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Abstract

This dissertation investigates the role of intermittent information in estimation and control

problems and applies the obtained results to multi-agent tasks in robotics.

First, we develop a stochastic hybrid model of mobile networks able to capture a large

variety of heterogeneous multi-agent problems and phenomena. This model is applied

to a case study where a heterogeneous mobile sensor network cooperatively detects and

tracks mobile targets based on intermittent observations. When these observations form a

satisfactory target trajectory, a mobile sensor is switched to the pursuit mode and deployed

to capture the target. The cost of operating the sensors is determined from the geometric

properties of the network, environment and probability of target detection. The above case

study is motivated by the Marco Polo game played by children in swimming pools.

Second, we develop adaptive sampling of targets’ positions in order to minimize energy

consumption, while satisfying performance guarantees such as increased probability of de-

tection over time, and no-escape conditions. A parsimonious predictor-corrector tracking
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filter, that uses geometrical properties of targets’ tracks to estimate their positions using

imperfect and intermittent measurements, is presented. It is shown that this filter requires

substantially less information and processing power than the Unscented Kalman Filter and

Sampling Importance Resampling Particle Filter, while providing comparable estimation

performance in the presence of intermittent information.

Third, we investigate stability of nonlinear control systems under intermittent informa-

tion. We replace the traditional periodic paradigm, where the up-to-date information is

transmitted and control laws are executed in a periodic fashion, with the event-triggered

paradigm. Building on the small gain theorem, we develop input-output triggered control

algorithms yielding stable closed-loop systems. In other words, based on the currently

available (but outdated) measurements of the outputs and external inputs of a plant, a

mechanism triggering when to obtain new measurements and update the control inputs

is provided. Depending on the noise environment, the developed algorithm yields stable,

asymptotically stable, and Lp-stable (with bias) closed-loop systems. Control loops are

modeled as interconnections of hybrid systems for which novel results on Lp-stability are

presented. Prediction of a triggering event is achieved by employing Lp-gains over a fi-

nite horizon in the small gain theorem. By resorting to convex programming, a method to

compute Lp-gains over a finite horizon is devised.

Next, we investigate optimal intermittent feedback for nonlinear control systems. Using

the currently available measurements from a plant, we develop a methodology that outputs

when to update the control law with new measurements such that a given cost function

is minimized. Our cost function captures trade-offs between the performance and energy

consumption of the control system. The optimization problem is formulated as a Dynamic

Programming problem, and Approximate Dynamic Programming is employed to solve it.

Instead of advocating a particular approximation architecture for Approximate Dynamic

Programming, we formulate properties that successful approximation architectures satisfy.

In addition, we consider problems with partially observable states, and propose Particle
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Filtering to deal with partially observable states and intermittent feedback.

Finally, we investigate a decentralized output synchronization problem of heteroge-

neous linear systems. We develop a self-triggered output broadcasting policy for the

interconnected systems. Broadcasting time instants adapt to the current communication

topology. For a fixed topology, our broadcasting policy yields global exponential out-

put synchronization, and Lp-stable output synchronization in the presence of disturbances.

Employing a converse Lyapunov theorem for impulsive systems, we provide an average

dwell time condition that yields disturbance-to-state stable output synchronization in case

of switching topology. Our approach is applicable to directed and unbalanced communi-

cation topologies.
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Chapter 1

Introduction

Advances in the cyber world such as communications, networking, sensing, computing,

storage, and control, as well as in the physical world such as materials, hardware, and

power sources, all give rise to a new engineering paradigm – Cyber-Physical System (CPS).

The CPS paradigm extends even further the concepts of safety, decentralization, scalabil-

ity, reconfigurability, and robustness of systems comprised of subsystems that share the

same physical world [1]. The subsystems of interest can have only physical components

(e.g., people, animals, flocks, herds, schools) or both cyber and physical components (e.g.,

individually accomplished intelligent sensors and autonomous robots equipped with signif-

icant communication and computational capabilities). Examples of CPSs are everywhere:

transportation systems (e.g., road trains, smart bridges), emergency systems, management

of social networks, biological systems, smart sensors, advanced electric power grids, au-

tomated manufacturing, entertainment, gaming, haptic systems, etc. As depicted in Figure

1.1, our robotics lab can be thought of as a CPS. Even though control, communication

and computation will naturally continue to develop as disciplines on their own right, it is

finally time to admit that all those disciplines coexist having the same goal – to satisfy

evergrowing demands of the industrial and civil sectors. More than ever, CPS emphasizes

the necessity of integrating the control, communication and computation communities, and

1



Chapter 1. Introduction

relaxing traditionally ingrained boundaries between these communities in order to exploit

the full potential of both the cyber and physical world.

In order to address the demands of the modern world articulated within the CPS pa-

radigm, the control community has recently put under scrutiny its fundamental concept –

feedback. These efforts tackle the question: “How often should information between sys-

tems be exchanged in order to meet a desired performance?” The desired performance can

be estimation quality or stability. Estimation under intermittent information is the topic of

Chapter 3 while Chapter 4 is concerned with stability of nonlinear control systems under

intermittent information. Under the term intermittent information we refer to both inter-

mittent feedback (a user-designed property of a system as in [2], [3], [4] and [5]) and in-

trinsic properties of control systems such as packet collisions, sampling period, processing

time, network throughput, scheduling protocols, delays, lossy communication channels,

occlusions of sensors or a limited communication/sensing range (see [6] and the references

in [2]). Obviously, intermittent information are present in almost all real-life applications.

Therefore, the study of systems under intermittent information is a critical area of research.

User-designed intermittent feedback is motivated by rational use of expensive resources at

disposition in an effort to decrease energy consumption, and processing and sensing re-

quirements. Consequently, autonomy and the life span of the components increase. We

believe this dissertation is a step towards design of low-power and low-cost real-time sys-

tems coupled by distributed control laws and estimation schemes resulting in a more robust

and reliable performance [7]. In addition, intermittent feedback allows multitasking (dif-

ferent functionalities of a system at the same time) by not consuming resources all the time

for a sole task. Allocation of the Central Processing Unit (CPU) time between several tasks

is known as task scheduling [8].

2



Chapter 1. Introduction

1.1 Motivation

Every day, we witness numerous achievements and improvements in both technology and

science. The field of robotics is not an exception. Technology pushes hardware limits

further providing processors decreasing in size and increasing in performance, more ad-

vanced robots and sensors. As a consequence, networks of commercially available UAVs

and UGVs1 are capable of successfully resolving complicated problems such as search and

rescue missions, monitoring urban environments or endangered species, landmine or in-

truder detection, and pursuit-evasion problems. At the same time, science invents methods

and techniques to solve these challenging problems more efficiently. This means better

coordination of large heterogeneous robot networks, improvements in planning, sensing

and estimation requirements along with higher flexibility, robustness and fault tolerance of

the networks.

Managing networks of heterogeneous robots for accomplishing a common goal, such

as, detecting, tracking, and eventually capturing one or more targets, autonomously is very

challenging because of the limited availability of information about the targets, processing

power, and energy at disposition. When the robots are equipped with embedded wire-

less systems, information about the targets and the workspace can be obtained directly,

through onboard sensors and microprocessors, or indirectly, through wireless communi-

cation devices that allow the robots to exchange information with each other, or with a

central station. Modern technologies and embedded systems allow sensor measurements

to be processed and communicated in real time, allowing the robots to estimate environ-

mental and target characteristics with accuracy and precision that can increase rapidly over

time. Therefore, the performance of these networks can be significantly improved by de-

cision making approaches that adapt the sensing and motion policies online, based on the

latest sensor measurements. Despite the availability of onboard sensors and processors,

these policies must also be applicable when little or no target measurements are available,

1Unmanned Aerial Vehicles and Unmanned Ground Vehicles, respectively.
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and must minimize energy and processing power, without compromising the estimation

performance and/or stability of the control system, in an effort to prolong the mission.

1.2 Related Work

Since the work presented in this dissertation builds on several areas of research, we divide

the literature review in several subsections, i.e., motion planning, estimation under inter-

mittent information, stability under intermittent information, optimal intermittent feedback

and decentralized intermittent feedback.

1.2.1 Motion Planning

A considerable number of methodologies for coordination of robotic networks and motion

planning has been proposed in recent years. Distributed control of synchronous robotic

networks with an emphasis on communication protocols and geometric notions relevant in

motion coordination are described in [9]. The problem of maintaining connectivity for a

dynamic multi-agent network via hybrid modeling is investigated in [10]. An overview of

stochastic hybrid models is given in [11]. Planning algorithms are thoroughly explained

in [12], while [13] describes autonomous mobile robots from sensing, decision making

and application perspectives. A hybrid modeling framework for robust maneuver-based

motion planning algorithms for nonlinear systems with symmetries is proposed in [14].

Cell decomposition approaches are covered in [15], whereas a specific case of cell de-

composition is implemented in [16]. All aforementioned approaches focus only on certain

problems when modeling multi-agent cooperation. For our work, we need a broad, yet

simple enough, model of mobile multi-agent networks.

Our hybrid model of multi-agent networks is presented in Chapter 2.
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1.2.2 Estimation Under Intermittent Information

Traditionally, the concept of intermittent information along with its repercussions has been

a subject of research in the area of Networked Control Systems (NCSs). A comprehensive

survey on NCSs is found in [6]. According to [6], NCSs are spatially distributed systems

for which the communication between sensors, actuators, and controllers is supported by a

shared communication network. From this perspective, intermittent properties might be a

consequence of packet losses and delays resulting in out-of-sequence measurements and in

partial knowledge of a process of interest. A dynamic programming approach to the con-

cept of intermittent information in NCS settings is considered in [17]. In [17] the authors

model each component of an NCS as a potential decision maker that makes control and

communication decisions. Robustness of systems with missing measurements is addressed

in [18]. In more recent works, [19] investigates estimation for nonlinear dynamical systems

over packet-dropping networks while [20] deals with a decentralized detection problem us-

ing wireless passive sensors. Several papers address extensions of Kalman Filters (KFs)

to scenarios with intermittent observations ( [21], [22], [23], [24]). Furthermore, there are

several extensions of [23] made by some of its authors. The aforementioned papers con-

sider a linear deterministic process that is being estimated buried in white Gaussian noise

where loss of information is modeled as a Bernoulli process (e.g., [22], [23] and [24])

or as a Poisson process (e.g., [21]). An extension of KFs applied to a distributed target

tracking problem with a fusion center is proposed in [25] in order to account for unreliable

communication channels. The authors in [25] propose an approach in which sensors trans-

mit local sufficient statistics (i.e., a summary of past local observations) rather than raw

measurements.

Other works regarding the problem of intermittent information in multi-agent applica-

tions are found in [26] and [27]. The authors in [26] investigate intermittent communication

using a measurable vector field in a simultaneous tracking and formation control scenario.

The work in [27] uses Bayesian Filtering (BF) approximated by Particle Filtering (PF),
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intermittent observations and sensors with a limited Field-Of-View (FOV) in a search and

tracking scenario. In [27] the authors also deal with a Hospitability Map (HMap) as a

way to represent non-analytic information of the environment in which the scenario takes

place. Using entropy as the measure of quality of an estimate, nonlinear processes are

being estimated and nonlinear measuring methods, as a consequence of limited FOV, are

implemented. A cooperative probabilistic search of an area within a sequential decision-

making framework based on BF is presented in [28]. Comprehensive studies of PFs are

found in [29] and [30]. The idea of combining several models of a target with the afore-

mentioned filters in a unifying framework is known as Interacting Multiple Model (IMM)

filter ( [31], [32], [33]). Drawbacks of this approach applied to intermittent scenarios are

presented in [27]. A relatively high number of targets’ models and corresponding filters

leads to a greater computational load of the IMM approach [33]. Since we are interested

in real-time applications, IMM is not included in this dissertation. The work in [34] deals

with a multi-agent coordination under periodic connectivity.

Our approach to estimation under intermittent information is presented in Chapter 3.

1.2.3 Stability Under Intermittent Information

Traditional digital control provides rules of thumb to determine stabilizing sampling pe-

riods for linear systems (e.g., 20 times the time constant of the dominant pole [35]) and

does not take into account effects of communication between interacting systems. When

it comes to nonlinear systems, approximate discrete-time models are derived and analyzed

because nonlinear systems, in general, cannot be discretized in closed form [36]. The

general consensus, except for [37], is that faster sampling increases stability margins and

improves performance of digital control systems. A very educative example where the fast

sampling and processing are essential in order to achieve desirable performance is control

of UAVs [38].
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Recent approaches regarding stability under intermittent information can be classified

as follows:

(i) Small gain theorem approaches [39], [40], [41];

(ii) Dissipativity or passivity-based approaches [42], [43];

(iii) Input-to-State Stability (ISS) approaches [5], [44], [45], [46]; and

(iv) Other approaches [3], [4], [47], [48].

The authors in [3] apply intermittent feedback to Model-Based Networked Control

Systems (MB-NCS) in the presence of a state observer, and variable periods (stochastic

and with upper bounds) of closed-loop and open-loop control. By analyzing eigenvalues

of state matrices, both sufficient and necessary conditions for linear control systems, and

sufficient conditions for nonlinear control systems are provided. The work in [4] studies

the stabilization problem for a class of nonlinear chaotic systems by means of periodically

intermittent control. Using Lyapunov theory and Linear Matrix Inequalities (LMIs), suf-

ficient conditions for exponential stability are provided, and a suboptimal control law is

presented. The work in [47] utilizes Lyapunov theory and develops event triggered trajec-

tory tracking for control affine nonlinear systems.

In general, CPSs consist of multiple subsystems. Consequently, they are character-

ized by multiple time scales. Instead of trying to synchronize all time scales and dealing

with time-driven systems, event-triggered and self-triggered realizations of intermittent

feedback are proposed in [5], [44], [45], [46] and [42]. It should be noted that event-

driven modeling is traditionally found in the area of computer science being yet another

example of the interdisciplinary approach fostered by CPS. In these event-driven appro-

aches, one defines a desired performance, and sampling (i.e., transmission of up-to-date

information) is triggered when an event representing imperiled performance occurs. The

7



Chapter 1. Introduction

work in [46] provides a comprehensive insight into triggered sampling with an empha-

sis on event-triggering. It applies event-triggering to control, estimation and optimization

tasks. The work in [42] utilizes the dissipative formalism of nonlinear systems (see [49]

for more), and employs passivity properties of feedback interconnected systems in order

to reach an event-triggered control strategy for stabilization of passive and output passive

systems. In self-triggered approaches, the current sample is used to determine the next

sampling instance, i.e., to predict the occurrence of the triggering event. In comparison

with event-triggering, where sensor readings are constantly obtained and analyzed in order

to detect events (even though the control signals are updated only upon event detection),

self-triggering decreases requirements posed on sensors and processors in embedded sys-

tems. Event detection related problems are investigated in [50] and [51]. The authors

in [45] extend ideas presented in [5], and develop state-triggering: self-triggering based

on the value of the system state in the last feedback transmission. Using isochronous man-

ifolds on state-dependent homogeneous systems, a less conservative self-triggered policy

(i.e., sampling instants are more similar to the event-triggered ones) is presented in [44].

Finally, the work in [48] investigates self-triggered coordination of robotic networks based

on spatial partitioning techniques. Since [48] considers geometric properties of possible

future positions of the agents and not the actual controller-plant interconnection, it is more

similar to reachability analysis (for example, [52] and [53]) than to the aforementioned

works and the work presented in Chapter 4.

