), . . . , em(t)]> ∈ Rm.
We now show how to use this closed loop form and the Lyapunov function (2.13) to
design a basic edge trigger function.

The time derivative of (2.13) along the solution of (2.18) yields

V̇(t) = x(t)>Lẋ(t)

= −z(t)>HH>z(t)− z(t)>HH>e(t)
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Since G is undirected and connected, by applying Lemma 2, we have

V̇(t) ≤ −λ2(L)‖z(t)‖2 + ‖z(t)‖‖HH>‖e(t)‖

We then design an edge trigger function as follows:

fr(t) = ‖er(t)‖ − βr‖zr(t)‖ (2.19)

with βr > 0. The selection of βr must guarantee V̇(t) < 0, which means consensus
can be achieved.

We also record two features of the edge-measurement-based scheme and summa-
rize both its advantages and disadvantages.

• The trigger events are defined over edges rather than agents. An agent may
have multiple edge trigger conditions, whose number is determined by the
amount of its edges links. Every time an edge trigger condition is satisfied, two
agents linked by this edge must update their control inputs simultaneously.

• Each agent measures the relative states over its connected edges to determine
edge events. The measurement is executed in each agent’s own local coordinate
system.

Advantages: The algorithms based on the edge-event-based scheme can be im-
plemented in a totally coordinate-free manner, which extends the application circum-
stances.

Disadvantages: The control input (2.16) of agent i has to be updated at the event
times of all edges it links. This may also result in a very frequent control input
updates. Furthermore, measuring relative states is more complicated and unreliable
when compared to measuring self states in practical applications.

2.2.2.3 Local-measurement-based scheme

The local-measurement-based scheme was first proposed in [Fan et al., 2013]. After
that, the trigger scheme was widely used and developed by researchers, e.g. in [Liu
et al., 2016b,c,a; Hu et al., 2016, 2017; Fan et al., 2015; Li et al., 2015; Zhu et al., 2014;
Zhu and Jiang, 2015].

In the local-measurement-based scheme, we let gi(t) (defined in (2.2)) represent
the real-time average state of agent i and its neighbours in agent i’s local coordinate
system. Agent i monitors gi(t) continuously. The sequence of event-triggered exe-
cutions for agent i is ti

0 = 0, ti
1, . . . , ti

ki , . . .. The state mismatch for agent i is defined
as

ei(t) = gi(ti
ki)− gi(t), i = 1, . . . , n, t ∈ [ti

ki , ti
ki+1) (2.20)
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The control input is designed as follows:

ui(t) = −gi(ti
ki)

= ∑
j∈Ni

(
xj(ti

ki)− xi(ti
ki)
)

(2.21)

for t ∈ [ti
ki , ti

ki+1). The control input is only updated at agent i’s own event times. The
closed loop form of agent dynamics (2.1) with control input (2.21) is formulated as
follows:

ẋ(t) = −


g1(t1

k1)

g2(t2
k2)

...
gn(tn

kn)

 (2.22)

By substituting (2.20) into (2.22), we obtain

ẋ(t) = −g(t)− e(t) (2.23)

where e(t) = [e1(t), e2(t), . . . , en(t)]> ∈ Rn. We now design a trigger function accord-
ing to the Lyapunov function (2.13) and the dynamics (2.23). The derivative of (2.13)
along the solution of (2.23) is

V̇(t) = −g(t)>g(t)− g(t)e(t) (2.24)

Then the upper bound of V̇(t) can be simply calculated as

V̇(t) ≤ −‖g(t)‖2 + ‖g(t)‖‖e(t)‖ (2.25)

It is then straightforward to design the trigger function as

fi(t) = ‖ei(t)‖ − βi‖gi(t)‖ (2.26)

where βi ∈ (0, 1). Every time fi(t) = 0 is satisfied, ei(t) is reset and thus V̇(t) < 0
can be guaranteed.

As before, we record the features of the local-measurement-based scheme and
summarise both its advantages and disadvantages.

• Each agent has its own isolated trigger conditions. The updates of each agent’s
control input are only determined by its own trigger conditions.

• The state mismatch is defined according to each agent’s measurements of rela-
tive states in its own local coordinate system.

Advantages: 1) The algorithms designed according to the local-measurement-
based scheme can be implemented in a coordinate-free manner, which is the same
as the edge-measurement-based scheme. 2) Each agent only needs to update its
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control input at its own event times; thus the control input updating times can be
significantly reduced.

Disadvantages: Similarly, to obtain accurate relative state measurements is com-
plicated in practical applications.

We now present an example to intuitively display the differences of the control
input updates in the three trigger schemes.

Example 2. Now we present three examples to illustrate the control input updates for the
three trigger schemes.

1

2 3 4

5

6

Figure 2.2: Communication topology for the illustration of the self-measurement-
based scheme.

Firstly, we describe the updates of agent 2’s control input in Fig. 2.2 to illustrate the self-
measurement-based scheme. At time t0, t0 = 0, the control input of agent 2 can be written
as

u2(t) = x1(t0)− x2(t0) + x3(t0)− x2(t0)

Assuming that the starting trigger times (t1
1, t2

1, t3
1) for agents 1, 2, 3 satisfy t1

1 < t2
1 < t3

1 <
min{t1

2, t2
2, t3

2}. At t1
1, agent 2 receives the state update x1(t1

1) from agent 1, and then the
control input changes to

u2(t) = x1(t1
1)− x2(t0) + x3(t0)− x2(t0)

At t2
1, agent 2 updates its own state, then

u2(t) = x1(t1
1)− x2(t2

1) + x3(t0)− x2(t2
1)

At t3
1, agent 2 receives the state update x3(t3

1) from agent 3 and changes the control input as

u2(t) = x1(t1
1)− x2(t2

1) + x3(t3
1)− x2(t2

1)

Secondly, we turn to the edge-measurement-based scheme. As shown in Fig. 2.3. Agent
2 measures the relative states x1 − x2 over ε1 (linking agents 1 and 2) and x2 − x4 over ε2

(linking agents 2 and 4) in its own local coordinate system. At time t0, the control input is

u2(t) = x1(t0)− x2(t0) + x3(t0)− x2(t0)

Let the first trigger times for edges ε1, ε2 be denoted by t1
1 and t2

1, which satisfy t1
1 < t2

1 <
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1

2 3 4

5

6

Figure 2.3: Sensing topology for the illustration of both the edge-measurement-based
scheme and the local-measurement-based scheme.

min{t1
2, t2

2}. At t1
1, the control input changes to

u2(t) = x1(t1
1)− x2(t1

1) + x3(t0)− x2(t0)

Then at t2
1, the control input is

u2(t) = x1(t1
1)− x2(t1

1) + x3(t2
1)− x2(t2

1)

Lastly, we move to illustrate the local-measurement-based scheme. Agent 2 measures
x1 − x2 and x2 − x4 in its own local coordinate system. At t0, the control input for agent 2
is:

u2(t) = x1(t0)− x2(t0) + x3(t0)− x2(t0)

At t2
1, which is the first trigger time of agent 2, the control input is updated as

u2(t) = x1(t2
1)− x2(t2

1) + x3(t2
1)− x2(t2

1)

At the second trigger time t2
2, the control input changes to

u2(t) = x1(t2
2)− x2(t2

2) + x3(t2
2)− x2(t2

2)

2.2.3 Zeno behaviour

Zeno behaviour is a key issue when designing event-scheduled control systems. We
first provide a formal definition of Zeno behaviour:

Definition 1. Let a finite time interval be tZ = [a, b] where 0 ≤ a < b < ∞. If, for some
finite k ≥ 0, there is a sequence of event triggers {ti

k, ..., ti
∞} ∈ [a, b] then the system exhibits

Zeno behaviour.

Definition 1 follows [Zhang et al., 2001; Ames et al., 2006], where Zeno behaviour
is defined in finite time, i.e. t ∈ [0, b], b < ∞. The intuitive explanation of Definition
1 is that Zeno behaviour occurs if there is an infinite number of events take place
in a finite time interval. However, there exists another concept on the definition of
Zeno behaviour (see e.g. [Seyboth, 2010; Qin et al., 2017b]), in which Zeno behaviour
is seen as an accumulation point of events on the complete time axis, i.e. t ∈ [0, ∞).
The accumulation point means the inter-event time ti

k+1 − ti
k → 0. Since formal
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definitions of this concept of Zeno behaviour are not provided in [Seyboth, 2010; Qin
et al., 2017b] or in other literature, we call this concept of Zeno behaviour as Concept
2, noting it is different from Definition 1, for later reference.

An example presented in [Qin et al., 2017b] can be used to illustrate the differ-
ences between Definition 1 and Concept 2: if the inter-event time ti

k+1− ti
k is bounded

below by 1
t , where t denotes a continuous time, then the lower bound 1

t tends to 0
when t → ∞. There might be accumulation events as t → ∞. In Concept 2, this
accumulation of trigger events at t → ∞ is also called Zeno behaviour. However,
in Definition 1, this is not Zeno behaviour as the definition is only valid in at finite
time.

Remark 3. In this thesis, we adopt Definition 1 as the formal definition of Zeno behaviour.
however, it is also obvious that, if we can exclude Zeno behaviour according to Concept 2,
then Zeno behaviour defined in Definition 1 does not exist, either.

In the sequel, we will follow the idea presented in [Sun et al., 2016a] to show that
how Zeno behaviour may happen when using the basic event-triggered consensus
schemes introduced above.

We first use a simulation to show the trigger performance of agents with dynam-
ics (2.1) and with control inputs (2.21) and trigger functions (2.26).
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Figure 2.4: State trajectories and trigger performance of agents with dynamics (2.1)
and with control input (2.21) and trigger function (2.26).

From Fig. 2.4, it is observed that agent 4 shows a dense trigger phenomenon
when the comparison term g4 crosses zero at some finite time 2. Referring to the

2We emphasis that gi is the i-th element of vector g, which may cross zero several times at some
finite times instants before g goes to zero when t→ ∞.
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numerical data in the simulation shows that the minimum inter-event time is 0.00005
seconds, which is equal to the fixed time step of our settings in MATLAB. From the
viewpoint of the experiment, this dense trigger phenomenon can be seen as Zeno
behaviour. We note that the issue of Zeno behaviour at zero-crossing points of the
state-dependent comparison threshold has been theoretically proved in [Sun et al.,
2017]. We refer interested readers to this comment paper.

For three basic trigger schemes, all of the comparison terms might behave zero-
crossing phenomenon, which means Zeno behaviour cannot be completed excluded
by each agent when using the basic trigger schemes. Now we show three Zeno-free
approaches proposed in the literature.

2.2.4 Zeno-free approaches

In the last subsection we have concluded that Zeno behaviour occurs when ti
k+1 −

ti
k → 0 at some finite time instants and the reason is that the comparison thresholds

in the trigger functions cross zero. Thus there are two intuitive idea to exclude Zeno
behaviour. One is to modify the comparison thresholds for which zero-crossing phe-
nomenon does not appear. By following this idea, we will introduce two modified
trigger functions with either a time-dependent comparison threshold or a static com-
parison threshold. Another idea is to directly add a strictly positive inter-event time
interval. We will talk about this at the end of this subsection.

2.2.4.1 Time-dependent trigger function

The intuitive idea of the time-dependent trigger function is to replace the state-
dependent comparison term in the trigger functions, e.g. (2.14), (2.19), (2.26), by
a non-negative, time-dependent continuous function hi(t), which can be formulated
as

fi(t) = ‖ei(t)‖ − hi(t) (2.27)

In [Sun et al., 2016a], a general type of hi(t) is designed and analysed, which satisfies
hi(t) ∈ L∞, hi(t) > 0 for all finite time t and hi(∞) = 0. Since hi(t) is strictly positive
at any finite time, it takes time for ‖ei(t)‖ to increase from zero at ti

k to be equal
to hi(t) so that Zeno behaviour is excluded. By finding an upper bound bi of the
evolution speed d

dt‖ei(t)‖, a lower bound for the inter-event time ti
k+1 − ti

k can be
simply calculated as hi(ti

k+1)/bi, which is strictly positive for any finite time ti
k+1,

and thus Zeno behaviour is excluded.
We note that the general type time-dependent trigger function (2.27) can only

exclude Zeno behaviour as defined in Definition 1. The lower bound of the inter-
event time interval is however time-dependent and tends to zero as t → ∞. We
provide a simulation exapmle in Fig. 2.5 to show the trigger performance of using a
time-dependent trigger function with a relative fast evolution speed. We can observe
there exists very dense trigger events when consensus is close to be reached. And the
inter-event time interval is also identified as 0.00005s in this dense trigger behaviour.



§2.2 Event-triggered consensus: a revisit 21

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

2

3

4

5

6

time (second)

st
at

e

agent1
agent2
agent3
agent4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

time (second)

ev
en

ts

agent1
agent2
agent3
agent4

Figure 2.5: State trajectories and trigger performance of agents (2.1) with control
input (2.21) and time-dependent trigger function (2.28). We set αi = 3 for all agents .

We conclude that the trigger behaviour in Fig. 2.5 is Zeno-free in terms of Definition
1, but is not Zeno-free in terms of Concept 2. It is still possible to use a time-
dependent trigger function to exclude Zeno behaviour as presented in Concept 2 by
carefully designing the decay rate of hi(t). This idea is first proposed in [Seyboth,
2010; Seyboth et al., 2013], where hi(t) is chosen as

hi(t) = ci exp−αit (2.28)

with ci, αi > 0. The exponential decay rate αi is required to be less than a specific
upper bound, which is calculated according to the system evolution rate (e.g. related
to the network connectivity λ2). By using carefully designed, time-dependent trigger
function, a strictly positive, constant lower bound of the inter-event time ti

k+1− ti
k can

be obtained, which excludes the possibility of accumulation events when t ∈ [0, ∞)
(see Fig. 2.6 for the trigger performance when αi is selected small enough).

Though using a pre-designed time-dependent trigger function shows nice trigger
performance, there exist two constraints:

• The studied system has to be exponential stable.

• The design of the decay rate requires global informations.

which may restrict its applied scenarios.
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Figure 2.6: State trajectories and trigger performance of agents (2.1) with control
inputs (2.21) and time-dependent trigger functions (2.28). The parameter αi is set as

1.5 for all agents .

2.2.4.2 Static trigger function

The idea of using a static trigger function to exclude Zeno behaviour can be found in
[Zhu et al., 2014; Mu et al., 2014; Seyboth, 2010].

A static trigger function is usually designed as

fi(t) = ‖ei(t)‖ − ci (2.29)

where ci is a strictly positive constant. The idea of introducing static trigger function
is actually the same with that using time-dependent trigger function (2.27), which is
to make the comparison term be strictly positive, then the lower bound of the inter-
event time ti

k+1 − ti
k is straightforwardly calculated as ci/bi, where bi denotes the

upper bound of the evolution speed of ei(t). Since ci is a constant, this lower bound
is valid for t ∈ [0, ∞) thus Zeno behaviour presented in Concept 2 can be excluded for
each agent. The drawback of using static trigger function is that complete consensus
cannot be achieved. The agents’ state values will converge to a ball instead of a point.
Moreover, when using static trigger function, the control input for each agent cannot
reach zero, which means static consensus cannot be guaranteed, as shown in Fig. 2.7.

Remark 4. In the literature, the state-dependent comparison threshold, time-dependent thresh-
old and the static threshold are usually combined together as a general comparison threshold.
However, in the analysis, the exclusion of Zeno behaviour is only respect to the time-dependent
term or the static term.
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Figure 2.7: State trajectories and trigger performance of agents (2.1) with control
input (2.21) and static trigger function (2.29). ci is chosen to be 0.5 for all agents.

2.2.4.3 Time-regulation trigger condition

The time regulation idea is originally proposed in [Nowzari and Cortés, 2014; Fan
et al., 2015] and is gaining attention.

We use the equations in [Fan et al., 2015] to illustrate the idea of using time-
regulation trigger condition. The next event time tki+1 for agent i is determined by

tki+1 = tki + max{τki , ci} (2.30)

where ci is a strictly positive and τki is determined by

τkr = inf
t>tkr

{t− tkr | fi(t) = 0} (2.31)

where fi(t) is the trigger function (2.26).
By observing the above equations, we see that the time-regulation idea is straight-

forward by directly adding a strictly positive, minimum inter-event time ci between
two consecutive trigger events, thus Zeno behaviour (Concept 2) can be well ex-
cluded by each agent. To ensure convergence, the minimum inter-event time has
to be less than a finite upper bound. Though this is a straightforward idea, how
to calculate the upper bound of ci is actually quite challenging, especially when the
studied system has complex agent dynamics or network topology.

Remark 5. In this thesis, the above three ideas to exclude Zeno behaviour are all used,
depending on different research topics.
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2.3 Chapter summary

In this chapter, we first introduce mathematical notations that used throughout this
thesis. After that, we provide a general review to the event-triggered consensus
problem where we start from the classical consensus algorithms for single-integrator
agents with an introduction to some knowledge of graph theory that will be used in
Chapters 2-4. Then we discuss how to construct three widely-used event-triggered
schemes for consensus, including self-measurement-based, edge-measurement-based
and local-measurement-based schemes. Their features as well as advantages and dis-
advantages when being implemented in the practical applications are all recorded.
At last, we talk about Zeno behaviour, which is a main difficulty when designing an
event-triggered control algorithm. We compare the difference between the two view-
points of Zeno behaviour existed in literature. We also list three Zeno-free trigger
approaches and discuss the trade-off when using these approahes, respectively.



Chapter 3

Event-Triggered Consensus with
Quantized Relative Information

3.1 Introduction

Event-triggered consensus [Dimarogonas et al., 2012; Seyboth et al., 2013; Fan et al.,
2013] and quantized consensus [Nedić et al., 2009; Liu et al., 2012; Guo, 2011; Cera-
gioli et al., 2011] have been widely investigated in recent years. Note that quantized
algorithms are considered because they reduce the requirement of measurement,
and event-triggered algorithms are designed to reduce the requirement of control
updates. However, implementing both of them together to further minimize the pro-
cessing and actuating burden is still relatively unexplored. Some existing work in
this area can be found in [Yu and Antsaklis, 2012], [Garcia et al., 2013] and [Zhang
et al., 2015]. The work in [Yu and Antsaklis, 2012] first uses quantized absolute state
measurements to design event-triggered consensus algorithms for undirected net-
works with single integrator agent dynamics. The authors prove that the quantized
states of agents achieve consensus asymptotically. In [Garcia et al., 2013], the authors
consider a uniform quantizer and prove that all agents will converge to a certain ball
whose radius is related to the quantization error. However, both [Yu and Antsak-
lis, 2012] and [Garcia et al., 2013] do not provide any analysis on the exclusion of
Zeno behaviour [Zhang et al., 2001], which is a key issue when designing event-
scheduled systems as Zeno behaviour can cause the collapse of the entire system.
In addition, the proposed schemes in [Yu and Antsaklis, 2012] and [Garcia et al.,
2013] require each agent to update its own control input at both its own and its
neighbours’ trigger time and this may increase the updating frequency significantly.
Moreover, the information shared among the agents in these work is measured with
respect to a global coordinate. However, for multi-robot systems in 2-dimensional or
3-dimensional space, the assumption that all robots align with a global coordinate
system is undesirable for implementing consensus controllers in e.g. a GPS-denied
environment. The work in [Zhang et al., 2015] is built on [Garcia et al., 2013], in
which the authors further investigate the case of logarithmic quantizer and provide
analysis which shows Zeno behaviour does not occur. However, it is worth point-
ing out that the trigger conditions proposed in this work use ideal state information

25
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instead of quantized state information. This strong assumption makes the exclusion
of Zeno behaviour easier but is not reflective of real world applications since agents
with digital sensors and processors actually will not have access to the ideal state
information.

In this chapter, we present event-triggered algorithms for solving the consensus
problem with quantized sum of relative states and sum of quantized relative states, respec-
tively. The agent dynamic is described by single integrator and the sensing graph
is undirected. Both uniform and logarithmic quantizers are considered, which, to-
gether with two different controllers, yield four cases of study in this chapter. The
quantized information is used to update the control input as well as to determine the
next trigger event. We show that approximate consensus can be achieved by the pro-
posed algorithms and Zeno behaviour can be completely excluded if constant offsets
with some computable lower bounds are added to the trigger conditions.

3.2 Additional Preliminaries

3.2.1 Quantizer functions

In this chapter, q(·) : R → R represents a generalised quantization function which
includes two types of quantization models, namely uniform quantization and loga-
rithmic quantization. We follow the definitions of [Guo, 2011] for these quantizers.

Definition 2. A uniform quantizer qu : R→ R is defined as:

qu(x) = ∆u[
x

∆u
] (3.1)

where [·] denotes the nearest integer operation and [ 1
2 ] = 1. ∆u is the quantization gain.

Definition 3. A logarithmic quantizer ql : R→ R is defined as:

ql(x) = sign(x) · equ(ln(|x|)) (x 6= 0) (3.2)

where qu is the uniform quantizer with gain ∆u, as defined in (3.1). In particular, ql(0) is
defined to be zero.

3.2.2 Quantizer properties

Let δ(x) = q(x)− x denote the quantization error function. For the uniform quantizer
qu, the following relation holds

|δu(x)| = |qu(x)− x| ≤ ∆u

2
(3.3)

For the logarithmic quantizer ql , we have δl(x) = ql(x)− x. Then

|δl(x)| ≤ ∆l |x|, ∆l = e
∆u
2 − 1 (3.4)
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where ∆u is the gain of uniform quantizer in (3.1).
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Figure 3.1: Uniform quantizer function
with the gain δu = 0.2.
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Figure 3.2: Logarithmic quantizer function
with the gain δu = 0.2.

3.3 Problem formulation

Assume that each agent is equipped with sensors which allow measurement of rela-
tive states (e.g. xi − xj). We further assume that the relative state sensors have their
own processors and can collect the relative state information xi − xj continuously.
The sensing graph topology for the relative states is captured by a fixed, undirected
graph G with associated incidence matrix H and Laplacian matrix L. That is, if for
agent i we have aij = 1, i.e. the sensors on agent i can sense xi − xj. The control unit
of agent i can only receive quantized information from its sensors and update the
control input at its own event time. The sequence of event-triggered executions for
agent i is ti

0 = 0, ti
1, . . . , ti

k, . . ..
Assume agent i is described by single-integrator dynamics

ẋi(t) = ui(t) (3.5)

for all i ∈ 1, . . . , n. Since the way of quantizing information is determined by the
relative state sensors, the control input can either be the quantized sum of relative states
or the sum of quantized relative states. Accordingly, we design two controllers. The
control input 1 is designed as

ui(t) = q

(
∑

j∈Ni

(xi(ti
k)− xj(ti

k))

)
(3.6)

while the control input 2 is designed as

ui(t) = ∑
j∈Ni

q
(

xi(ti
k)− xj(ti

k)
)

(3.7)
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for t ∈ [ti
k, ti

k+1).

Problem 1. Consider the multi-agent system consisting of n > 1 agents with dynamics de-
scribed by (3.5), driven by control input (3.6). Find triggering conditions for each agent, such
that approximate consensus can be achieved and each agent does not exhibit Zeno behaviour.

Problem 2. Consider the multi-agent system consisting of n > 1 agents with dynamics de-
scribed by (3.5), driven by control input (3.7). Find triggering conditions for each agent, such
that approximate consensus can be achieved and each agent does not exhibit Zeno behaviour.

3.4 Input quantization case

Let gi(t) = ∑j∈Ni
(xi(t)− xj(t)) represent the real-time average states of agent i and

its neighbours in agent i’s coordinate system. Agent i obtains q(gi(t)) continuously.
At time ti

k, agent i takes q(gi(ti
k)) as the control input, which remains unchanged

until the next trigger time ti
k+1 comes. The state mismatch is defined as

eq
i (t) = q(gi(ti

k))− q(gi(t)), i = 1, . . . , n, t ∈ [ti
k, ti

k+1) (3.8)

We have equ
i (t) = qu(gi(ti

k))− qu(gi(t)) for the uniform quantizer case and eql
i (t) =

ql(gi(ti
k))− ql(gi(t)) for the logarithmic quantizer case. The system model with quan-

tized control input is written as:

ẋi(t) = −q(gi(ti
k)), i = 1, . . . , n, t ∈ [ti

k, ti
k+1) (3.9)

For controller (3.6), and for both uniform and logarithmic quantizers. We propose
the following universal trigger condition:

fi(e
q
i (t), q(gi(t))) = ‖e

q
i (t)‖

2 − β2
i ‖q(gi(t))‖2 − c2

i > 0 (3.10)

where fi(e
q
i (t), q(gi(t))) is the trigger function, βi, ci > 0 and ci is a constant offset. An

event for agent i is triggered as soon as the trigger condition fi(e
q
i (t), q(gi(t))) > 0

is fulfilled. Furthermore, every time an event is triggered, and in accordance with
its definition, the state mismatch eq

i (t) is reset to be equal to zero. It is obvious that
the trigger function only contains quantized information. Let βmax = max1≤i≤n{βi},
cmax = max1≤i≤n{ci}. Now we are ready for our main theorem.

Theorem 1. Consider system (3.9) with trigger condition (3.10) and assume that G is con-
nected.

• In the case of uniform quantizer, z(t) converges to a ball of radius

(1 + βmax)
√

n∆u‖H‖+ 2
√

ncmax‖H‖
2(1− βmax)λ2(L)

around the origin (z = 0) without Zeno behaviour if βi < 1 and ci > ∆u for all
i ∈ 1, . . . , n.
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• In the case of logarithmic quantizer, z(t) converges to a ball of radius
√

ncmax‖H‖
(1− βmax − ∆l − βmax∆l)λ2(L)

around the origin (z = 0) without Zeno behaviour if βi + ∆l + βi∆l < 1 and ci >
2∆l‖HTz(0)‖ for all i ∈ 1, . . . , n.

Proof. The proof is mainly composed of two parts: we first construct a Lyapunov
function to perform the stability analysis which covers the two cases with different
quantizers. Then, the convergence conditions and regions will be shown separately
for different cases. In the second part, we will prove that Zeno behaviour can be ex-
cluded by adding certain offsets to the trigger functions. The principles for choosing
the offsets will be discussed for different cases of quantizers.