The work that has grabbed our attention is presented in [39] and [40]. The authors

in [39] and [40] present a framework in which one first designs a controller without taking

into account a communication network and then, in the second step, one determines how

often control and sensor signals have to be transmitted over the network so that the closed-

loop system remains stable. This framework models Networked Control Systems (NCSs)

as hybrid systems ( [54], [55]), and utilizes the small gain theorem ( [56], [57]) to study

stability.
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In comparison with the approach in [39] and [40], most of the aforementioned appro-

aches appear to be more restrictive and less general in terms of types of stability reached

under intermittent information, and requirements on the system in the absence of a com-

munication network. In addition, [39] and [40] consider dynamic controllers, external

inputs and output feedback. For example, [3] does not consider systems with external in-

puts, and the results for nonlinear systems are provided for a class of exponentially stable

closed loop systems without communication networks. The authors in [4] do not consider

external inputs, and exponential stability and systems with specific nonlinearities are an-

alyzed. The work in [47] investigates state feedback for control affine nonlinear systems

and controllers without dynamics. Furthermore, the ISS approaches assume state feedback,

controllers without dynamics, and do not consider external inputs. In addition, the results

of [45] are applicable to state-dependent homogeneous systems and polynomial systems.

The work in [42] analyses passive plants, proportional feedback and does not take into

account external inputs.

Our results regarding stability under intermittent information are found in Chapter 4.

1.2.4 Optimal Intermittent Feedback

Similar problems to the problem considered in Chapter 5 are discussed in [58] and [59].

The authors in [58] balance the control performance versus the network cost by choosing

the appropriate time delay-controller pair. The work in [59] investigates optimal control

of hybrid systems based on ideas from dynamic and convex programming. While [58]

associates costs with each of time delay-controller pairs, the work in [59] associates costs

with switches between controllers. The optimization methods from [58] and [59] boil

down to optimal control of switched systems (see [60] and [61]). However, the results

of [60] and [61] are not applicable in Chapter 5. The authors of [61] focus on problems in

which a prespecified sequence of active subsystems is given, and then seek both the optimal
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switching instants and the optimal continuous inputs. [60] does not make any assumptions

about the number of switches nor the mode sequence; instead, they are determined by the

solution of the problem. The authors in [60] develop their methodology for problems that

include two modes, and provide directions for how to extend the methodology to problems

with several distinct modes. However, this extension becomes intractable as the number of

modes grows.

Motivated by [61], we adopt Approximate Dynamic Programming (ADP) as the strat-

egy for tackling our problem (see [62] and [63]). ADP is a set of methods for solving

sequential decision-making problems under uncertainty by alleviating the computational

burden of the infamous curses of dimensionality in Dynamic Programming (DP) (see [64]

for more). In theory, DP solves a wide spectrum of optimization problems providing an op-

timal solution. In practice, straightforward implementations of DP algorithms are deemed

computationally intractable for most of the applications. Therefore the need for efficient

ADP methods. However, comprehensive analyses and performance guarantees of these

approximate methods are still unresolved (except in very special settings), and present a

critical area of research. In literature, ADP is also known as reinforcement learning [65]

and neuro-dynamic programming [66]. Furthermore, ADP methods are extensively used

in operational research [64].

Our work regarding the problem of optimal intermittent feedback is found in Chapter

5.

1.2.5 Decentralized Intermittent Feedback

Recent years have witnessed an increasing interest in decentralized control of multi-agent

systems (refer to [67], [68], [69], [70], [71], [43] and [72]). Decentralized control is char-

acterized by local interactions among agents, i.e., interconnected systems. Consequently,

each agent exchanges information only with its neighbors. When compared with central-
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ized control, decentralized control avoids a single point of failure which in turn increases

robustness of multi-agent systems, scales better as the number of agents increases, allows

for inexpensive and simple agents, lowers the implementation cost, and is sometimes an

intrinsic property of multi-agent systems. The problem of synchronizing agents’ outputs is

a typical problem solved in a decentralized fashion (e.g., [68] and [43]). On the other hand,

decentralized control poses significant theoretical and practical challenges due to, among

others, limited bandwidth and connectivity of multi-agent networks.

Information exchange among neighbors is instrumental for coordination as discussed

in [67], [68], [70], [71], [43] and [72]. According to [73], two models of wireless networks

supporting distributed (i.e., decentralized) control are typically considered in the literature.

The first model is the radio network model that buys into worst-case thinking – concurrent

transmissions cancel each other because of interference, and potential message collision

cannot be detected at a receiver’s end. The second model is the local model that abstracts

away media access issues allowing the agents to concurrently communicate with all neigh-

bors. Clearly, the local model is too optimistic. In order to reconcile these two models, in

Chapter 6 we partition the set of agents into subsets with the following property: when all

agents in a subset broadcast simultaneously, the wireless network is collision free. Basi-

cally, we do not allow agents, that belong to different partitions, to broadcast at the same

time due to possibility of message collisions. Consequently, agents in the same partition

synchronously broadcast their outputs via wireless. Benefits of synchronous wireless net-

works, such as a constant bit rate with increased Committed Information Rate (CIR) and

Quality of Service (QoS), increased tolerance to interference, low and predictable latency,

are recognized in several commercially available wireless services (refer to [74] and [75]).

Their asynchronous counterpart leads to unpredictable time-varying communication de-

lays and packet dropouts that must be taken into account when analyzing the performance

of multi-agent systems (see [70] and [71]). When communication protocols with Carrier

Sense Multiple Access (CSMA) and Collision Avoidance (CA) are used to handle message

collisions in asynchronous wireless networks, the communication delays increase and im-
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pair the performance of cooperative missions [74]. This increase in communication delays

is even more evident as distances between agents increase [74] and in underwater applica-

tions [76].

Synchronous wireless is an example of the time-triggered communication paradigm

[77]. This paradigm excels with respect to predictability, composability, error detection

and error containment (see [78] and [77]). Another widely used paradigm is the event-

triggered communication paradigm which excels with respect to flexibility and resource

efficiency [78]. As [78] suggests, a combination of the time- and event-triggered paradigm

is often beneficial. In Chapter 6, we take advantage of the predictability in synchronous

wireless networks to detect possible changes in the communication topology among the

agents. When a receiver does not receive a message in an alloted time interval, we say that

an event has occurred and a decentralized topology discovery algorithm is triggered (e.g.,

[79], [80], [81] and [82]). Notice that event-triggered implementations of decentralized

control, such as in [43] and [72], do not allow for switching topology.

Our work regarding the problem of decentralized output synchronization of heteroge-

neous systems with intermittent communication and switching topology is found in Chap-

ter 6.

1.3 Contributions of Dissertation

In Chapter 2, we present a comprehensive hybrid network model able to capture a wide

range of multi-agent problems. By applying the model to a multi-target tracking case

study, we demonstrate its versatility and flexibility. The multi-target tracking case study is

motivated by the Marco Polo game (introduced in [83]) where a network of mobile robotic

sensors must track and capture mobile targets based on the information obtained through

cooperative detections of the sensors. This pursuit-evasion game combines cooperative
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multi-target tracking, distributed estimation, intermittent sensing/communication and ge-

ometric properties of sensor networks. Specifically, we extend the previous work on the

Marco Polo game in order to consider more realistic scenarios.

The main contributions of Chapter 3 are threefold:

a) A computationally feasible real-time tracking strategy that guaranties no-escaping tar-

gets while obtaining noisy measurements (detections) of the targets in an adaptive man-

ner;

b) The estimation strategy that requires less knowledge about targets and noise than the

conventional approaches; and

c) The quality of targets’ positions estimate is better or comparable with the conventional

approaches.

Our strategy includes prediction-correction stages that are found in Kalman Filtering (KF)

and Bayesian Filtering (BF). In addition, Chapter 3 complements the approach in Chapter

2 by adding the estimation component which in turn significantly improves the capturing

strategy.

The main contributions of Chapter 4 are fourfold:

a) The design of an input-output triggered sampling policy yielding stability of nonlinear

systems employing the small gain theorem;

b) Consideration of realistic communication channels and sensors in the stability analysis;

c) The formulation of novel conditions for Lp-stability (over a finite horizon) of hybrid

systems; and

d) The design of a novel method for calculating Lp-gains over a finite horizon by resorting

to convex programming.
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In addition, our approach does not require construction of storage or Lyapunov functions

which can be quite a difficult task for a given problem.

The main contributions of Chapter 5 are threefold:

a) Formulation of the optimal self-triggering problem as a Dynamic Programming (DP)

problem;

b) Employment of Particle Filters (PFs) fed by intermittent feedback to account for par-

tially observable states; and

c) Formulation of properties that successful approximation architectures in ADP appro-

aches satisfy.

To the best of our knowledge, the problem of optimal intermittent feedback has yet to be

addressed.

The contributions of Chapter 6 are fourfold:

a) The design of broadcasting instants for each partition of agents yielding stability for a

fixed topology;

b) Consideration of directed and unbalanced topologies;

c) The formulation of an average dwell time condition leading to stability with switching

topology; and

d) Stability analysis that takes into account disturbances.

We point out that [43] considers balanced and fixed topologies while [72] considers undi-

rected and fixed topologies.
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1.4 Organization of Dissertation

Using the Marco Polo game played by children in swimming pools, Chapter 2 introduces

the problem of intermittent information as far as control and estimation is concerned. In

Chapter 3 we focus on estimation under intermittent information while in Chapter 4 we

investigate stability under intermittent information. Chapter 5 deals with the problem of

optimal intermittent feedback. Finally, a decentralized output synchronization problem

under intermittent communication and switching topology is investigated in Chapter 6.
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Marco Polo Game

In this chapter, using the Marco Polo game played by children in swimming pools, we

introduce the concept of intermittent information which in turn gives rise to hybrid mod-

eling. We present a comprehensive hybrid network model able to capture a wide range

of multi-agent problems. By applying this hybrid network model to a multi-target track-

ing case study, we demonstrate its versatility and flexibility. The multi-target tracking case

study is motivated by the Marco Polo game (introduced in [83]) where a network of mobile

robotic sensors must track and capture mobile targets based on the information obtained

through cooperative detections of the sensors. This pursuit-evasion game combines coop-

erative multi-target tracking, distributed estimation, intermittent sensing/communication

and geometric properties of the sensor network and environment. Specifically, we extend

the previous work from [83] and [84] in order to consider more realistic scenarios. An

illustration of a multi-target environment is provided in Figure 2.1 where aerial and ground

sensors are used to detect and capture mobile targets in the plane. More details regarding

this chapter are found in [85].

The remainder of this chapter is organized as follows. In Section 2.1 we state the

multi-agent pursuit-evasion problem and assumptions considered in this chapter. A de-
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Figure 2.1: Cooperation of UAVs and UGVs.

tailed analysis of the problem is provided in Section 2.2 while stochastic hybrid modeling

and geometric optimization methods are proposed to solve the problem. Mathematical de-

tails of the developed hybrid model are conveyed in Subsection 2.2.1. Subsection 2.2.2

is reserved for concepts and definitions regarding the application of the hybrid model and

geometric methods to the multi-target pursuit-evasion case study. In Section 2.3 we further

investigate specifics of the applied hybrid model. Simulations and numerical results are

provided in Section 2.4. Finally, we provide conclusions in Section 2.5.

2.1 Problem Statement and Assumptions

The problem considered in this chapter is stated here.

Problem 1 Given a heterogeneous set P of N pursuers and a set T of M targets moving

within a specified game area S, find a set of control policies of sensors which maximizes the
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total sensing reward, and minimizes the total time required to capture targets in T that have

been positively detected. The objectives of sensors in the detection mode are to (i) avoid

obstacles; (ii) maximize the probability of cooperatively detecting unobserved tracks; and

(iii) maximize the probability of detecting partially-observed tracks. The objectives of

sensors in the pursuit mode are to (i) avoid obstacles; and (ii) minimize the time required

to capture a positively detected target based on its fully-observed track and the first k − 1

detections, where k ∈ N.

In this chapter, targets (or evaders) move in a piece-wise straight fashion with uniformly

distributed orientations. We require that the scalar product of the initial velocity and cur-

rent velocity is positive. This requirement assures traversing nature of targets. Moreover,

the changes of targets’ directions occur randomly within a time interval based on the prop-

erties of the targets, environment, and user’s preferences. The sensors communicate among

themselves when their mode changes or when they detect a target (i.e., event-driven com-

munication). A sensor detects evaders when they enter its circular sensing region (i.e.,

event-driven measurements). Hence, time instances of the detections are randomly dis-

tributed and cannot be anticipated (i.e., intermittent detections). Consequently, a transition

from one behavior (i.e., mode) of a sensor to another is based purely on stochastic events.

Circular sensors are also called isotropic or omnidirectional sensors. An example of the

sensor with a circular Field-Of-View (FOV) is an omnidirectional camera [86].

After obtaining k− 1 independent detections of a target, a sensor is deployed to obtain

the kth independent observation of the target. We define a C-target as the region in the

game area S where the probability that a deployed sensor will obtain the kth observation

of the target is above a threshold ε determined by user’s preferences (energy at disposal,

the desired percentage of captured targets, etc.), and properties of both sensors and targets.

C-targets can be approximated with cone-like areas as illustrated in Figure 2.2. In order

to cover the C-target with a finite sensing region, the sensor moves orthogonally to the

bisector of the C-target within the boundaries of the C-target. We require k independent
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detections before deploying a sensor into pursuit mode in order to avoid false alarms. The

decision of which sensor to deploy for either of the aforementioned tasks is based on the

reward function (defined in Section 2.2). This reward function is designed for straight line

moving targets in [84]. The maximal probability of detecting the targets cooperatively

using [84] is obtained when the sensors are grouped in the corners of a rectangular game

area (for a comprehensive discussion see [87]). To accommodate the optimality criteria

for the targets in this chapter, we maximize the reward function with the constraint that a

certain minimal area coverage must be satisfied.

Next, in order to make the problem more realistic, we consider heterogeneous sensors

(i.e., sensors with different properties) installed on robotic platforms with different func-

tionalities. The sensors have different sensing regions while the platforms are UGVs and

UAVs. Sensors on UGVs have smaller sensing areas than those on UAVs. In addition,

UGVs are slower then UAVs, but UGVs can capture targets whereas UAVs cannot. Unlike

ground vehicles, aerial vehicles can fly over obstacles. When pursuers are UAVs, a sensor’s

FOV represents the area in S monitored by the pursuer while the altitude of the pursuer is

kept constant by an autopilot. The properties of both sensors and platforms are taken into

account for motion planning. Throughout this chapter, we refer to both the sensors and

associated platforms as sensors.

Lastly, we assume that there are areas in the environment where communication is not

possible or is very poor. We model these areas as virtual obstacles that sensors would avoid

but targets can enter. Virtual obstacles due to communication are introduced in [88].

The uniform distribution is used throughout this chapter because it is ‘the most random’

distribution. The use of any other zero-mean distribution for modeling directions of the

targets gives even better results in the sense of fulfilling the problem objectives.
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2.2 Mathematical Preliminaries and Definitions

Mathematical preliminaries are divided in two subsections. In the first subsection, we

present concepts and details of the stochastic hybrid model developed. In the second sub-

section, the methods brought together in order to successfully solve the Marco Polo case

study are conveyed. We combine cell decomposition, geometric optimization and track

coverage into a cohesive framework.

2.2.1 Hybrid Modeling

Roughly speaking, hybrid systems are dynamical systems that involve the interaction of

different types of dynamics - discrete jumps and continuous flows. Discrete states are

related to different modes of behavior such as sensing, pursuit or obstacle avoidance. Gen-

erally, these modes have different goals, continuous dynamics, control laws, sensing and

communication policies.