Considering the following Lyapunov function :

V(t) =
1
2

x>(t)Lx(t) (3.11)

where L is the Lapalacian matrix of G.1 By the definition of state mismatch (3.8), the
derivative of (3.11) along the solution of (3.9) is

V̇(t) = x>(t)Lẋ(t)

= −x>(t)L


q(g1(t)) + eq

1(t)
q(g2(t)) + eq

2(t)
...

q(gn(t)) + eq
n(t)


Note that L is symmetric and q(gi) = gi + δ(gi). Then straightforward calculations
show that the derivative of the Lyapunov function can be rewritten as

V̇(t) = −g>(t)


g1(t) + δ(g1(t)) + eq

1(t)
g2(t) + δ(g2(t)) + eq

2(t)
...

gn(t) + δ(gN(t)) + eq
n(t)


where g(t) = [g1(t) g2(t) . . . gn(t)]>. Then V̇(t) satisfies:

V̇(t) ≤ −‖g(t)‖2 + ‖g(t)‖‖δ(g(t))‖+ ‖g(t)‖‖eq(t)‖ (3.12)

where δ(g(t)) = [δ(g1(t)) δ(g2(t)) . . . δ(gn(t))]> and eq(t) = [eq
1(t) eq

2(t) . . . eq
n(t)]>.

According to the updating rules of controller, the state mismatch eq
i (t) is reset to

zero as soon as the trigger condition (3.10) is satisfied, which means ‖eq
i (t)‖2 ≤

β2
i ‖q(gi(t))‖2 + c2

i holds through the evolution of the corresponding i-th agent’s state.

1The Lyapunov function can also be reformed as V(t) = 1
2‖z(t)‖2 since z = Hx and L = H>H.
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Let q(g(t)) = [q(g1(t)), . . . , q(gn(t))]T, then ‖eq(t)‖ ≤ βmax‖q(g(t))‖+
√

ncmax holds.
Meanwhile, it is easy to obtain that ‖q(g(t))‖ can be bounded from above by ‖g(t)‖+
‖δ(g(t))‖.

From above discussions, we obtain

V̇(t) ≤ (βmax − 1)‖g(t)‖2 + (1 + βmax)‖g(t)‖‖δ(g(t))‖+
√

ncmax‖g(t)‖

According to Lemma 2, we have that ‖g(t)‖2 ≥ λ2(L)‖z(t)‖2 if graph G is connected,
then (βmax − 1)‖g(t)‖2 ≤ (βmax − 1)λ2(L)‖z(t)‖2 holds if 0 < βmax < 1. Further-
more, by rewriting g(t) = Lx(t) = H>z(t), we can obtain ‖g(t)‖ ≤ ‖H‖‖z(t)‖.

In the following, we will state the convergence results for both uniform and log-
arithmic cases.

In the uniform quantizer case, according to (3.3), we have

V̇(t) ≤ (βmax − 1)λ2(L)‖z(t)‖2 + (1 + βmax)

√
n

2
∆u‖H‖‖z(t)‖+

√
ncmax‖H‖‖z(t)‖

when 0 < βmax < 1, we can obtain that z(t) converges to a ball around the origin.
The radius of the ball is defined as follows:

Ru1 =
(1 + βmax)

√
n∆u‖H‖+ 2

√
ncmax‖H‖

2(1− βmax)λ2(L)
(3.13)

In the logarithmic quantizer case, by using the property of logarithmic quantizer
(3.4), we obtain

V̇(t) ≤ (βmax + ∆l + βmax∆l − 1) λ2(L)‖z(t)‖2 +
√

ncmax‖H‖‖z(t)‖

if 0 < βmax + ∆l + βmax∆l < 1. Then we obtain that z(t) converges to a ball of radius

Rl1 =

√
ncmax‖H‖

(1− βmax − ∆l − βmax∆l)λ2(L)
(3.14)

around the origin.

Now we turn to prove that no Zeno behaviour occur throughout the evolution of
the agent i’s state.

We apply the commonly-used method to prove that an event-based control sys-
tem does not show Zeno behaviour, which is to find a strictly positive lower bound
for the inter-event time. Here we need to introduce a continuous measurement error:

ei(t) = gi(ti
k)− gi(t), i = 1, . . . , n, t ∈ [ti

k, ti
k+1) (3.15)

ei(t) is also reset to zero as long as the trigger condition (3.10) is satisfied. It is
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obvious that d
dt‖ei(t)‖ ≤ ‖ġi(t)‖. Thus

d
dt
‖ei(t)‖ ≤

∥∥∥∥∥∑
j∈Ni

(ẋi(t)− ẋj(t))

∥∥∥∥∥
≤
∥∥∥∥∥∑

j∈Ni

q(gi(ti
ki
))

∥∥∥∥∥+
∥∥∥∥∥∑

j∈Ni

q(gj(t
j
k j
))

∥∥∥∥∥
Note that ti

ki
is equal to ti

k, and further note that tj
k j

denotes the latest event time
instant of agent j before the current time t. Furthermore, there holds

‖ei(t)‖ = ‖gi(ti
k)− gi(t) + q(gi(t))− q(gi(t))‖

= ‖gi(ti
k)− q(gi(t)) + q(gi(t))− gi(t)‖

= ‖q(gi(ti
k))− q(gi(t))− δ(gi(ti

k)) + δ(gi(t))‖
= ‖eq

i (t)− δ(gi(ti
k)) + δ(gi(t))‖ (3.16)

and this transformation will be used later.

For the uniform quantizer case, we have

d
dt
‖ei(t)‖ ≤

∥∥∥∥∥∑
j∈Ni

qu(gi(ti
ki
))

∥∥∥∥∥+
∥∥∥∥∥∑

j∈Ni

qu(gj(t
j
k j
))

∥∥∥∥∥
≤
∥∥∥∥∥∑

j∈Ni

gi(ti
ki
)

∥∥∥∥∥+
∥∥∥∥∥∑

j∈Ni

δu(gi(ti
ki
))

∥∥∥∥∥+
∥∥∥∥∥∑

j∈Ni

gj(t
j
k j
)

∥∥∥∥∥+
∥∥∥∥∥∑

j∈Ni

δu(gj(t
j
k j
))

∥∥∥∥∥
(3.17)

Note that g(ti
k) = HTz(ti

k), so ‖gi(ti
k)‖ ≤ ‖g(ti

k)‖ ≤ ‖H‖‖z(ti
k)‖. Meanwhile, since

V(t) = 1
2‖z(t)‖2 is decreasing before entering the ball of radius (3.13) around zero,

‖gi(ti
k)‖ can be bounded from above by ‖H‖‖z(0)‖. The same analysis can be applied

to gj(t
j
k) directly. Now we have that

d
dt
‖ei(t)‖ ≤ 2ni‖H‖‖z(0)‖+ ni∆u

where ni denotes the number of neighbours of agent i. For any t ∈ [ti
k, ti

k+1), the
following inequality always holds

t− ti
k ≥

‖ei(t)‖ − ‖ei(ti
k)‖

(2ni‖H‖‖z(0)‖+ ni∆u)
(3.18)

According to (3.3) and (3.16), it is easy to obtain

‖ei(t)‖ − ‖ei(ti
k)‖ ≥ ‖e

qu
i (t)‖ − ∆u (3.19)
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Figure 3.3: Evolution of the comparison states

since ei(ti
k) = 0. According to the trigger condition (3.10), we know that ‖equ

i (t)‖2 >
β2

i ‖qu(gi(t))‖2 + c2
i holds at the trigger time ti

k+1. Since qu(gi(t)) may be equal to zero,
we obtain that the inter-event time ti

k+1 − ti
k is lower bounded by a strictly positive

value ci−∆u
(2ni‖H‖‖z0‖+ni∆u)

if ci > ∆u, which completes the proof of the uniform quantizer
case.

For the logarithmic quantizer case, by (3.4) and following the analysis steps which
start from (3.17) to (3.18), we have

t− ti
k ≥

‖ei(t)‖ − ‖ei(ti
k)‖

2(1 + ∆l)ni‖H‖‖z(0)‖

By rewriting ‖ei(t)‖ = ‖e
ql
i (t)− δl(gi(ti

k)) + δl(gi(t))‖ according to (3.16), we obtain

‖ei(t)‖ ≥ ‖e
ql
i (t)‖ − ∆l‖gi(t)‖ − ∆l‖gi(ti

k)‖

At the trigger time ti
k+1, ‖eql

i (t)‖2 > β2
i ‖ql(gi(t))‖2 + c2

i holds and ‖ql(gi(t))‖ may
be zero. So the inter-event time is bounded from below by a strictly positive value
if ci − ∆l‖gi(t)‖ − ∆l‖gi(ti

k)‖ > 0 holds. Since the agent cannot obtain gi(t) and
gi(ti

k) directly, we use ‖g(0)‖, the information of initial states to be the upper bound
for gi(t) and ‖gi(ti

k)‖. Note that g(0) = HTz(0). Finally, we can conclude that no
Zeno behaviour occur when using a logarithmic quantizer with controller (3.6) if
ci > 2∆l‖HTvectz(0)‖.

3.5 Edge quantization case

Now we turn to the control input (3.7) (correspond to Problem 2). Let pi(t) =

∑j∈Ni
q(xi(t)− xj(t)), agent i obtains pi(t) continuously. Here we redefine the state
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mismatch as

eq
i (t) = pi(ti

k)− pi(t), i = 1, . . . , n t ∈ [ti
k, ti

k+1) (3.20)

The network system model is then written as:

ẋi(t) = −pi(ti
k), i = 1, . . . , n t ∈ [ti

k, ti
k+1) (3.21)

The trigger condition is designed as:

f (eq
i (t), pi(t)) = ‖e

q
i (t)‖

2 − β2
i ‖pi(t)‖2 − c2

i > 0 (3.22)

where f (eq
i (t), pi(t)) is the trigger function, βi, ci > 0 and ci is a constant offset. The

k-th event for agent i is triggered as soon as the trigger condition fi(e
q
i (t), pi(t)) > 0

is fulfilled at t = ti
k. From (3.21) and (3.22), it is obvious that each agent only uses

quantized relative information, as well.

Let βmax = max1≤i≤n{βi}, cmax = max1≤i≤n{ci} and ni denote the number of
neighbours of agent i, as well. The main result of this subsection is summarised as
follows:

Theorem 2. Consider system (3.21) with trigger condition (3.22) and assume that G is
connected.

• In the case of uniform quantizer, z(t) converges to a ball of radius

(1 + βmax)
√

m∆u‖H‖2 + 2
√

ncmax‖H‖
2(λ2(L)− βmax‖H‖2)

around the origin without Zeno behaviour if βi < λ2(L)
‖H‖2 and ci > ni∆u for all i ∈

1, . . . , n.

• In the case of logarithmic quantizer, z(t) converges to a ball of radius
√

ncmax‖H‖
λ2(L)− (βmax + ∆l + βmax∆l)‖H‖2

around the origin without Zeno behaviour if βi +∆l + βi∆l <
λ2(L)
‖H‖2 and ci > 2∆l‖H‖‖z(0)‖

for all i ∈ 1, . . . , n.

Proof. The proof is also composed of two parts and has the same structure as the
proof of Theorem 1.
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Let V(t) = 1
2 z>(t)z(t) be a Lyapunov function. Then

V̇(t) = z>(t)ż(t)

= −z>(t)H


p1(t) + eq

1(t)
p2(t) + eq

2(t)
...

pn(t) + eq
n(t)


= −z>(t)Hp(t)− z>(t)Heq(t)

Substituting p(t) = H>q(z(t)) into the above equation and noting that q(z(t)) =
z(t) + δ(z(t)), then V̇(t) can be rewritten as:

V̇(t) = −z>(t)HH>z(t)− z>(t)HH>δ(z(t))− z>(t)Heq(t)

Note that the trigger condition (3.22) guarantees that ‖eq
i (t)‖2 ≤ β2

i ‖pi(t)‖2 + c2
i .

Then with Lemma 2, we have

V̇(t) ≤ −λ2(L)‖z(t)‖2 + ‖z(t)‖‖H‖2‖δ(z(t))‖
+ βmax‖z(t)‖‖H‖‖p(t)‖+

√
ncmax‖z(t)‖‖H‖

In the case of uniform quantizer, we have

V̇(t) ≤ −λ2(L)‖z(t)‖2 +

√
m

2
∆u‖z(t)‖‖H‖2 +

√
m

2
βmax∆u‖z(t)‖‖H‖2

+ βmax‖z(t)‖2‖H‖2 +
√

ncmax‖z(t)‖‖H‖

≤
(

βmax‖H‖2 − λ2(L)
)
‖z(t)‖2 + (1 + βmax)

√
m

2
∆u‖z(t)‖‖H‖2

+
√

ncmax‖z(t)‖‖H‖ (3.23)

if 0 < βi <
λ2(L)
‖H‖2 . Then we can obtain that z(t) converges to a ball of radius

Ru2 =
(1 + βmax)

√
m∆u‖H‖2 + 2

√
ncmax‖H‖

2(λ2(L)− βmax‖H‖2)
(3.24)

around the origin.

In the case of logarithmic quantizer, we have

V̇(t) ≤
(
(βmax + ∆l + βmax∆l)‖H‖2 − λ2(L)

)
‖z(t)‖2

+
√

ncmax‖H‖‖z(t)‖
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if βmax + ∆l + βmax∆l <
λ2(L)
‖H‖2 , z(t) converges to a ball of radius

Rl2 =

√
ncmax‖H‖

λ2(L)− (βmax + ∆l + βmax∆l)‖H‖2 (3.25)

around the origin.

We follow the same method used in Theorem 1 to exclude Zeno behaviour in this
part. The analysis will again focus on ‖ei(t)‖, which is defined in (3.16). For both
cases, we have

d
dt
‖ei(t)‖ ≤ ‖ġi(t)‖

≤ ∑
j∈Ni

∥∥∥p(ti
ki
)
∥∥∥+ ∑

j∈Ni

∥∥∥p(tj
k j
)
∥∥∥

≤ ni‖H‖‖q(z(ti
ki
))‖+ ni‖H‖‖q(z(t

j
k j
))‖ (3.26)

We rewrite ‖ei(t)‖ as follows:

‖ei(t)‖ = ‖gi(ti
k)− gi(t) + pi(t)− pi(t)‖

Further note that

pi(t) = ∑
j∈Ni

q(xi(t)− xj(t))

= ∑
j∈Ni

(
xi(t)− xj(t)

)
+ ∑

j∈Ni

δ
(
xi(t)− xj(t)

)
= gi(t) + ∑

j∈Ni

δ
(
xi(t)− xj(t)

)

Let di(t) = ∑j∈Ni
δ(xi(t) − xj(t)), then pi(t) = gi(t) + di(t) and gi(ti

k) = pi(ti
k) −

di(ti
k). By several manipulations, ‖ei(t)‖ can be rewritten as

‖ei(t)‖ = ‖e
q
i (t)− di(ti

k) + di(t)‖ (3.27)

For the uniform quantizer case, we have

d
dt
‖ei(t)‖ ≤ ni‖H‖‖qu(z(ti

ki
))‖+ ni‖H‖‖qu(z(t

j
k j
))‖

≤ 2ni‖H‖‖z(0)‖+ ni
√

m‖H‖∆u

since ‖z(t)‖ is decreasing before entering the ball around zero, which means

t− ti
k ≥

‖ei(t)‖ − ‖ei(ti
k)‖

2ni‖H‖‖z(0)‖+ ni
√

m‖H‖∆u



36 Event-Triggered Consensus with Quantized Relative Information

for any t ∈ [ti
k, ti

k+1). From (3.27), we can easily obtain ‖ei(t)‖ ≥ ‖e
qu
i (t)‖ − ni∆u at

time ti
k+1. By using the same analysis steps as in Theorem 1, we know that Zeno

behaviour will not occur when using the uniform quantizer with controller (3.7) if
ci > ni∆u.

For the logarithmic quantizer case, we have

d
dt
‖ei(t)‖ ≤ ni‖H‖‖ql(z(ti

ki
))‖+ ni‖H‖‖ql(z(t

j
k j
))‖

≤ 2∆lni‖H‖‖z(0)‖

which means

t− ti
k ≥
‖ei(t)‖ − ‖ei(ti

k)‖
2∆lni‖H‖‖z(0)‖

Now we turn to calculate the lower bound for ‖ei(t)‖ at ti
k+1. Note that di(t) can be

seen as an element of the vector HTδ(z(t)). Then by applying (3.4), (3.27) and the
fact that ‖z(t)‖ is decreasing before entering the ball around the origin of zero, we
obtain

‖ei(t)‖ − ‖ei(ti
k)‖ ≥ ‖e

ql
i (t)‖ − 2∆l‖H‖‖z(0)‖

which means no Zeno behaviour occurs when using a logarithmic quantizer with
controller (3.7) if ci > 2∆l‖H‖‖z(0)‖.

Remark 6. All of our analysis on exclusion of Zeno behaviour is built on studying ‖ei(t)‖
dynamics. Notice that ‖ei(t)‖ is not used in the trigger condition (3.10) and the growth of
‖ei(t)‖ does not trigger the event. Although this is true, we stress that it is hard to study
the time derivative of ‖eq

i (t)‖ since eq
i (t) is discontinuous. However, ‖ei(t)‖ is continuous,

so we can obtain the lower bound of time interval ti
k+1 − ti

k, that ‖ei(t)‖ grows from 0 to
‖ei(ti

k+1)‖. Note that ti
k+1 − ti

k also represents the time interval that ‖eq
i (t)‖ changes from 0

to ‖eq
i (t

i
k+1)‖. Thus by proving that the lower bound of ti

k+1 − ti
k obtained from the analysis

of ‖ei(t)‖ is strictly positive, Zeno behaviour can be excluded. It is worth noting that, Zeno
behaviour excluded in this chapter is actually the one presented in Concept 2 in Section 2.2

3.6 Simulation examples

Consider a 4-agent system with the corresponding incidence matrix

H =

1 −1 0 0
0 1 −1 0
0 1 0 −1
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For all the four cases, the initial states for agents are chosen as x1(0) = 1.8, x2(0) =
3.4, x3(0) = 5.2 and x4(0) = 6.2, the gain of the uniform quantizer is chosen as
∆u = 0.05 and thus the gain of the logarithmic quantizer is calculated as ∆l = 0.0253,
respectively. Moreover, we set βi = 0.6 for all i for all the simulation experiments.
For input quantization case, the constant offset ci is set to be 0.06 in the uniform
quantizer case while ci = 0.096 in the logarithmic case. For edge quantization case,
we let c1 = c3 = c4 = 0.06 and c2 = 0.16 (agent 2 has three neighbours) in the
uniform quantizer case while ci = 0.096 in the logarithmic case.

For comparison, each figure contains the performance of controller whose trigger
function does not contain offset. From all these figures, one can find that with the
offsets, Zeno behaviour is avoided and there is the additional benefit of a reduction
in the number of trigger events.
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Figure 3.4: Input quantization case with uniform quantizer

3.7 Concluding remarks

In this chapter, we propose two types of event-based controllers for consensus with
quantized, relative measurements. Explicit convergence results are derived for both
uniform quantizer and logarithmic quantizer cases. Moreover, the addition of con-
stant offsets to the trigger functions is discussed to ensure Zeno behaviour is avoided
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Figure 3.5: Input quantization case with logarithmic quantizer

if the agent is only able to access to quantized relative information. Numerical sim-
ulations are provided to show the the algorithms’ effectiveness.
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Figure 3.6: Edge quantization case with uniform quantizer
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Figure 3.7: Edge quantization case with logarithmic quantizer
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Chapter 4

Edge-Event-Triggered Consensus
under Synchronized and
Unsynchronized Clocks

4.1 Introduction

In this chapter, we present novel edge-event-triggered consensus algorithms (based
on edge-measurement-based scheme reviewed in Section 2.2) to achieve multi-agent
consensus with Zeno-free triggers under both synchronized and unsynchronized
clocks. The agent’s dynamics are modelled by single integrators and the graph
topology is assumed to be fixed, undirected and connected. The contributions of
this chapter is two-fold.

Firstly, as compared to [Xiao et al., 2012, 2015], the synchronized clock case stud-
ied in Section 4.2 provides another point of view with much simpler trigger condi-
tions. In our framework, agents only use relative information measured in its own
local coordinate frame to achieve average consensus. This is in contrast to prior work
[Xiao et al., 2012; Seyboth et al., 2013; Nowzari and Cortés, 2016] (a global coordinate
frame is required for all agents) and [Fan et al., 2013, 2015] (average consensus cannot
be achieved). We also apply the time regulation idea from [Fan et al., 2015] to guar-
antee Zeno-free triggers, which differs from the time-dependent trigger condition
used in [Wei et al., 2017].

Secondly, the unsynchronized clock case studied in Section 4.3 provides a gen-
eralised framework for edge-measurement-based trigger scheme. We note that the
edge-measurement-based trigger scheme reviewed in Section 2.2 requires synchronous
controller updates for two linked agents. To achieve this synchronous requirement,
all agents in the network have to share a global clock and are activated simultane-
ously, i.e. ti

0 = 0, i = 1, · · · , n. In the generalised framework, each agent measures
the relative information and updates the control input under its own isolated clock.
An edge event is defined over an individual agent rather than two linked agents, i.e.
two agents linked by one edge do not update their control inputs synchronously.
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4.1.1 Problem formulation

The MAS we study in this chapter consists of n single integrators that are labelled
from 1 to n. The n agents are connected by m edges (sensing links). Let xi(t) ∈ R

denote the state of agent i, i = 1, 2, . . . n. The dynamics of agent i are described by

ẋi(t) = ui(t), i = 1, · · · , n (4.1)

where ui(t) is the control input. We assume that each agent is only equipped with
relative position sensors, e.g. sonar or ToF (time-of-flight) camera, to measure the
relative states between its neighbours and itself, in its own local coordinate frame.
The sensing topology is captured by a fixed, undirected and connected graph G with
corresponding incidence matrix H, Laplacian matrix L and adjacency matrix A. For
each edge εr connecting agent i and agent j, both agent i and agent j measure the
relative state zr continuously.

In the synchronized clock case, we further assume that all agents share a global
clock t, i.e. each agent in the MAS are activated simultaneously. The sequence of
event-triggered executions for edge εr is t0r = 0, t1r , . . . , tkr , . . .. At tkr , agent i and
agent j (correspond to vertexes vi and vj in graph G) linked by edge εr update their
control input simultaneously. For agent i, which is one agent of the agent pair (i, j)
linked by edge εr, the control input is designed as follows:

ui(t) = ∑
j∈Ni

(
xj(tkr)− xi(tkr)

)
(4.2)

for t ∈ [tkr , tkr+1).
In the unsynchronized clock case, we let t, t(0) = 0 denote a global clock. How-

ever, each agent i has its own isolated, local clock ti, i = 1, 2, . . . , n. Let ti(0) ≥ 0
denote the initial value for each ti and ti(0), ∀i is not necessarily identical. That is
to say, agents i and j linked by edge εr start to measure the relative information and
update their control inputs under their own clocks with non-identical initial time.
Because of this, agent i and j linked by εr do not update their control inputs syn-
chronously.

Since the trigger times of agents i and j linked by εr are non-identical, we define
two time sequences of event-triggered executions for agents i and j, respectively,
which are ti

0i
r
, ti

1i
r
, . . . , ti

ki
r
, . . . for agent i under ti and tj

0j
r
, tj

1j
r
, . . . , tj

kj
r
, . . . for agent j under

tj. ti
ki

r
denotes the time of k-th edge event of agent i triggered over edge εr under agent

i’s clock. Both agents update their control inputs at their own edge event times. For
agent i, which is one agent of the agent pair (i, j) linked by εr, the control input is
designed as follows:

ui(ti) = ∑
j∈Ni

(
xj(ti

ki
r
)− xi(ti

ki
r
)
)

, i = 1, 2, . . . , n (4.3)

for ti ∈ [ti
ki

r
, ti

ki
r+1).
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Problem 3. Consider the multi-agent system consisting of n > 1 agents whose dynamics are
described by (4.1). We assume each agent is driven by (4.2) in the synchronized clock case. In
the unsynchronized clock case, the control input is designed as (4.3). For both cases, the aims
are to find triggering conditions for each agent, such that complete consensus can be achieved
and each agent does not exhibit Zeno behaviour.

4.2 Synchronized clock case

We first introduce a time-varying error er(t). For time t ∈ [tkr , tkr+1), the relative state
mismatch over edge εr is defined as

er(t) = zr(tkr)− zr(t), r = 1, . . . , m (4.4)

We note that er(t) is actually calculated by agents i and j linked by εr separately
using their own on-board processors. However, since agents i and j share a global
clock and start simultaneously, the values of ‖er(t)‖ calculated inside their processors
are identical. We then define the Zeno-free edge-event-based trigger algorithm by
following the idea proposed in [Fan et al., 2015]. The next event time for edge εr is
determined by

tkr+1 = tkr + max{τkr , br} (4.5)

where br is strictly positive and τkr is determined by the trigger condition

f (er(t), zr(t)) = ‖er(t)‖ − βr‖zr(t)‖ = 0, (4.6)

where βr > 0. Every time an event is triggered, er(t) resets to zero. Mathematically,
τkr is determined by

τkr = inf
t>tkr

{t− tkr | f (er(t), zr(t)) = 0}.

Now we state the main result of this section.

Theorem 3. Consider a multi-agent system where each agent’s dynamics are described by
(4.1) with control input (4.2) and edge-event trigger condition (4.5). Let η1 and η2 be positive
real numbers satisfying η1 + η2 < 1. If βr ≤ η1(λ2(L)/‖H‖2) for all edges 1, br is strictly
positive and satisfies br ≤ η2λ2(L)

‖H‖2(
√

m‖H‖2+η2λ2(L))
. Then

• (Average consensus) All agents’ states converge to their initial average.

• (Zeno-free triggers) At any time t > 0, no edge will exhibit Zeno behaviour.

Proof. (Consensus and determination of br) It is well-known that the compact form
of continuous-time consensus dynamic is constructed ẋ = −Lx = −HTz. Following

1In synchronized clock case, "edge" means two agents linked by an edge
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this construction, the compact form of (4.2) can be written as

u(t) = −H>


z1(tk1)
z2(tk2)

...
zm(tkm)

 (4.7)

where kr = arg maxkr∈N{tkr |tkr ≤ t}, r = 1, . . . , m. By substituting the error term
(4.4), the compact form of the consensus dynamic can be written as

ẋ(t) = −H>z(t)−H>e(t) (4.8)

where z(t) = [z1(t), z2(t), . . . , zm(t)]> and e(t) = [e1(t), e2(t), . . . , em(t)]>.