A hybrid automaton is often used as the modeling language for hybrid systems. Merg-

ing discussions from [11] and [54], we define the following:

Definition 1 A hybrid automaton H is a tuple H = (Q,X , f,Υ,U ,∆,D, Init,Dom, E ,

G,R) that describes the evolution of

• discrete state variables q ∈ Q and continuous state variables x ∈ X ,

• control inputs υ ∈ Υ and u ∈ U , and

• stochastic or disturbance inputs δ ∈ ∆ and d ∈ D

by means of four functions:

• a vector field f(·, ·, ·, ·) : Q×X × U ×D → X ,
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• a domain set Dom(·, ·, ·) : Q×Υ× υ → P (X ),

• a guard sets G(·, ·, ·) : E ×Υ×∆→ P (X ), and

• a reset function R(·, ·, ·, ·) : E × X ×Υ×∆→ X ,

where Init ⊆ Q×X is a set of initial states and E ⊆ Q×Q is a set of edges.

In the above definition P (X ) denotes the power set of X . Furthermore, we refer to (q, x) ∈

Q × X as the state of H . We assume that sets Q, Υ and ∆ are countable and that X =

Rn (or Cn,Sn), U ⊆ Rm, and D ⊆ Rn for integers n,m, and p, where Cn is the n-

dimensional complex space, and Sn is the n-dimensional sphere. It should be noted that

the function f is a mapping to TX (tangent space of X) given by

ẋ(t) = f(t, q0, x0, x(t), u(t), d(t)), t ∈ Rt≥0, (2.1)

and is required to be continuous. With (2.1), the evolution x : Rt≥0 → X of the dynamical

system starting at some initial state (q0, x0) ∈ Init, with input u : Rt≥0 → U and stochastic

input d : Rt≥0 → D, is given. The set of nonnegative real numbers is denoted Rt≥0.

To characterize the evolution of the state of a hybrid automaton, one needs an appro-

priate set of times. Such a set has to capture both continuous intervals (over which the

continuous evolution takes place) and discrete points in time (when discrete transitions

occur). This set of times is called a hybrid time set. From [54], we have,

Definition 2 A hybrid time set is a sequence of intervals τ = {I0, I1, . . . , IN} = {Ii}Ni=0,

finite or infinite (i.e., N =∞ is allowed) such that

• Ii = [ti, ti+1],∀i < N ;

• if N <∞ then either IN = [tN , tN+1] or IN = [tN , tN+1);

• ti ≤ ti+1, ∀i.
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In multi-agent applications, each agent can be represented as a hybrid automaton. Such

hybrid automata form a Mobile Hybrid Network (MHN) of agents (e.g., networks of sen-

sors and pursuers) that are able to interact within the network and with members of other

networks. MHNs can be modeled such that each node represents a mobile agent (sensor

or target) with communication, sensing, and control capabilities. Following some ideas

from [9], we define an MHN as follows:

Definition 3 A mobile hybrid network Σ is a tuple Σ = (I,A,Gc,Gs,Gh), where I =

{1, . . . , N} is the set of unique identifiers representing agents in the network,A = {Hi}i∈I
is a set of control systems (physical agents) with processing power modeled as hybrid

automata, Gc = {V , Ec} is a directed communication graph, where V is the set of nodes

and Ec is the communication edge map, and Gs = {V , Es} is a directed sensing graph,

where Es is the sensing edge map. Finally, Gh = {V , Eh} is a directed control graph with

the set of nodes V and the control edge map Eh. If Hi = Hj,∀i, j ∈ I, the network is

uniform. Otherwise, the network is heterogeneous.

Several graphs are needed to capture interactions of the agents within the network and

environment. In some cases, agents can ’hear’ but not ’see’ each other. The design of the

control graph Gh involves the assignment of control policies for each agent. The set Eh
is related to the communication Ec and sensing Es graphs. An edge between two nodes

in the control graph can be created only if a communication edge or sensing edge exists.

Furthermore, processing capabilities of agents (recall the CPS paradigm) bring parallel

processing (e.g., coverage optimization), hierarchical structure, (distributed) control and

estimation into focus.

Based on the characteristics of the events (upon which the discrete modes of hybrid

automata might change) occurring in the network, a hybrid network could be synchronous,

asynchronous or a combination of both. That bring us to the following definition:

23



Chapter 2. Marco Polo Game

Definition 4 A synchronous hybrid network is a set of hybrid systems where exists a

scheduled increasing sequence of time instants T = {tk}k∈N or a sequence of events

E = {ek}k∈N that take place at Te = {tek}k∈N when executions of the hybrid automata

happen.

On the other hand, there is no such a sequence in asynchronous networks. In the net-

works that are a combination of both, subsets of the network’s elements are not mutually

synchronized, but the elements within each subset are synchronized.

The evolution (or solution) of a hybrid automaton could be deterministic, nondetermin-

istic and stochastic. Nondeterministic hybrid automata are those with a certain freedom in

defining the solution. For deterministic hybrid automata, we have that, for a given input

and initial state, its state is uniquely defined at any instant of time in the future. A refine-

ment of nondeterministic models in order to obtain better analysis of uncertain systems

calls for a stochastic hybrid model. In stochastic hybrid models, uncertainties (failures,

duration of operations, switching between modes, etc.) are modeled as random variables

or random processes in order to include probabilistic phenomena.

2.2.2 Cooperative Multi-Target Tracking Modeling

We consider a pursuit-evasion game where the set P of N heterogeneous robotic sensors

has to detect, pursue and capture M randomly moving targets members of the set T . El-

ements of the sets P and T are denoted Pi and Ti respectively. With IP we denote the

index set of P , and with IT the index set of T . The game takes place in a polygonal Area-

Of-Interest (AOI) S ⊂ R2 with the boundary ∂S. The area S is populated by n fixed and

convex obstacles {O1, . . . ,On} ⊂ S. The geometry of the ith pursuer is assumed to be a

convex polygon, denoted Ai , with a configuration qPi (t) that specifies its position and ori-

entation at time twith respect to a fixed (or inertial) Cartesian frameFS related to S . When

dealing with targets, the position and orientation of the ith target at time t are comprised
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in qTi (t). Let us point out that, in general, qPi (t) and qTi (t) are 3-dimensional vectors, i.e.,

qPi (t) = [XPi (t) YPi (t) θPi (t)]
T , and qTi (t) = [XTi (t) YTi (t) θTi (t)]

T . Notice that the

orientation of pursuers does not play a significant role since we assume omnidirectional

sensors and holonomic sensor platforms. Therefore, we have

q̇Pi (t) = ui(t), (2.2)

where ui(t) ∈ R2 is the input of the pursuer Pi.

In order to proceed, let us introduce the following definitions. From [89] we have:

Definition 5 A continuous-time random process is a family of random variables X(t)

where t ranges over a specified interval of time.

Definition 6 We say that X(t) is a continuous-time Markov process if for 0 ≤ s0 < · · · <

sn−1 < s < t we have Pr{X(t) ∈ B|X(s) = x,X(sn−1) = xn−1, · · · , X(s0) = x0} =

Pr{X(t) ∈ B|X(s) = x} where Pr denotes probability.

As a consequence of Definition 5, a target Ti is a continuous-time random process of the

random variables θTi(t), where t ∈ [ti0,∞) (ti0 is the time instant when the ith target entered

S). The random variables θTi(t) describe the target’s orientation. A three-dimensional real

valued vector function, whose components are continuous functions, maps the family of

random variables θTi(t) into qTi (t) using

ẊTi (t) = vTi(t) cos θTi (t),

ẎTi (t) = vTi(t) sin θTi (t),

θ̇Ti (t) = 0, t 6∈ {tk}k∈N,

θTi(t
+
k ) = δk, (2.3)

and therefore, Ti is a Markov process. The third component of the vector function expe-

riences uniformly distributed jumps δk ∈ R when events tk, k ∈ N, occur and does not

change between consecutive tk’s.
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The first two components of Ti are piece-wise linear, while the third component is

piece-wise constant with discontinuities at time instants when orientation changes occur.

The implemented time span between two consecutive instants is uniformly distributed in

interval [Ti,min, Ti,max], where Ti,min, Ti,max > 0 are determined by the user. This ensures

absence of Zeno behavior (refer to [55] and [54]). A change of direction δk at tk is uni-

formly distributed in the interval (θTi (t
i
0)− π/2, θTi (t

i
0) + π/2).

The maximal translational speed of all sensors and targets is known, and vP,max >

vT ,max. While sensors can move with any speed in [0, vP,max], it is assumed that the speed

of every target is uniformly distributed in [vT ,min, vT ,max], where vT ,min > 0.

Let Cfree,i denote the configuration space of the ith sensor that is free of obstacles and

other sensors. Let FAi denote a moving Cartesian frame embedded in Ai. If we assume

that Bi (the geometry of the sensor’s Field-Of-View) and Ai are both rigid, then qPi (t)

also specifies the position of every point in Bi (or Ai) relative to FS . Using the k − 1

individual sensors’ detections up to time τ where k ∈ N, it is possible to identify the area

in S where the sensor may obtain measurements of a target with the probability higher then

some threshold ε. That leads to the following definition and proposition.

Definition 7 Target Tj in S maps in the ith sensor configuration space C to the C-target

region CRj = {qi ∈ C | Pr{Bi ∩ Ti} > ε,∀t ≥ τ, i ∈ IP , j ∈ IT }.

Proposition 1 C-target can be approximated with cone-like areas (shown in Figure 2.2).

Proof 1 Let Fi be a Cartesian coordinate system associated with the C-target of target

i. Let its y-axis be a minimum squared error line with respect to k − 1 detection of the

target. Note that this y-axis is a bisector of the C-target. The x-axis contains the point

of the (k − 1)th detection. For the sake of simplicity, let us assume that the change of

direction happens periodically so that the distance covered by the target in one period is

d. Let us define sums of independent random variables An =
∑n

i=1 d cos θi and Bn =
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∑n
i=1 d sin θi. Expectation of An is 0 and of Bn is 2nd

π
while the variances are nd

2
and

ndπ
2−8d2

2π2 , respectively. Therefore, as n grows, the likelihood that the target could be found

further away from the bisector increases. Moreover, the target is more likely to progress

along the bisector. Since Bn−Bn−1

An−An−1
= tan θn, using Pr{0 ≤ tan θn ≤ α} = 1−ε

2
we can

approximate the boundaries of the C-target with lines. Their slopes are α and π − α with

respect to Fi where α = tan(π 1−ε
2

). Intersections of the lines with the x-axis of Fi are

given by ±riε where ri is the radius of the sensor.

A target with k − 1 independent detections is called a partially-observed target. A sensor

receiving the highest reward is deployed to investigate the C-target of the partially-observed

target that makes the maneuvers described in Section 2.1. After gathering k independent

observations of the target Ti , a sensor with the greatest reward is deployed to capture the

target. Our goal is to estimate future positions of the target and use a pursuit strategy

that maximizes the likelihood of capturing the target (this motivates the work presented in

Chapter 3). Therefore, based on k intermittent observations of the target’s position, the

following capturing policy is proposed and implemented in this section: Move to the point

of the last detection. Afterwards, move to the intersection of minimum squared error line

and ∂S . The error that is minimized is the sum of squared distances of k detection points

and the line.

In order to reduce the computational complexity due to the uncountable space R2, a

cell decomposition of S is implemented. We discretize the environment using the uniform

cell decomposition. The uniform cell decomposition is used because of its implementation

tractability and optimal dispersion (see [12]). This optimal dispersion (with respect to

the Euclidean norm) is important since the sensing regions are circles with finite areas.

From the cell decomposition, a connectivity graph G is obtained. Every sensor has its

own connectivity graph. Cells forming Cfree,i are divided into void and observation cells.

Void cells are cells with the probability of detection of partially-observed targets less than

the threshold ε, while observation cells are those with the probability larger than ε. The
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connectivity graph as well as void and observation cells of each sensor have to be updated

as the game progresses. Cells in the decomposition (nodes of the graph) are denoted ki, and

sensors (except when in the pursue mode and when being initially placed) move among the

cells’ centroids.

Next, we define the underlying performance index in order to achieve the goals stated

in Section 2.1. The sensing objectives are expressed in terms of a reward function that

represents the improvement in the overall probability of detection that would be obtained

by moving from a configuration qTi (t1) ∈ kl to a configuration in an adjacent cell qTi (t2) ∈

ki (obviously, t1 < t2) taking into account distance. The reward function is as follows:

R(kl, ki) = PR(ki) + ∆P k
S (kl, ki)− d(kl, ki), (2.4)

where PR is the probability of cooperatively detecting a partially-observed target, ∆P k
S is

the gain in the probability of cooperatively detecting unobserved targets and d(kl, ki) is

the distance between centroids of the cells. An unobserved target is a target with less then

k−1 independent observations. These probability density functions are obtained using the

methodology based on geometric properties of sensors and the area-of-interest described

in [84]. The performance index (2.4) is maximized with the constraint that minimal area

coverage has to be satisfied as stated in Section 2.1. This is due to the fact that the max-

imal value of P k
S , contributing as the difference in (2.4), is obtained when the sensors are

grouped in the corners of S. Based on the reward function, a sensor with maximal re-

ward along a path in the graph is deployed. The terms in the reward function are weighted

based on user’s preferences. While choosing a sensor for pursuit, more weight is put on

the distance term. In order to find a sensor Pi with maximal path reward, we use the graph

searching algorithm A*. After finding the optimal sensor, we determine a control input

ui(t) in (2.2) that corresponds to the optimal path.
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2.3 Mobile Hybrid Networks

The sensors (or pursuers), considered in the previous section, form an MHN denoted ΣP ,

and the targets (or evaders), considered in the previous section, form an MHN denoted

ΣT . The sensors are fully connected, and the associated control graph is omitted since the

sensors do not perform a coordinated motion as a group (e.g., keeping some formation)

to accomplish the goal. Through communication, sensors exchange their current position.

Therefore, a sensing graph is redundant. However, the sensing capability is essential for

target tracking. The sensors are able to sense targets (i.e., a sensing between nodes of

different networks takes place). Every new observation triggers an exchange of information

between the sensors causing mode changes, i.e., network ΣP is synchronized by events

related to the targets. On the other hand, collision avoidance with other sensors yields ΣP

asynchronous behavior.

When considering the sensors as processing units, estimation of the targets’ position

and sensors’ motion planing are distributed among the sensors. In other words, the sensor

group estimates the random processes (i.e., targets’ positions) joining collected informa-

tion, while the control policy for each sensor is obtained considering only its configuration

space. Each sensor calculates its reward function given by (2.4) and communicates it to

others. The ground sensors’ modes are:

• sensing (static or mobile with obstacle avoidance),

• pursuing (with obstacle avoidance), and

• communicating and updating information.

Aerial sensors do not have pursuing mode. Collisions among the sensors are avoided using

model prediction. Since sensors’ motion planing is distributed, such collisions are possible.

Using one step look ahead, collisions are avoided by switching to avoiding obstacles mode.
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On the other hand, we assume that the targets cannot communicate with each other,

and each target is independent from other targets. Hence, network ΣT is asynchronous.

Evolution of ΣT is stochastically modeled as described in Section 2.2 (see Definitions 1

and 3). The targets are only capable of sensing obstacles in their vicinity. Targets’ modes

are:

• active (obstacle avoidance or changing direction), and

• captured.

Collision avoidance among the targets and obstacles is obtained using model prediction.

Targets ’look’ one step ahead, and if there is a collision, they switch to the obstacle avoid-

ance mode. The algorithm in Figure 2.3 shows relations between the aforementioned

modes and events that trigger transitions from one mode to the other.