Consider the Lyapunov function V(t) = 1
2 z(t)>z(t), whose time derivative along

(4.8) is

V̇(t) = z(t)>ż(t) = −z(t)>HH>z(t)− z(t)>HH>e(t)

By applying Lemma 2, we further obtain

V̇(t) ≤ −λ2(L)‖z(t)‖2 + ‖H‖2‖e(t)‖‖z(t)‖

= −
(

λ2(L)
√

m

∑
r=1
‖zr(t)‖2 − ‖H‖2

√
m

∑
r=1
‖er(t)‖2

)
‖z(t)‖

If we can guarantee that

m

∑
r=1
‖er(t)‖2 ≤ η2

(
λ2(L)
‖H‖2

)2 m

∑
r=1
‖zr(t)‖2 (4.9)

with η ∈ (0, 1), then it yields

V̇(t) ≤ −
(
(1− η)λ2(L)

√
m

∑
r=1
‖zr(t)‖2

)
‖z(t)‖ < 0 (4.10)

According to (4.5), we know that at any time t > 0, the determination of inter-edge-
event time of edge εr is either by τkr or br. Let S1(t) and S2(t) be the edge sets
consisting of edges whose next inter-edge-event time at t is τkr and br, respectively.
Then it is obvious that S1(t)

⋃
S2(t) = {ε1, . . . , εm} and S1(t)

⋂
S2(t) = ∅. To guar-

antee (4.10), we further propose the following two conditions:

∑
εr∈S1(t)

‖er(t)‖2 ≤ η2
1

(
λ2(L)
‖H‖2

)2 m

∑
r=1
‖zr(t)‖2 (4.11)
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and

∑
εr∈S2(t)

‖er(t)‖2 ≤ η2
2

(
λ2(L)
‖H‖2

)2 m

∑
r=1
‖zr(t)‖2 (4.12)

where η1 and η2 are strictly positive real numbers under the condition that η1 + η2 =
η < 1. For each edge in S1(t), if we let βr ≤ η1(λ2(L)/‖H‖2), then condition (4.11)
will holds for all t. For condition (4.12), if we can guarantee

‖er(t)‖ ≤
√

ζ‖z(t)‖ (4.13)

where ζ =
η2

2
m

(
λ2(L)
‖H‖2

)2
, then condition (4.12) can be ensured.

Since ζ is strictly positive, the evolution time of ‖er(t)‖/‖z(t)‖ from 0 to
√

ζ is
strictly positive (because ‖z(t)‖ 6= 0, ‖er(t)‖ evolutes from 0 at tkr ). By finding an
upper bound Br of this evolution time, we can determine a strictly positive time
br ≤ Br. Then condition (4.13) can always be guaranteed if the evolution time of
‖er(t)‖/‖z(t)‖ is br. To find Br, we first estimate the time derivative of ‖er(t)‖/‖z(t)‖
:

d
dt
‖er‖
‖z‖ ≤

‖ėr‖
‖z‖ +

‖er‖
‖z‖
‖ż‖
‖z‖ (4.14)

According to (4.4), one can deduce that ėr = −żr. So it is obvious that d
dt
‖er‖
‖z‖ ≤

‖H‖2(1 + ‖e‖
‖z‖ )

2. Similar time derivative of ‖e‖/‖z‖ yields d
dt
‖e‖
‖z‖ ≤ ‖H‖

2(1 + ‖e‖
‖z‖ )

2.
It is noticed that ‖e‖/‖z‖ always upper bounds ‖er‖/‖z‖ and both of them are non-
negative. Now we conclude that ‖er‖/‖z‖ < g(t, g0), where g(t, g0) is the solution of
ġ(t) = ‖H‖2(1 + g(t))2, g0 = 0. Thus the lower bound of evolution time of ‖er‖/‖z‖
from 0 to

√
ζ is

Br =
η2λ2(L)

‖H‖2
(√

m‖H‖2 + η2λ2(L)
) (4.15)

We can choose a strictly positive real time br which is satisfied with br ≤ Br to guar-
antee (4.12) for each edge in S2(t). Since br is strictly positive, it is straightforward to
conclude that Zeno behaviour is excluded for each edge. Moreover, since condition
(4.10) can be ensured, we also conclude that consensus can be reached.

(Average preservation) Define an average variable

x̄(t) =
1
n

n

∑
i=1

xi(t).
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The time derivative of x̄(t) is

˙̄x(t) =
1
n

n

∑
i=1

ẋi(t) =
1
n

n

∑
i=1

ui(t)

=
1
n

n

∑
i=1

∑
j∈Ni

(
xj(tkr)− xi(tkr)

)
Since j ∈ Ni represents the adjacency relation between agent i and agent j, the above
equation can be reformulated as

˙̄x(t) =
1
n

n

∑
i=1

n

∑
j=1

aij
(
xj(tkr)− xi(tkr)

)
Applying the symmetric property of undirected graph shows:

˙̄x(t) =
1

2n

n

∑
i=1

n

∑
j=1

aij
(
xj(tkr)− xi(tkr)

)
+

1
2n

n

∑
j=1

n

∑
i=1

aji
(
xi(tkr)− xj(tkr)

)
=

1
2n

n

∑
i=1

n

∑
j=1

(
aij(xj(tkr)− xi(tkr)) + aji(xi(tkr)− xi(tkr))

)
= 0,

(4.16)

which indicates that average state x̄(t) remains a constant. Note that the previous
analysis has shown that the consensus can be reached, so it is obvious that the final
consensus value is their initial average.

4.3 Unsynchronized clock case

For time ti ∈ [ti
ki

r
, ti

ki
r+1), agent i, which is one agent of edge εr, measures the relative

states zi
r(ti) continuously along its own time axis and the relative state mismatch is

defined as

ei
r(t

i) = zi
r(t

i
ki

r
)− zi

r(t
i) (4.17)

Since ti
0i

r
= tj

0j
r

can not be guaranteed for agents i and j linked by εr, it is obvious that

ei
r(ti) is not supposed to be equal to ej

r(tj). When combined the trigger conditions
proposed below, it is implied that the linked agents i and j update their controllers
asynchronously.

We follow the same method used in the synchronized clock case to determine the
next edge event time over εr for agent i:

ti
ki

r+1 = ti
ki

r
+ max{τi

ki
r
, br} (4.18)
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The trigger function used to determine τi
ki

r
is

f (ei
r(t

i), zi
r(t

i)) = ‖ei
r(t

i)‖ − βi
r‖zi

r(t
i)‖ (4.19)

where βi
r > 0. As usual, every time the trigger condition (4.18) is satisfied, ei

r(ti) is
reset to be equal to zero.

Theorem 4. Consider system (4.1) with control input (4.3), trigger condition (4.18). Let
η1 and η2 be positive real numbers and η1 + η2 < 1. Let α = max{‖HH>⊗‖, ‖HH>⊙‖}.
If βi

r ≤ η1λ2(L)/2α for all edges, br is strictly positive and satisfies br ≤ η2λ2(L)
2α(2mα+η2λ2(L)) .

Then

• (Consensus) All agents’ states will reach consensus.

• (Zeno-free triggers) No agent will exhibit Zeno behaviour.

Proof. It is obvious that we do not need to consider the convergence of the system
before all agents are activated. Thus we introduce a new global clock t′, where t′(0) =
max{ti(0) : i = 1, 2, . . . , n} indicates the time point that all agents are activated to
achieve consensus. Note that the compact form (4.7) cannot be used here because
agents i and j linked by edge εr update asynchronously. New variables are required
to be defined to construct the compact form of the system.

Note that all the state variables used and defined in the proof are with respect to
a global coordinate frame. We start the analysis from the continuous-time consensus
dynamic ẋ(t′) = −H>z(t′), as well. In this dynamic, the entry h>ir of H> can be
explained as follows:

h>ir =


1, agent i’s knowledge of zr(t′) is −zr(t′)
−1, agent i’s knowledge of zr(t′) is zr(t′)
0, agent i does not access zr(t′)

(4.20)

Note that h>ir = hra, hra is the entry of H. According to the definition of hri in
(4.20), we have the following conclusions: if agent i is the terminal agent of edge
εr, its knowledge of zr(t′) is −zr(t′); if agent i is the initial agent of edge εr, its
knowledge of zr is zr(t′). Let the relative states assigned to initial agent i and terminal
agent j linked by edge εr be respectively described by zµ

r and zν
r , where the initial

agent and terminal agent are pre-assigned by incidence matrix H. It is obvious that
zµ

r (t′) = zν
r (t′) = zr(t′). Note that there are m initial agents and m terminal agents

in the MAS since the graph G has m edges. Then it is reasonable to rewrite the
consensus dynamic as ẋ = −H>⊗zµ(t′)−H>⊙zν(t′), where zµ = [zµ

1 , zµ
2 , . . . , zµ

m]
> and

zν = [zν
1, zν

2, . . . , zν
m]
>.

Let t′
kµ

r
and t′kν

r
re-denote the latest r-th edge event time instants of initial agent i

and terminal agent j linked by edge εr, respectively. It is assumed that t′
kµ

r
, t′kν

r
≥ t′(0).

Following the consensus dynamic constructed in the last paragraph, the compact
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form of the control input (4.3) can be expressed as:

u(t′) = −H>⊗


zµ

1 (t
′
kµ

1
)

zµ
2 (t
′
kµ

2
)

...
zµ

m(t′kµ
m
)

−H>⊙


zν
1(t
′
kν

1
)

zν
2(t
′
kν

2
)

...
zν

m(t′kν
m
)

 (4.21)

This is a key step of the proof.

According to (4.17), we define two stack state mismatch eµ = [eµ
1 , eµ

2 , . . . , eµ
m]
>

and eν = [eν
1, eν

2, . . . , eν
m]
> are defined for all of the initial agents and terminal agents,

respectively. The compact form of the consensus dynamic at t′ can be formulated as

ẋ(t′) = −H>⊗z(t′)−H>⊙z(t′)−H>⊗eµ(t′)−H>⊙eν(t′)

= −H>z(t′)−H>⊗eµ(t′)−H>⊙eν(t′) (4.22)

Now reconsider the Lyapunov function V(t′) = 1
2 z(t′)>z(t′). Its time derivative

along (4.22) is

V̇(t′) = z(t′)>Hẋ(t′)

= −z(t′)>HH>z(t′)− z(t′)>HH>⊗eµ(t′)− z(t′)>HH>⊙eν(t′)

By recalling Lemma 2, it yields that

V̇(t′) ≤ −λ2(L)‖z(t′)‖2 + ‖HH>⊗‖‖z(t′)‖‖eµ(t′)‖+ ‖HH>⊙‖‖z(t′)‖‖eν(t′)‖

= −
(

λ2(L)‖z(t′)‖ − ‖HH>⊗‖‖eµ(t′)‖ − ‖HH>⊙‖‖eν(t′)‖
)
‖z(t′)‖

Note that ‖eµ(t′)‖ =
√

∑m
r=1 ‖e

µ
r (t′)‖2 and ‖eν(t′)‖ =

√
∑m

r=1 ‖eν
r (t′)‖2. Let α =

max{‖HH>⊗‖, ‖HH>⊙‖}. If we can ensure the following condition√
m

∑
r=1
‖eµ

r (t′)‖2 +

√
m

∑
r=1
‖eν

r (t′)‖2 ≤ λ2(L)
α
‖z(t′)‖ (4.23)

then consensus will be achieved.

At t′, let S1
µ(t′) and S2

µ(t′) be the edge sets that their linked initial agents will
trigger the edge events at t′

kµ
r
+ τkµ

r
and t′

kµ
r
+ br, respectively. It is satisfied that

S1
µ(t′)

⋃
S2

µ(t′) = {ε1, . . . , εm} and S1
µ(t′)

⋂
S2

µ(t′) = ∅. Similarly, let S1
ν(t′) and S2

ν(t′)
denote the edge sets that their linked terminal agents will trigger the edge events at
t′
kµ

r
+ τkµ

r
and t′

kµ
r
+ br, respectively. it is also satisfied that S1

ν(t′)
⋃

S2
ν(t′) = {ε1, . . . , εm}
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and S1
µ(t′)

⋂
S2

µ(t′) = ∅. Note that condition (4.23) can be guaranteed if√
∑

r∈S1
µ(t′)

‖eµ
r (t′)‖2 +

√
∑

r∈S1
ν(t′)

‖eν
r (t′)‖2 ≤ η1λ2(L)

α
‖z(t′)‖ (4.24)

and √
∑

r∈S2
µ(t′)
‖eµ

r (t′)‖2 +
√

∑
r∈S2

ν(t′)
‖eν

r (t′)‖2 ≤ η2λ2(L)
α

‖z(t′)‖ (4.25)

where η1, η2 > 0 and η1 + η2 < 1.
According to the trigger function (4.19) and the fact that the state mismatch (4.17)

is reset as soon as the value of the trigger function reaches zero, it is enough to
imply ‖eµ

r (t′)‖ ≤ βmax‖zr(t′)‖ and ‖eν
r (t′)‖ ≤ βmax‖zr(t′)‖, where βmax = max{βi

r}.
Furthermore, by recalling that S1

µ(t′) and S1
ν(t′) are subsets of edge set E , we obtain

card{S1
µ(t′)}, card{S1

ν(t′)} ≤ m. The above analysis indicates that the upper bound
of the left-hand side term in (4.24) can be calculated as 2

√
∑m

r=1 β2
max‖zr(t′)‖2, which

is equal to 2βmax‖z(t′)‖. If we enforce βi
r to satisfy βi

r <
η1λ2(L)

2α , then condition (4.24)
is always satisfied.

For condition (4.25), since card{S2
µ(t′)} ≤ m, we obtain

√
∑r∈S2

µ(t′) ‖e
µ
r (t′)‖2 ≤

∑m
r=1 ‖e

µ
r (t′)‖. According to the same arguments, we also get

√
∑r∈S2

ν(t′) ‖e
µ
r (t′)‖2 ≤

∑m
r=1 ‖eν

r (t′)‖. The upper bound of the left-hand side term in (4.25) is thus obtained
as ∑m

r=1 ‖e
µ
r (t′)‖+ ∑m

r=1 ‖eν
r (t′)‖. Note that eµ

r (t′) and eν
r (t′) are actually the mismatch

ei
r(t′) defined in (4.17). By enforcing ‖ei

r(t′)‖ ≤
η2λ2(L)

2mα ‖z(t′)‖, condition (4.25) can be
ensured. Now we are ready to determine Br. By following the similar process from
(4.14) to (4.15) in the last subsection, the lower bound Br is obtained as

Br =
η2λ2(L)

2α(2mα + η2λ2(L))

For each agent i, the next edge-triggering time ti
ki

r+1 can be set as ti
ki

r
+ br, where

br ≤ Br, if τi
ki

r
determined by trigger function (4.19) is less than br. By choosing

suitable βr and br, the aims of both consensus and Zeno-free triggers can be achieved.

Remark 7. In both cases, we regulate that each agent use the measurements of the relative
states between its neighbours and itself to update its control input. This ’measurement-
driven’ principle makes the achievement of average consensus impossible since evolutions of
two neighbouring agents are asynchronous. Take a two-agent group as an example. Assume
that agent 1 and agent 2 are activated at t1 and t2, t1 < t2, respectively. Then between
t1 and t2, agent 1 measure the relative states x1− x2 and updating its control input while
agent 2 remains still. This results in a pursuit phenomenon, that agent 1’s states converge
to agent 2’ static states x2(t1) until t2. At t2, agent 2 is activated. However, it is obvious
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that x1(t2) 6= x1(t1), which means the final the consensus value is x1(t2)+x2(t2)
2 rather than

the initial average x1(t1)+x2(t2)
2 . Moreover, since we are utilising a distributed system, where

global state values for all agents are unknown. This makes the final consensus value be
unpredictable.

4.4 Simulation examples

1

2

3 4

5

G

Figure 4.1: Graph topology

The MAS considered in the simulation consists of 5 agents. The sensing topology
is described by Fig. 4.1 whose incidence matrix is chosen as

H =



−1 1 0 0 0
0 −1 1 0 0
−1 0 1 0 0
0 0 1 0 −1
0 0 −1 1 0
0 0 0 −1 1
1 0 0 0 −1
−1 0 0 1 0


(4.26)

In the synchronized clock case, the initial states for all agents are set as x1(0) =
−6.4, x2(0) = 2.1, x3(0) = −2.7, x4(0) = 5.3 and x5(0) = 0.6. The parameters η1 and
η2 are chosen as η1 = 0.85 and η2 = 0.14. We set βr = 0.34 for the trigger function.
The minimum inter-event time br is chosen to be 0.0039s. The trajectories of each
agent, the controller update times for each agent and the edge event times for each
edge are depicted in Fig. 4.2.

In the unsynchronized clock case, the parameters are chosen as η1 = 0.8 and η2 =
0.19. βi

r, i = 1, · · · , n and br are selected as βi
r = 0.22 and br = 0.0011s, respectively.

The activated times are chosen as t1(0) = 0.4, t2(0) = 0.75, t3(0) = 0.1, t4(0) = 0.2
and t5(0) = 0.8. Fig. 4.3 illustrates the trajectory of each agent and the event times
for both agent 1 and agent 2 linked by edge ε1. It is verified that consensus can be
reached and the event times of agents 1 and 2 triggered over ε1 are asynchronous.



§4.5 Concluding remarks 51

0 0.5 1 1.5

−5

0

5

Global6Time6(second)

S
ta

te
(x

)

System6evolution

Agent61
Agent62
Agent63
Agent64
Agent65

0 0.5 1 1.5
0

2

4

6

Global6Time6(second)

C
on

tr
ol

le
r6

up
da

te

Controller6update6instants

Agent61
Agent62
Agent63
Agent64
Agent65

0 0.5 1 1.5
0

2

4

6

8

Global6Time6(second)

E
dg

e6
E

ve
nt

s

Edge6Events6instants

Edge61
Edge62
Edge63
Edge64
Edge65
Edge66
Edge67
Edge68

Figure 4.2: Comparison of state trajectories

4.5 Concluding remarks

In this chapter, we propose novel Zeno-free, edge-event-based algorithms to achieve
multi-agent consensus under both synchronized clocks and unsynchronized clocks.
In the synchronized clock case, we show that average consensus can be achieved
under our algorithms even though each agent only measure the relative information
via its own local coordinate frame. In the study of the unsynchronized clock case,
each agent not only uses the relative information, but also works under its own clock
that is not necessarily synchronized with others’ clocks. We show that consensus can
be achieved with Zeno-free triggers by using our proposed algorithm.
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triggered over edge ε1



Chapter 5

Event-Triggered Consensus for
Networked Euler-Lagrange Agents

5.1 Introduction

The Euler-Lagrange equations describe the dynamics of a large class of nonlinear
systems (including many mechanical systems such as robotic manipulators, space-
craft and marine vessels) [Kelly et al., 2006; Ortega et al., 2013]. As a result, there is
motivation to study multi-agent coordination problems where each agent has Euler-
Lagrange dynamics [Ren and Cao, 2011].

There have been relatively few results published studying event-triggered control
for networks of Euler-Lagrange agents. Pioneering contributions studied leaderless
consensus (but not leader-follower consensus) on an undirected network [Mu et al.,
2014; Huang et al., 2016]. The dynamics studied in [Mu et al., 2014] and [Huang
et al., 2016] are a subclass of Euler-Lagrange dynamics as they do not consider the
presence of gravitational forces for each agent. While continuous model-independent
algorithms e.g. [Ye et al., 2015] are easily adapted to be event-triggered, as shown in
[Mu et al., 2014; Huang et al., 2016], they cannot guarantee the coordination objec-
tive in the presence of gravitational forces (which has an effect similar to a bounded
disturbance). Typical control techniques required to deal with this term include
feedback linearisation [Meng and Lin, 2012], adaptive control [Mei et al., 2013] and
sliding mode control [Mei et al., 2011]. We note that these techniques have not been
well studied in an event-triggered framework. In [Liu et al., 2016d], an adaptive,
event-triggered controller is proposed to achieve flocking behaviour for undirected
networks of Euler-Lagrange agents. This allows for gravitational forces omitted in
[Mu et al., 2014; Huang et al., 2016]. However, the proposed controller in [Liu et al.,
2016d] is piecewise continuous, which restricts its implementation in digital plat-
forms. Moreover, it is worth noting that the trigger function used in [Liu et al.,
2016d] cannot eliminate Zeno behaviour for each agent.

In this chapter, we present three different distributed event-triggered control al-
gorithms to achieve leader-follower consensus for networked Euler-Lagrange agents;
each algorithm has different strengths and their appropriateness of use may depend
on the application scenario. Firstly, a globally asymptotically stable variable-gain al-
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gorithm is proposed for agents on undirected graphs. The variable-gain controller
allows for fully distributed and arbitrary design of parameters in both the control al-
gorithm and trigger function. For the second control algorithm, which is applicable
for directed graphs, we are motivated to use constant control gains. The algorithm
achieves leader-follower consensus semi-globally, exponentially fast. Some limited
knowledge of the bounds on the agent dynamic parameters, the network topology
and a set of all possible initial conditions is required to centrally design the control
gains. Lastly, we propose a globally asymptotically stable adaptive algorithm for use
when the gravitational term is present in the agent self-dynamics. The adaptive al-
gorithm is able to estimate uncertain dynamical parameters, but requires increased
knowledge about the agent self-dynamics.

All three proposed controllers are piecewise constant, which has the benefit of
reducing actuator updates and thus conserving energy resources. Furthermore, each
agent only requires state, and relative state measurements, and does not require
knowledge of the trigger times of neighbouring agents, which in general reduces the
number of controller updates. For each algorithm, a trigger function is proposed
and we show that Zeno behaviour can be excluded for every agent. All three trigger
functions are of the same form with only minor modifications. Each term of the trig-
ger function is carefully selected to ensure that the trigger function is more effective,
when compared with existing trigger functions which do one of the following, but
not both: 1) reduce the total number of events, and 2) eliminate Zeno behaviour
for every agent. We show this by detailed comparison and analysis based on sim-
ulations. As a result of having multiple terms in the trigger function to achieve the
aforementioned improvements, the stability analysis is significantly more complex.
Each algorithm requires a different approach to proving stability, and the proposed
methods may be useful for other problems in event-based control of multi-agent sys-
tems.

5.2 Additional preliminaries

We provide several theorems and lemmas, which will be used in this chapter. We also
provide alternative preliminaries on graph theory which focus on directed graphs.

Theorem 5 (Mean Value Theorem for Vector-Valued Functions [Rudin et al., 1964]).
For a continuous vector-valued function f (s) : R → Rn differentiable on s ∈ [a, b], there
exists t ∈ (a, b) such that ∥∥∥∥d f

ds
(t)
∥∥∥∥ ≥ 1

b− a
‖ f (b)− f (a)‖

Theorem 6 (The Schur Complement [Horn and Johnson, 2012]). Consider a symmetric
block matrix, partitioned as

A =

[
B C

C> D

]
(5.1)
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Then A > 0 if and only if B > 0 and D− C>B−1C > 0. Equivalently, A > 0 if and only if
D > 0 and B− CD−1C> > 0.

Lemma 3 ([Ioannou and Fidan, 2006]). If a function f (t) satisfies f (t), ḟ (t) ∈ L∞, and
f (t) ∈ Lp for some value of p ∈ [1, ∞), then f (t)→ 0 as t→ ∞.

Lemma 4. Suppose A > 0 is defined as in (5.1). Let a quadratic function with arguments
x, y be expressed as W = [x>, y>]A[x>, y>]>. Define F := B − CD−1C> and G :=
D− C>B−1C. Then there holds

λmin(F)x>x ≤ x>Fx ≤W (5.2a)

λmin(G)y>y ≤ y>Gy ≤W (5.2b)

Proof. The proof for (5.2b) is immediately obtained by recalling Theorem 6 and ob-
serving that

W = y>Gy + [y>C>B−1 + x>]B[B−1Cy + x]

An equally straightforward proof yields (5.2a).

Lemma 5. Let g(x, y) be a function given as

g(x, y) = ax2 + by2 − cxy2 − dxy (5.3)

for real positive scalars a, c, d > 0. Then for a given X > 0, there exist b > 0 such that
g(x, y) > 0 for all y ∈ [0, ∞) and x ∈ [0,X ].

Proof. Observe that cxy2 ≤ cX y2 for all x ∈ [0,X ]. It follows that

g(x, y) ≥ ax2 + (b− cX )y2 − dxy

if y ∈ [0, ∞) and x ∈ [0,X ] because c > 0. For any fixed value of y = y1 ∈ [0, ∞),
write ḡ(x) = ax2 + (b− cX )y2

1 − dxy1. The discriminant of ḡ(x) is negative if

b > cX +
d2

4a
(5.4)

which implies that the roots of ḡ(x) are complex, i.e. ḡ(x) > 0 and this holds for any
y1 ∈ [0, ∞). We thus conclude that for all y ∈ [0, ∞) and x ∈ [0,X ], if b satisfies (5.4),
then g(x, y) > 0 except the case where g(x, y) = 0 if and only if x = y = 0.

Corollary 1. Let h(x, y) be a function given as

h(x, y) = ax2 + by2 − cxy2 − dxy− ex− f y (5.5)

where the real, strictly positive scalars c, d, e, f and two further positive scalars ε, ϑ are fixed.
Suppose that for given Y , ε there holds Y − ε > 0, and for a given X > 0 there holds
X − ϑ > 0. Define the sets U = {x, y : x ∈ [X − ϑ,X ], y > 0} and V = {x, y : x > 0, y ∈
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[Y − ε,Y ]}. Define the region R = U ∪ V . Then there exist a, b > 0 such that h(x, y) is
positive definite in R.

Proof. Observe that h(x, y) = g(x, y)− ex− f y where g(x, y) is defined in Lemma 5.
Let b∗ be such that it satisfies condition (5.4) in Lemma 5 and thus g(x, y) > 0 for
x ∈ [0, ∞) and y ∈ [0,Y ]. Note that the positivity condition on g(x, y) in Lemma 5
continues to hold for any a ≥ a∗ and any b ≥ b∗. Let a1 and b1 be positive scalars
whose magnitudes will be determined later. Define a = a1 + a∗ and b = b1 + b∗.
Define z(x, y) , a1x2 + b1y2 − ex − f y. Next, consider (x, ȳ) ∈ V , where ȳ is some
fixed value. It follows that

z(x, ȳ) = a1x2 − ex + (b1ȳ2 − f ȳ)

Note the discriminant of z(x, ȳ) is Dx = e2 − 4a1(b1ȳ2 − f ȳ). It follows that Dx < 0 if
b1ȳ2 > f ȳ+ e/4a1. This is satisfied, independently of ȳ ∈ [Y − ε,Y ], for any b1 ≥ b1,y,
a1 ≥ a1,y where

b1,y >
e2

4a1,y(Y − ε)2 +
f

Y − ε

because Y − ε ≤ ȳ. It follows that Dx < 0 ⇒ z(x, y) > 0 in V . Now, consider
(x̄, y) ∈ U for some fixed value x̄. It follows that

z(x̄, y) = b1y2 − f y + (a1 x̄2 − ex̄)

and note the discriminant of z(x̄, y) is Dy = f 2 − 4b1(a1 x̄2 − ex̄). Suppose that a1 >
e/X , which ensures that a1 x̄2 − ex̄ > 0. Then, Dy < 0 if b1(a1 x̄2 − ex̄) > f /4. This is
satisfied, independently of x̄ ∈ [X − ϑ,X ], for any b1 ≥ b1,x, a1 ≥ a1,x where

b1,x >
f

4(a1,x(X − ϑ)2 − e(X − ϑ))

It follows thatDy < 0⇒ z(x, y) > 0 in U . We conclude that setting b = b∗ + max[b1,x, b1,y]
and a = a∗ + max[a1,x, a1,y], implies h(x, y) > 0 in R, except h(0, 0) = 0.