2.4 Simulations and Numerical Results

The information-driven sensor planning and pursuit strategies described in previous sec-

tions are integrated in a simulator. A pseudo-code of the implemented algorithm is shown

in Figure 2.3. We use k = 3 since it is found in [90] that, from a geometric point of view,

it is a convenient number of detections for estimating target tracks in the absence of false

alarms. The initial positions of the sensors maximize the value of P k
S constrained to the

required area coverage. The environment is a square measuring 10 by 10 meters, while

the sensors have the area of 0.25 square meters. Two sensors are UAVs with the sensing

radius 1.5 m and five sensors are UGVs - three with the sensing radius 1 m and two with

the sensing radius 1.25 m. Initially, all sensors are in the static sensing mode and each

UGV is a candidate to switch to the mobile sensing mode, i.e., the pursuit mode. Three

targets enter the environment with uniformly distributed locations along ∂S, headings and

velocities.
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Since sensors present obstacles to each other, obstacle maps are not static and Cfree
has to be determined for each sensor and updated during the game. The computations

of obstacle and coverage maps are time consuming and there is no need to perform them

frequently since the sensors perform optimal maneuvers (short in duration), and their posi-

tion is optimal (they are waiting for the targets). Hence, these computations are performed

periodically as stated in Figure 2.3.

Robustness of the proposed strategies is verified by introducing noise in the targets’

position and velocity. As a consequence, obtained results are slightly impaired meaning

that fewer targets are successfully captured comparing to scenarios without noise.

2.5 Conclusion

This chapter presents a comprehensive stochastic hybrid model of mobile agent networks

able to capture a wide range of multi-agent phenomena. A hybrid network consists of mo-

bile agents modeled as hybrid systems with processing capabilities. Versatility and flex-

ibility of the model are demonstrated by the cooperative multi-target tracking case study

where demanding tracking and pursuit goals are fulfilled.
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Figure 2.2: An illustrative detail of a simulation. Red squares represent UGVs, the green
square represents a UGV in the pursuit mode, purple squares depict UGVs, circles denote
the corresponding sensing regions, blue polygons represent targets, black rectangles rep-
resent obstacles, and the blue shaded cone-like area is a C-target. Red shaded polygons
represent areas with poor communication.
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1. Perform initial optimal sensor placement
2. Decompose environment into Cfree and Cobstacle cells
3. for all Sensors do
4. Calculate obstacle and coverage maps
5. end for
6. while Game not over do
7. for all Targets do
8. if Time for change of direction then
9. Change direction

10. end if
11. Update position (avoid obstacles, collisions and add noise)
12. end for
13. for all Sensors do
14. if Sensor update interval then
15. Calculate obstacle and coverage maps
16. end if
17. Update position (do maneuver, avoid obstacles and collisions)
18. if Position changed then
19. Update sensors’ network information
20. end if
21. Detect targets
22. if A target beneath capture threshold then
23. Remove target
24. Update sensors’ network information
25. End associated pursuit or investigations
26. end if
27. end for
28. if Pursued target beneath capture threshold then
29. Remove target
30. End pursuit
31. Update sensors’ network information
32. end if
33. if Detection then
34. Update sensors’ network information
35. if Target detections = k − 1 then
36. Hypothesize target track
37. Calculate observation cells
38. for all Sensors that have not detected this target do
39. Calculate path and reward to investigate target
40. end for
41. Deploy a sensor with the greatest reward
42. Determine maneuver
43. else if Target detections = k then
44. for all Sensors not in pursuit do
45. Calculate path and reward to pursue target
46. end for
47. Deploy a sensor with the greatest reward
48. end if
49. end if
50. end while

Figure 2.3: The algorithm developed for simulating the Marco Polo game.
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Estimation Under Intermittent

Information

In this chapter, we develop a geometric approach for estimation of mobile agents’ positions

considering motions of the mobile agents as higher order Markov chains. From kinematic

models of mobile agents, one can infer possible geometries of targets’ maneuvers. Since

every maneuver takes time for completion, we interpret maneuvers as higher order Markov

chains. Due to intermittent information, we are not able to capture every erratic maneuver,

but rather try to capture tendencies in the motion of mobile agents. Erratic maneuvers are

not energy efficient, and therefore, represent unnatural behavior. In addition, erratic ma-

neuvers are usually a consequence of poorly designed control systems, and are unwanted

behaviors of agents. Our approach does not require the exact model of evaders nor mea-

surement and process noise, and is applicable to a class of evaders. The only assumptions

on the measurement noise are to be white, zero-mean (a non-zero mean noise can always be

transformed into a zero-mean noise based on the sensor’s characteristics) and with finite

variance (fulfilled for all commercially available sensors). Notice that Kalman Filtering

(KF) and Bayesian Filtering (BF) exploit the (first order) Markov property of a process

being estimated.
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The Bayesian inference is a well established field on its own right along with its draw-

backs (see, for example, the discussions in [12] and [91]). Bayesian approaches use prob-

ability density functions (pdfs), prior and importance distributions (i.e., importance sam-

pling), and can be applied to nonlinear, nonadditive and non-Gaussian settings. Tracking

problems that utilize KF or BF are usually homogeneous (with no inputs). In order to per-

form complex maneuvers and motions, robots need inputs. Consequently, applications of

either KF or BF assume the knowledge of robots’ inputs. Also, KF and BF require fairly

accurate models of noise and evader’s dynamics in order to converge. In real-life applica-

tions, such knowledge is rarely available (e.g., unknown or intelligent evaders). The more

intermittent information become, the greater process noise levels in KF and BF have to be

for the filters to converge and work properly in order to account for the greater uncertainty.

Levels of the process noise might become so great and conceal accurate models of a pro-

cess and noise. Hence, it is questionable whether the accurate modeling is crucial when

applying the conventional filters to scenarios with intermittent measurements.

A target with purely stochastic behavior can be interpreted as a target with a certain

level of intelligence. In such a case, one may consider a game-theoretic approach. A brief

overview of game-theoretic approaches in robotics is given in [12]. Our choice of targets

with random decisions (behaviors) is justified by one of the most important result of game

theory – a saddle point always exists for a zero-sum game. The importance of the infor-

mation available to the players on the outcome of a pursuit-evasion game is investigated

in [92]. From the game-theoretic viewpoint, the goal of a target is to maximize the dis-

tance from the sensors, while the goal of the sensors is the opposite. Since in this section

we are interested in intermittent information, the results of game theory are used merely

for justifying and interpreting strategies and behaviors of sensors and targets (e.g., targets

are not aware of sensors, but perform unpredictable motions). For instance, in order not to

lose a target from its FOV, a sensor makes decisions to prevent the target to slip out of the

sensor’s FOV (a worst-case decision strategy).
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This chapter differs from the large portion of existing literature because intermittent in-

formation is not a stochastic process that agents cannot control. Based on this observation,

it is similar to [17], game theory and the idea of intermittent feedback. Sensors decide

when to obtain new measurements of targets and plan their motion. Hence, we change

the cause and the consequence from the NCS point of view, but the problem remains the

same - how to accurately estimate targets’ positions with the most rational use of expen-

sive resources? The answer to this question leads to a better understanding of intermittent

information concepts.

The remainder of the chapter is organized as follows. Section 3.1 states the problem of

estimation under intermittent information and assumptions considered herein, presents a

novel approach for solving the problem, and provides a stability analysis of the approach.

We compare the estimation performance, computational load, scalability and complexity

of UKF, BF and of our filter under intermittent information in Section 3.3. In Section 3.4

we incorporate our tracking filter in a complex heterogeneous scenario based on the Marco

polo game enhancing the work presented in Chapter 2. Experimental results are presented

in Section 3.5. Finally, we provide a summary in Section 3.6.

3.1 Problem Statement and Assumptions

In order to make this section self contained and since this section has more general as-

sumptions than Chapter 2, we repeat some details already stated in Chapter 2.

We consider a pursuit-evasion game where the set P of N heterogeneous robotic sen-

sors has to detect, track and eventually capture M randomly moving heterogeneous targets

members of the set T . Elements of the sets P and T are denoted Pi and Ti , respectively.

With IP we denote the index set of P , and with IT the index set of T . The game takes

place in a polygonal area-of-interest (AOI) S ⊂ R2 with boundary ∂S. The area S is
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Figure 3.1: Cooperation of UAVs and UGVs illustrating the notation in Chapter 3.

populated by n fixed and convex obstacles {O1, . . . ,On} ⊂ S. The geometry of the i th

pursuer’s platform is assumed to be a convex polygon denoted by Ai , with a configuration

qPi (t) that specifies its position and orientation at time t with respect to a fixed (or inertial)

Cartesian frame FS related to S. Similarly, a FOV of the i th pursuer is assumed to be a

convex set denoted by Bi . For the sake of simplicity, we will use Ai(t) and Bi(t) instead

of expressing them through qPi (t). When modeling targets, position and orientation of the

ith target at time t are comprised in qTi (t). An illustration of the pursuit-evasion game is

given in Figure 2.1.

The problem considered herein can be postulated as follows:

Problem 2 Given a set P of N mobile sensors with dynamics q̇Pi (t) = fi(t, qPi , ui), i =

1, . . . , N , and FOVs {B1(t), . . . ,BN(t)} that are deployed to track, and eventually cap-

ture a set T of M targets with dynamics q̇Tj (t) = gj(t, qTj , uj), j = 1, . . . ,M , find a set

of control policies {u1(t), . . . , uN(t)} and find sampling policies δij(t) ∈ {0, 1} for the

mobile sensors resulting in minimal exposure of sensors and no-escaping targets that are

being tracked. Next, find (or choose from the existing ones) an estimation method that

takes the best use of intermittent measurements and limited knowledge of targets (e.g., in-

telligent and unknown targets) with respect to estimation quality, complexity, scalability
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and computational load of the method.

Note that the estimation method is independent of the sampling policy because intermittent

measurements can be a consequence of environment (e.g., target occlusion) or character-

istics of sensors and communication channels (e.g., collisions and channel throughput). A

sampling policy can be just one of many reasons for intermittent measurements. The sam-

pling policy considered in this section is motivated by the Marco Polo game presented in

Chapter 2.

3.2 Tracking Methodology

We use the stochastic hybrid model of mobile agents derived in Chapter 2 to formalize the

methodology presented in this section. A sensor (pursuer) Pi has the following model:

q̇Pi (t) = ui(t), (3.1)

where ui(t) ∈ R2 is the input of the pursuer Pi. Sensors can be in idle or in tracking mode.

An idle sensor is a sensor not tracking any target at the moment.

Targets (evaders) are modeled as unicycles:

ẊTi (t) = vTi(t) cos θTi (t),

ẎTi (t) = vTi(t) sin θTi (t),

θ̇Ti (t) = ωTi(t), (3.2)

where vTi(t) ∈ [vi,min, vi,max] and ωTi(t) ∈ [ωi,min, ωi,max] are inputs. In our work we

assume that vi,min, vi,max, ωi,min, ωi,max ∈ R for every i ∈ {1, . . . , N}. The position (i.e, the

first two components of qTi ) of the ith target is denoted qpTi . For starters, let us assume that

vTi(t) and ωTi(t) cannot be described probabilistically (i.e., pdfs are not given and cannot

be inferred by via learning methods). The probabilistic model of targets from Chapter 2 is

considered in Section 3.4.
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The targets (3.2) can be considered as a generalization of the Reeds-Shepp car. A dif-

ference is that, with zero linear velocity, targets can rotate while being at the same position.

More generally, a turning radius r(t) is not fixed but is a function of linear and angular ve-

locity, i.e., r(t) = v(t)/ω(t). Hence, the model in (3.2) is fairly general and possesses

behaviors of holonomic (Section 3.4), car-like, and simple dynamical (Section 3.5) mod-

els of vehicles. According to [12], the (shortest) path of the Reeds-Shepp car consists of

circles and lines. Therefore, we approximate targets’ paths with circles where lines are

circles having infinite radius. Using the method explained in [93], a least square algorithm

for fitting a circle to a number of given points is implemented. For more regarding least

square fitting curves refer to [94].

Sensors’ estimation of the ith target’s position is based on the fitting circles (a predic-

tion stage). Our algorithm considers Γi detections, where Γi ≥ 3 is a natural number,

when calculating a fitting circle. Also, targets’ velocities are being estimated from the

same set of detections. In other words, sensors are estimating both targets’ velocities and

positions, while the targets’ orientations are tangents to corresponding fitting circles. It

should be pointed out that last Γi observations are not always taken for estimation. If an

estimate using some older Γi detections is precise enough (comprised in ρj using the ex-

pression given in the algorithm in Figure 3.3), there is no need to perform new estimation.

However, if there is a discrepancy between the current estimate and the latest detection,

the corresponding fitting circle is updated by taking into account more recent detections (a

correction stage using novel information). If even now the estimate is not accurate enough,

obtain new detections until the estimate is accurate enough. Hence, our filter decides when

to obtain new measurements based on the quality of the estimated velocity and position.

This is the adaptive feature of the filter.

A detection can be obtained only if a target is inside a sensor’s FOV, and at time in-

stances that are multiples of Ts. Period Ts accounts for limited sensing and processing

frequencies of pursuers. Idle pursuers make detections of targets entering their FOVs be-

39



Chapter 3. Estimation Under Intermittent Information

cause an idle sensor detects changes occurring in ’Escape Area’ of its FOV (defined with

(3.8)) on every multiple of Ts. The motivation is to decrease processing requirements. If

several targets are entering the FOV, randomly choose which one to follow.

Since we are implementing intelligent pursuers (rational decision makers), the best

strategy for them comes from the game theory approach. Based on the current detection

and the knowledge of the maximum linear velocity of a target, a sensor calculates the time

tesci the ith target needs to leave its FOV (using expression (3.4) and max{|vi,min|, |vi,max|},

where | · | is the absolute value) and, based on that data, makes a new detection. We

name this version of the filter Adaptive Filter. We also develop another version of the

filter based on the fitting circle approach that makes observations of targets periodically.

For that reason, the sensors are not decision makers, but blindly follow targets in this

version. We name this version Periodic Filter. The motivation for this version is the fact

that conventional filters (KF and BF) in literature sample processes periodically; therefore,

a comparison with the existing filters is more relevant. In addition, the sampling period can

easily be varied and the corresponding performance analyzed. For an estimate of targets’

future positions, we use the expected value obtained using fitting circles.

More formally, we have a Markov process Ti given by (2.3) and its position is being

measured by a sensor Pj modeled as follows:

yij(kTs) = Hj(qTi (kTs)) + νj(kTs), (3.3)

where k ∈ {0, 1, 2, . . .}. Function Hj is highly nonlinear since the sensor’s FOV is lim-

ited. From (3.3), it is obvious that measurements could be taken only at multiples of Ts.

The measurement noise in (3.3) is additive and is denoted νj(kTs). The only necessary

assumptions on the noise is to be white and with a finite variance. Instead of kTs, we will

use simply k for denoting time in the remainder of the section. Since our filter does not

require availability of input values, a process noise is not important and therefore neglected

while designing our filter. Since it is not of our interest in this section, observability of the

position qpTi of the ith target being tracked is implicitly assumed.
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After obtaining a new detection at time k, the minimal distance dij(m) at time m from

Ti to ∂Bj (m), where ∂Bj (m) is the boundary of the FOV of Pj at time instant m, is given

by:

dij(m) = inf
b∈∂Bj (m),qpTi

∈{Ti (m)|yji (k)}
{||qpTi − b||}, (3.4)

where || · || represents the Euclidean norm, and {Ti(m)|yji (k)} is the set of points in R2

reachable by the ith target at instant m given the detection yji (k) and m ≥ k. A more

formal treatment of reachable sets is found in [52] and [53].