5.2.1 Graph theory

We model the interactions among the leader and n followers by a weighted directed
graph (digraph) G = (V , E ,A) with vertex set V = {v0, v1, · · · , vn} and edge set
E ⊆ V × V . Without loss of generality, the leader agent is numbered by v0. We use
GF to describe the interactions among the n follower agents with vertex set VF =
{v1, · · · , vn} and edge set EF ⊆ VF × VF. An ordered edge set of G is eij = (vi, vj).
The weighted adjacency matrix A = A(G) = {aij} is the (n + 1) × (n + 1) matrix
given by aij > 0, if eji ∈ E and aij = 0, otherwise. In this chapter, it is assumed
that aii = 0, i.e. there are no self-loops. The edge eij is incoming with respect to
vj and outgoing with respect to vi. A graph is undirected if eij ∈ E ⇔ eji ∈ E and
aij = aji. The neighbour set of vi is denoted by Ni = {vj ∈ V : (vi, vj) ∈ E}. The
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(n + 1)× (n + 1) Laplacian matrix, L = {lij}, of the associated directed graph G is
defined as lij = −aij for all i 6= j and lii = ∑n

k=1,k 6=i aik for all i. A digraph with n + 1
vertices is called a directed spanning tree if it has n edges and there exists a root
vertex with directed paths to every other vertex [Ren and Cao, 2011]. The following
result holds for the Laplacian matrix associated with a directed graph.

Lemma 6 ([Ren and Cao, 2011]). Let L be the Laplacian matrix associated with a directed
graph G. Then L has a simple zero eigenvalue and all other eigenvalues have positive real
parts if and only if G has a directed spanning tree.

Lemma 7 ([Song et al., 2012]). Suppose a graph G contains a directed spanning tree, and
there are no edges of G which are incoming to the root vertex v0 of the tree. Then the Laplacian
matrix associated with G has the following form:

L =

[
0 0T

n
L21 L22

]
and all eigenvalues of L22 have positive real parts. Moreover, there exists a diagonal positive
definite matrix Γ such that Q := ΓL22 + L>22Γ > 0. In addition, if GF is undirected, then
L22 is symmetric positive definite.

5.2.2 Euler-Lagrange systems

A class of dynamical systems can be described using the Euler-Lagrange equations
[Kelly et al., 2006]. The general form for the i-th agent equation of motion is:

M i(qi)q̈i + Ci(qi, q̇i)q̇i + gi(qi) = τi (5.6)

where qi ∈ Rp is a vector of the generalized coordinates, M i(qi) ∈ Rp×p is the inertial
matrix, Ci(qi, q̇i) ∈ Rp×p is the Coriolis and centrifugal torque matrix, gi(qi) ∈ Rp is
the vector of gravitational forces and τi ∈ Rp is the control input vector. For agent i,
we have qi = [q(1)

i , . . . , q(p)
i ]>. We assume each agent is fully actuated. Throughout

this chapter, the dynamics in (5.6) are assumed to satisfy the following properties,
details of which are provided in [Kelly et al., 2006].

P1 The matrix M i(qi) is symmetric positive definite.

P2 There exist constants km, kM > 0 such that km Ip ≤ M i(qi) ≤ kM Ip, ∀ i, qi. It

follows that supqi
‖M i‖2 ≤ kM and km ≤ infqi

‖M−1
i ‖2

−1 ∀ i.

P3 There exists a constant kC > 0 such that ‖Ci‖2 ≤ kC‖q̇i‖2, ∀ i, q̇i.

P4 The matrix Ci(qi, q̇i) is related to the inertial matrix M i(qi, q̇i) by the expression
xT( 1

2 Ṁ i(qi)− Ci(qi, q̇i))x = 0 for any q, q̇, x ∈ Rp. This implies that Ṁ i(qi) =
Ci(qi, q̇i) + Ci(qi, q̇i)

>.

P5 There exists a constant kg > 0 such that ‖gi(qi)‖ < kg.
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P6 Linearity in the parameters: M i(qi)x + Ci(qi, q̇i)y + gi(qi) = Y i(qi, q̇i, x, y)Θi
for all vectors x, y ∈ Rp, where Y i(qi, q̇i, x, y) is the known regressor matrix
and Θi is a vector of unknown but constant parameters associated with the ith

agent.

Assumption 1. (Sub-class of dynamics) In Sections 5.4 and 5.5, we assume that gi(qi) =
0, ∀ i. In other words, the dynamics of the agents belong to a subclass of Euler-Lagrange
equations which do not have a gravity term. That is,

M i(qi)q̈i + Ci(qi, q̇i)q̇i = τi (5.7)

If the gravity term gi(qi) is present, the adaptive controller proposed in Sec-
tion 5.6 may be used.

5.3 Problem statement

Problem 4. Denote the leader as agent 0 with q0 and q̇0 being the generalised coordinates
and generalised velocity of the leader, respectively. The aim is to develop event-triggered,
distributed algorithms for each Euler-Lagrange follower agent, where the updates are such that
τi is piecewise-constant. The distributed algorithms are designed to achieve leader-follower
consensus to a stationary leader, i.e. q̇0(t) = 0, ∀t ≥ 0. Leader-follower consensus is
said to be achieved if limt→∞ ‖qi(t) − q0(t)‖ = 0, ∀i = 1, . . . , n and limt→∞ ‖q̇i(t)‖ =
0, ∀i = 1, . . . , n are satisfied. Another aim of this chapter is to exclude the possibility of Zeno
behaviour, which we formally defined in Definition 1.

In this chapter, we assume that the follower agent i ∈ 1, . . . , n is equipped with sensors
which continuously measure the relative generalised coordinates to agent i’s neighbours. In
other words, qi(t)− qj(t), ∀j ∈ Ni is available to agent i. In Section 5.5 we also assume that
the relative generalised velocities are available, i.e. q̇i(t)− q̇j(t), ∀j ∈ Ni. The scenario where
agents collect relative information to execute algorithms can be found in many experimental
testbeds, such as ground robots or UAVs equipped with high-speed cameras. It is also assumed
that each agent i can measure its own generalised velocity continuously, i.e. q̇i(t).

5.4 Variable-gain, model-independent algorithm

In this section, we introduce a variable-gain, event-triggered control algorithm for
when the network model of the follower agents is described by an undirected graph.
We show that the proposed algorithm does not require any knowledge of the multi-
agent system (i.e totally distributed design) and is globally stable. Zeno behaviour is
also excluded for each agent.



§5.4 Variable-gain, model-independent algorithm 59

5.4.1 Main result

Define a new state variable for agent i as

zi(t) =
n

∑
j=0

aij(qi(t)− qj(t)) + µi(t)q̇i(t), i = 1, . . . , n

where aij is the (i, j)th element of the adjacency matrix A associated with the digraph
G. Note that the follower graph GF is undirected. The variable control gain µi(t) is
subject to the following updating law1:

µ̇i(t) = αiq̇i(t)
>q̇i(t) (5.8)

The scalar αi is strictly positive and may be independent for all agents. It is obvious
that µi(t) is a monotonically increasing function. The variable-gain scalar function
µi(t) is initialised at t = 0 with an arbitrary µi(0) ≥ 0, which implies that µi(t) ≥
0, ∀ t > 0.

The control algorithm is now proposed. Let the trigger time sequence of agent i
be denoted as ti

0, ti
1, . . . , ti

k, . . . with ti
0 := 0 and we detail below how each trigger time

is determined. The event-triggered controller for follower agent i is designed as:

τi(t) = −zi(ti
k) (5.9)

for t ∈ [ti
k, ti

k+1). The control input for each agent is held constant and equal to the
last control update τi(ti

k) in the time interval [ti
k, ti

k+1).
We define a state mismatch for agent i between consecutive event times ti

k and
ti
k+1 as follows:

ei(t) = zi(ti
k)− zi(t) (5.10)

for t ∈ [ti
k, ti

k+1). The trigger function is designed as follows:

fi(t) = ‖ei(t)‖2 − βi‖q̇i(t)‖
2 −ωi(t) (5.11)

where βi is an arbitrarily chosen positive constant (see the Proof of Theorem 7 for the
explanations), ωi(t) is an offset function defined as ωi(t) = κi exp(−ε it) with arbi-
trarily chosen κi, ε i > 0. The k-th event for agent i is triggered as soon as the trigger
condition fi(t) = 0 is satisfied. The control input τi(t) is updated only when an
event of agent i is triggered. Furthermore, every time an event is triggered, and in
accordance with their definitions, the state mismatch ei(t) is reset to be equal to zero

1In some existing works on multi-agent systems, similar controllers which have monotonically in-
creasing gains have been termed “adaptive-gain controllers” or “adaptive controllers”, see e.g. [Mei
et al., 2014; Li et al., 2013; Mei et al., 2016]. While we acknowledge this terminology is correct, we
choose to call the controller proposed in this section a “variable-gain controller” to differentiate, and
avoid confusion with, the controller we will propose in Section 5.6, which adaptively estimates un-
known, but constant, parameters of the agent dynamics. The variable-gain controller in this section
and the adaptive controller in Section 5.6 are fundamentally different in design and ideology.
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and thus the trigger function assumes a non-positive value, that is, fi(t) ≤ 0.

Remark 8. In existing event-based multi-agent control literature, the parameters of the state-
dependent term are typically restricted. For example, the authors of [Huang et al., 2016]
studied leaderless consensus for undirected networked Euler-Lagrange agents. Different from
our proposed variable-gain controller, their controller adopts fixed gains. As a result, the
parameter $i (see the trigger function in [Huang et al., 2016]) of the state-dependent term has
to be less than a computable upper bound. This bound requires knowledge of the control gains
and graph topology (e.g. number of neighbours and degree of the agent). In comparison,
our equivalent parameter βi in our proposed trigger function (5.11) can be chosen as an
arbitrarily positive constant. This provides a much greater flexibility in the implementation
of the algorithm.

We note that even in papers considering simple single integrator dynamics with a pa-
rameter for the state-dependent term, equivalent to our βi, require an upper bound as well
(see the seminal works of [Dimarogonas et al., 2012; Fan et al., 2013]). To the best of the
authors’ knowledge, the event-based controller proposed in this section is the first to allow for
an arbitrarily chosen positive parameter for the state-dependent term in the trigger function.

By substituting the control input (5.9) into the system dynamics (5.7), the closed-
loop system can be written as

M i(qi)q̈i(t) + Ci(qi, q̇i)q̇i(t) = −zi(ti
k) (5.12)

Then by applying (5.10), we obtain

M i(qi)q̈i(t) + Ci(qi, q̇i)q̇i(t) = −(zi(t) + ei(t)) (5.13)

Define new state variables ui = qi − q0 and vi = q̇i and we henceforth drop the
argument t for brevity, and where there is no confusion. Define the stacked column
vectors of all ui, vi, qi, ei as u = [u>1 , ..., u>n ]>, v = [v>1 , ..., v>n ]>, q = [q>1 , ..., q>n ]

>,
z = [z>1 , ..., z>n ]> and e = [e>1 , ..., e>n ]> respectively. It is easy to obtain that

z = (L22 ⊗ Ip)(q− 1n ⊗ q0) + Kq̇

= (L22 ⊗ Ip)u + Kv

where K = diag[µ1Ip, ..., µn Ip]. Define the following block diagonal matrices M(q) =
diag[M1(q1), ..., Mn(qn)], C(q, q̇) = diag[C1(q1, q̇1), ..., Cn(qn, q̇n)]. It is obvious that
M is symmetric positive definite since M i > 0, ∀ i. With these notations, the compact
form of system (5.13) can be expressed as

u̇ = v

v̇ = −M(q)−1 [C(q, v)v + (L22 ⊗ Ip)u + Kv + e
]

K̇ = Ξ⊗ Ip (5.14)

where Ξ = diag[α1‖v1‖2
2, α2‖v2‖2

2, ..., αn‖vn‖2
2]. The leader-follower objective is

achieved when there holds u ≡ v ≡ 0np. We now present the main result for this
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Section.

Theorem 7. Suppose that each follower agent with dynamics (5.7), under Assumption 1, em-
ploys the controller (5.9) with trigger function (5.11). Suppose further that the directed graph
G contains a directed spanning tree, with the leader agent 0 as the root node (thus with no
incoming edges) and the follower graph GF is undirected. Then the leader-follower consensus
objective is globally asymptotically achieved and no agent will exhibit Zeno behaviour.

Proof. We divide our proof into two parts. In the first part, we focus on the stability
analysis of the system (5.14). In the second part, analysis is provided to show the
exclusion of Zeno behaviour for each agent.

5.4.1.1 Stability analysis

Consider the following Lyapunov-like function

V =
1
2

u>(L22 ⊗ Ip)u +
1
2

v>Mv +
n

∑
i=1

1
2αi

(µi − µ̄)2

= V1 + V2 + V3 (5.15)

where µ̄ is a strictly positive constant. The choice of µ̄ will be presented below. Since
G contains a directed spanning tree and GF is undirected, according to Lemma 7,
L22 is positive definite. Note that M is positive definite and V3 is non-negative, we
conclude that V is strictly positive for nonzero u and v.

Taking the derivative of V with respect to time, along the trajectory of system
(5.14), there holds V̇ = V̇1 + V̇2 + V̇3. Evaluating V̇1 yields V̇1 = u>(L22⊗ Ip)v. Next,
the derivative V̇2 is evaluated to be V̇2 = v>Mv̇+ 1

2 v>Ṁv, which on further analysis,
yields

V̇2 = −v>Cv− v>(L22 ⊗ Ip)u− v>Kv− v>e +
1
2

v>Ṁv

= −v>(L22 ⊗ Ip)u− v>Kv− v>e

Lastly, we obtain V̇3 = ∑n
i=1(µi − µ̄)v>i vi = v>Kv− µ̄v>v. Since L22 is symmetric,

summing V̇1, V̇2 and V̇3 yields V̇ = −µ̄v>v + v>e. By using the inequality v>e ≤
a
2‖v‖2 + 1

2a‖e‖2, ∀a > 0, we obtain

V̇ ≤ (
a
2
− µ̄)‖v‖2 +

1
2a
‖e‖2

Note that the non-positivity of the trigger function fi guarantees that ‖e‖2 ≤ β‖v‖2 +
ω̄(t), where β = maxi{βi} and ω̄(t) = ∑n

i=1 ωi(t). It follows that V̇ satisfies

V̇ ≤ (
a
2
+

β

2a
− µ̄)‖v‖2 + ω̄(t)

For notation simplicity, we define χ = µ̄− a
2 −

β
2a . Note that for any given a and β,
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we can find a sufficiently large µ̄ to ensure χ > 0 and thus

V̇ ≤ −χ‖v‖2 + ω̄(t)

and it is straightforward to conclude that the parameter βi in the trigger function
(5.11) can be selected as an arbitrarily positive constant. Integrating both sides of the
above equation from zero to t, for any t > 0, yields

V(t) + χ
∫ t

0
‖v(ε)‖2.dε ≤ V(0) +

n

∑
i=1

κi

ε i

which implies that V(t) and χ
∫ t

0 ‖v(ε)‖
2.dε are bounded since V(0), κi, ε i are all

bounded. By recalling (5.15), it is straightforward to conclude that u, v, µi are all
bounded. Now we turn to v̇i. Notice that q̇0 = 0 and from (5.12), we have

v̇i = −M i(qi)
−1[Ci(qi, q̇i)q̇i + zi(ti

k)] (5.16)

Since u, v, µi are bounded, q̇i and zi(ti
k) are bounded. Then by recalling properties P2

and P3, we conclude that v̇ is bounded. From the fact that both v and v̇ are bounded,
we obtain v, v̇ ∈ L∞. Moreover, the boundedness of χ

∫ t
0 ‖v(ε)‖

2.dε indicates v ∈ L2.
By applying Lemma 3, we conclude that v → 0np as t → ∞. From (5.8) we observe
that µi is strictly monotonically increasing. Combining this with the fact that µi(0) ≥
0 is bounded, we conclude that µi(t), ∀ i tends to a finite constant value as t→ ∞.

Now we turn to prove that u → 0np. Due to the difficulty arising from the term
ωi(t) (which makes the system non-autonomous), and the second-order non-linear
dynamics, the proof is more complex than existing proofs for showing convergence
to the consensus objective. We discuss the intuition behind the following steps in
Remark 9 below. Consider firstly e and K. By recalling the definitions of ei and the
trigger function fi, we observe that ‖e‖2 ≤ β‖v‖2 + ω̄(t), ∀ t. We concluded above
that limt→∞ ‖v‖, ω̄(t) = 0 which implies that limt→∞ e = 0np. Recalling the definition
of K above (5.14), and the fact that µi, ∀ i tends to a constant value as t → ∞, we
conclude that limt→∞ K = K̄ where K̄ is some finite constant matrix. Rewrite the
second equation of (5.14) as

v̇ = f (t) + r(t) (5.17)

where f (t) = −M(q)−1(L22 ⊗ Ip)u and r(t) = −M(q)−1[C(q, v)v + Kv + e
]

are
both vector functions. Since limt→∞ v, e = 0np, K̄ is finite, and M, C are bounded
according to Properties P2 and P3, it is obvious that limt→∞ r(t) = 0np. Then by
integrating both sides of (5.17) from t to t + ∆, where ∆ is a finite positive constant
and t ≥ 0, we obtain

v(t + ∆)− v(t) =
∫ t+∆

t
f (s)ds +

∫ t+∆

t
r(s).ds (5.18)
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This implies that there holds∥∥∥∥∫ t+∆

t
f (s)ds

∥∥∥∥ ≤ ‖v(t + ∆)− v(t)‖+
∥∥∥∥∫ t+∆

t
r(s)ds

∥∥∥∥ (5.19)

Consider the term ‖
∫ t+∆

t f (s)ds‖. By applying Theorem 5, we conclude that there
holds ∥∥∥∥∫ t+∆

t
f (s)ds

∥∥∥∥ ≤ ∆‖ f (t + θ(t))‖

where θ(t) ∈ (0, ∆). Subtracting ∆‖ f (t)‖ from the both sides of the above inequality
yields ∥∥∥∥∫ t+∆

t
f (s)ds

∥∥∥∥− ∆‖ f (t)‖ ≤ ∆ (‖ f (t + θ(t))‖ − ‖ f (t)‖)

Considering the above right hand side, we observe that ∆ (‖ f (t + θ(t))‖ − ‖ f (t)‖) ≤
∆‖ f (t + θ(t))− f (t)‖ = ∆‖

∫ t+θ(t)
t ḟ (s)ds‖, which implies that∥∥∥∥∫ t+∆

t
f (s)ds

∥∥∥∥− ∆‖ f (t)‖ ≤ ∆
∥∥∥∥∫ t+θ(t)

t
ḟ (s)ds

∥∥∥∥ (5.20)

Note that d(M−1)/dt = −M−1ṀM−1 because d(M−1M)/dt = M−1Ṁ +(d(M−1)/dt)M =
0. From Properties P3 and P4, we observe that limt→∞ ‖Ṁ‖ ≤ 2kC‖v‖ = 0. Observe
that

ḟ = −
(

d(M(q)−1)

dt
(L22 ⊗ Ip)v + M(q)−1(L22 ⊗ Ip)v

)
We proved below (5.16) that u is bounded and limt→∞ v = 0np. Recall also that
‖M(q)−1‖ is bounded according to Property P2. It follows that limt→∞ ‖ ḟ‖ = 0
because limt→∞ ‖v‖ = 0. This implies ‖

∫ t+θ(t)
t ḟ (s)ds‖ = 0 since θ(t) ∈ (0, ∆) is

finite. The inequality (5.20) then implies that limt→∞

∥∥∥∫ t+∆
t f (s)ds

∥∥∥ = ∆‖ f (t)‖. By
substituting this into the left hand side of (5.19), we obtain

∆‖ f (t)‖ ≤ ‖v(t + ∆)− v(t)‖+
∥∥∥∥∫ t+∆

t
r(s)ds

∥∥∥∥ (5.21)

as t → ∞. Immediately above (5.18), we showed that limt→∞ r = 0np. In addition,
limt→∞ v = 0np and ∆ is a positive constant. We conclude that limt→∞ ‖v(t + ∆)−
v(t)‖+

∥∥∥∫ t+∆
t r(s)ds

∥∥∥ = 0, which according to (5.21) implies that limt→∞ ‖ f (t)‖ = 0.

By recalling that f (t) = −M(q)−1(L22 ⊗ Ip)u, we conclude limt→∞ u = 0np since
both M(q)−1 and L22 are non-singular. It is obvious that limt→∞ u, v = 0np implies
the leader-follower objective is asymptotically achieved.
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5.4.1.2 Absence of Zeno behaviour

According to Definition 1, we can prove that Zeno behaviour does not occur for
t ∈ [0, b], b < ∞ by showing that for all k ≥ 0 there holds ti

k+1 − ti
k ≥ ξ where ξ > 0

is a strictly positive constant.
Let ξi denote the lower bound of the inter-event interval ti

k+1 − ti
k for agent i, i.e.

ti
k+1 − ti

k ≥ ξi , ∀k : ti
k ∈ [0, b]. In this part of the proof, we show that ξi is strictly

positive for k < ∞ and thus no Zeno behaviour can occur. From the definition of
ei(t) in (5.10) and the fact that zi(ti

k) is a constant, we observe that the derivative of
‖ei(t)‖ with respect to time satisfies

d
dt
‖ei(t)‖ ≤ ‖żi(t)‖ (5.22)

where żi(t) = ∑n
j=0 aij(q̇i(t)− q̇j(t)) + µ̇i(t)q̇i(t) + µi(t)q̈i(t), i = 1, . . . , n. Note that

it is straightward to conclude q̇i(t), q̈i(t), µ̇i(t), µi(t) are bounded according to the
arguments in Part 1). This implies żi(t) is bounded. By letting a positive constant Be

represent the upper bound of ‖żi(t)‖, we obtain

d
dt
‖ei(t)‖ ≤ Be

It follows that

‖ei(t)‖ ≤
∫ t

ti
k

Bedt = Be(t− ti
k) (5.23)

for t ∈ [ti
k, ti

k+1) and for any k. It is obvious that the next event time ti
k+1 is deter-

mined both by the changing rate of ‖ei(t)‖ and by the value of the comparison term
βi‖vi(t)‖2 + ωi(t) at ti

k+1. Moreover, ti
k+1 is the time that

‖ei(t)‖2 = βi‖vi(t)‖2 + ωi(t), t > ti
k (5.24)

holds. In Part 1) we conclude that global state variable v(t) → 0np as t → ∞ but
notice that in the evolution of the system (5.14), the state variable vi(t) may be equal
to 0p instantaneously (vi(t) is a component of v(t)) at ti

k+1. However, this does
not imply leader-follower consensus is reached since v̇i(t) can be non-zero at ti

k+1.
We refer to such points in time as “zero-crossing points” for convenience. Here we
provide Fig. 5.2 to show the trigger performance at the zero-crossing points of vi(t)
when ωi(t) = 0. It is observed that dense trigger behaviour occurs whenever vi(t) crosses
zero. Theoretically, it can be proved that Zeno behaviour takes place at these zero-crossing
points. We refer interested readers to [Sun et al., 2016a] with detailed arguments of the Zeno
triggering issues at zero-crossing points.

Now we return to the trigger time interval analysis. By recalling (5.24), we con-
clude that at ti

k+1, the triggering of the event can only occur for the following two
cases:

• Case 1: If ‖vi(ti
k+1)‖ 6= 0, the equality ‖ei(ti

k+1)‖ = βi‖vi(ti
k+1)‖2 + ωi(ti

k+1) is
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satisfied.

• Case 2: If ‖vi(ti
k+1)‖ = 0, the equality ‖ei(ti

k+1)‖ = ωi(ti
k+1) is satisfied.

Compare the above two cases, and note that ‖vi(ti
k+1)‖ > 0 for any ‖vi(ti

k+1)‖ 6=
0. By recalling that ei(t) is equal to zero at ti

k, it is straightforward to conclude
that it takes longer for the quantity ‖ei(t)‖2 to increase to be equal to the quantity
βi‖vi(ti

k+1)‖2 + ωi(ti
k+1) (i.e. Case 1) than to increase to be equal to the quantity

ωi(ti
k+1) (i.e. Case 2), and thus trigger an event and resetting ei(t). This implies that

ξCase 2 < ξCase 1 and proving that there exists a strictly positive ξCase 2 allows us to
draw the conclusion that no Zeno behaviour occurs. According to (5.23), we have

BeξCase 2 ≥ ωi(t) = exp(−κi(ti
k + ξCase 2))

This implies that the inter-event time ξCase 2 is lower bounded by the solution ξCase 2

of the following equation

BeξCase 2 = exp(−κi(ti
k + ξCase 2)) (5.25)

The solution is time-dependent and strictly positive for any finite time since Be is
strictly positive and upper bounded. Zeno behaviour is thus excluded for all agents.

Remark 9. The reader will have noticed the complexity and length of argument required to
go from concluding limt→∞ v = 0np below (5.16), to concluding limt→∞ u = 0np below
(5.21). The key reason is the combination of second-order non-linear dynamics and the non-
autonomous nature of (5.14) resulting from the offset term ωi(t) in (5.11). We now explain
the intuition for the steps from (5.17) to immediately below (5.21). Between (5.19) and (5.21),
we use Theorem 5 (mean value inequality for vector-valued functions) and the definition of f
to obtain the key equality limt→∞

∥∥∥∫ t+∆
t f (s)ds

∥∥∥ = ∆‖ f (t)‖. This allows us to use (5.19) to
show a key result: limt→∞ f = 0np (because we established earlier the both terms on the right
of (5.19) tend to zero). We then use the definition of f to show that f = 0np ⇒ u = 0np.

The authors in [Huang et al., 2016] use a similar trigger function with the same offset
term, and claim that limt→∞ v = 0np implies that limt→∞ v̇ = 0np. This is not correct since
the system is non-autonomous. The paper [Li et al., 2015] uses a trigger function without
the offset term, and thus they are able to avoid the non-autonomous issue. However, the lack
of the offset term can yield Zeno behaviour, something which was not recorded by [Li et al.,
2015]. We explore the use of the offset term for avoiding Zeno behaviour in the next section.