At any time instant k, the expectation of an estimate of the position of Ti is given as the

expectation of a conditional expectation (so called smoothing property):

E[qTi (k)] = E[E[qTi (k)|{yij′1(k′1), . . . , yij′Γi
(k′Γi)}]], (3.5)

where {j′1, . . . , j′Γi} ⊆ P and k′i ≤ k. It should be pointed out that, based on the accuracy

of the estimate, the set {k′1, . . . , k′Γi} does not have to include the newest Γi detections. In

our approach, expression (3.5) is calculated using the geometric approach. Note that our

design allows for any filter in this calculation. In Subsections 3.3.1 and 3.3.3 we provide

advantages and disadvantages of the conventional filters and the filter we developed. Based

on the given application, one can choose the most appropriate filter. The effect of measure-

ment noise νj is averaged out using Γi > 3 since a circle is uniquely defined with 3 points.

Furthermore, the current velocity (or acceleration) of Ti is estimated based on Γi detections

of the target. Velocities are calculated for intervals between two consecutive observation

and a Least Mean Square (LMS) line is calculated. Hence, the slope of the line represents

the acceleration.

In addition, it is implicitly assumed that sensors exchange their measurements with a

fusion center meaning that the estimation is centralized. The fusion center sends to the

sensors detections of a target they track made by other sensors. This enables decentralized

control of sensors. It should be mentioned that, whenever a sensor is used (no matter if
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the sensor is in the idle or tracking mode), newly obtained information regarding targets

within its FOV are communicated to the fusion center. Although in simulations we assume

no out-of-sequence measurements, if measurements have time stamps, out-of-sequence

measurements do not represents a problem for our filter. However, out-of-sequence or late

measurements might cause evaders to slip out of sensors’ FOV.

A trade-off between energy consumption for motion on one side and the energy con-

sumption for sensing and processing the acquired data on the other side is also taken into

account when designing the Adaptive Filter. The user can put its own preferences and ac-

count for noise in the developed algorithm by adjusting the size of the following areas of

FOVs. ’No Moving Area’ is a central area (around the sensor’s platform) of a FOV such

that, if a detection is obtained within it, the pursuer will not move towards the observed

target. With the size of ’No Moving Area’, comprised in η, we control how much the pur-

suer moves while tracking. If sensing and processing of the gathered information require

high energy consumption relative to energy consumption when moving, the size of ’No

Moving Area’ is decreased (decreased η) to accommodate for that. When a detection of Ti
is obtained by Pj at time instant k outside of its ’No Moving Area’, the following control

policy is applied until the next detection:

uj(t) = K(yij(k)− qPi (t)), (3.6)

where K is a proportional gain and K > 0. Notice that such a control policy yields the ex-

ponentially decreasing distance between Pj and yij(k) until the next detection, i.e., we have

an exponentially stable sensor-target system with yij(k) as the equilibrium point. However,

the exponential stability is replaced with asymptotic stability in realistic applications due

to limited maximal velocities of pursuers (i.e., saturations of actuators).

’Escape Area’ is an area closest to the boundary of a FOV. The area of ’Escape Area’ is

larger (larger ζ) if the measurement noise level is higher (i.e., greater variance of the noise)

in order to prevent a target to escape from the FOV. Therefore, based on the previous

detection, a new detection is obtained when there is a chance that the tracked target enters
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Figure 3.2: Parts of the Field-Of-View of an omnidirectional sensor.

’Escape Area’ in order to slip out of the FOV (using expression analog to (3.4)). ’Escape

Area’ also accounts for the increased uncertainty of sensors towards the boundary of their

FOVs. These two areas can differ from a pursuer to a pursuer, and depend on the target

being tracked. Definitions of the ’No Moving Area’ and ’Escape Area’ for the jth sensor

are:

BNMj (t) = {q ∈ Bj(t) : ||q − qPj (t)|| ≤ ηj}, (3.7)

BEAj (t) = {q ∈ Bj(t) : inf
b∈∂Bj (t)

||q − b|| ≤ ζj}, (3.8)

where ηj and ζj are real numbers determined by the user. Finally, the remaining part of

the FOV is named ’Neutral Area’ and does not have any functionality. Depending on

ηj and ζj , ’Neutral Area’ might not even exist. An illustration of the FOV areas for an

omnidirectional sensor is given in Figure 3.2.

Now we have everything to define the Adaptive Filter’s decision (or sampling policy)
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whether to make a new observation in the next available time instant. The decision δij(k+1)

is a non-analytic {0, 1}-valued function. Hence, we are not able to show the decision in

an analytic form but it is given by the algorithm in Figure 3.3. Notice that the algorithm

includes the moving and information exchange policy of the sensors for completeness. The

exposition of this section is summarized as a block diagram in Figure 3.4.

3.2.1 No-Escape Property of the Approach

When it comes to tracking properties of the adaptive scheme presented in Section 3.2, a

target will almost surely stay in one of the sensors’ FOV once the target enters an idle

sensor’s FOV provided that the sensors are faster than the target. The same is true for

scenarios with multiple targets as long as the number of sensors is equal or greater than

the number of targets. This property is valid because we create a worse-case detection

obtaining policy. Almost surely is because the probability that the measurement noise is

apart from the noise mean more than the width of ’Escape Area’ is zero (of course, if the

width is properly designed based on the finite variance of the noise). A slight technicality,

that is always fulfilled in reality, has to be mentioned here. Sensors’s FOVs must have the

area big enough to allow for appropriate size of ’Escape Area’. The no-escape property is

illustrated in Figures 3.7 and 3.9.

If we define the displacement from tracking sensors’ ’No Moving Areas’ (i.e., the set

distance) to corresponding targets as states of the system and targets’ positions as inputs

to the system, we have a stable pursuers-targets system where new measurements induce

jumps of the state. Let us define the set distance of a vector (or a point) x to a set C as

|x|C = infy∈C{||x − y||}. Recall that sensors are exponentially approaching detections

obtained outside ’No Moving Area’. The region of attraction is the sensors’ FOV. We

model the state of such system in a hybrid manner and analyze its stability (for more

see [55]).
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Theorem 1 Assume that pursuers are faster than targets, N > M and the Adaptive Filter

is implemented. Once a target enters an idle sensor’s FOV, it will almost surely stay under

sensors’ surveillance (i.e., the sensors-targets system is stable almost surely).

Proof 2 We prove this theorem for a one-sensor-one-target case. A generalization to a

multi-agent scenario is straightforward.

Consider a pursuer P and a target T , and let the target enter the pursuer’s FOV at time

k0, i.e., y(k0) ∈ BP(k0). Without loss of generality, take η = 0. Let us define the following

system representing dynamics of the displacement between the sensor and the target using

(3.6):

ė(t) = −Ke(t), t ∈ [ki, ki + 1), i ∈ N0 (3.9)

e(t+) = qP(t)− y(t), t ∈ {k0, k1, ...},

where {k0, k1, ...} is a set of detection times, e(t) = qP(t)−y(k) is the displacement for t ∈

[ki, ki+1), and y(k) is the system input perturbed with noise. From (3.9), e(t) exponentially

decreases to the origin between two consecutive detections. If the filter is properly designed

and the pursuer is faster than the target, we have Pr{y(ki) /∈ BP(ki)|y(k0) ∈ BP(k0)} =

0,∀ki ≥ k0 where Pr denotes probability. Now, take δv = BP(k0) − qP(k0), where δv

denotes δ-vicinity of the origin at time k0, and BP(k0)− qP(k0) is a translation of BP(k0)

to the origin. Also, take εv = BP(t) − qP(t), where t ≥ k0, to be ε-vicinity of the origin.

Now we conclude that once we have e(k0) ∈ δv, it will almost surely yield e(t) ∈ εv,

∀t ≥ k0. Note that BP(t) can be an arbitrary vicinity of the pursuer. Using the definition

of stability on the page 49. of [55], the stability of the sensors-targets system is proven.

Corollary 1 Assuming the conditions of Theorem 1 are met. If all targets are initially

within FOVs of different sensors, then they will almost surely stay within sensors’s surveil-

lance (i.e., the sensors-targets system is stable almost surely).

45



Chapter 3. Estimation Under Intermittent Information

3.3 Simulation Results

3.3.1 Estimation Performance of the Filters

The proposed tracking strategy has been implemented and applied to numerous case stud-

ies, and the estimation quality of targets’ positions has been compared to Unscented Ka-

lman Filter (UKF) and Sampling Importance Resampling PF (SIR PF) or bootstrap PF.

In order to make it concise, this section includes only two case studies to convey our ob-

servations. SIR is not the most progressive of all PFs, but is well studied and frequently

implemented. The implemented PF is capable of dealing with non-periodic observations.

A basic study of PF dealing with intermittent observations as a consequence of having

more targets than sensors could be found in [27]. Between two consecutive observations

there is no information of the inputs. This lack of information is circumvented using the

“zero-order-hold” strategy, i.e., the previous input is used until the new one comes (for a

comprehensive discussion regarding this issue see [17]).

We start the analysis of the filters’ performance with two one-sensor-one-target case

studies. The first case study is simple and the target makes a circular path having almost

constant inputs. The second case study includes a zig-zag path and is very challenging

for estimation. The reasons are the complicated geometry of the path and abrupt changes

of inputs including negative linear and angular velocities and accelerations while turning1.

Our filter is used in the version with periodic sampling and in the version with adaptive

sampling. In all simulations, the minimal possible sampling time Ts is 0.07 s. This period

is the minimal period needed to run simulations in real time. Several outcomes of these

simulations are found in Figures 3.5 and 3.6. The sensor’s radius is 2.3 m and the AOI

is 15 × 15 m2 in both case studies. In addition, the maximal linear velocity of the sensor

is 2 m/s, while the target’s linear velocity attains values between −0.7 and 0.7 m/s and

angular velocity’s values are between −1.5 and 1.5 rad/s.

1Videos of simulations and experiments are at http://marhes.ece.unm.edu/documents/Domagoj/

46



Chapter 3. Estimation Under Intermittent Information

For KF and BF, the first detection is provided through the initialization of those filters,

i.e., the initial state and prior distribution. Therefore, the first detection is not shown in

the corresponding figures, but is counted as a detection for cases with KF and BF. Our

filter initializes itself by making detections in the first three consecutive steps. Since the

initialization is performed only once, this does not present a big increase in number of

detections. Hence, the first three detections are counted as one detection when our filter is

used.

The mean of Root Mean Square Errors (RMSEs) along with the corresponding variance

of 100 Monte Carlo simulations using different filters are presented in Tables 3.1, 3.2,

3.3 and 3.4. Since the implemented noise is Gaussian, the performances of UKF and

PF are quite similar. The performance of our filter is highly competitive with respect to

PF. It should not be forgotten that our filter does not require availability of inputs and

exact modeling, performs faster and skips the estimation process when possible (for more

regarding the latter two properties see Subsection 3.3.3). Therefore, in certain applications

the proposed tracking approach is more suitable than UKF and PF, especially in settings

where modeling is difficult (e.g., due to lack of knowledge) and as the sampling period

increases.

One of the reasons why our filter performs with such a good quality, despite being

deprived of many information that UKF and SIR PF are provided with, is the fact that it

uses Γ samples creating a Γth-order Markov process model of targets’ maneuvers. This

makes our method more robust to overcome measurement noise and missing detections.

The effect of the noise is averaged out through Γ observations. However, our method

brings a certain inertia in the estimate that is sometimes undesirable. This inertia can be

diminished by decreasing Γ.

The sensor measures noisy target positions. The noise, for the sake of simplicity, is

taken to be a white zero-mean Gaussian with the following diagonal covariance matrix

R = diag(r1, r2), where r1 = r2 = 10−2. The use of lower noise levels (smaller r1 and
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r2) results in several times smaller RMSE of our filter comparing to UKF and PF for the

circular path. For higher noise levels, our filter accurately estimates the geometry of the

circular path, but the velocity estimate is significantly deteriorated. For the zig-zag path,

a decrease in the noise level gives a smaller advantage to UKF and PF with respect to our

filter taking RMSE as a criterion.

However, one thing should be pointed out when it comes to the actual implementa-

tion of UKF and PF and the modeled noise levels. As the sampling period increases, we

have to introduce process noise with covariance matrix Q = diag(q1, q2, q3) in order for

the filters to converge. This process noise needs to be increased in order to account for

a higher uncertainty. For instance, in highly intermittent scenarios, we need to use even

Q = diag(10−1, 10−1, 10−1) for UKF and PF. By doing so, we can use a smaller number of

particles for PF and their impoverishment is decreased (for more details about the particle

impoverishment refer to [30]). An increase in the number of particles is computationally

more demanding than an increase of the noise level. For example, more than 10000 parti-

cles have to be used to compensate for the increase in uncertainty without increasing the

level of the modeled noise in order for PF to converge. More particles lead to an increased

running time per second of the PF. When increasing modeled noise, we compensate for the

increased uncertainty so that we can use a smaller number of particles (1000 particles) to

obtain convergence. The Running Time Per Step (RTPS) is 3.5 ms in the case of 1000 par-

ticles, and in the case of 10 times more particles RTPS becomes almost 140 times greater.

On the other hand, overly augmented noise levels lead to greater RMSEs. Hence, intermit-

tent information have to be handled carefully and with a lot of tuning of model parameters

in the case of UKF and PF. The case of PF with 1000 particles is elaborated thoroughly in

Subsection 3.3.3. On the other hand, our filter does not have any convergence problems.

Since the simulations’ duration is Tfinal = 55 s and Ts = 0.07 s, the maximal number

of detections is 786. The statistics of the estimates when the number of observations is

minimal (i.e., the maximal sampling period), based on the sensors’ radius, are also provided
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Table 3.1: A comparison of standard filters with the Periodic Filter for the circular path

Circular Path UKF SIR PF Periodic
# detections 786

RMSE 0.0960 0.0954 0.1546
Variance 4.1 ∗ 10−6 3.6 ∗ 10−6 2.6 ∗ 10−4

# detections 100
RMSE 0.1060 0.1407 0.1405

Variance 4.8 ∗ 10−5 6 ∗ 10−5 2 ∗ 10−4

# detections 31
RMSE 0.1480 0.2084 0.2031

Variance 2.8 ∗ 10−4 2.6 ∗ 10−4 0.0011

# detections 22
RMSE 0.2080 0.2571 0.2697

Variance 0.0022 4.8 ∗ 10−4 0.0059

# detections 17
RMSE 0.4623 0.3352 0.3785

Variance 0.0334 7.4 ∗ 10−4 0.0137

in Tables 3.1 and 3.3. As it can be seen, the Adaptive Filter has almost the minimal possible

number of observations. The Adaptive Filter can approach the minimal possible number of

observations even further, but the actual number depends on the moving-sensing trade-off

determined by the user (and a realization of the noise, of course). The implemented size

of the ’No Moving Area’ puts a rather high cost to the movement. That is the reason for

the above observation. In addition, the Periodic Filter does not give any cost to movement

nor takes the noise into account. In the simulations, we use ηj ∈ [1/4Rj, 3/4Rj] where

Rj is a sensing radius of the jth pursuer. In addition, simulations show that ζj ∈ [3Ts ∗

max{|vi,min|, |vi,max|}, 9Ts ∗max{|vi,min|, |vi,max|}] is a valid choice when tracking the ith

target.
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Table 3.2: Statistics of the Adaptive Filter for the circular path

Circular Path # det. mean # det. Var. RMSE Variance
Adaptive 22.14 0.9392 0.3262 0.0050

Table 3.3: A comparison of the standard filters with the Periodic Filter for the zig-zag path

Zig-Zag Path UKF SIR PF Periodic
# detections 786

RMSE 0.0966 0.0959 0.1459
Variance 4.6 ∗ 10−6 3.6 ∗ 10−6 2.1 ∗ 10−5

# detections 100
RMSE 0.1170 0.1425 0.2687

Variance 6.6 ∗ 10−5 4.3 ∗ 10−5 4.8 ∗ 10−4

# detections 25
RMSE 1.0728 0.8357 0.9156

Variance 0.0133 0.0114 0.0065

# detections 20
RMSE 1.5459 1.1704 1.2350

Variance 0.0509 0.0724 0.0080

3.3.2 Multi-agent Tracking and Filtering Algorithms’ Analysis

After verifying the proposed filter on one-sensor-one-target scenarios, a progressive multi-

agent scenario is implemented. In this scenario, four sensors cooperatively track two tar-

gets whose behavior is purely stochastic. Each target has to visit 10 uniformly distributed

points in the AOI. All targets start within one of the sensors’ FOVs. Targets are not tracked

Table 3.4: Statistics of the Adaptive Filter for the zig-zag path

Zig-Zag Path # det. mean # det. Var. RMSE Variance
Adaptive 25.380 3.0976 1.0044 0.0306

50



Chapter 3. Estimation Under Intermittent Information

by the same sensor during the simulation. Since sensors communicate and collaborate,

any sensor can ’look’ after any target depending on the game progression. However, one

sensor is in charge of only one target at any time. Hence, the idle sensors are available to

take care of upcoming targets. Simulations show that such approach does not allow targets

to escape from the sensors’ FOVs. Centralized access to all observations is assumed in the

implementation. Illustrations of this scenario are given in Figures 3.7. Notice that both

sensors and targets form heterogeneous groups (refer to Subsection 2.2.1). For brevity, the

properties of the sensors and targets are not included herein.

3.3.3 Complexity Analysis

When comparing algorithms, several criteria can be used. We use the Running Time Per

Step (RTPS) and “big O” notation. The former informs about the actual implementation

and is prone to one’s programming skills. Nevertheless, RTPS is useful when comparing

execution times of algorithms applied on actual problems. The second criterion contains

information regarding the potential of an algorithm, i.e., scalability of an algorithm. Re-

sults for both criteria are shown in Table 3.5. The simulations are performed on a computer

with a 2.4GHz processor and 2GB of memory. Our implementation of UKF and PF is in

accordance with the “big O” complexity of these filters in the literature (the literature for

UKF is extensive, and for PF see [95]). According to [93], the number of operations for

computing a fitting curve through Γ points is (a∗Γ+b∗ord)∗ord2 where ord is the order of

the curve and a and b are constants. The order of a curve is the number of generators con-

stituting a basis for the ideal as a vector space. When the curve is a 2D circle, the previous

expression becomes the one in Table 3.5 with ord = 4. Apparently, scalability of the fitting

circle algorithm can be determined with respect to Γ or ord. Scalability of the algorithm is

linear in Γ and cubic in ord. It should be noted that Γ in our simulations is a number up to

20 and that the difference in RTPS when Γ = 3 and Γ = 20 is 0.1 ms. In addition, ord does

not grow rapidly as the space, in which fitting takes place, grows (see [93]). For instance,
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Table 3.5: A complexity comparison of the standard filters with the filter we developed.
RTPSs are obtained with #particles = 1000 for PF, and Γ = 17 for our filter.

Filter
RTPS [s]

“Big O”
Mean Variance

UKF 4.9 ∗ 10−4 1.7 ∗ 10−8 O((#states)3)
SIR PF 0.0098 5.6 ∗ 10−7 O(#particles)

Our Filter 0.0035 4.3 ∗ 10−7 O((Γ + ord) ∗ ord2)

“the curse of dimensionality” is a well-known problem for PFs ( [96]) and a limiting factor

in real-time implementations. Therefore, generalizations of our algorithm to 3D scenarios

are less computationally demanding than generalizations utilizing a PF.

Moreover, our filter has the ability to decrease processing requirements when a new

detection is anticipated with a certain ρ from previous detections. By choosing ρ, the

user can accommodate the filter to the complexity of targets’ maneuvers and decrease

computational requirements while controlling the estimation error. About 10 to 25 % of

detections for the Adaptive Filter does not lead to a computation of a new fitting circle in

the case of the zig-zag path (Figures 3.8(c) and 3.8(d)). For the case of the circular path

and periodic version of the filter, it is between 10 and 35 % (Figures 3.8(a) and 3.8(b)).

These percentages represent significant savings of the processing power needed for other

tasks such as communication, signal processing, path planning, etc.

When it comes to the complexity of multi-agent estimation, the complexity is N ∗

O(filter). Each sensor has to obtain readings and targets’ positions are determined using

one of the above filters for each target.

From Table 3.5 and the previous discussion, it can be concluded that our filter demands

a smaller portion of the processing power than the standard filters and shows better scala-

bility. Furthermore, our filter requires memory for only Γ (about 10) detections while PF

has to keep in memory all particles (1000 in our simulations) and an importance density.

52



Chapter 3. Estimation Under Intermittent Information

3.4 Improving the Marco Polo Game

When a sensor is switched to the pursuit mode in the Marco Polo game from Chapter 2, the

Adaptive Filter is used. It should be mentioned that the capturing strategy from Chapter

2 does not have adaptive sampling and works only on average based on the probabilistic

model of targets. The new approach presented herein provides estimates of each realization

of Markov processes (i.e., targets). Hence, the work herein complements Chapter 2 by

adding estimation and adaptive sampling. Consequently, the capturing strategy is improved

meaning that once the capturing conditions are met and a sensor is deployed to capture a

target, the target is almost always caught due to the no-escape property given in Subsection

3.2.1. The only situations when a target is not caught are when the target is close enough to

the boundary of AOI at the moment the sensor is deployed for capturing, and slips out of the

AOI. In addition, instead of keeping an evader within its FOV as in the previous sections,

a sensor in the pursuit mode uses the prediction of target positions in order to capture

the target. In order to accommodate the Adaptive Filter for the presence of obstacles, we

modify its adaptive sampling policy. Besides the conditions stated in Section 3.2, a new

detection is also made when the prediction of the evader position collides with an obstacle.

The rationale is that, when facing an obstacle, the evader has to make abrupt changes in its

maneuvers.

Snapshots of the improved Marco Polo game are provided in Figure 3.9.

3.5 Experimental Verification of Tracking Methodology

We create three different experimental setups2. In the first setup, one P3-AT (or Pioneer)

robot is the pursuer and the other P3-AT is the evader. This experimental setup is an

example of a nonholonomic evader with the behavior quite similar to the targets used in

2Videos of the experiments are available at http://marhes.ece.unm.edu/documents/Domagoj/
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simulations in Section 3.3.1, i.e., it simply wanders in AOI. Due to the similarity of the

maneuvers of P3-AT robots to the targets in Section 3.3.1, the performance of the Adaptive

Filter is fairly similar to the performance obtained by simulation. Hence, the performance

statistics of the experiments are not provided as they do not bring any additional insight into

the Adaptive Filter performance. This can be inferred from the accompanying video. The

P3-AT robots in all experiments are controlled through the Player/Stage/Gazebo interface.

In the second experimental setup, two P3-AT robots are pursuers and a Rovio robot is

the evader. The pursuers have different linear and angular velocities, and different areas of

FOVs. Rovio possesses both holonomic and nonholonomic behaviors. Since Rovio is a toy

and not an autonomous agent for scientific research, it is controlled by a human operator.

It is hard to control Rovio in a smooth manner and there is not speed control; hence, Rovio

is an example of an evader with quite an erratic behavior. Because of the human operator

and the lack of smooth controllability remotely, this setup presents a real challenge for our

approach. Due to the erratic evader, the estimation quality is decreased as expected. For

more details, refer to the accompanying video.

In the third experimental setup, we use an Ascending Technologies Hummingbird

quadrotor and Rovio. The design and physical properties of a standard Hummingbird

quadrotor are described in detail in [38]. The quadrotor is the pursuer, and Rovio is the

evader. We implemented a PD low level attitude controller for waypoint tracking using

Matlab Simulink and a VICON motion capturing system. Control commands from the at-

titude controller are sent to the quadrotor using wireless X-bee RF modules. Waypoints are

sent via serial communication from the Adaptive Filter to the attitude controller. During the

experiment, height and heading of the quadrotor are kept constant by the attitude controller.

Upon receiving a new waypoint, a ramp is generated in order to keep the smoothness of

the quadrotor trajectories (Figure 3.11).

In Figure 3.10 and 3.12 we provide snapshots of the experiments. In the upper/lower

right corner of the snapshots, the Matlab plots reconstructed from the experimental data are
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included. All experiments verify the no-escape property of the approach. To accommodate

for nonholonomic sensors platforms, and the latency in the link between the computer

running the Adaptive Filter and the Player client on the P3-AT robots, we use ρ = 15Ts ∗

max{|vi,min|, |vi,max|} in order to assure the no-escape property. It is worth of mentioning

that no other modifications to accommodate for experimental settings have been made.

Finally, the VICON motion capturing system is used to emulate on-board sensors.

3.6 Conclusion

In this chapter, we propose a method for adaptive sampling of targets’ positions in order

to rationally use expensive resources in tracking problems. We also develop a predictor-

corrector tracking filter, investigate its properties, and compare its performance under in-

termittent information and its complexity with the state of the art filters (UKF and PF).

Our filter uses geometrical properties of targets’ maneuvers for estimating targets’ posi-

tions. Our filter yields better estimation than UKF as the sampling period increases, and its

performance is comparable to the estimation quality of PFs. Moreover, our filter performs

faster and demands less memory resources than PF; hence, it may be more suitable for

certain on-line estimation problems. In addition, the developed filter requires substantially

less information then the existing filters (no inputs of evaders, no exact model of evaders

and noise). The proposed approach results in no-escaping targets that are being tracked.

Furthermore, our latest results regarding the Marco Polo game are presented, and the track-

ing filter is utilized while capturing targets. At this stage, the Marco Polo game successfully

brings together probabilistic modeling of targets, sensor placement, area surveillance, path

planing in the presence of obstacles and other agents, false alarms, estimation of the tar-

gets’ positions and efficient capturing policy. Finally, our filter is validated experimentally

using heterogeneous agents.

In the future, we plan to improve the fitting circle algorithm. Improvements of the algo-
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rithm in order to estimate targets’ velocities more accurately will lead to better estimation.

An implementation of the tracking filter in 3D scenarios seems a natural way to extend our

work. An experimental setup of the Marco Polo game that will show the full potential of

our testbed and methodologies brought together to solve the problem of intermittent infor-

mation in pursuit-evasion games is ongoing work. Future research regarding the Marco

Polo game is oriented towards further decentralization of the developed methods.
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1: Set parameters Γi, ρj , ηj and ζj for all i ∈ IT and j ∈ IP based on targets’, pursuers’ and
noise properties, preferences and Ts

2: Set time: t = 0, i.e, k = 0
3: Obtain sensors’ readings and make tracking pairs target-pursuer (i, j)
4: For all pairs (i, j) set δij(index) = 1, index ∈ {1, 2}
5: while t ≤ Tfinal do
6: for all Pursuers do
7: if Pj is idle then
8: Scan BEAj (k) for new targets
9: Exchange obtained information with fusion center

10: if New targets are detected then
11: Randomly choose one target (say Ti) and start tracking
12: Set δij(index) = 1, index ∈ {k + 1, k + 2}
13: end if
14: else
15: if δij(k) = 1 then
16: Use corresponding sensor to scan FOV
17: Exchange information (including yij(k)) with fusion center
18: if ||E[qpTi (k)]− yij(k)|| ≥ ρj then
19: Recalculate a fitting circle using last Γi detections
20: if ||E[qpTi (k)]− yij(k)|| ≥ ρj then
21: Set δij(k + 1) = 1
22: end if
23: end if
24: if yij(k) /∈ BNMj (k) then
25: Apply uj(t) given by (3.6)
26: end if
27: if dij(k) ≤ ζj then
28: Set δij(k + 1) = 1
29: end if
30: Make prediction E[qTi (k + 1)]
31: end if
32: end if
33: end for
34: t = t+ Ts, i.e., k = k + 1
35: end while

Figure 3.3: The adaptive sampling rate algorithm developed in Chapter 3 for multi-agent
tracking scenarios.
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Figure 3.4: A block diagram of the methodology developed for multi-agent tracking sce-
narios.
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Figure 3.5: Estimates and actual paths using different filters: (a) An estimate of the circular
path using the Periodic Filter (#det. = 17); and, (b) An estimate of the circular path using
the Adaptive Filter (#det. = 23).
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Figure 3.6: Estimates and actual paths using different filters: (a) An estimate of the zig-zag
path using the Periodic Filter (#det. = 100); (b) An estimate of the zig-zag path using the
Adaptive Filter (#det. = 25); (c) An estimate of the zig-zag path using a UKF filter (#det.
= 25); and, (d) An estimate of the zig-zag path using a PF filter (#det. = 25).
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(a) (b)

Figure 3.7: Snapshots of the multi-agent scenario: (a) The initial state of a cooperative
scenario including 4 sensors and 2 targets. The simulation snapshot is edited in order to
visualize the notation and terminology introduced in Section 3.1; and, (b) The final state of
a cooperative scenario including 4 sensors and 2 targets. Purple squares represent sensor
platforms, purple circles represent the sensors’ FOV boundaries, blue polygons represent
targets, while yellow diamonds represent detections. Red dotted circles (i.e., the circle and
the line) represent fitting circles, red stars are the targets’ waypoints, blue hashed curves
are the targets’ paths, purple hashed curves are the sensors’ paths, green crosses are the
initial positions of the targets and green circles are estimates of targets’ positions.

61



Chapter 3. Estimation Under Intermittent Information

0 5 10 15 20 25 30 35 40 45 50 55
0

0.5

1

1.5

t[s]

no
rm

 o
f e

st
im

at
io

n 
er

ro
r

param = 17, precision = 0.1, noUpdate
mean

 = 0.1273, noUpdate
var

 = 0.0040
RMSE

mean
 = 0.2860, RMSE

var
=0.0069                                       

(a)

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t[s]

no
rm

 o
f e

st
im

at
io

n 
er

ro
r

param = 17, precision = 0.3, noUpdate
mean

 = 0.3182, noUpdate
var

 = 0.0014, 
RMSE

mean
 = 0.2934, RMSE

var
 = 0.0074                                      

(b)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

3.5

t[s]

no
rm

 o
f e

st
im

at
io

n 
er

ro
r

param = 3, precision = 0.1, noUpdate
mean

 = 0.0966, noUpdate
var

 = 0.0017, 
RMSE

mean
 = 1.0553, RMSE

var
 = 0.0288                                      

(c)

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

t[s]

no
rm

 o
f e

st
im

at
io

n 
er

ro
r

param = 3, precision = 0.3, noUpdate
mean

 = 0.1889, noUpdate
var

 = 0.0161, 
RMSE

mean
 = 1.0729, RMSE

var
 = 0.0350                                      

(d)

Figure 3.8: Estimation error in time: (a) A sample of the estimation error for the circular
path using the Periodic Filter with ρ = 0.1 and Γ = 17. The title of the plot comprises
statistics of 50 Monte Carlo simulations; (b) A sample of the estimation error for the circu-
lar path using the Periodic Filter with ρ = 0.3 and Γ = 17. The title of the plot comprises
statistics of 50 Monte Carlo simulations; (c) A sample of the estimation error for the zig-
zag path using the Adaptive Filter with ρ = 0.1 and Γ = 3. The title of the plot comprises
statistics of 50 Monte Carlo simulations; and, (d) A sample of the estimation error for
the zig-zag path using the Adaptive Filter with ρ = 0.3 and Γ = 3. The title of the plot
comprises statistics of 50 Monte Carlo simulations.
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(a) (b)

Figure 3.9: Snapshots of the implemented capturing strategy in the comprehensive Marco
Polo scenario: (a) The UGV painted green is deployed to capture the target located in the
lower-left part of the AOI; and, (b) A snapshot just before the target is captured.