Remark 10. Unfortunately, we cannot find a constant lower bound for the inter-event time
interval (Zeno behaviour in Concept 2 cannot be excluded). The lower bound ξCase2 found by
solving (5.25) is time-dependent and tends to zero as t→ ∞. The avoidance of Zeno behaviour
depends on the exponential decay offset completely and the trigger performance when t→ ∞
is not discussed in the theoretical analysis. However, we note that the state-dependent term
in (5.11) provides a performance advantage when t → ∞ due to its own specific effects and
should not be removed. We will provide detail explanations for the advantages of our proposed
trigger function (5.11) in the following subsection.
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Remark 11. As with other variable-gain controllers that have monotonically increasing gain,
e.g. [Mei et al., 2014; Li et al., 2013; Mei et al., 2016], there is a chance that µi(t) becomes
large. This is a fundamental aspect of such controllers, and might be considered a trade-off
for being able to design the parameters of the trigger function in a distributed manner. An
interesting future work to remedy this problem is to consider an “adaptive σ-modification”
algorithm which allows the gain to both increase and decrease, as studied in [Mei et al., 2016,
Section III-C].

5.4.2 Discussions on the choice of trigger functions

In this subsection, we provide discussions regarding the trigger performance of con-
troller (5.9) using the following three trigger functions

• State-dependent trigger function (SDTF)

fi = ‖ei(t)‖ − βi‖vi(t)‖ (5.26)

• Time-dependent trigger function (TDTF)

fi = ‖ei(t)‖ − κi exp(−ε it) (5.27)

• Mixed trigger function (MTF), which is the proposed (5.11)

fi = ‖ei(t)‖2 − βi‖vi(t)‖2 − κi exp(−ε it) (5.28)

from both the viewpoints of theoretical analysis and numerical simulations. In doing
so, we highlight the advantages of our proposed trigger function (5.11). Note that
it is hard, but not impossible, to observe the zero-crossing phenomenon for vi(t) ∈
Rp, p ≥ 2 (i.e. when vi(t) = 0p occurs, Zeno behaviour is observed as discussed in
the proof of Theorem 7 and in [Sun et al., 2016a]). This is because each entry of vi(t)
must be simultaneously equal to 0. For purposes of illustration, in this subsection we
therefore simulate using dynamics of a one-arm mechanic manipulator (vi(t) ∈ R1).
The dynamics are described by equation 3.5 in [Kelly et al., 2006]. For all simulations
presented in this subsection, we set a constant step size in MATLAB to be 0.00005
seconds (the numerical accuracy of the simulation) and the running time to be 30
seconds. In order to compare performance, we require the following two definitions

Definition 4 (Minimum Inter-Event Time for Agent i). For j = {SDTF,TDTF,MTF},
and for i = {1, . . . , n} define the minimum inter-event time for Agent i ∆i

j as ∆i
j ,

mink{ti
k+1 − ti

k}.

Definition 5 (Infimum Time of ∆i
j For Agent i). For j = {SDTF,TDTF,MTF}, and for

i = {1, . . . , n}, define the “infimum time of ∆i
j for Agent i” as t∆i

j
, infti

k
ti
k : ti

k+2 − ti
k+1 =

ti
k+1 − ti

k = ∆i
j, ∀k.
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In other words, for Agent i, t∆i
j

is the infimum of all event times ti
k, ∀ k such

that the inter-event time between consecutive events k + 1 and k + 2 is equal to the
minimum inter-event time ∆i

j. If there are multiple consecutive events (e.g. 10 events)
with inter-event time ∆i

j then we call this a dense triggering of events. Note that ∆i
j > 0

for (5.27) and (5.28) because we can theoretically rule out Zeno behaviour. In these
two cases, dense triggering is not Zeno behaviour, but is nevertheless undesirable.

Due to space limitations and the similarity of the proofs, we omit the proofs of
convergence of system (5.12) under trigger functions (5.26) and (5.27). Figures 5.3
and 5.4 illustrate the controller (5.9) using SDTF (5.26), and TDTF (5.27), respectively.
The figures show leader-follower consensus is achieved, the evolutions of compari-
son terms (βi‖vi(t)‖ in SDTF and κi exp(−ε it) in TDTF) and event times. Fig. 5.5
shows the performance of controller (5.9) using MTF. We also provide three tables
to compare the trigger performance when using SDTF, TDTF and MTF. Table 5.1
records the total number of events which occur when using the three different trig-
ger functions. Table 5.2 records the minimum inter-event time, ∆i

j. Table 5.3 records
the infimum time value, t∆i

j
, which was defined in Definition 5 above.

Note that SDTF and TDTF are widely adopted in event-based multi-agent con-
sensus literature. We hereby review and illustrate the advantages and disadvantages
regarding the trigger performance using SDTF and TDTF.

5.4.2.1 SDTF

The papers [Dimarogonas et al., 2012; Fan et al., 2013; Garcia et al., 2013; Hu et al.,
2016; Liu et al., 2016d] used SDTF to determine the event times. The disadvantage of
using SDTF is that Zeno behaviour can occur when the local state-dependent term
crosses zero at a finite time value as indicated in [Sun et al., 2016a] (i.e. in (5.26), the
term vi(t) = 0 instantaneously, for t < ∞). According to the first column of Table 5.2,
the minimum inter-event time is ∆i

SDTF = 0.00005 seconds, for all i, which is equal to
the fixed time step of the MATLAB simulations. From the first column of Table 5.3
and the second sub-graph of Fig. 5.3, we observe that Zeno behaviour occurs at the
time instants that vi(t) crosses 0, which supports the conclusion of [Sun et al., 2016a].
However, according to the arguments in [Dimarogonas et al., 2012; Sun et al., 2016a],
if each agent uses SDTF, then at any time t, there exists at least one agent for which
the next inter-event interval is strictly positive at any time t. In other words, for all
t ∈ [0, ∞), some agents may exhibit Zeno behaviour, but at least one agent will have a
constant lower bound on its inter-event time.

5.4.2.2 TDTF

In [Seyboth et al., 2013; Yang et al., 2016; Wei et al., 2017], by using carefully-designed
TDTF (typically the decay rate ε i in (5.27) must be upper bounded), a strictly posi-
tive and constant lower bound on the inter-event time interval for each agent can be
obtained. However, the use of the TDTF has the following two limitations: 1) the ap-
plied system has to be exponentially stable, and 2) accurate information (agent’s dy-
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Figure 5.1: Graph topology used in simulations

Table 5.1: Number of events for three different trigger func-
tions

State-dependent Time-dependent Mixed
Agent 1 259 5581 74
Agent 2 184 8106 63
Agent 3 575 2251 168
Agent 4 94 7365 101
Agent 5 438 3845 200

Total 1550 27148 606

Table 5.2: Minimum inter-event time ∆i
j under three trigger

functions
State-dependent Time-dependent Mixed

Agent 1 0.00005 0.00005 0.0388
Agent 2 0.00005 0.00005 0.0235
Agent 3 0.00005 0.00005 0.0010
Agent 4 0.00005 0.00005 0.0037
Agent 5 0.00005 0.00005 0.0006

Table 5.3: The infimum Time of ∆j, t∆i
j

as defined in Defini-
tion 5

State-dependent Time-dependent Mixed
Agent 1 0.6736 29.8177 18.0246
Agent 2 0.3042 29.6469 2.3991
Agent 3 0.4722 29.8398 14.0583
Agent 4 1.3219 29.6458 1.3182
Agent 5 0.0798 29.9830 15.435

namic model and network topology) is required to design the decay rate of exp(−ε it).
We emphasise that the use of TDTF with arbitrary decay rate for exp(−ε it) is enough
to exclude Zeno behaviour (see the second part of the proof of Theorem 7). How-
ever, if the decay rate is not selected to be sufficiently slow, the lower bound on the
inter-event time cannot be guaranteed to be constant, but instead becomes time de-
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Figure 5.2: Top: the evolutions of the generalized coordinate and velocity of agent 1.
Bottom: the trigger event times of agent 1
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Figure 5.3: Performance of controller (5.9) using SDTF (5.26). We set βi = 2.4. From
top to bottom: 1) the rendezvous of the generalized coordinates; 2) the evolution of

βi‖vi(t)‖; 3) event times for each agent.

pendent. This results in dense triggering behaviour as consensus is almost reached,
i.e. multiple events occur in a very short time interval (see Fig. 5.4). From the second
columns of Table 5.2 and Table 5.3, it is observed that ∆i

TDTF occurs around 29s, for
all i, which is when the system is close to consensus. Note that dense triggering as
t → ∞ is not Zeno behaviour (See Definition 1). However, it can be observed from
Table 5.1 that unsuitably chosen trigger function parameters will introduce a large
amount of events, which is obviously undesirable. This is in contrast to the SDTF,
which ensures that a constant lower bound exists on the inter-event time of at least
one agent. In other words, a poorly designed TDTF will result in multiple events
in sequence with inter-event time equal to ∆i

TDTF when agents near consensus. In
comparison SDTF ensures that for t = [0, ∞), there will always be at least one agent
whose inter-event time is lower bounded by a positive constant, even as agents near
consensus. See Fig. 5.4 in comparison to Fig. 5.3.
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Figure 5.4: Performance of controller (5.9) using TDTF (5.27). We set κi exp(−ε it) =
0.1 exp(−0.2t). From top to bottom: 1) the rendezvous of the generalized coordinates;

2) the evolution of κi exp(−ε it); 3) event times for each agent.
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Figure 5.5: Performance of controller (5.9) with MTF (5.28). We set βi = 2.4 and
κi exp(−ε it) = 0.1 exp(−0.2t). From top to bottom: 1) the rendezvous of the general-
ized coordinates; 2) the evolution of βi‖vi(t)‖+ κi exp(−ε it); 3) event times for each

agent.

5.4.2.3 MTF

According to Table 5.1, it is straightforward to conclude that using MTF shows the
best trigger performance with the least number of total events. According to Table
5.1, using MTF also shows that the minimum inter-event time, ∆i

MTF is greater than
the constant MATLAB step size of 0.00005 seconds, which indicates Zeno behaviour
is excluded. These observations reveal that MTF is able to combine the advantages of
using SDTF and TDTF separately, i.e., the exclusion of Zeno behaviour in finite time
(TDTF) and guarantee that dense triggering does not occur as consensus is reached
(SDTF). This can also be observed from Fig. 5.5 in comparison to Fig. 5.3 and Fig. 5.4.
We conducted a large number of simulations with arbitrarily chosen κi exp(−ε it),
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all of which show the above observations. However, a thorough analysis to find a
constant lower bound on ∆i

j when using MTF remains an open challenge (we can find
a time-dependent bound).

Remark 12. The intuition behind the MTF is straightforward. The time-dependent term
κi exp(−ε it) (strictly positive for any t < ∞) in the MTF ensures that the error term ‖ei(t)‖
will not compare to a zero threshold when the state-dependent term vi(t) crosses zero, thus
avoiding possible Zeno behaviour that may occur using SDTF. Meanwhile, by using numer-
ical simulation examples, it is observed that using SDTF shows better trigger performance
near consensus. Although theoretical explanations about this cannot be provided at this stage,
simulations show that using MTF combines the benefits of separately using SDTF and TDTF.

Note that it is not guaranteed that using MTF will always result in better trigger perfor-
mance (larger ∆j

i and fewer trigger events) compared to using SDTF or TDTF. For example,
it is possible that vi(t) does not cross zero at any t < ∞, depending on the initial conditions
and network dynamics. In this case, Zeno behaviour will not occur even when using SDTF.
Another example is that using a well-designed TDTF (suitably chosen decay rate ε i based
on accurate model knowledge) may also have better trigger performance than using MTF.
Nevertheless, zero-crossing phenomenon cannot always be avoided when using SDTF and it
is difficult to find a suitable TDTF in our proposed controller. In general, using MTF is the
most suitable way for all three proposed event-triggered controllers.

Remark 13. The work [Zhu and Jiang, 2015; Wang et al., 2017b] also use MTF. However,
the authors design the evolution speeds of the exponential functions using exact knowledge of
agent dynamic models and the graph topology. The effects of adding state-dependent terms to
the trigger functions were not well-addressed by the authors of [Zhu and Jiang, 2015; Wang
et al., 2017b].

5.5 Fixed gain, model-independent algorithm

In this section, we propose and analyse a distributed event-triggered algorithm for
a directed network where each fully-actuated agent has self-dynamics described by
the Euler-Lagrange equation (5.7). For design of the control laws, the following
assumption is required.

Assumption 2 (Limited Use of Centralised Design). Three parameters in the algorithm in
this Section must be designed to exceed several lower bounding inequalities. These inequalities
require knowledge of the constants km, kM, kC defined in the properties P2 and P3 and the
matrices Q, L22 and Γ as defined in Lemma 7. We therefore assume these constants are
known to the designer.

Let the triggering time sequence of agent i be ti
0, ti

1, . . . , ti
k, . . . with ti

0 := 0. Con-
sider a model-independent, event-triggered algorithm for the ith follower agent of
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the form

τi(t) = − ∑
j∈Ni

aij

(
(qi(t

i
k)− qj(t

i
k)) + µ(q̇i(t

i
k)− q̇j(t

i
k))
)

t ∈ [ti
k, ti

k+1) (5.29)

where aij is the weighted (i, j) entry of the adjacency matrix A associated with the
weighted directed graph G. The control gain scalar µ > 0 is universal to all agents.
To ensure the control objective is achieved, µ must be designed to satisfy several
inequalities, which will be detailed below. Note that if the leader is a neighbour
of agent i then for j = 0 we have µ(q̇i(t

i
k)− q̇0(t

i
k)) = µ(q̇i(t

i
k)), which is simply a

damping term.

Define a new variable

zi(t) = ∑
j∈Ni

aij

(
(qi(t)− qj(t)) + µ(q̇i(t)− q̇j(t))

)
We define a state mismatch for agent i between consecutive event times ti

k and ti
k+1

as follows:

ei(t) = zi(ti
k)− zi(t) (5.30)

for t ∈ [ti
k, ti

k+1).

The trigger function is proposed as follows:

fi(t) = ‖ei(t)‖2 − µ−2β1
2‖ ∑

j∈Ni

aij(qi(t)− qj(t))‖
2

− β2
2‖ ∑

j∈Ni

aij(vi(t)− vj(t))‖2 −ωi(t) (5.31)

where ωi(t) = ai exp(−κit) with ai, κi > 0. The parameters β1 and β2 are to be
determined in the sequel. The k-th event for agent i is triggered as soon as the trigger
condition fi(t) = 0 is fulfilled at t = ti

k. For t ∈ [ti
k, ti

k+1), the control input is τi(t) =
τi(ti

k); the control input is updated when the next event is triggered. Furthermore,
every time an event is triggered, and in accordance with their definitions, the state
mismatch ei(t) is reset to be equal to zero and thus the trigger function assumes a
negative value. One can immediately observe that for all t

‖ei(t)‖2 ≤ µ−2β1
2‖ ∑

j∈Ni

aij(qi(t)− qj(t))‖
2

+ β2
2‖ ∑

j∈Ni

aij(vi(t) + vj(t))‖2 + ωi(t)

and note that ∑j∈Ni
aij(qi(t) − qj(t)) = ∑j∈Ni

aij[(qi(t) − q0) − (qj(t) − q0)] = l>i u

where l>i is the i-th row of L22. Likewise, ∑j∈Ni
aij(vi(t)− vj(t)) = l>i v. The stacked
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column vector e = [e>1 , . . . , e>n ]> then has the following property

‖e‖2 =
n

∑
i=1
‖ei(t)‖2

≤
n

∑
i=1

(
µ−2β1

2‖l>i u‖2 + β2
2‖l>i v‖2 + ωi(t)

)
(5.32)

It is straightforward to verify that ∑n
i=1 ‖l>i u‖2 = ‖L22u‖2, and ∑n

i=1 ‖l>i v‖2 = ‖L22v‖2.
It then follows that

‖e‖2 ≤ µ−2β1
2‖L22u‖2 + β2

2‖L22v‖2 + ω̄(t)2 (5.33)

‖e‖ ≤ µ−1β1‖L22‖‖u‖+ β2‖L22‖‖v‖+ ω̄(t) (5.34)

where ω̄(t) = (∑n
i=1 ωi(t))

1
2

It is obvious that

τi(t) = zi(t) + ei(t)

Applying control law (5.29) to each agent we can express the networked system using
the new variables u, v as below

M(q)v̇ + C(q, v)v + (L22 ⊗ Ip)(u + µv) + e = 0 (5.35)

and expressed as the non-autonomous system

u̇ = v

v̇ = −M(q)−1 [C(q, v)v + (L22 ⊗ Ip)(u + µv) + e
]

(5.36)

By using arguments like those of usual Lyapunov theory, we will be able to prove
the stability of (5.36). Before we present the main theorem of this section, we state a
mild assumption used only in this Section.

Assumption 3. All possible initial conditions lie in some fixed but arbitrarily large set,
which is known a priori. In particular, ‖ui(0)‖ ≤ ka/

√
n and ‖vi(0)‖ ≤ kb/

√
n, where

ka, kb are known a priori.

This assumption is entirely reasonable; many Euler-Lagrange systems will have
an expected operating range for q and q̇.

Theorem 8. Suppose that each follower agent with dynamics (5.7), under Assumption 1,
employs the controller (5.29) with trigger function (5.31). Suppose further that the directed
graph G contains a directed spanning tree, with the leader agent 0 as the root node (and
thus with no incoming edges). Then there exists a sufficiently large µ, and sufficiently small
β1, β2 which ensures that the leader-follower consensus objective is achieved semi-globally
exponentially fast.
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Proof. Before we present the main proof of Theorem 8, we need to compute an upper
bound using limited information about the initial conditions.

5.5.1 An upper bound using initial conditions

Suppose that initial conditions are bounded as ‖u(0)‖ ≤ ka and ‖v(0)‖ ≤ kb with
ka, kb known a priori. Before we proceed with the main proof, we provide a method to
calculate a non-tight upper bound on the initial states expressed as ‖u(0)‖ < X and
‖v(0)‖ < Y , with the property that as shown in the sequel, there holds ‖u(t)‖ < X
and ‖v(t)‖ < Y for all t ≥ 0, and exponential convergence results. Due to spatial
limitations, we show only the bound on v and leave the reader to follow an identical
process for u. In keeping with the model-independent nature, define a function as

V̄µ =

[
u
v

]>[
λmax(Q)Inp

1
2 µ−1γ̄(kM+δ)Inp

1
2 µ−1γ̄(kM+δ)Inp

1
2 γ̄(kM+δ)Inp

] [
u
v

]
(5.37)

where Q = ΓL22 + L>22Γ, γ = mini γi and γ̄ = maxi γi. Here, γi are the diag-
onal entries of Γp. The constant δ > 0 is arbitrarily small and fixed. Note that
(kM + δ)Inp > M and that V̄µ is not a Lyapunov function. Let the matrix in (5.37) be
Lµ. Then according to Theorem 6, Lµ > 0 if and only if λmax(Q)Inp − 1

2 µ−2γ̄(kM +
δ)Inp > 0 which is implied by λmax(Q)− 1

2 µ−2γ̄(kM + δ) > 0. Then Lµ > 0 for any
µ ≥ µ∗1 where

µ∗1 >

√
γ̄(kM + δ)

2λmax(Q)

While V̄µ is a function of u(t) and v(t), we use V̄µ(t) to denote V̄µ(u(t), v(t)). Lastly,
observe that

V̄µ ≤ λmax(Q)‖u‖2 +
1
2

γ̄(kM + δ)‖v‖2

+ µ−1γ̄(kM + δ)‖u‖‖v‖

Next, let

Vµ =

[
u
v

]>[ 1
4 λmin(Q)Inp

1
2 µ−1γ(km−δ)Inp

1
2 µ−1γ(km−δ)Inp

1
2 γ(km−δ)Inp

] [
u
v

]
(5.38)

Call the matrix in (5.38) Nµ. Let the arbitrarily small δ be such that (km − δ) > 0.
Analysis using Theorem 6, similar to above, is used to conclude that Nµ > 0 for any
µ ≥ µ∗2 where

µ∗2 >

√
2γ(km − δ)

λmin(Q)
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Set µ∗3 = max{µ∗1 , µ∗2}. Define

ρ1(µ) =
1
2
(kM + δ)− 1

4
µ−2(kM + δ)2λmax(Q)−1

ρ2(µ) =
1
2
(km − δ)− µ−2(km − δ)2λmin(Q)−1

ρ3(µ) =
1
2
(km − δ)− 1

2
µ−2(kM)2‖Q−1‖

and observe that for sufficiently large µ there holds ρ1 ≥ ρ3 > ρ2. Assume without
loss of generality that ρ1 ≥ ρ3 > ρ2 (if not, one can always replace µ∗3 by a µ∗4 with
µ∗4 > µ∗3 , and such that ρ1 ≥ ρ3 > ρ2). Note that for any µ ≥ µ∗3 there holds
ρi(µ

∗
3) ≤ ρi(µ), i = 1, 2. Compute now

V̄∗ = λmax(Q)k2
a +

1
2

γ̄(kM + δ)k2
b + µ∗3

−1γ̄(kM + δ)kakb

One can verify that for any µ ≥ µ∗3 that V̄µ(0) ≤ V̄∗. It follows from Lemma 4 and
(5.2b) that

‖v(0)‖2 ≤

√
V̄µ(0)
ρ1(µ)

≤

√
V̄µ(0)
ρ1(µ∗3)

<

√
V̄∗

ρ2(µ∗3)
:= Y1 (5.39)

Follow a similar method to obtain X1. Next, compute

V̂∗ = λmax(Q)X1
2 +

1
2

γ̄(kM + δ)Y1
2 + µ∗3

−1γ̄(kM + δ)X1Y1

Finally, compute the bound Y =
√

V̂∗/ρ2(µ∗3), and note that V̄µ∗3
≤ V̂∗. Note also that

V̄µ, V̄∗, ρ2(µ∗3) are independent of µ. Thus ‖v(0)‖2 < Y (and similarly ‖u(0)‖2 < X )
can be used for all µ ≥ µ∗3 . We now proceed to the proof of Theorem 8.

5.5.2 Main proof

We divide the proof into three parts.
Part 1: Consider the Lyapunov-like candidate function

V =
1
2

u>Qu +
1
2

v>Γp Mv + µ−1u>Γp Mv (5.40)

where Γp = Γ⊗ Ip. It may also be expressed as a quadratic in the variables u and v

V =

[
u
v

]> [ 1
2 Q 1

2 µ−1Γp M
1
2 µ−1Γp M 1

2 Γp M

] [
u
v

]
(5.41)

Theorem 6 is used to conclude that V is positive definite if

1
2

Q− 1
2

µ−2Γp M > 0 (5.42)
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which is implied by
λmin(Q)− µ−2γ̄λmax(M) > 0 (5.43)

Observe that (5.43) is implied by

µ >

√
γ̄kM

λmin(Q)
(5.44)

because there holds λmax(M) ≤ kM. Since λmin(Q) > 0 then there can always be
found a µ > 0 which satisfies (5.44). Define µ∗5 such that µ∗5 satisfies (5.44) and
µ∗5 ≥ µ∗3 . Therefore V is positive definite in u and v for all µ ≥ µ∗5 . Denote the
matrix in (5.41) as G. Following the method outlined in the appendix of ?, it is
straightforward to show that V(t) < V̄µ(t) for all t because Lµ > G > Nµ for all
µ ≥ µ∗5 . Lastly, observe that

V(t) ≤ 1
2

λmax(Q)‖u(t)‖2 +
1
2

γ̄kM‖v(t)‖
2

+ µ−1γ̄kM‖u(t)‖‖v(t)‖ (5.45)

Taking the derivative of V with respect to time along the trajectories of the system
(5.36), we have

V̇ = u>Qv + v>Γp Mv̇ +
1
2

v>Γp Ṁv

+ µ−1v>Γp Mv + µ−1u>Γp Ṁv + µ−1u>Γp Mv̇ (5.46)

= −1
2

µv>Qv− 1
2

µ−1u>Qu + µ−1v>Γp Mv

+ µ−1u>ΓpC>v− v>Γpe− µ−1u>Γpe (5.47)

We obtain (5.47) by substituting in Mv̇ from (5.35) noting that Ṁ − 2C is skew-
symmetric, or equivalently Ṁ = C + C>. Using the properties of the Euler-Lagrange
system (P1 to P5), the following upper bound on V̇ is obtained.

V̇ ≤ −(1
2

µλmin(Q)− µ−1kMγ̄)‖v‖2 − 1
2

µ−1λmin(Q)‖u‖2

+ µ−1kCγ̄‖v‖2‖u‖+ γ̄‖v‖‖e‖+ µ−1γ̄‖u‖‖e‖ (5.48)
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Using the bound on ‖e‖ computed in (5.34), we then evaluate (5.48) to be

V̇ ≤ −(1
2

µλmin(Q)− µ−1kMγ̄)‖v‖2 − 1
2

µ−1λmin(Q)‖u‖2

+ µ−1kCγ̄‖v‖2‖u‖+ µ−1β1γ̄‖L22‖‖u‖‖v‖
+ β2γ̄‖L22‖‖v‖2 + µ−2β1γ̄‖L22‖‖u‖2

+ µ−1β2γ̄‖L22‖‖u‖‖v‖+ µ−1ω̄(t)γ̄‖u‖+ ω̄(t)γ̄‖v‖ (5.49)

= −µ−1

[
A1‖u‖2 + A2‖v‖2 − A3‖v‖2‖u‖ − A4‖v‖‖u‖

− A5‖u‖ − A6‖v‖
]

:= −µ−1 p(‖u‖, ‖v‖) (5.50)

where A1(µ) = λmin(Q)/2− µ−1γ̄β1‖L22‖, A2(µ) = µ2λmin(Q)/2− γ̄(kM + µβ2),
A3 = kCγ̄, A4 = ‖ΓL22‖γ̄(β1 + β2), A5(t) = γ̄ω̄(t), and A6(µ, t) = µγ̄ω̄(t). By
designing β1 such that

β1 <
µ∗5λmin(Q)

2γ̄‖L22‖

then A1(µ) > 0 for any µ ≥ µ∗5 . Observe that A2(µ∗5) > 0 if (µ∗5)
2λmin(Q)/2− γkM −

µ∗5 β2 > 0. Rearranging for β2, this is implied by

β2 <
µ∗5λmin(Q)

2
− γ̄kM

µ∗5
(5.51)

and note that any β2 satisfying (5.51) continues to satisfy (5.51) for any µ ≥ µ∗5 . If
the right hand side of (5.51) is negative, it is still possible to ensure that A2(µ∗5) > 0
by increasing the size of µ∗5 and setting β2 sufficiently small because the coefficient
of µ2 in A2 is positive. Lastly, observe that as µ → ∞ then A1(µ) → λmin(Q)/2,
A2(µ) = O(µ2) and A6(µ) = O(µ). Notice that ω̄(t) decays to 0 exponentially fast.
In other words, the coefficients A5(t) and A6(µ, t) decay to zero exponentially fast.

Part 2: We now show that the trajectories of the system are bounded for all time
by carefully designing µ. For Part 2 and Part 3 of the proof, a diagram is included
in Fig. 5.6 to aid in the explanation of the proof. Notice that p(‖u‖, ‖v‖) in (5.50) is
of the same form as h(x, y) in Corollary 1 with ‖u‖ = x, ‖v‖ = y and A1(µ) = a,
A2(µ) = b, A3 = c, A4 = d, A5(0) = e and A6(µ, 0) = f . Note that A5(t1) >
A5(t2) and A6(µ, t1) > A6(µ, t2) for any t1 < t2. Because of this, we proceed using
A5(0), A6(µ, 0): any A2(µ) satisfying the inequalities on b in Corollary 1 for t = 0 will
continue to satisfy the inequalities for t > 0. This will be come clear in the sequel.
We now use the values X ,Y computed in Subsection 5.5.1. Choose ϑ0 > X − X1

and ϕ0 > Y − Y1, and ensure that X − ϑ0,Y − ϕ0 > 0. Note the fact that X ≥ X1

and Y ≥ Y1 implies ϑ0, ϕ0 > 0. We assume without loss of generality that X found
in Section 5.5.1 is such that X − ϑ0 > A5(0)/A1(µ). If this inequality were not
satisfied, one would replace X by a X̄ > X such that X̄ − ϑ0 > e/a and proceed
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with the stability proof using X̄ .
Define the sets U ,V and the region R as in Corollary 1 with ‖u‖ = x, ‖v‖ = y.

Define further the sets Ū = {‖u‖ : ‖u‖ > X} and V̄ = {‖v‖ : ‖v‖ > X}. Define
the compact region S = U ∪ V\Ū ∪ V̄ (refer to Fig. 5.6 for details). Since S ⊂ R,
there exists a µ∗6 ≥ µ∗5 such that A2(µ∗6) satisfies the requirement on b in Corollary 1,
which ensures that p(‖u‖, ‖v‖) > 0. This in turn implies that V̇ < 0 in S . Lastly,
define the region ‖u(t)‖ ∈ [0,X − ϑ0) and ‖v(t)‖ ∈ [0,Y − ϕ0) as T . In this part
of the proof, we are trying to show that the trajectories of (5.36) remain bounded
for all time. For purposes of explanation, we therefore temporarily assume that S
and T are time-invariant, as opposed to Fig. 5.6. In the latter Part 3, we will discuss
the time-varying nature of S(t) and T (t) and show that the boundedness arguments
developed here continue to hold.

We are now ready to show that the trajectory of the system (5.36) remains in
T ∪ S for all t ≥ 0. We define T1 as the infimum of time values for which either
‖u(t)‖ < X or ‖v(t)‖ < Y fail to hold. We show that the existence of T1 creates a
contradiction, and thus conclude that the bounds ‖u(t)‖ < X or ‖v(t)‖ < Y hold
for all t.

Observe that V̇ may be sign indefinite in T , which means if the trajectory of the
system is in T (the blue region in Fig. 5.6) then V(t) can increase. However, from
(5.45) we obtain that in T

V(t) ≤ 1
2

λmax(Q)(X − ϑ0)
2 +

1
2

γ̄(kM + δ)(Y − ϕ0)
2

+ µ−1γ̄(kM + δ)(X − ϑ0)(Y − ϕ0) := Z

One can easily verify that Z < V̂∗ because we selected ϑ0, ϕ0 such that X1 > X − ϑ0

and Y1 > Y − ϕ0. Note that any trajectory of (5.36) beginning2 in S ∪ T must
satisfy V(t) ≤ max{Z , V(0)} < V̂∗ for t ∈ [0, T1]. This is because V̇ < 0 in S ; any
trajectory starting in S (respectively T ) has V(t) < V(0) (respectively V(t) < Z). If
the trajectory leaves T and enters S at some t, consider the crossover point, which
is in the closure of T . By the virtue that V is continuous, we have V(t) < Z and
by virtue of entering S , V(t + δ) ≤ V(t) < Z , for some arbitrarily small δ. Define
ζ = λmin(M − µ−1MQ−1M)/2 and verify that ζ ≥ ρ3(µ∗3) > ρ2(µ∗3). In accordance
with Lemma 4 we have

‖v(T1)‖2 ≤

√
V(T1)

ζ
<

√
V̂∗

ζ
<

√
V̂∗

ρ2(µ∗3)
= Y (5.52)

Paralleling the argument leading to (5.52), one can also show that ‖u(T1)‖ < X . We
omit this due to spatial limitations and similarity of argument. The existence of (5.52)
and a similar inequality for ‖u(T1)‖ contradict the definition of T1. In other words,
T1 does not exist, and therefore ‖u(t)‖ < X and ‖v(t)‖ < Y for all t, as depicted in
Fig. 5.6.

2The definitions of S and T ensure that u(0), v(0) ∈ S ∪ T as evident in (5.39).
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Part 3: We now show that the leader-follower consensus objective is achieved. In
order to do this, we firstly explore how the time-varying nature of A5(t) and A6(µ, t)
affects V̇. As discussed in Fig. 5.6, A5(t) and A6(µ, t) decay to zero exponentially
fast due to the presence of ω̄(t). Therefore, at t = ∞, p(‖u‖, ‖v‖) is of the form
of g(x, y) in Lemma 5 and is thus positive definite (and therefore V̇ = −µ−1 p is
negative definite) for ‖u‖ ∈ [0,X ] and ‖v‖ ∈ [0, ∞). This is because µ∗6 as designed
according to Corollary 1 also satisfies the requirements detailed in Lemma 5. It is
also straightforward to conclude that the sign indefiniteness of V̇(t) in T (t) arises
due to the terms linear in ‖u‖ and ‖v‖ in (5.49), i.e. the terms containing ω̄(t), which
are precisely the coefficients A5(t) and A6(µ, t) in (5.50).

Now that we have established that A5(t)‖u‖ and A6(µ, t)‖v‖ give rise to the re-
gion T (t), we now establish the precise behaviour of T (t) and S(t) as functions of
time. Now examine the inequalities on the coefficient b as detailed in Corollary 1,
applied to p(‖u‖, ‖v‖) in (5.50). We conclude that for a fixed µ∗6 , the strictly mono-
tonically decreasing nature of A5, A6 then implies that, for fixed A2(µ∗6), the region in
which p(‖u‖, ‖v‖) > 0 (respectively sign indefinite) as defined by S(t) (respectively
T (t)), is time-varying. Specifically, ϑ(t) and ϕ(t) are strictly monotonically increasing.
Moreover, because A5 = A6 = 0 at t = ∞, we conclude that limt→∞ ϑ(t) = X and
limt→∞ ϕ(t) = Y , at which point T (t) = [0, 0].

It is straightforward to show that appropriate functions are given by ϑ(t) =
−a1e−a2t +X and ϕ(t) = −b1e−b2t +Y . Here, a1, a2, b1, b2 are positive constants asso-
ciated with X0, Y0 and the decay rate of ω̄(t). Moreover, because ϑ(t), ϕ(t) are strictly
monotonically increasing, it is easy to verify that S(t1) ⊂ S(t2) and T (t1) ⊃ T (t2)
for any t1 < t2. These properties ensure that the boundedness arguments developed
in Part 2 remain valid for time-varying S(t) and T (t) due to the nature of the time
variation.

Now we have established the behaviour of S(t) and T (t), we move on to show
that leader-follower consensus is achieved. Suppose that at some T2, the trajectory
of the system (5.36) leaves T (t) and does not enter T (t) for all t ≥ T2. In other
words, for t ≥ T2, the trajectory is in S(t) (recall that in Part 2 we established that
‖u(t)‖ < X and ‖v(t)‖ < Y for all t). This is illustrated in Fig. 5.6.

Firstly, consider the case where T2 = ∞. From the form of ϑ(t), ϕ(t), we conclude
that T (t) shrinks exponentially fast towards the origin u = v = 0. If T2 = ∞ then
there is some T3 < ∞ such that the trajectory of the system (5.36) is in T (t) for all
t ∈ [T3, ∞). From the limiting behaviour of T (t), we conclude that the trajectory
of (5.36) also converges to the equilibrium ‖u‖ = ‖v‖ = 0, which implies that the
leader-follower consensus objective has been achieved. Moreover, the convergence
rate is exponential for t ∈ [T3, ∞).

Secondly, consider the case where T2 is finite. Note that T2 is initial condition
dependent, but the initial condition set is bounded according to Assumption 3. It
follows that there exists a T̄2 independent of initial conditions such that, for every initial
condition satisfying Assumption 3, T2 < T̄2 < ∞. Define the time interval tp =
[T̄2, ∞). Because the trajectory of the system (5.36) is in S(t) for all t ∈ tp then
V̇(t) < 0 for all t ∈ tp. Consider some arbitrary time t1 ∈ tp. We observe that



80 Event-Triggered Consensus for Networked Euler-Lagrange Agents

‖u‖

‖v‖

X

Y

X − ϑ(t)

Y − ϕ(t)

T (t), V̇ sign indefinite

S(t), V̇ < 0T1

T2

Figure 5.6: Diagram for proof of Theorem 8. The red region is S(t), in which V̇(t) <
0 for all t ≥ 0. The blue region is T (t), in which V̇(t) is sign indefinite. A trajectory
of (5.36) is shown with the black curve. At t = T1, it is shown in Part 2 that the
trajectory of (5.36) is such that ‖u(T1)‖ < X , ‖v(T1)‖ < Y and thus the trajectory
does not leave S(t). The sign indefiniteness of V̇(t) in T (t) arises due to the terms
linear in ‖u‖ and ‖v‖ in (5.49), i.e. the terms containing ω̄(t) (coefficients A5(t)
and A6(µ, t) in (5.50)). Because ω̄(t) goes to zero at an exponential rate, so do the
coefficients A5(t) and A6(µ, t). Examining the inequalities detailed in Corollary 1
as applied to p(‖u‖, ‖v‖) in (5.50), it is straightforward to conclude that for a fixed
µ∗6 , the exponential decay of A5, A6 implies that the region T (t) shrinks towards the
origin at an exponential rate. In other words, ϑ(t) and ϕ(t) monotonically increase
until ϑ(t) = X and ϕ(t) = Y , at which point T (t) = [0, 0]. This corresponds to the
dotted red and blue lines, which show, respectively, the time-varying boundaries of
S(t) and T (t). The solid red and blue lines show respectively, the boundaries of S(t)
and T (t), which are time-invariant. Exponential convergence to the leader-follower

objective is discussed in Part 3 making using of T2.

p(‖u‖, ‖v‖) > 0 (i.e. positive definite) in the compact region S(t1). One can therefore
find a scalar a1,t1 > 0 such that p(‖u‖, ‖v‖) ≥ a1,t1‖[u>, v>]>‖ for all ‖u‖, ‖v‖ ∈
S(t1). Furthermore, by recalling that A5, A6 are positive and strictly monotonically
decreasing, we conclude that p(‖u‖, ‖v‖, t1) < p(‖u‖, ‖v‖, t2) for any u, v, and for
any t1 ≤ t2 where t1, t2 ∈ tp. It follows that there exists some constant ā1 > 0 such
that p(‖u‖, ‖v‖) ≥ ā1‖[u>, v>]>‖ for all v, u in S(t), for all t ∈ tp. This implies
that, in S(t) we have V̇ ≤ −ā1‖[u>, v>]>‖ < 0 for all t ∈ tp. The eigenvalues of
the constant matrices Lµ and Nµ (the matrices introduced in subsection 5.5.1) are
finite and strictly positive. Our earlier conclusion that Lµ > G > Nµ for all µ ≥ µ∗3
then implies that the eigenvalues of G (which vary with q(t)) are upper bounded
away from infinity and lower bounded away from zero. It follows that there exist
scalars a2, a3 > 0 such that a2‖[u>, v>]>‖ ≤ V(t) ≤ a3‖[u>, v>]>‖. This implies that
V̇(t) ≤ −ψV(t) in S(t) for t ∈ tp where ψ = ā1/a3. From this, we conclude that
V decays exponentially fast to zero, with a minimum rate e−ψt, for t ∈ tp. Since V
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is positive definite in u, v, this implies that ‖[u>, v>]>‖ decays to zero exponentially
fast for t ∈ tp, and the leader-follower consensus objective is achieved.

Remark 14. We do not provide analysis of the exclusion of Zeno behaviour in this section
since the trigger function is designed according to the MTF proposed in Section 5.4, in which
the offset term can ensure no Zeno behaviour for each agent.

5.6 Adaptive, model-dependent algorithm

In this section, we propose an adaptive, distributed event-triggered controller to
achieve leader-follower consensus for a directed network of Euler-Lagrange agents.
This allows for uncertain parameters in each agent, e.g. the mass of a robotic manip-
ulator arm, and includes the gravitational forces.

5.6.1 Main result

Before we present the main results, we introduce variables which allow us to rewrite
the multi-agent system in a way which facilitates stability analysis. A lemma on
stability is also provided. To begin, we introduce the following auxiliary variables qri
and si, which appeared in [Mei et al., 2013, 2012] studying leader-follower problems
in directed Euler-Lagrange networks. Define

q̇ri(t) = −α
n

∑
j=0

aij(qi(t)− qj(t)), (5.53)

si(t) = q̇i(t)− q̇ri(t) = q̇i(t) + α
n

∑
j=0

aij(qi(t)− qj(t)),

i = 1, . . . , n (5.54)

where α is a positive constant, aij is the weighted (i, j) entry of the adjacency matrix
A associated with the directed graph G that characterises the sensing flows among
the n followers. Utilising Lemma 7, one can then verify that the compact form of
(5.54) can be written as:

q̇(t) = −α(L22 ⊗ Ip)(q(t)− 1n ⊗ q0) + s(t) (5.55)

The following lemma will later be used for stability analysis of the networked
system.

Lemma 8. (From [Mei et al., 2012]) Suppose that, for the system (5.55), the graph G contains
a directed spanning tree with the leader as the root vertex. Then system (5.55) is input-to-state
stable with respect to input s(t). If s(t) → 0p as t → ∞, then q̇i(t) → 0p and qi(t) → q0
as t→ ∞.
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Note that the proof of the above lemma is part of the proof of Corollary 3.7 in
[Mei et al., 2012].

From P(6) and the definition of q̇ri, we obtain

M i(qi)q̈ri + Ci(qi, q̇i)q̇ri + gi(qi) = Y i(qi, q̇i, q̈ri, q̇ri)Θi (5.56)

Note that Θi is an unknown but constant vector for agent i. Let Θ̂i(t) be the estimate
of Θi at time t. We update Θ̂i(t) by the following adaptation law:

˙̂Θi(t) = −ΛiY>i (t)si(t) (5.57)

where Λi is a symmetric positive-definite matrix.
The control algorithm is now proposed. Let the triggering time sequence of agent

i be ti
0, ti

1, . . . , ti
k, . . . with ti

0 := 0. The event-triggered controller for follower agent i is
designed as:

τi(t) = −Kisi(ti
k) + Y i(ti

k)Θ̂i(ti
k), t ∈ [ti

k, ti
k+1) (5.58)

where Ki > 0 is a symmetric positive definite matrix. It is observed that the control
torque remains constant in the time interval [ti

k, ti
k+1), i.e. τi(t) is a piecewise-constant

function in time. From the definitions of qri and si, calculations show that the system
in (5.6) can be written as

M i(qi)ṡi(t) + Ci(qi, q̇i)si(t) = −Kisi(ti
k) + Y i(ti

k)Θ̂i(ti
k)− Y i(t)Θi (5.59)

Before the trigger function is presented, we define two types of state mismatch:

ei(t) = si(ti
k)− si(t);

εi(t) = Y i(ti
k)Θ̂i(ti

k)− Y i(t)Θ̂i(t); (5.60)

The trigger function is proposed as follows:

fi(t) = ‖εi(t)‖+ λmax(Ki)‖ei(t)−
γi

2
λmin(Ki)‖si(t)‖ −ωi(t) (5.61)

where 0 < γi < 1, ωi(t) = σi
√

λmin(Ki) exp(−κit) with σi, κi > 0. The kth event for
agent i is triggered as soon as the trigger condition fi(t) = 0 is fulfilled at t = ti

k. For
t ∈ [ti

k, ti
k+1), the control input is τi(t) = τi(ti

k); the control input is updated when
the next event is triggered. Furthermore, every time an event is triggered, and in
accordance with their definitions, the state mismatches εi(t) and ei(t) are reset to be
equal to zero. Thus fi(t) ≤ 0 for all t ≥ 0.

We now present our main result.

Theorem 9. Consider the multi-agent system (5.6) with control law (5.58). If G contains a
directed spanning tree with the leader as the root vertex (and thus with no incoming edges),
then leader-follower consensus (‖qi − q0‖ → 0 and ‖q̇i‖ → 0, i = 1, . . . , n) is globally
asymptotically achieved as t→ ∞ and no agent will exhibit Zeno behaviour.
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Proof. In this part, we focus on the stability analysis of the system (5.59). The proof
on the exclusion of Zeno behaviour is omitted since the idea is the same with that in
Part 2) of the proof of Theorem 7. Notice that (5.59) is non-autonomous in the sense
that it is not self-contained (M i, Ci depend on qi and qi, q̇i respectively). However,
study of a Lyapunov-like function shows leader-follower consensus is achieved.

We make use of abuse of notation by omitting the argument of time t for time-
dependent functions when appropriate, e.g. qi denotes qi(t).

Consider the following Lyapunov-like function

V =
1
2

N

∑
i=1

s>i M i(qi)si +
1
2

N

∑
i=1

Θ̃
>
i Λ−1

i Θ̃i (5.62)

where

Θ̃i = Θi − Θ̂i (5.63)

The derivative of V along the solution of (5.59) is

V̇ =
1
2

N

∑
i=1

s>i Ṁ i(qi)si +
N

∑
i=1

s>i M i(qi)ṡi +
N

∑
i=1

Θ̃
>
i Λ−1

i
˙̃Θi

=
N

∑
i=1

s>i

(
1
2

Ṁ i(qi)− Ci(qi, q̇i)

)
si −

N

∑
i=1

s>i Kisi(ti
k)

+
N

∑
i=1

s>i Y i(ti
k)Θ̂i(ti

k)−
N

∑
i=1

s>i Y iΘi +
N

∑
i=1

Θ̃
>
i Y>i si

From P(4) we have 1
2 Ṁ i(qi)− Ci(qi) is skew-symmetric and with Θi = Θ̃i + Θ̂i, we

obtain

V̇ = −
N

∑
i=1

s>i Kisi(ti
k) +

N

∑
i=1

s>i Y i(ti
k)Θ̂i(ti

k)−
N

∑
i=1

s>i Y i(Θ̃i + Θ̂i) +
N

∑
i=1

Θ̃
>
i Y>i si

By recalling the definition of ei and εi in (5.60), we have

V̇ = −
N

∑
i=1

s>i Kisi −
N

∑
i=1

s>i Kiei +
N

∑
i=1

s>i εi

Since Ki is a symmetric positive definite matrix, the upper bound of V̇ is expressed
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as

V̇ ≤ −
N

∑
i=1

λmin(Ki)‖si‖2 +
N

∑
i=1

λmax(Ki)‖si‖‖ei‖+
N

∑
i=1
‖si‖‖εi‖

Note that the trigger condition fi(t) = 0 guarantees that ‖εi‖ + λmax(Ki)‖ei‖ ≤
γi
2 λmin(Ki)‖si‖+ ωi(t) holds throughout the evolution of system (5.59). By further

introducing the definition of ωi(t) in (5.61), we obtain

V̇ ≤ −
N

∑
i=1

λmin(Ki)‖si‖2 +
N

∑
i=1

γi

2
λmin(Ki)‖si‖2 +

N

∑
i=1

√
λmin(Ki)‖si‖σi exp(−κit)

Because there holds |xy| ≤ γi
2 x2 + 1

2γi
y2, ∀x, y ∈ R, for 0 < γi < 1, analysis of the

right hand side of the above inequality implies that V̇ can be further upper bounded
as

V̇ ≤
N

∑
i=1

(γi − 1)λmin(Ki)‖si‖2 +
N

∑
i=1

σ2
i

2γi
exp(−2κit) (5.64)

Integrating both sides of (5.64) for any t > 0 yields:

V +
N

∑
i=1

(1− γi)λmin(Ki)
∫ t

0
‖si(τ)‖2dτ ≤ V(0) +

N

∑
i=1

σ2
i

4γiκi
(5.65)

which implies that V is bounded. Since V is bounded, according to (5.62), both si
and Θ̃i(t), for all i ∈ {1, ..., n}, are bounded. Now we return to (5.56) and obtain that

‖Y iΘi‖ ≤ ‖M i‖‖q̈ri‖+ ‖Ci‖‖q̇ri‖+ ‖gi‖

By recalling that the linear system (5.55) is input-to-state stable and the fact that s
is bounded, we conclude that qi and q̇i are both bounded. Because qi and q̇i are
bounded then, from their definitions, so are q̇ri and q̈ri. Then from P(2), P(3) and
P(5), the assumed properties of Euler-Lagrange equations, we have that ‖Y i‖ is upper
bounded by a positive value. From the above conclusions, it is straightforward to see
that the right hand side of (5.59), M i, Ci and si are all bounded. We thus obtain that
ṡi is bounded. From this, it is obvious that si, ṡi ∈ L∞. Turning to (5.65), it follows
that

N

∑
i=1

(1− γi)λmin(Ki)
∫ t

0
‖si(τ)‖2dτ ≤ V(0) +

N

∑
i=1

σ2
i

4γiκi
(5.66)

which indicates that
∫ t

0 ‖si(τ)‖2dτ is bounded and thus si ∈ L2. By applying Lemma
3, we have that si → 0p as t → ∞. Then by applying Lemma 8, we conclude that
qi − q0 → 0p and q̇i → 0p as t → ∞. The leader-follower objective is globally
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Θi =
[
(m1 + m2)d2

1 + m2d2
2 m2d1d2 m2d2

2 (m1 + m2)gd1 m2 gd2
]T

Yi =


x1 0

2x1 cos(q(2)i ) + x2 cos(q(2)i )− y1 sin(q(2)i )q̇(2)i − y2 sin(q(2)i )q̇(2)i − y2 sin(q(2)i )q̇(1)i x1 cos(q(2)i ) + y1 sin(q(2)i )q̇(1)i
x2 x1 + x2

sin(q(1)i ) 0

sin(q(1)i + q(2)i ) sin(q(1)i + q(2)i )



T

asymptotically achieved.

5.7 Simulations

In this subsection, we will provide three simulations to respectively demonstrate the
performance of the three proposed controllers in this chapter for application to in-
dustrial manipulators (See Fig. 5.7). Although the effectiveness of controller (5.9) is
verified in Subsection 5.4.2, the applied system is simple one-arm manipulators. In
this subsection we assume that all two-link manipulators share the same dynamic
models and parameters. The Euler-Lagrange equations for the ith two-link manipu-
lator is: [

M11
i M12

i
M21

i M22
i

] [
q̈(1)i

q̈(2)i

]
+

[
C11

i C12
i

C21
i C22

i

] [
q̇(1)i

q̇(2)i

]
+

[
g(1)i

g(2)i

]
=

[
τ
(1)
i

τ
(2)
i

]
The elements in Mi, Ci matrices and gi vector are given below:

M11
i = (m1 + m2)d2

1 + m2d2
2 + 2m2d1d2 cos(q(2)i )

M12
i = M21

i = m2(d2
2 + d1d2 cos(q(2)i ))

M22
i = m2d2

2

C11
i = −m2d1d2 sin(q(2)i )q̇(2)i

C12
i = −m2d1d2 sin(q(2)i )q̇(2)i −m2d1d2 sin(q(2)i )q̇(1)i

C21
i = m2d1d2 sin(q(2)i )q̇(1)i

C22
i = 0

g(1)i = (m1 + m2)gd1 sin(q(1)i ) + m2gd2 sin(q(1)i + q(2)i )

g(2)i = m2gd2 sin(q(1)i + q(2)i )

where g is the acceleration due to gravity, d1 and d2 are lengths of the 1st and 2nd

links of the manipulator, respectively; m1 and m2 are mass of the 1st and 2nd of
the manipulator. The physical parameters of each manipulator are selected as g =
9.8 m/s2, d1 = 1.5 m, d2 = 1 m, m1 = 1 kg, m2 = 2 kg. The initial states of each
manipulator are shown in Table 5.4. Note that in simulations 1 and 2, we assume
that g(1)i , g(2)i = 0.
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x1

y1

d1

d2

x2

y2

q1

q2

Figure 5.7: Two-link manipulator, generalized coordinates q = [q1, q2]>

.

Table 5.4: Agents’ initial states used in simulations

q(1)i (0) q(1)i (0) q̇(1)i (0) q̇(1)i (0)
Agent 0 π/6 π/3 0.0 0.0
Agent 1 π/5 π/6 0.8 0.2
Agent 2 π/6 π/4 -0.2 0.3
Agent 3 π/9 π/6 0.6 -0.4
Agent 4 π/8 π/4 0.5 0.1
Agent 5 π/9 π/6 0.1 0.0

Simulation 1. This simulation will demonstrate the performance of controller (5.9) under
trigger condition (5.11). The sensing graph G associated with the five follower manipulators
and the leader manipulator has the following weighted Laplacian

L =



0 0 0 0 0 0
−1 3.9 −1.55 0 −1.35 0
−1 −1.55 6.4 −2.1 −1.75 0
0 0 −2.1 7.35 −2.35 −2.9
0 −1.35 −1.75 −2.35 6.7 −1.25
0 0 0 −2.9 −1.25 4.15


The initial value of the variable-gain scalar µ(t) is chosen as µi(0) = 0. The exponential
function used in trigger function (5.11) is selected as ωi(t) = 1.8 ∗ exp(−0.2 ∗ t). The
performance of the controller is demonstrated in Fig. 5.8.