(a) (b)

Figure 3.10: Snapshots of the experiments along with Matlab plots constructed from the
experimental data. Notice the correspondence with the real picture. (a) A snapshot of the
first experimental setup; and, (b) A snapshot of the second experimental setup.
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Figure 3.11: Experimental data of the quadrotor attitude while tracking waypoints provided
by the Adaptive Filter.
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(a) (b)

(c) (d)

Figure 3.12: Snapshots of the experimental setup involving a quadrotor and Rovio. (a) The
beginning of the experiment; (b) Rovio is driving backwards; (c) Rovio is turning; and, (d)
The end of the experiment.
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Stability Under Intermittent

Information

The main limitation of the approach in [39] and [40] is the periodicity of transmission

instants inherited from the standard definition of Lp-gain. Recall that the standard Lp-gain

is not a function of time (i.e., there is no prediction horizon) nor state. To circumvent

this limitation, we devise an input-output triggered approach employing Lp-gains over a

finite horizon in the small gain theorem. Under the term input-output triggering we refer

to self-triggering based on the value of the system’s external input and output in the last

feedback transmission. The triggering event in our approach is violation of the small gain

condition. Notice that Lp-gains over a finite horizon enable prediction of the triggering

event. We point out that state-triggered implementations of the dissipativity-based and

ISS approaches are facilitated by the requirement that storage and Lyapunov functions are

known, respectively. Recall that storage and Lyapunov functions are state-dependent by

definition.

The chapter is organized as follows. In Section 4.1, we provide an example that moti-

vates the results and approach proposed in this chapter. Section 4.2 formulates the problem
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of intermittent feedback under various assumptions. Section 4.3 presents the notation and

definitions utilized in this chapter. The methodology brought together to solve the problem

is presented in Section 4.4. The small gain theorem is employed in Section 4.5 to obtain an

input-output triggered sampling policy. The proposed input-output triggered sampling pol-

icy is verified on a trajectory tracking problem in Section 4.6. Conclusions are in Section

4.7. Proofs and several technical results are included in the Appendix.

4.1 Motivational Example

Using laser-based or radar-based sensors, Autonomous Cruise Control (ACC) technology

allows a vehicle to slow down when approaching another vehicle and accelerate to the

desired speed when traffic allows. Besides reducing driver fatigue, improving comfort and

fuel economy, ACC is also intended to keep cars from crashing [97]. The sampling periods

of ACC loops are typically fixed and designed for the worst case scenario (e.g., fast and

heavy traffic). Besides, these fixed sampling periods are often determined experimentally

and are based on the traditional rules of thumb (e.g., 20 times the time constant of the

dominant pole). Intuitively, the sampling periods of ACC loops should not remain constant

as the desired speed, distance between the cars, the environment (urban on non-urban), and

paths (straight or turns) change. The work presented herein quantifies this intuition.

Consider the trajectory tracking controller in [98] as an example of a simple ACC.

In [98], a velocity-controlled unicycle robot R1 given by

ẋR1 = vR1 cos θR1, ẏR1 = vR1 sin θR1, θ̇R1 = ωR1 (4.1)

tracks a trajectory generated by a virtual velocity-controlled unicycle robot R2 with states

xR2, yR2 and θR2, and linear and angular velocities vR2 and ωR2, respectively. See Figure
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Figure 4.1: An illustration of the trajectory tracking problem considered in Chapter 4.

4.1 for an illustration. The tracking error xp in the coordinate frame {M} of robot R1 is

xp =


xp1

xp2

xp3

 =


cos θR1 sin θR1 0

− sin θR1 cos θR1 0

0 0 1



xR2 − xR1

yR2 − yR1

θR2 − θR1

 . (4.2)

After differentiating (4.2) we obtain:

ẋp =


ωR1xp2 − vR1 + vR2 cosxp3

−ωR1xp1 + vR2 sinxp3

ωR2 − ωR1

 . (4.3)

System (4.3) can be interpreted as a plant with state xp and external inputs vR2 and

ωR2. Take the output of the plant to be y = xp and introduce ωp := [vR2 ωR2]>. The plant

is controlled through control signals vR1 and ωR1. In order to compute vR1 and ωR1, and

track an unknown trajectory (a trajectory is given by vR2(t), ωR2(t) and initial conditions

of xR2, yR2 and θR2), robot R1 needs to know the state of the plant xp and the inputs to R2,

68



Chapter 4. Stability Under Intermittent Information

i.e., vR2 and ωR2. Following [98], choose the following control law:

vR1 = vR2 cosxp3 + k1xp1,

ωR1 = ωR2 + k2vR2
sinxp3
xp3

xp2 + k3xp3, (4.4)

where k1, k2, k3 are positive control gains. Let us introduce u := [vR1 ωR1]>. Proposition

3.1 in [98] shows that the control law (4.4) makes the origin xp = [0 0 0]> of the plant

(4.3) globally asymptotically stable provided that vR2(t), ωR2(t) and their derivatives are

bounded for all times t ≥ 0 and limt→∞ vR2(t) 6= 0 or limt→∞ ωR2(t) 6= 0.

The above asymptotic stability result is obtained assuming instantaneous and continu-

ous information. In real-life applications, continuous access to the values of y and ωp is

rarely achievable. In other words, the control signal u is typically computed using inter-

mittent measurements corrupted by noise. The measurements of the outputs and external

inputs of the plant are denoted ŷ and ω̂p, respectively. In general, as new up-to-date values

of ŷ and ω̂p arrive, the control law may change abruptly. Afterwards, the newly computed

values u are sent to actuators. These values might be noisy and intermittently updated as

well. Hence, the plant is not controlled by u but instead by û. An illustration of such a

control system is provided in Figure 4.2.

A goal of this chapter is to take advantage of the available information from the plant,

i.e., ŷ and ω̂p, and design sampling/control update instants T = {t1, t2, . . .} such that

stability of the control system is preserved. As our intuition suggests, different ŷ and ω̂p

may yield different time instants in T . In fact, the intersampling intervals τ1 = t2 − t1,

τ2 = t3 − t2, . . ., for R1 are determined based on the distance from the desired trajectory

(i.e., ŷ) and the nature of trajectory (i.e., ω̂p). Driven by the desire to obtain intersampling

instants τi’s as large as possible, we adopt a hybrid systems modeling formalism and anal-

ysis in this chapter. Hybrid modeling captures state jumps and permits the use of multiple

models (i.e., switched systems) which in turn can be exploited to maximize intersampling

intervals τi’s. Figure 4.3 contrasts different methods for computing τi’s. The solid blue line
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Figure 4.2: A diagram of a control system with the plant and controller interacting over a
communication network with intermittent information updates. The three switches indicate
that the information between the plant and controller are exchanged at discrete time instants
belonging to a set T .

in Figure 4.3 represents τi’s computed via the methodology devised in this chapter. Appar-

ently, the use of finite horizon Lp-gains (this notion somewhat corresponds to the notion

of individual Lp-gains considered in [99]) produces larger τi’s with respect to the use of

unified gains. Unified gains are simply the maximum of all individual gains of a switched

system. As discussed in [99], unified gains are a valid (although quite conservative) choice

for the Lp-gain of a switched system. However, even such conservative Lp-gains of in-

terconnected switched systems, when used in the small gain theorem, do not suffice to

conclude stability of the closed-loop system. Therefore, one should use the finite horizon

Lp-gains of interconnected switched systems in order to decrease conservativeness, i.e.,

maximize τi’s, when applying the small gain theorem.

4.2 Problem Formulation and Assumptions

Consider a nonlinear feedback control system consisting of a plant

ẋp = fp(t, xp, u, ωp),

y = gp(t, xp), (4.5)
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and a controller

ẋc = fc(t, xc, y, ωc),

u = gc(t, xc), (4.6)

where xp ∈ Rnp and xc ∈ Rnc are the states, y ∈ Rny and u ∈ Rnu are the outputs, and

ωp ∈ Rnωp and ωc ∈ Rnωc are the external inputs or disturbances of the plant and con-

troller, respectively. Notice that y is the input of the controller and u is the input of the

plant. In the control systems such as the above one, one tacitly assumes that the controller

is fed continuously and instantaneously by the output of the plant y, and that the control

signal u continuously and instantaneously drives the plant. However, in real-life appli-

cations these assumptions are rarely fulfilled (see Figure 4.2), and sometimes excessively

demanding since, as we will show here, stability of the closed-loop system can be achieved
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via intermittent feedback.

In order to account for the intermittent knowledge of u by the plant, and of y and ωp

by the controller, we model the links between the plant and controller as communication

networks that cause intermittent exchange of information. More precisely, we introduce

the output error vector e as follows:

e :=

ŷ − y
û− u

 =:

ey
eu

 , (4.7)

where ŷ (respectively, û) is an estimate of y (respectively, u) computed at the controller

end (respectively, the plant end). Hence, u on the right-hand side of (4.5) becomes û while

y on the right-hand side of (4.6) becomes ŷ. The input error vector eω is defined as follows:

eω := ω̂p − ωp, (4.8)

where ω̂p is an estimate of ωp at the controller end. We take this estimate ω̂p to be the exter-

nal input to the controller, i.e., ωc = ω̂p. In scenarios where no estimation is performed, ω̂p,

ŷ and û are simply the most recently communicated values (or transmitted measurements)

of the external input, output of the plant, and control signal. In this chapter, we assume that

these values remain constant between two consecutive updates, i.e.,

˙̂ωp = 0, ˙̂y = 0, ˙̂u = 0, (4.9)

which is known as the zero-order hold strategy [17]. Estimates ŷ and û experience jumps

when new (up-to-date) information arrives, i.e.,

ŷ(t+) = y(t) + hy(t, e(t))

û(t+) = u(t) + hu(t, e(t))

 t ∈ T . (4.10)

It is assumed that the jump times at the controller and plant end coincide. In (4.10), hy

and hu denote jump functions hy : R × Rne → Rny and hu : R × Rne → Rnu . Likewise,

ω̂p may experience jumps when the most recent information arrives. Time instants when
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jumps of ω̂p occur are denoted tδi , i ∈ N, and belong to a set T δ. Consequently, T δ is

a subset of T . Since ω̂p is not a state of the closed-loop system, the corresponding jump

equations for ω̂p(tδ+i ) are omitted.

The standing assumption in this chapter is as follows.

Assumption 1 (standing assumption) The jump times at the controller and plant end co-

incide. The set of sampling instants T δ at which ω̂p changes its value satisfies T δ ⊆ T .

The main problem considered herein can now be stated:

Problem 3 Find the set of sampling instants T = {t1, t2, . . . , ti, . . .} defining the inter-

sampling intervals τ1 = t2 − t1, τ2 = t3 − t2, . . . , τi = ti+1 − ti, to update the values of ŷ,

û and ω̂p such that the closed-loop system (4.5)-(4.6) is stable in some appropriate sense.

Based on the assumptions under which the Problem 3 is solved, different types of

stability are achieved, e.g., stability, asymptotic stability, and Lp-stability (with bias). The

following cases are investigated:

Case 1 The signals û, ŷ and ω̂p are not corrupted by noise, and ωp is constant between

two consecutive tδi ’s belonging to T δ.

Case 2 The signal ω̂p is potentially corrupted by noise, and ωp is arbitrary.

Case 3 The signals û and ŷ are corrupted by noise.

Case 1 represents an idealized environment. When considering more realistic environ-

ments, we expect that there exist τi’s yielding stability in some appropriate sense due to

robustness properties of Lp-stability.
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4.3 Mathematical Preliminaries

4.3.1 Notation

To shorten the notation, we use (x, y) := [x> y>]>. The dimension of a vector x is

denoted nx. Next, let f : R → Rn be a Lebesgue measurable function on [a, b] ⊂ R. We

use

‖f [a, b]‖p :=

(∫
[a,b]

‖f(s)‖pds
)1/p

to denote the Lp norm of f when restricted to the interval [a, b]. If the corresponding norm

is finite, we write f ∈ Lp[a, b]. In the above expression, ‖ · ‖ refers to the Euclidean norm

of a vector. If the argument of ‖ · ‖ is a matrix B, then it denotes the induced 2-norm of

B. Eigenvalues and singular values of a matrix are denoted λi and σi, respectively. Given

x ∈ Rn, we define

x̄ = (|x1|, |x2|, . . . , |xn|),

where | · | denotes the (scalar) absolute value function. Given x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , yn) ∈ Rn, the partial order � is defined as

x � y ⇐⇒ xi ≤ yi ∀i ∈ {1, · · · , n}.

An n-dimensional vector with all entries 1 is denoted 1n. The set An denotes the set of

all n × n matrices and A+
n denotes the subset of all matrices that are symmetric and have

nonnegative entries. Rn
+ denotes the nonnegative orthant. The natural numbers are denoted

N or N0 when zero is included.
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4.3.2 Hybrid Systems

Let {ti}∞i=0 be a sequence of increasing time instants such that 0 < ti+1 − ti for all i ∈ N0,

where t0 is the initial time. Consider the hybrid system

Σδ


ẋ = f δh(t, x, ω)

y = gδh(t, x, ω)

 t ∈
⋃
i∈N0

[ti, ti+1),

x(t+) = hδh(t, x(t)) t ∈ T := {ti : i ∈ N},

(4.11)

with the input (or disturbance) ω, output y, and a piecewise constant and right-continuous

function of time δ : [t0,∞)→ P called a switching signal, where P is an index set. Typi-

cally, P is a bounded subset of a finite-dimensional linear vector space [100]. Even though

our theory does not require countability nor finiteness of P , one can always discretize a

dense and uncountable P for practical purposes. We assume enough regularity on f δh and

hδh to guarantee existence of the solutions given by right-continuous functions t 7→ x(t) for

a given switching signal δ : [t0,∞) → P starting from x0 at t = t0. Jumps of the state x

occur at each t ∈ T . The value of the state after the jump is given by x(t+) = limt′↘t x(t′)

for each t ∈ T . The set of switching times is denoted T δ := {tδi : i ∈ N} and we define

tδ0 := t0 for notational convenience. In this chapter, we assume T δ ⊆ T . Similarly to

τi’s, we define τ δi := tδi+1 − tδi . Notice that the above hybrid model does not prevent jump

and/or switching times from accumulating in finite time, i.e., Zeno behavior. In fact, valid

self-triggered control policies must guarantee absence of Zeno behavior and assure a lower

bound on dwell times (see Remark 4 for more details).

4.3.3 Types of Stability

Definition 8 (stability) For ω ≡ 0 and a switching signal δ, the equilibrium point x =

0 of Σδ is (locally) uniformly stable if there exists a class-K function α and a positive

constant c, independent of t0, such that ‖x(t)‖ ≤ α(‖x(t0)‖) for every t ≥ t0 and for every
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‖x(t0)‖ < c. If this property holds for any initial state x(t0), then Σδ is globally uniformly

stable.

Definition 9 (asymptotic stability) For ω ≡ 0 and a switching signal δ, the equilibrium

point x = 0 of Σδ is (locally) uniformly asymptotically stable if there exists a class-KL

function β and a positive constant c, independent of t0, such that ‖x(t)‖ ≤ β(‖x(t0)‖, t−

t0) for every t ≥ t0 and for every ‖x(t0)‖ < c. If this property holds for any initial state

x(t0), then Σδ is globally uniformly asymptotically stable.