Simulation 2. The directed sensing graph G associated with the five follower manipulators
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and the leader manipulator has the following weighted Laplacian

L =



0 0 0 0 0 0
−1 2.55 −1.55 0 0 0
−1 0 3.1 −2.1 0 0
0 0 −2.1 2.1 0 0
0 −1.35 −1.75 −2.35 5.45 0
0 0 0 −2.9 −1.25 4.15


(5.67)

and it contains a directed spanning tree rooted at v0. There are no incoming edges to v0.
The gain µ used in controller (5.29) is selected as 4. The parameters β1 and β2 introduced
in trigger function (5.31) are both chosen as 0.6. The performance of the proposed control
algorithm is shown in Fig. 5.9.

Simulation 3. The uncertain parameter vector Θi for each manipulator and the regression
matrix are given at the top of the next page. Note that Θi is unknown for manipulator i. The
Laplacian matrix is also chosen as (5.67). The control gain matrix (in (5.58)) for all follower
manipulators is chosen as Ki = I2. The parameter γi required in the trigger function (5.61)
is selected as 0.6 for manipulator i = 1, . . . , 5. Lastly, µi(t) = 5 exp(−0.6t) is used in the
trigger functions for all manipulators in the follower network. The performance of controller
(5.58) with trigger function (5.61) is presented in Fig. 5.10.
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Figure 5.8: Simulation results for controller (5.9) under trigger function (5.11). From
top to bottom: the plots the generalized coordinates; the plots of generalised veloci-
ties of all the follower manipulators; the plot of variable gain µi(t); the plot of trigger

events
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Figure 5.9: Simulation results for controller (5.29) under trigger function (5.31). From
top to bottom: the plots the generalized coordinates; the plots of generalised veloci-

ties of all the follower manipulators; the plot of trigger events
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Figure 5.10: Simulation results for controller (5.58) under trigger function (5.61).
From top to bottom: the plots the generalized coordinates; the plots of generalised

velocities of all the follower manipulators; the plot of trigger events
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5.8 Concluding remarks

This chapter proposed three different algorithms for achieving leader-follower con-
sensus for a network of Euler-Lagrange agents. Each algorithm is suited for a dif-
ferent scenario and have their advantages and disadvantages, and can be chosen
depending on the problem requirements. For each algorithm, we propose a mixed
trigger function. The effectiveness of such a mixed trigger function is extensively
explained via simulations.
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Chapter 6

Event-Triggered Rigid Formation
Control

6.1 Introduction

Formation control of multi-agent systems has received considerable attention in re-
cent years due to its extensive applications in many areas including both civil and
military fields. One problem of extensive interest is formation shape control, i.e. on
designing controllers to achieve or maintain a geometrical shape for the formation
[Oh et al., 2015]. By using rigid graph theory, the formation shape can be achieved
by controlling a certain set of inter-agent distances [Anderson et al., 2008; Krick
et al., 2009] and there is no requirement on a global coordinate system known to
all the agents. This is in contrast to the linear displacement-based formation control
approach, in which the target formation is defined by a certain set of relative posi-
tions and a global coordinate system is required for all the agents to implement the
displacement-based formation control law (see detailed comparisons in [Oh et al.,
2015]). Note that such coordinate alignment condition is a rather strict requirement,
which is undesirable for implementing formation controllers in e.g. GPS-denied en-
vironment. Even if one assumes that such coordinate alignment is satisfied for all
agents, slight coordinate misalignment would lead to a failure of formation control
[Meng et al., 2015]. Motivated by all these considerations, in this chapter we focus
on rigidity-based formation control.

There have been rich works on control algorithms design and stability analysis of
rigid formation control (see e.g. [Krick et al., 2009; Dorfler and Francis, 2010; Oh and
Ahn, 2014; Anderson and Helmke, 2014] and the review in [Oh et al., 2015]), most of
which assume that the control input is updated in a continuous-time manner. The
main objective of this chapter is to provide alternative controllers to stabilize rigid
formation shapes based on an event-triggered approach. This kind of controller
design is attractive for real-world robots/vehicles equipped with digital sensors or
microprocessors [Aström, 2008; Heemels et al., 2012]. Furthermore, by using an
event-triggered mechanism to update the control input, instead of using a continuous
updating strategy as discussed in e.g. [Krick et al., 2009; Dorfler and Francis, 2010;
Oh and Ahn, 2014; Anderson and Helmke, 2014], the formation system can save
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resources in processors and thus can relax much computation/actuation burden for
each agent.

The essential concepts and theoretical foundations in this chapter are based on
rigidity theory, which differs from the graph theory used in other chapters. To clarify
the difference, we introduce a new preliminary section.

6.2 Preliminaries

6.2.1 Basic concepts on rigidity theory

Consider an undirected graph with m edges and n vertices (or nodes), denoted by
G = (V , E) with vertex set V = {1, 2, · · · , n} and edge set E ⊂ V × V . The neighbour
set Ni of node i is defined as Ni := {j ∈ V : (i, j) ∈ E}.

Let pi ∈ Rd where d = {2, 3} denote a point that is assigned to i ∈ V . The
stacked vector p = [p>1 , p>2 , · · · , p>n ]

> ∈ Rdn represents the realization of G in Rd.
The pair (G, p) is said to be a framework of G in Rd. By introducing the matrix
H̄ := H⊗ Id ∈ Rdm×dn (the incidence matrix H is defined in Section 2.2, Chapter
2), one can construct the relative position vector as an image of H̄ from the position
vector p:

z = H̄p (6.1)

where z = [z>1 , z>2 , · · · , z>m ]> ∈ Rdm, with zk ∈ Rd being the relative position vector
for the vertex pair defined by the k-th edge.

Using the same ordering of the edge set E as in the definition of H, the rigidity
function rG(p) : Rdn → Rm associated with the framework (G, p) is given as:

rG(p) =
1
2

[
· · · , ‖pi − pj‖

2, · · ·
]>

, (i, j) ∈ E (6.2)

where the k-th component in rG(p), ‖pi − pj‖2, corresponds to the squared length of
the relative position vector zk which connects the vertices i and j.

The rigidity of frameworks is then defined as follows.

Definition 6. (see [Asimow and Roth, 1979]) A framework (G, p) is rigid in Rd if there
exists a neighbourhood U of p such that r−1

G (rG(p))∩U = r−1
K (rK(p))∩U where K is the

complete graph with the same vertices as G.

In the following, the set of all frameworks (G, p) which satisfies the distance
constraints is referred to as the set of target formations. Let dkij denotes the desired
distance in the target formation which links agent i and j. We further define

ekij = ‖pi − pj‖
2 − (dkij)

2

to denote the squared distance error for edge k. Note we will also use ek and dk occa-
sionally for notational convenience if no confusion is expected. Define the distance
square error vector e = [e1, e2, · · · , em]>.
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One useful tool to characterize the rigidity property of a framework is the rigidity
matrix R ∈ Rm×dn, which is defined as

R(p) =
∂rG(p)

∂p
(6.3)

It is not difficult to see that each row of the rigidity matrix R takes the following form

[01×d, · · · , (pi − pj)
>, · · · , 01×d, · · · , (pj − pi)

>, · · · , 01×d] (6.4)

Each edge gives rise to a row of R, and, if an edge links vertices i and j, then the
non-zero entries of the corresponding row of R are in the columns from di− (d− 1)
to di and from dj− (d− 1) to dj. The equation (6.1) shows that the relative position
vector lies in the image of H̄. Thus one can redefine the rigidity function, gG(z) :
Im(H̄) → Rm as gG(z) = 1

2

[
‖z1‖2, ‖z2‖2, · · · , ‖zm‖2]>. From (6.1) and (6.3), one can

obtain the following simple form for the rigidity matrix

R(p) =
∂rG(p)

∂p
=

∂rG(z)
∂z

∂z
∂p

= Z>H̄ (6.5)

where Z = diag{z1, z2, · · · , zm}.
The rigidity matrix will be used to determine the infinitesimal rigidity of the

framework, as shown in the following definition.

Definition 7. (see [Hendrickson, 1992]) A framework (G, p) is infinitesimally rigid in d-
dimensional space if

rank(R(p)) = dn− d(d + 1)/2 (6.6)

Specifically, if the framework is infinitesimally rigid in R2 (resp. R3) and has
exactly 2n− 3 (resp. 3n− 6) edges, then it is called a minimally and infinitesimally
rigid framework. Fig. 6.1 shows several examples on rigid and non-rigid formations.
In this chapter we focus on the stabilization problem of minimally and infinitesimally
rigid formations. 1 From the definition of infinitesimal rigidity, one can easily prove
the following lemma:

Lemma 9. If the framework (G, p) is minimally and infinitesimally rigid in the d-dimensional
space, then the matrix R(p)R(p)> is positive definite.

Another useful observation shows that there exists a smooth function which maps
the distance set of a minimally rigid framework to the distance set of its correspond-
ing framework modelled by a complete graph.

Lemma 10. Let rG(q) be the rigidity function for a given infinitesimally minimally rigid
framework (G, q) with agents’ position vector q. Further let r̄Ḡ(q) denote the rigidity function
for an associated framework (Ḡ, q), in which the vertex set remains the same as (G, q) but the

1With some complexity of calculation, the results extend to non-minimally rigid formations (see
[Mou et al., 2015; Sun et al., 2016b]).
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Figure 6.1: Examples on rigid and non-rigid formations. (a) non-rigid formation (a
deformed formation with dashed lines is shown); (b) minimally rigid formation; (c)

rigid but non-minimally rigid formation.

underlying graph is a complete one (i.e. there exist n(n− 1)/2 edges which link any vertex
pairs). Then there exists a continuously differentiable function π : rG(q) → Rn(n−1)/2 for
which r̄Ḡ(q) = π(rG(q)) holds locally.

Lemma 10 indicates that all the edge distances in the framework (Ḡ, q) modelled
by a complete graph can be expressed locally in terms of the edge distances of a
corresponding minimally infinitesimally rigid framework (G, q) via some smooth
functions. The proof of the above Lemma is omitted here and can be found in [Mou
et al., 2015]. We emphasize that Lemma 10 is important for later analysis of a distance
error system (definition will be given in Subsection 6.3.1). Lemma 10 (together with
Lemma 9) will enable us to obtain a self-contained distance error system so that the
Lyapunov argument can be applied for convergence analysis.

6.2.2 Problem statement

The problem is formulated as follows.

Problem 5. Consider a group of n agents in d-dimensional space modelled by single integra-
tors

ṗi = ui, i = 1, 2, · · · , n (6.7)

Design a distributed control input ui ∈ Rn for each agent i in terms of pi − pj, j ∈ Ni
with event-triggered control update such that ‖pi − pj‖ converges to the desired distance
dkij which forms a minimally and infinitesimally rigid formation.

In this chapter, we propose two feasible event-triggered control algorithms (a
centralized algorithm and a distributed algorithm) to solve this formation control
problem.

6.3 Centralized control algorithm

This section focuses on the design of a feasible event-triggered formation control
algorithm, by assuming that a centralized processor is available for collecting the
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global information and broadcasting the trigger signal to all the agents such that
their control inputs can be updated. The novel idea used for designing a simpler
trigger function in this section will be useful for designing a feasible distributed
version of an event-triggered formation control system, which will be reported in the
next section.

6.3.1 Centralized algorithm design

We propose the following general form of event-triggered formation control system

ṗi(t) = ui(t) = ui(th) (6.8)

= ∑
j∈Ni

(pj(th)− pi(th))ek(th)

for t ∈ [th, th+1), where h = 0, 1, 2, · · · and th is the h-th trigger time for updating new
information in the control input. Thus, the control input takes piecewise constant
values in each time interval. In a compact form, the above position system can be
written as

ṗ(t) = −R(p(th))
>e(th) (6.9)

Denote a vector δi(t) as

δi(t) = ∑
j∈Ni

(pj(t)− pi(t))ek(t)− ∑
j∈Ni

(pj(th)− pi(th))ek(th) (6.10)

for t ∈ [th, th+1). Then (6.8) can be equivalently stated as

ṗi(t) = ui(th) = ∑
j∈Ni

(pj(t)− pi(t))ek(t)− δi(t) (6.11)

Define a vector δ(t) = [δ1(t)>, δ2(t)>, · · · , δn(t)>]> ∈ Rdn. Then there holds

δ(t) = R(th)
>e(th)− R(t)>e(t) (6.12)

which enables us to rewrite the compact form of the position system as

ṗ(t) = −R(t)>e(t)− δ(t) (6.13)

To deal with the position system with the event-triggered control input (6.8),
we instead analyse the distance error system. By noting that ė(t) = 2R(t) ṗ(t), the
distance error system can be derived as

ė(t) = 2R(t)ṗ(t)

= −2R(t)R(p(th))
>e(th)) ∀t ∈ [th, th+1) (6.14)

Note that all the entries of R(t) and e(t) contain the real-time values of p(t), and all
the entries R(p(th)) and e(th) contain the piecewise-constant values p(th) during the
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time interval [th, th+1).
The new form of the position system (6.13) also implies that the compact form of

the distance error system can be written as

ė(t) = −2R(t)(R(t)>e(t) + δ(t)) (6.15)

Consider the function V = 1
4 ∑m

k=1 e2
k as a Lyapunov-like function candidate for

system (6.15). Similarly to the analysis in [Sun et al., 2015c], we define a sub-level
set B(ρ) = {e : V(e) ≤ ρ} for some suitably small ρ, such that when e ∈ B(ρ) the
formation is infinitesimally minimally rigid and R(p(t))R(p(t))> is positive definite.
Before giving the main proof, we record the following key result on the entries of the
matrix R(p(t))R(p(t))>.

Lemma 11. When the formation shape is close to the desired one such that the distance error e
is in the set B(ρ), the entries of the matrix R(p(t))R(p(t))> are continuously differentiable
functions of e.

This lemma enables one to discuss the self-contained distance error system (6.15)
and thus a Lyapunov argument can be applied to show the convergence of the dis-
tance errors. The proof of Lemma 11 can be found in [Mou et al., 2015] or [Sun et al.,
2015d] and will not be presented here. From Lemma 11, one can show that

V̇(t) =
1
2

e(t)> ė(t) = −e(t)>R(t)(R(t)>e(t) + δ(t))

= −e(t)>R(t)R(t)>e(t)− e(t)>R(t)δ(t)

≤ −‖R(t)>e(t)‖2 + ‖e(t)>R(t)‖‖δ(t)‖ (6.16)

If we enforce the norm of δ(t) to satisfy

‖δ(t)‖ ≤ γ‖R(t)>e(t)‖ (6.17)

and choose the parameter γ to satisfy 0 < γ < 1, then we can guarantee that

V̇(t) ≤ (γ− 1)‖R(t)>e(t)‖2 < 0 (6.18)

This indicates that events are triggered when

f := ‖δ(t)‖ − γ‖R(t)>e(t)‖ = 0 (6.19)

The event time th is defined to satisfy f (th) = 0 for h = 0, 1, · · · . For the time
interval t ∈ [th, th+1), the control input is chosen as u(t) = u(th) until the next event
is triggered. Furthermore, every time an event is triggered, the event vector δ will be
reset to zero.

We also show two key properties of the formation control system (6.8) with the
above event function (6.19).

Lemma 12. The formation centroid remains constant under the control of (6.8) with the
event function (6.19).
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Proof. Denote by p̄(t) ∈ Rd the centre of the mass of the formation, i.e., p̄(t) =
1
n ∑n

i=1 pi(t) =
1
n (1n ⊗ Id)

>p(t). One can show

˙̄p(t) =
1
n
(1n ⊗ Id)

> ṗ(t)

= − 1
n
(1n ⊗ Id)

>R(p(th))
>e(th)

= − 1
n

(
Z(th)

>H̄(1n ⊗ Id)
)>

e(th) (6.20)

Note that ker(H) = span{1n} and therefore ker(H̄) = span{1n ⊗ Id}. Thus ˙̄p(t) = 0,
which indicates that the formation centroid remains constant.

The following lemma concerns the coordinate system requirement and enables
each agent to use its local coordinate system to implement the control law, which
is favourable for networked formation control systems in e.g. GPS denied environ-
ments.

Lemma 13. To implement the controller (6.8) with the event-based control update condition
in (6.19), each agent can use its own local coordinate system which does not need to be aligned
with a global coordinate system.

The proof for the above lemma is omitted here, as it follows similar steps as in
[Sun et al., 2015d, Lemma 4]. Note that Lemma 13 implies the event-based formation
system (6.8) guarantees the SE(N) invariance of the controller, which is a nice prop-
erty to enable convenient implementation for networked control systems without
coordinate alignment for each individual agent [Vasile et al., 2015].

We now arrive at the following main result of this section.

Theorem 10. Suppose the target formation is infinitesimally and minimally rigid and the
initial formation shape is close to the target one. By using the above control input (6.8)
and the trigger function (6.19), all the agents will reach the desired formation shape locally
exponentially fast.

Proof. The above analysis relating to Eq. (6.16)-(6.19) establishes boundedness of
e(t) since V̇ is non-positive. Now we show the exponential convergence of e(t) to
zero will occur from a ball around the origin, which is equivalent to the desired
formation shape being reached exponentially fast. According to Lemma 9, let λ̄min

denote the smallest eigenvalue of M(e) := R(p)R(p)> when e(p) is in the set B (i.e.
λ̄min = min

e∈B
λ(M(e)) > 0). Note that λ̄min exists because the set B(ρ) is a compact

set with respect to e and the eigenvalues of a matrix are continuous functions of the
matrix elements. By recalling (6.18), there further holds

V̇(t) ≤ (γ− 1)λ̄min‖e(t)‖2

Thus one concludes

‖e(t)‖ ≤ exp(−κt)‖e(0)‖ (6.21)
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with the exponential decaying rate no less than κ = 2(1− γ)λ̄min.

Note that the convergence of the inter-agent distance error of itself does not di-
rectly guarantee the convergence of agents’ positions p to some fixed points, even
though it does guarantee convergence to a correct formation shape. This is because
that the desired equilibrium corresponding to the correct rigid shape is not a sin-
gle point, but is a set of equilibrium points induced by rotational and translation
invariance (for a detailed discussion to this subtle point, see [Dorfler, 2008, Chapter
5]). A sufficient condition for this strong convergence to a stationary formation is
guaranteed by the exponential convergence as proved above. To sum up, one has the
following Lemma on the convergence of the position system (6.9) as a consequence
of Theorem 10.

Lemma 14. The event-triggered control law (6.8) and the event function (6.19) guarantee
the convergence of p(t) to a fixed point.

Remark 15. We remark the above Theorem 10 (as well as the subsequent results in later
sections) concerns a local convergence. This is because that rigid formation shape control
system is non-linear and exhibits multiple equilibria, which include the ones corresponding
to correct shapes and those that do not correspond to the correct shape. It has been shown
in [Anderson and Helmke, 2014] by using the tool of Morse Theory that multiple equilibria,
including incorrect equilibria, are a consequence of any formation shape control algorithm
which evolves in a steepest descent direction of a smooth cost function that is invariant under
translations and rotations. A recent paper [Sun et al., 2015a] proves the instability of a
set of degenerate equilibria that lives in a lower dimensional space. However, the stability
property for more general equilibrium points is still unknown. It is in fact considered as
a very challenging open problem to obtain an almost global convergence for general rigid
formations, except for some special formation shapes such as 2-D triangular formation shape,
or 2-D rectangular shape, or 3-D tetrahedral shape (see the review in [Oh et al., 2015]). We
note that local convergence is still valuable in practice, if one assumes that initial shapes are
close to the target ones (which is a very common assumption in most rigidity-based formation
control works).

6.3.2 Exclusion of Zeno behaviour

In the following we will show that the event-triggered system (6.8) does not exhibit
Zeno behaviour. Note that the trigger function (6.19) involves the evolution of the
term R(t)>e(t), whose derivative is calculated as

d(R(t)>e(t))
dt

=Ṙ(t)>e(t) + R(t)> ė(t)

=H̄>Ż(t)e(t)

− 2R(t)>R(t)(R(t)>e(t) + δ(t))

According to the construction of the vector δ(t) in (6.12), there also holds δ̇(t) =

−d(R(t)>e(t))
dt .
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Before the proof, we first show a useful bound.

Lemma 15. The following bound holds:

‖H̄>Ż(t)e(t)‖ ≤
√

d‖H̄>‖‖H̄‖‖e(t)‖‖ṗ(t)‖
≤
√

d‖H̄>‖‖H̄‖‖e(0)‖‖R(t)>e(t) + δ(t)‖ (6.22)

Proof. We first show a trick to bound the term ‖Ż(t)e(t)‖ by deriving an alternative
expression for Ż(t)e(t):

Ż(t)e(t) = diag{ż1(t), · · · , żm(t)}e(t)

=


e1(t)ż1(t)
e2(t)ż2(t)

...
em(t)żm(t)



=




e1(t) 0 · · · 0
0 e2(t) · · · 0
...

...
. . .

...
0 0 · · · em(t)

⊗ Id




ż1(t)
ż2(t)

...
żm(t)


= (E(t)⊗ Id) ż(t) (6.23)

where E(t) is defined as a diagonal matrix in the form E(t) = diag{e1(t), e2(t), · · · , em(t)}.
Note that z(t) = H̄p(t) and thus ż(t) = H̄ ṗ(t). Then one has

‖H̄>Ż(t)e(t)‖ = ‖H̄> (E(t)⊗ Id) ż(t)‖
≤ ‖H̄>‖‖ (E(t)⊗ Id) ‖‖H̄ ṗ(t)‖
≤ ‖H̄>‖‖H̄‖‖ (E(t)⊗ Id) ‖F‖ ṗ(t)‖
≤
√

d‖H̄>‖‖H̄‖‖e(t)‖‖R(t)>e(t) + δ(t)‖ (6.24)

where we have used the following facts

‖E(t)‖ ≤ ‖E(t)‖F

‖ (E(t)⊗ Id) ‖F =
√

d‖E(t)‖F

‖E(t)‖F = ‖e(t)‖

The first inequality in (6.22) is thus proved. The second inequality in (6.22) is due
to the fact that ‖e(t)‖ ≤ ‖e(0)‖, ∀t > 0 shown in (6.21).

We now show that Zeno behaviour does not occur in the formation control system
(6.8) with the trigger function (6.19) by proving a positive lower bound on the inter-
event time interval.
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Theorem 11. The inter-event time interval {th+1− th} is lower bounded by a positive value
τ

τ =
γ

α(1 + γ)
> 0 (6.25)

where

α =
√

d‖H̄>‖‖H̄‖‖e(0)‖+
√

2λ̄max(R>R(e)) > 0

(6.26)

in which λ̄max denotes the largest eigenvalue of R>R(e) when e(p) is in the set B (i.e.
λ̄max = max

e∈B
λ(R>R(e)) > 0), and γ is a parameter designed in (6.19) which satisfies

γ ∈ (0, 1). Thus, Zeno behaviour will not occur for the rigid formation control system (6.8)
with the trigger function (6.19).

Proof. We show the growth of ‖δ‖ from zero to the trigger threshold value γ‖R>e‖
needs to take a positive time interval. To show this, the relative growth rate on
‖δ(t)‖/‖R(t)>e(t)‖ is considered. The following proof is inspired by the one used
in [Tabuada, 2007]. In the following derivation, we omit the argument of time t but
it should be clear that each state variable and vector is considered as a function of t.

d
dt
‖δ‖
‖R>e‖

≤
(

1 +
‖δ‖
‖R>e‖

)
‖Ṙ>e + R> ė‖
‖R>e‖

=

(
1 +

‖δ‖
‖R>e‖

)
‖H̄>Że + R> ė‖
‖R>e‖

≤
(

1 +
‖δ‖
‖R>e‖

)(√
d‖H̄>‖‖H̄‖‖e‖‖ṗ‖+ ‖2R>R(R>e + δ)‖

‖R>e‖

)
(appealing to Lemma 15)

≤
(

1 +
‖δ‖
‖R>e‖

)(
(
√

d‖H̄>‖‖H̄‖‖e(0)‖+ ‖2R>R‖)
(

1 +
‖δ)‖
‖R>e‖

))
≤α

(
1 +

‖δ‖
‖R>e‖

)2

(6.27)

where α is defined in (6.26). Note that λ̄max always exists and is finite (i.e. upper
bounded) because the set B(ρ) is a compact set with respect to e and the eigenvalues
of a matrix are continuous functions of the matrix elements. Thus, α defined in (6.26)
exists, which is positive and upper bounded. If we denote ‖δ‖

‖R>e‖ by y we have the

estimate ẏ(t) ≤ α(1 + y(t))2. By the comparison principle there holds y(t) ≤ φ(t, φ0)
where φ(t, φ0) is the solution of φ̇ = α(1 + φ)2 with initial condition φ(0, φ0) = φ0.

Solving the differential equation for φ in the time interval t ∈ [th, th+1) yields
φ(τ, 0) = τα

1−τα . The inter-execution time interval is thus bounded by the time it takes
for φ to evolve from 0 to γ. Solving the above equation, one obtains a positive lower
bound for the inter-event time interval τ = γ

α(1+γ)
. Thus, Zeno behaviour is excluded
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for the formation control system (6.8). The proof is completed.

Remark 16. We review several event-triggered formation strategies reported in the literature
and highlight the advantages of the event-triggered algorithms proposed in this section. In
[Sun et al., 2015c], the trigger function is based on the information of the distance error e
only, which cannot guarantee a pure piecewise-constant update of the formation control input.
The trigger function designed in [Liu et al., 2015] is based on the information of the relative
position z, while the trigger function designed [Bai et al., 2015] is based on the absolute
position p. It is noted that trigger conditions such as those in [Liu et al., 2015] and [Bai
et al., 2015] are very complicated, which may limit their practical applications. The trigger
function (6.19) designed in this section involves the term R>e, in which the information of
the relative position z (involved in the entries of the rigidity matrix R) and of the distance
error e has been included. Such a trigger function greatly reduces the controller complexity
while at the same time also maintains the discrete-time update nature of the control input.

6.4 Distributed control algorithm

6.4.1 Distributed algorithm design

In this subsection we will further show how to design a distributed event-triggered
formation control algorithm in the sense that each agent can use only local measure-
ments in terms of relative positions with respect to its neighbours to determine the
next event time and control update value. Denote the event time for each agent i as
ti
0, ti

1, · · · , ti
h, · · · . The dynamical system for agent i to achieve the desired inter-agent

distances is now rewritten as

ṗi(t) = ui(t) = ui(ti
h), t ∈ [ti

h, ti
h+1) (6.28)

and we aim to design a distributed trigger function such that the control input for
agent i is updated at its own event times ti

0, ti
1, · · · , ti

h, · · · based on local information.
We consider the same Lyapunov function candidate as the one in Section 6.3, but

calculate the derivative as follows:

V̇(t) =
1
2

e(t)> ė(t) = −e(t)>R(t)(R(t)>e(t) + δ(t))

=− e(t)>R(t)R(t)>e(t)− e>R(t)δ(t)

≤− ‖R(t)>e(t)‖2 + ‖e(t)>R(t)δ(t)‖

≤−
n

∑
i=1
‖{R(t)>e(t)}i‖2 +

n

∑
i=1
‖{R(t)>e(t)}i‖‖δi(t)‖ (6.29)

where {R(t)>e(t)}i ∈ Rd is a vector block taken from the (di− d + 1)th to the (di)th
entries of the vector R(t)>e(t), and δi(t) is a vector block taken from the (di− d+ 1)th
to the (di)th entries of the vector δ(t). According to the definition of the rigidity
matrix in (6.4), it is obvious that {R(t)>e(t)}i only involves local information of
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agent i in terms of relative position vectors zkij and distance errors ekij with j ∈ Ni.
Based on this, the control input for agent i is designed as

ṗi(t) = ui(ti
h) = ∑

j∈Ni

(pj(t
i
h)− pi(t

i
h))ek(ti

h))

= {R(ti
h)
>e(ti

h)}i, t ∈ [ti
h, ti

h+1) (6.30)

Note that there holds

δi(t) = {R(ti
h)
>e(ti

h)}i − {R(t)>e(t)}i (6.31)

and we can rewrite (6.30) as ṗi(t) = −{R(t)>e(t)}i − δi(t), t ∈ [ti
h, ti

h+1).
By using the inequality ‖{R(t)>e(t)}i‖‖δi(t)‖ ≤ 1

2ai
‖δi(t)‖2 + ai

2 ‖{R(t)>e(t)}i‖2

with ai ∈ (0, 1), the above inequality (6.29) on V̇ can be further derived as

V̇(t) ≤−
n

∑
i=1
‖{R(t)>e(t)}i‖2

+
n

∑
i=1

ai

2
‖{R(t)>e(t)}i‖2 +

n

∑
i=1

1
2ai
‖δi(t)‖2

=−
n

∑
i=1

2− ai

2
‖{R(t)>e(t)}i‖2 +

n

∑
i=1

1
2ai
‖δi(t)‖2

If we enforce the norm of δi(t) to satisfy

1
2ai
‖δi(t)‖2 ≤ γi

2− ai

2
‖{R(t)>e(t)}i‖2 (6.32)

with γi ∈ (0, 1), we can guarantee

V̇(t) ≤
n

∑
i=1

(γi − 1)
2− ai

2
‖{R(t)>e(t)}i‖2 (6.33)

This implies that one can design a local trigger function for agent i as

fi(t) := ‖δi(t)‖2 − γiai(2− ai)‖{R(t)>e(t)}i‖2 (6.34)

and the event time ti
h for agent i is defined to satisfy fi(ti

h) = 0 for h = 0, 1, 2, · · · .
For the time interval t ∈ [ti

h, ti
h+1), the control input is chosen as ui(t) = ui(ti

h) until
the next event is triggered. Furthermore, every time when an event is triggered for
agent i, the local event vector δi will be reset to zero.

The convergence result is summarized as follows.

Theorem 12. Suppose the target formation is infinitesimally and minimally rigid and the
initial formation shape is close to the target one. By using the control input (6.30) and the
distributed trigger function (6.34), all the agents will reach the desired formation shape locally
exponentially fast.
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Proof. The analysis is similar to Theorem 10 and we omit several steps here. Based
on the derivation in Eqs. (6.29)-(6.34), one can conclude that

‖e(t)‖ ≤ exp(−κt)‖e(0)‖ (6.35)

with the exponential rate no less than κ = 2ζminλ̄min where ζmin = mini(1− γi)
2−ai

2 .

The exponential convergence of e(t) implies that the proposed distributed event-
triggered control algorithm (6.30) also guarantees the convergence of p to a fixed
point, by which one can conclude a similar result as the one in Lemma 14.

For the formation system with the distributed event-triggered control algorithm,
an analogous result to Lemma 13 on coordinate system requirement is as follows.

Lemma 16. To implement the distributed control input (6.30), each agent can use its own
local coordinate system to measure the relative positions to its neighbours and a global coor-
dinate system is not required. Furthermore, to detect the distributed trigger condition (6.32),
a local coordinate system is sufficient which is not required to be aligned with the global
coordinate system.

Proof. The proof of the first statement on the distributed control input (6.30) follows
similar steps as in [Sun et al., 2015d, Lemma 4] and is omitted here. We then prove
the second statement on the event condition (6.32). Suppose agent i’s position in a
global coordinate system is measured as pg

i , while pi
i and pi

j stand for agent i and
its neighbouring agent j’s positions measured in agent i’s local coordinate system.
Clearly, there exist a rotation matrix Qi ∈ Rd×d and a translation vector ϑi ∈ Rd, such
that pi

j = Qi p
g
j + ϑi. We also denote the relative position between agent i and agent j

as zi
kij

measured by agent i’s local coordinate system, and zg
kij

measured by the global

coordinate system. Obviously there holds zi
kij

= pi
j − pi

i = Qi(pg
j − pg

i ) = Qiz
g
kij

and

thus ‖zi
kij
‖ = ‖zg

kij
‖. Also notice that the trigger condition (6.32) involves the terms δi

and {R(t)>e(t)}i which are functions of the relative position vector z, and thus event
detection using (6.34) remains unchanged regardless of what coordinate systems are
used. Since Qi and ϑi are chosen arbitrarily, the above analysis concludes that the
detection of the local event condition (6.34) is independent of a global coordinate
basis, which implies that agent i’s local coordinate system is sufficient to implement
(6.32).

The above lemma indicates that the distributed event-triggered control input
(6.30) and distributed trigger function (6.34) still guarantee the SE(N) invariance
property and enables a convenient implementation for the proposed formation con-
trol system without coordinate alignment for each individual agent.

Differently to Lemma 12, we show that the distributed event-based control algo-
rithm proposed in this section cannot guarantee a fixed formation centroid.

Lemma 17. The position of the formation centroid is not guaranteed to be fixed when the
distributed event-based control algorithm (6.30) and trigger function (6.34) are applied.
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Proof. The dynamics for the formation centroid can be derived as

˙̄p(t) =
1
n
(1n ⊗ Id)

> ṗ(t)

However, due to the asymmetric update of each agent’s control input by using the
local event function (6.34) to determine a local event time, one cannot decompose
the vector ṗ(t) into terms involving H̄ and a single distance error vector as in (6.20).
Thus ˙̄p(t) is not guaranteed to be zero and there exist motions for the formation
centroid when the distributed event-based control input (6.30) is applied.

Remark 17. We note a key property of the distributed event-triggered control algorithm
((6.30) and (6.34)) proposed in this section. It is obvious from (6.30) and (6.34) that each
agent i updates its own control input by using only local information in terms of relative
positions of its neighbours (which can be measured by agent i’s local coordinate system), and
is not affected by the control input updates from its neighbours. Thus, such local event-
triggered algorithm does not require any communication between any two agents.

6.4.2 Trigger behaviour analysis

In this subsection we will further discuss the possibility of Zeno behaviour in the
distributed event-triggered formation system (6.30).

Theorem 13. (Exclusion of Zeno behaviour) Consider the distributed formation system with
the distributed event-triggered control input (6.30) and the distributed trigger function (6.34).

• At least one agent does not exhibit Zeno behaviour.

• In addition, if there exists ε > 0 such that ‖{R(t)>e(t)}i‖2 ≥ ε‖e(t)‖2 for all i =
1, 2, · · · , n and t ≥ 0, then there exists a common positive lower bound for any inter-
event time interval for each agent. In this case, no agent will exhibit Zeno behaviour.

Proof. Note that ‖δi(t)‖2 ≤ ‖δ(t)‖2 for any i. In addition, there exists an agent i∗
such that ‖{R(t)>e(t)}i∗‖2 ≥ 1

m‖{R(t)>e(t)}‖2. Then one has

‖δi∗(t)‖
‖{R(t)>e(t)}i∗‖

≤
√

m
‖δ(t)‖

‖{R(t)>e(t)}‖ (6.36)

By recalling the proof in Theorem 11, we can conclude that the inter-event interval
for agent i∗ is bounded from below by a time τi∗ that satisfies

√
m

τi∗α

1− τi∗α
=
√

γi∗ai∗(2− ai∗) (6.37)

So that τi∗ =

√
γi∗ ai∗ (2−ai∗ )

α(
√

m+
√

γi∗ ai∗ (2−ai∗ ))
> 0. The first statement is proved.

We then prove the second statement. Denote λ̄max as the maximum of λmax(RTR(e))
for all e ∈ B(ρ). Since B(ρ) is a compact set, λ̄max exists and is bounded. Then there
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holds ‖{R(t)>e(t)}‖2 ≤ λ̄max‖e(t)‖2. One can further show

‖{R(t)>e(t)}i‖2 ≥ ε‖e(t)‖2 ≥ ε

λ̄max
‖{R(t)>e(t)}‖2 (6.38)

By following similar argument as above and using the analysis in the proof of Theo-
rem 11, a lower bound of the inter-event interval τ̄i for each agent can be calculated
as

τ̄i =

√
$i

α

(√
λ̄max

ε +
√

$i

) > 0, i = 1, 2, · · · , n (6.39)

Remark 18. The first part of Theorem 13 is motivated by [Dimarogonas et al., 2012, Theo-
rem 4], which guarantees the exclusion of Zeno behaviour for at least one agent. To improve
the result for all the agents, we propose a condition in the second part of Theorem 13. The
above results in Theorem 13 are more conservative than the centralized case. The condition
on the existence of ε > 0 essentially guarantees that ‖{R(t)>e(t)}i‖ cannot be zero at any
finite time, and will be zero if and only if t = ∞. We have performed many simulations with
different rigid formation shapes and observed that in most cases ‖{R(t)>e(t)}i‖ is non-zero.
We conjecture that this may be due to the infinitesimal rigidity of the formation shape. In
the next section, we will provide a simple modification of the distributed trigger function to
remove the condition on ε.

6.4.3 A modified distributed trigger function

The trigger function (6.34) for agent i involves the comparison of two terms, i.e.
‖δi(t)‖2 and γiai(2 − ai)‖{R(t)>e(t)}i‖2. As noted above, the existence of ε > 0
can guarantee ‖{R(t)>e(t)}i‖ 6= 0 for any finite time t. To remove this condition
in Theorem 13, we propose the following modified trigger function by including an
exponential decay term:

fi(t) := ‖δi(t)‖2 − γiai(2− ai)‖{R(t)>e(t)}i‖2

− 2aiviexp(−θit) (6.40)

where vi > 0, θi > 0 are parameters that can be adjusted in the design to control the
formation convergence speed. Note that viexp(−θit) is always positive and converges
to zero when t → ∞. Thus, even if {R(t)>e(t)}i exhibits crossing-zero scenario
at some finite time instant, the addition of this decay term guarantees a positive
threshold value in the event function which avoids the case of comparing ‖δi(t)‖2 to
a zero threshold.

The main result in this subsection is to show that the above modified trigger
function ensures Zeno-free trigger for all agents, and also drives the formation shape
to reach the target one.
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Theorem 14. By using the proposed distributed event-based formation controller (6.30) and
the modified distributed trigger function (6.40), all the agents will reach the desired formation
shape locally asymptotically and no agent will exhibit Zeno behaviour.

Proof. We consider the same Lyapunov function as used in Theorem 10 and follow
similar steps as above. The trigger condition from the modified trigger function (6.40)
yields

V̇(t) ≤
n

∑
i=1

(γi − 1)
2− ai

2
‖{R(t)>e(t)}i‖2 + viexp(−θit) (6.41)

which follows that

V̇(t) ≤ −4ζminλ̄minV(t) +
n

∑
i=1

viexp(−θit) (6.42)

where ζmin is defined as the same to the notation in Theorem 12 (i.e. ζmin = mini(1−
γi)

2−ai
2 ). For notational convenience, we define κ = 2ζminλ̄min (also the same to

Theorem 12). By the well-known comparison principle [Khalil and Grizzle, 1996,
Chapter 3.4], it further follows that

V(t) ≤ exp(−2κt)V(0) +
n

∑
i=1

vi

2κ − θi
(exp(−θit)− exp(−2κt)) (6.43)

which implies that V(t)→ 0 as t→ ∞, or equivalently, ‖e(t)‖ → 0, as t→ ∞. In the
following analysis of excluding Zeno behaviour we let t ∈ [ti

h, ti
h+1). We first show a

sufficient condition to guarantee fi(t) ≤ 0 when fi(t) is defined in (6.40). Note that
fi(t) ≤ 0 can be equivalently stated as

($i + 1)‖δi(t)‖2

≤ $i(‖δi(t)‖2 + ‖{R(t)>e(t)}i‖2) + 2aiviexp(−θit) (6.44)

where $i := γiai(2− ai). Note that

‖{R(ti
h)
>e(ti

h)}i‖2 =‖δi(t) + {R(t)>e(t)}i‖2

≤2(‖δi(t)‖2 + ‖{R(t)>e(t)}i‖2) (6.45)

Thus, a sufficient condition to guarantee the above inequality (6.44) (and the inequal-
ity fi(t) ≤ 0) is

‖δi(t)‖2 ≤ $i

(2$i + 2)
‖{R(ti

h)
>e(ti

h)}i‖2 +
2aivi

$i + 1
exp(−θit) (6.46)
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Note that from (6.12) there holds δ̇i = − d
dt{R(t)>e(t)}i. It follows that

d
dt
‖δi(t)‖ ≤

‖δi(t)>‖
‖δi(t)‖

‖δ̇i(t)‖

= ‖ d
dt
{R(t)>e(t)}i‖

= ‖ ∑
j∈Ni

(ṗj(t)− ṗi(t))ek(t) + ∑
j∈Ni

(pj(t)− pi(t))ėk(t)‖

= ‖ ∑
j∈Ni

(ekij(t)⊗ Id + 2zkij(t)zkij(t)
>)(ṗj(t)− ṗi(t))‖

= ‖ ∑
j∈Ni

Qij(t)({R(tj
h′)
>e(tj

h′)}j − {R(ti
h)
>e(ti

h)}i)‖

≤ ∑
j∈Ni

‖Qij(t)‖‖({R(tj
h′)
>e(tj

h′)}j − {R(ti
h)
>e(ti

h)}i)‖

:= αi (6.47)

where Qij(t) := ekij(t)⊗ Id + 2zkij(t)zkij(t)
>, and tj

h′ = arg maxh{t
j
h|t

j
h ≤ t, j ∈ Ni}.

Note that αi is upper bounded by a positive constant which implies that d
dt‖δi(t)‖ is

upper bounded. From the sufficient condition given in (6.46) which guarantees the
event triggering condition fi(t) ≤ 0 shown in (6.40), the next inter-event interval for
agent i is lower bounded by the solution τi

h of the following equation

τi
hαi =

√
$i

(2$i + 2)
‖{R(ti

h)
>e(ti

h)}i‖2 +
2aivi

$i + 1
exp(−θi(ti

h + τi
h)) (6.48)

such a solution always exists and is positive. Thus, no agents will exhibit Zeno
behaviour with the modified event function (6.40).

6.5 Simulation results

In this section we provide three simulation examples to show the performance of cer-
tain formations with centralized event-triggered control algorithm and distributed
event-triggered control algorithm, respectively. Consider a double tetrahedron for-
mation in the 3-D space, with the desired distances for each edge being 2. The initial
conditions for each agent are chosen as p1(0) = [0,−1.0, 0.5]>, p2(0) = [1.8, 1.6,−0.1]>,
p3(0) = [−0.2, 1.8, 0.05]>, p4(0) = [1.2, 1.9, 1.7]> and p5(0) = [−1.0,−1.5,−1.2]>, so
that the initial formation is close to the target one. The parameter γ in the trig-
ger function is set as γ = 0.6. Figs. 6.2-6.4 illustrate formation convergence and
event performance with centralized event triggering function. The trajectories of
each agent, together with the initial shape and final shape are depicted in Fig. 6.2.
The trajectories of each distance error are depicted in Fig. 6.3, which shows an ex-
ponential convergence to the origin. Fig. 6.4 shows the triggering time instant and
the evolution of the norm of the vector δ in the triggering function (6.19), which is
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Figure 6.2: Simulation on stabilization control of a double tetrahedron formation in
3-D space with centralized algorithm. The initial and final positions are denoted by
circles and squares, respectively. The initial formation is denoted by dashed lines,
and the final formation is denoted by red solid lines. The black star denotes the

formation centroid, which is stationary.

obviously bounded below by γ‖R(t)>e(t)‖ as required by (6.17).

We then perform another simulation on stabilizing the same formation shape
by applying the proposed distributed event-triggered control input (6.30) and dis-
tributed trigger function (6.34). Agents’ initial positions are set as same to the sim-
ulation with the centralized algorithm . The parameters γi, i = 1, 2, . . . , 5 are set as
0.8 and ai, i = 1, 2, . . . , 5 are set as 0.6. The trajectories of each agent, together with
the initial shape and final shape are depicted in Fig. 6.5. The event times for each
agent and the exponential convergence of each distance error are depicted in Fig.
6.6. Note that no ‖{R(t)>e(t)}i‖ crosses zero values at any finite time and Zeno
behaviour is excluded. Furthermore, the distance error system shown in Fig. 6.6 also
demonstrates almost the same convergence property as shown in Fig. 6.3.

Lastly, we show simulations with the same formation shape by using the modi-
fied trigger function (6.40). The exponential decay term is chosen as viexp(−θit) =
exp(−10t) with vi = 1 and θi = 10 for each agent. Fig. 6.7 shows event times for
each agent as well as the convergence of each distance error. As can be observed
from Fig. 6.7, Zeno-triggering is strictly excluded with the modified event function
(6.40), while the convergence of the distance error system behaves almost the same
to Fig. 6.3 and Fig. 6.6. It should be noted that in comparison with the controller
performance and simulation examples discussed in [Sun et al., 2015c; Liu et al., 2015;
Bai et al., 2015], the proposed event-triggered rigid formation control algorithms in
this chapter demonstrate equal or even better performance, while complicated con-
trollers and unnecessary assumptions in [Sun et al., 2015c; Liu et al., 2015; Bai et al.,
2015] are avoided.
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Figure 6.3: Exponential convergence of the distance errors with centralized algo-
rithm.
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Figure 6.4: Performance of the centralized algorithm. Top: evolution of ‖δ‖ and
‖δ‖max = γ‖R(t)Te(t)‖. Bottom: event triggering instants
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Figure 6.5: Simulation on stabilization control of a double tetrahedron formation in
3-D space with distributed algorithm. The initial and final positions are denoted by
circles and squares, respectively. The initial formation is denoted by dashed lines,
and the final formation is denoted by red solid lines. The black star denotes the

formation centroid, which is not stationary.

6.6 Concluding remarks

In this chapter we have discussed in detail the design of feasible event-triggered
control algorithms to stabilize rigid formation shapes. A centralized algorithm is
proposed first, which guarantees the exponential convergence of distance errors and
also excludes the existence of Zeno behaviour. Due to a careful design of the state
mismatch and trigger function, the control algorithms are much simpler and require
much less computation/measurement resources, compared with the results reported
in [Bai et al., 2015; Sun et al., 2015c; Liu et al., 2015]. We then further propose a
distributed algorithm such that each agent can trigger a local event to update its
control input based on only local measurement. The event feasibility and trigger
behaviour have been discussed in detail, which also guarantees Zeno-free behaviour
for the event-triggered formation system and exponential convergence of the distance
error system. A modified distributed event function is proposed, by which the Zeno
behaviour is strictly excluded for each individual agent.
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Figure 6.6: Controller performance of the distributed event-triggered formation sys-
tem (6.30) with distributed trigger function (6.34). Left: Event instants for each agent.
Right: Exponential convergence of the distance errors with distributed event con-

troller.
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Figure 6.7: Controller performance of the distributed event-based formation system
(6.30) (event function (6.40) with an exponential decay term). Left: Event triggering
instants for each agent. Right: Exponential convergence of the distance errors with

distributed event controller.
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Chapter 7

Conclusions

In this chapter, we provide a summary and brief discussions of the main results in
this thesis, and outline possible directions for future research.

7.1 Summary and contributions

We now show a brief summary of the main results and contributions of this thesis.

• The research of event-triggered control in MASs is an active area with numer-
ous algorithms considering various situations. In Chapter 2, we provide a
general review to the event-triggered consensus problem, in which the pro-
posed trigger algorithms can be applied in different MAS tasks. We com-
pare three types of trigger schemes, namely self-measurement-based, edge-
measurement-based and local-measurement-based schemes, to classify the ex-
isting algorithms in literature, from the perspective of how the state mismatches
are defined. For the three basic trigger schemes, we show how to deign their
control inputs as well as trigger functions by using a classical Lyapunov func-
tion. The specific features for each trigger scheme are respectively presented
with the statements of both its advantages and disadvantages. Moreover, we
record two different concepts of Zeno behaviour in the literature and compare
their differences by using an illustrative example. Zeno-free approaches in the
existing literature are also concluded in this chapter with discussions on their
basic ideas and restrictions.

• Motivated by practical constraints of digital platforms in MASs, we study event-
triggered consensus problem under two different settings, namely agents using
quantized information and agents under synchronized/unsynchronized work-
ing clocks. In Chapter 3, the convergence properties of the MAS with two types
of quantized control inputs (input quantization and edge quantization) are in-
vestigated. We consider two kinds of quantizers, namely the uniform quantizer
and the logarithmic quantizer. To completely exclude Zeno behaviour for each
agent, we provide principles on how to add constant offsets to the trigger func-
tions. The trade-off of using quantized information is also discussed in detail.
In Chapter 4, the basic edge-measurement-based scheme for event-triggered

113
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consensus is reconsidered with the concern of clock issues. In both synchro-
nized and unsynchronized clock cases, we further investigate the requirement
of the coordinate systems and present some much simpler, Zeno-free trigger
conditions by using a time regulation idea (reviewed in Section 2). The main
contribution of this chapter lies in the study of the unsynchronized clock case
where we build a novel framework for constructing the closed-loop form of the
MAS using edge-measurement-based scheme. This framework can deal with
the situation that each agent is activated at different starting time.

• In Chapter 5, we design and investigate three event-triggered algorithms for
networked Euler-Lagrange agents to achieve a specific leader-follower consen-
sus task. The measurement requirement, convergence issues and the exclusion
of Zeno behaviour for the three proposed algorithms are discussed in detail.
We also provide simulation experiments to compare the trigger performance of
our proposed algorithms under different trigger functions and point out the ad-
vantages of our adopted mixed trigger function. The first algorithm is built on
a variable-gain approach with extremely flexible range of parameter selection
in both control inputs and trigger functions. The second algorithm is proposed
to deal with the difficulties introduced by considering directed network topolo-
gies. The proposed algorithm achieves leader-follower consensus semi-globally,
exponentially fast. A trade-off in designing the algorithm is that some limited
knowledge of the bounds on the agent dynamic parameters, the network topol-
ogy and a set of all possible initial conditions are required to centrally design
the control gains. The third algorithm is an adaptive algorithm, proposed under
the situation that agent dynamics include the vector of gravitational potential
forces. The design of the control inputs and trigger functions require more in-
formation about the agent dynamics but allow for the estimation of uncertain
agent parameters.

• In Chapter 6, We provide alternative control algorithms to stabilize rigid for-
mations based on an event-triggered strategy. Both centralized and distributed
algorithms are proposed and studied in detail. In the centralized algorithms,
a central event generator was designed to determine the next trigger time and
broadcasts the event signal to all the agents for control inputs update. The
distributed event-triggered algorithm is built on the centralized algorithm, in
which each agent can use its local events and local information to update the
control input at its own event times. For both algorithms, local exponential
convergences to a target rigid formation are proved, which guarantees robust-
ness to small disturbances. Our proposed algorithms show the lowest level of
complexity when compared to the algorithms in relevant literature.

7.2 Future work

In this section we outline some future research problems.
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• In Chapter 3, we apply the idea of adding constant offsets to the trigger func-
tions to completely exclude Zeno behaviour for each agent. However, the offsets
also sacrifice the convergence accuracy. In the analysis of logarithmic quantizer
cases, it is observed that the offsets actually only need to be larger than some
time-varying states, which tend to zero as t → ∞. This observation reveals
the possibility of designing a time-dependent offset (e.g. an exponential decay
function) for the trigger function to exclude Zeno behaviour while ensuring a
complete consensus, simultaneously. How to design the decay rate of the time-
dependent offset should be the main challenge. Another interesting extension
is to consider double integrator agent dynamics with both quantized relative
positions and quantized relative velocities.

• In Chapter 4, we apply the time regulation idea (reviewed in Chapter 2) to
exclude Zeno behaviour for each agent. However, the selection of the minimum
trigger time interval and the control gain both require global knowledge of the
applied MAS, which is not desirable for a distributed control system. The
future focus of this work is to relax the requirement of using global knowledge
in the parameter design procedure. Another extension is to consider different
clock derivatives, i.e. the derivatives are not equal to one. This extension work
is non-trivial because of the heterogeneity of the agent dynamics.

• In Chapter 5, we design and analyse event-triggered consensus algorithms for
networked Euler-Lagrange agents. The difficulty mainly arises from the com-
bination of highly non-linear agent dynamic models and the directed graph
topology, which has not been addressed perfectly in this thesis. An important,
also most challenging future work is to extend the variable-gain algorithm (see
Section 5.4) to a directed graph case.

• In the study of the event-triggered consensus problem, the measurement of the
states is usually assumed to be continuous so that state mismatches can be well
defined. This assumption can be easily removed in consensus tasks, by using a
so called self-triggered approach, due to the simplicity of the linear control in-
puts. In Chapter 6, we propose and investigate event-triggered rigid formation
control algorithms, which also require continuous measurement of the relative
positions among the agents. However, the complicated, highly non-linear con-
trol inputs bring a lot of difficulties in designing a self-triggered algorithm. We
take the problem of designing self-triggered rigid formation control algorithms
as the main future work of this chapter.

• In this thesis, the event-triggered algorithms are proposed to drive the agents
to execute a single consensus task. However, in a practical MAS, it is common
to require agents to execute multiple tasks simultaneously. This motivates us to
think if it is possible to design event-triggered algorithms with multiple control
aims, i.e., an event triggers multiple control updates. For example, we consider
unsynchronized agent clocks in Chapter 4 where each agent’s knowledge of its
clock is predetermined and remains unchanged. However, it is acknowledged
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that achieving clock synchronization might bring advantages for specific MASs,
e.g. a wireless sensor network. What if we try to develop an event-triggered
algorithm to drive agents to achieve both consensus and clock synchronizations
simultaneously? This would be an interesting but also challenging problem.
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