Definition 10 (Lp-stability with bias b) Let p ∈ [1,∞]. For a switching signal δ, the

hybrid system Σδ is Lp-stable with bias b(t) ≡ b ≥ 0 from ω to y with (linear) gain γ ≥ 0

if there exists K ≥ 0 such that for all t0 we have that ‖y[t0, t]‖p ≤ K‖x0‖+γ‖ω[t0, t]‖p +

‖b[t0, t]‖p for all t ≥ t0.

Definition 11 (Lp-stability with bias b over a finite horizon τ ) Let p ∈ [1,∞]. For a

switching signal δ, the hybrid system Σδ is Lp-stable over a finite horizon τ ≥ 0 with

bias b(t) ≡ b ≥ 0 from ω to y with (linear) constant gain γ̃(τ) ≥ 0 if there exists a con-

stant K̃(τ) ≥ 0 such that for all t0 we have that ‖y[t0, t]‖p ≤ K̃(τ)‖x0‖+γ̃(τ)‖ω[t0, t]‖p+

‖b[t0, t]‖p for all t ∈ [t0, t0 + τ ].

Definition 12 (detectability) Let p, q ∈ [1,∞]. For a switching signal δ, the state x of Σδ

is Lp to Lq detectable from (y, ω) to x with (linear) gain γ ≥ 0 if there exists K ≥ 0 such

that for all t0 we have that ‖x[t0, t]‖q ≤ K‖x0‖+ γ‖y[t0, t]‖p + γ‖ω[t0, t]‖p for all t ≥ t0.

Definitions 8 and 9 are taken from [56]. When b(t) ≡ 0, Definition 10 becomes the Lp-

stability definition found in [39]. In addition, Definition 12 is taken from [39]. Lastly,

Definition 11 is motivated by the work in [101].
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Proposition 2 Lp-stability with bias b(t) ≡ b ≥ 0 from ω to y with constant gain γ ≥ 0

and Lp to Lp detectability of Σδ for a switching signal δ imply Lp-stability with bias from ω

to state x for the switching signal δ. The same holds when Lp-stability with bias is replaced

with Lp-stability with bias over a finite horizon.

Proof 3 From the Lp-stability with bias assumption, Definition 10 implies that there exists

K ≥ 0 such that for all t0 we have

‖y[t0, t]‖p ≤ K‖x0‖+ γ‖ω[t0, t]‖p + ‖b[t0, t]‖p,

while Lp to Lp detectability from (y, ω) to x with gain γ′ implies that there exists K ′ ≥ 0

such that

‖x[t0, t]‖p ≤ K ′‖x0‖+ γ′‖y[t0, t]‖p + γ′‖ω[t0, t]‖p

for all t ≥ t0. Then, we obtain

‖x[t0, t]‖p ≤ (Kγ′ +K ′)‖x0‖+ (γγ′ + γ′)‖ω[t0, t]‖p + γ′‖b[t0, t]‖p (4.12)

for all t ≥ t0. This proves the claim.

4.4 Methodology

4.4.1 Modeling Approach

Along the lines of the approach from [39], we write the nonlinear feedback control system

(4.5)-(4.6) as the following interconnected hybrid system:

ẋ = f(t, x, e, ω̂p, eω)

ė = g(t, x, e, ω̂p, eω)

 t ∈
⋃
i∈N0

[ti, ti+1), (4.13a)

x(t+) = x(t)

e(t+) = h(t, e(t))

 t ∈ T , (4.13b)
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f(t, x, e, ω̂p, eω) :=

[
fp(t, xp, gc(t, xc) + eu, ω̂p − eω)
fc(t, xc, gp(t, xp) + ey, ω̂p)

]
; h(ti, e) :=

[
hy(ti, e(ti))
hu(ti, e(ti))

]
(4.14)

g(t, x, e, ω̂p, eω) := f̂p(t,xp,xc,gp(t,xp)+ey ,gc(t,xc)+eu,ω̂p−eω)︸ ︷︷ ︸
≡0 for zero-order-hold estimation strategy

− ∂gp
∂t

(t,xp)− ∂gp
∂xp

(t,xp)fp(t,xp,gc(t,xc)+eu,ω̂p−eω)

︷ ︸︸ ︷
f̂c(t,xp,xc,gp(t,xp)+ey ,gc(t,xc)+eu,ω̂p) − ∂gc

∂t
(t,xc)− ∂gc∂xc

(t,xc)fc(t,xp,gp(t,xp)+ey ,ω̂p)


(4.15)

where x := (xp, xc), and functions f , g and h are given by (4.14) and (4.15). By in-

specting the expression (4.15), one infers that gp and gc have to be piecewise continuously

differentiable in order to write (4.13).

By identifying the switching signal δ with ω̂p, we write (4.13) in the form of a hybrid

system (4.11) as follows:

ẋ = f δ(t, x, e, eω)

ė = gδ(t, x, e, eω)

 t ∈
⋃
i∈N0

[ti, ti+1), (4.16a)

x(t+) = x(t)

e(t+) = h(t, e(t))

 t ∈ T . (4.16b)

The superscript of functions f δ and gδ accounts for the fact that, in general, properties of the

system (4.13) change for different ω̂p. In this chapter, we are interested in changes in Lp-

gains of (4.13) for different ω̂p. The target-pursuit controller in [102] is an example where

different external inputs lead to different types of stability – exponential, asymptotic and

Lp-stability. However, since [102] uses infinite horizon Lp-gains, intersampling intervals

τi’s in [102] are constant for a constant ω̂p, i.e., τi’s do not adapt to changes in ŷ.

The form (4.16) of a closed-loop system is amenable for analysis with the small gain
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theorem. To the best of our knowledge, the form (4.16) is an original modeling approach,

and we are not aware of any application of the small gain theorem to systems that exhibit

both switches and state jumps. For example, applications of the small gain theorem to

jump systems are found in [39] and [103] while an application to switched systems is

found in [99]. In the remainder of this section we prepare the terrain for Section 4.5 where

τi’s are extracted from (4.16).

In Section 4.5, we present sufficient conditions for the interconnected system (4.16) to

be Lp-stable (with bias) from eω to (x, e). Our approach utilizes ω̂p, ŷ, standard Lp-gains

and Lp-gains over a finite horizon to obtain Lp-stability of the closed-loop system. We

develop an approach that does not require availability of Lyapunov or storage functions.

The problem of estimating Lp-gains of nonlinear systems is reportedly a very hard one

(see [101], [104], [40]). A number of results regarding Lp-stability of systems are found

in [105] and [56, Chapters 5 & 6]. However, only for special classes of systems (e.g., affine

in control with a Lyapunov function that satisfies the Hamilton-Jacobi inequality) estimates

of Lp-gains are provided. In addition to presenting methods for calculating Lp-gains from

the exact model of a system (as in [105] and [56]), the authors in [106] and [107] present

experimental and data-driven methods for estimating Lp-gains when the exact model is not

available. Even though the latter methods still lack theoretical proofs or guarantees, they

show good performance in practice.

Based on the similarity between L2-gain calculation problems and optimal control

problems, [101] develops an algorithm for calculating L2-gains over a finite horizon of

nonlinear systems. Under relatively mild conditions on the system of interest (including

continuity and existence of partial derivatives), the algorithm in [101] generates L2-gains

over a finite horizon that provably satisfy the necessary conditions for optimality. In Sub-

sections 4.4.4 and 4.4.5, we devise a novel method to calculate Lp-gains over a finite hori-

zon.
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4.4.2 Why Lp-gains Over a Finite Horizon?

Lp-gains over a finite horizon allow prediction of the triggering event in this chapter. In

addition, as suggested by the example in Section 4.1, they produce less conservative in-

tertransmission intervals τi’s than classical Lp-gains when used in the small gain theorem.

This is due to the fact that Lp-gains over a finite horizon are monotonically nondecreas-

ing in τ . To show this fact, we use the following characterization for p ∈ [1,∞) taken

from [101], [108] and [109]:

[γ̃(τ)]p := sup
ω∈Lp[t0,t0+τ ]

{∫ t0+τ

t0
‖y(t)‖pdt∫ t0+τ

t0
‖ω(t)‖pdt

}
, (4.17)

where ‖x(t0)‖ = 0, ‖ω[t0, t0 + τ ]‖p 6= 0, b = 0 and δ is fixed to be constant to generate an

output y and solution x of Σδ. The case p =∞ is similar.

Proposition 3 The function τ 7→ γ̃(τ) is monotonically nondecreasing.

Proof 4 Take τ > 0 and choose any τ ′ such that τ ′ > τ . According to (4.17), for the

horizon [t0, t0 + τ ′] we can write

[γ̃(τ ′)]p = sup
ω∈Lp[t0,t0+τ ′]

{ ∫ t0+τ

t0
‖y(t)‖pdt+

∫ t0+τ ′

t0+τ
‖y(t)‖pdt∫ t0+τ

t0
‖ω(t)‖pdt+

∫ t0+τ ′

t0+τ
‖ω(t)‖pdt

}
.

Now, choose ω ∈ Lp[t0, t0 + τ ′] such that ω(t) = 0 for t ∈ (t0 + τ, t0 + τ ′]. This yields

[γ̃(τ ′)]p = sup
ω∈Lp[t0,t0+τ ′]

{∫ t0+τ

t0
‖y(t)‖pdt+

∫ t0+τ ′

t0+τ
‖y(t)‖pdt∫ t0+τ

t0
‖ω(t)‖pdt

}
≥

≥ sup
ω∈Lp[t0,t0+τ ]

{∫ t0+τ

t0
‖y(t)‖pdt∫ t0+τ

t0
‖ω(t)‖pdt

}
= [γ̃(τ)]p.

Taking the pth root of the above inequality shows the claim.

Since a standard (i.e., infinite horizon or classical) Lp-gain γ can be defined as

γ := sup
τ≥0

γ̃(τ), (4.18)
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we conclude that γ̃(τ) ≤ γ for all τ ≥ 0.

Recall that the small gain theorem requires γ1γ2 < 1 for stability, where γ1 and γ2 are

the infinite horizon Lp-gains of feedback interconnected systems [56]. Take

γ1γ2 ≥ 1 (4.19)

to be the triggering event that has to be precluded as it imperils closed-loop stability. In

order to determine the time horizon when the triggering event might happen, we use gains

over a finite horizon and trigger jumps in order to preclude the gains to satisfy

γ̃1(τi)γ̃2(τi) ≥ 1. (4.20)

Denoting the maximal such τi as τ ∗i , we want τ ∗i to be as large as possible. Due to the

monotonicity property (4.18), we infer that Lp-gains over a finite horizon yield larger τ ∗i ’s

than standardLp-gains. For example, the τ ∗i that satisfies γ̃1(τi)γ̃2(τi) < 1 is larger or equal

than the τ ∗i that satisfies γ1γ̃2(τi) < 1. Furthermore, some systems might only be Lp-stable

over a finite horizon and not Lp-stable in the standard Lp sense. For example, systems that

are Lp-stable over a finite horizon but not Lp-stable in the standard sense are considered

in Theorem 3. Hence, Lp-gains over a finite horizon will be used instead of Lp-gains in

order to obtain less conservative (i.e., larger) τi in Problem 3. However, applying the small

gain theorem to interconnected switched systems described by their Lp-gains over a finite

horizon is more involved and additional stability conditions have to be met. The following

subsection provides conditions that guarantee Lp-stability of such closed-loop systems via

the small gain theorem when Lp-gains over a finite horizon are employed.

4.4.3 Lp-Stability of Hybrid Systems

The following theorem is the main result of this chapter and is used throughout the re-

mainder of the chapter. It provides sufficient and necessary conditions for Lp-stability of a

system obtained by switching between systems that are Lp-stable over a finite horizon. In
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particular, the theorem holds when switching between Lp-stable systems as well. Recall

that switches (and possible state jumps) occur at time instants in T δ.

Theorem 2 Consider a hybrid system Σδ given by (4.11). Let K ≥ 0 and p ∈ [1,∞). If δ

is such that

(i) There exist constants K̃(τ δi ), γ̃(τ δi ) such that

‖y[tδi , t
′]‖p ≤ K̃(τ δi )‖x(tδ+i )‖+ γ̃(τ δi )‖ω[tδi , t

′]‖p. (4.21)

for all t′ ∈ [tδi , t
δ
i+1] and all i ∈ N0, where τ δi = tδi+1 − tδi , and such that

KM := sup
i∈N0

K̃(τ δi ), (4.22)

γM := sup
i∈N0

γ̃(τ δi ), (4.23)

exist, and

(ii) The condition
∞∑
i=1

‖x(tδ+i )‖ ≤ K‖x(t0)‖, (4.24)

holds,

then Σδ is Lp-stable from ω to y with constantKM(K+1) and gain γM for the given δ. For

p =∞, the same result holds with the constantKMK and gain γM when (4.24) is replaced

with supi∈N ‖x(tδ+i )‖ ≤ K‖x(t0)‖. In addition, if the state x is Lp to Lp detectable, then

conditions (i) and (ii) are both sufficient and necessary.

Proof 5 The proof is in the Appendix.

Remark 1 We point out that condition (i) in Theorem 2 does not simply mean that each

individual system is Lp-stable over τ δi , i ∈ N0, as can be seen from the following. Take

K̃(τ δi ) = 0 in (4.22) and γ̃(τ δi ) = i in (4.23). Obviously, each of the individual systems is

Lp-stable over τ δi , but Σδ is not Lp-stable since γM =∞.
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Remark 2 Condition (4.24) is satisfied when, for example, ‖x(tδ+i+1)‖ ≤ λ‖x(tδ+i )‖, where

λ ∈ [0, 1). This resembles the uniformly globally exponentially stable protocols from [39].

In scenarios with a finite number of time horizons (switches), λ can also be greater or

equal to 1.

4.4.4 Extensions of Previous Work

This subsection relaxes assumptions in the results of [40] and computes Lp-gain over a

finite horizon for the hybrid system related to the output error vector e given by (4.16).

Theorem 3 Assume δ = ω̂p is fixed to be constant. Suppose that there exist A ∈ A+
ne such

that ‖A‖ <∞, and a continuous function ỹ : R× Rnx × Rnω × Rnω → Rne
+ such that the

output error dynamics in (4.16a) satisfies

¯̇e = g(t, x, e, ω̂p, eω) � Aē+ ỹ(t, x, ω̂p, eω) (4.25)

for all e ∈ Rne and all (t, x(t), ω̂p, eω(t)) ∈ S provided that t ∈ [t0, t0 + τ ], where

S ⊆ R× Rnx × Rnω × Rnω . Then, the output error system is Lp-stable from ỹ to e over a

finite horizon τ ≥ 0 for any p ∈ [1,∞], i.e.,

‖e[t0, t0 + τ ]‖p = K̃e(τ)‖e(t0)‖+ γ̃e(τ)‖ỹ[t0, t0 + τ ]‖p, (4.26)

where

K̃e(τ) =

(
exp(‖A‖pτ)− 1

p‖A‖

)1/p

, (4.27)

γ̃e(τ) =
exp(‖A‖τ)− 1

‖A‖
. (4.28)

Proof 6 The proof is in the Appendix.
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Remark 3 While [40, Section V] requires a constant A, i.e., A that is independent of

(t, x, ω̂p, eω), we allow A to change as S changes in the subsequent time horizons (accord-

ing to changes in δ and ŷ). This extension allows us to apply Theorem 3 to a broader class

of functions g.

The above theorem relaxes the positive semidefiniteness requirement posed onA in [40,

Theorem 5.1] leading to less conservative (i.e., larger) τi’s as shown in the remainder of

this section. It also simplifies the problem of finding one such A since A’s now belong

to the larger set A+
ne . This initial A is then used as the initial point in the corresponding

convex programming problem aimed at minimizing ‖A‖ (see Subsection 4.4.5).

Let f : R→ R be a continuous function. The work in [40] constructs a matrix A such

that ‖f(A)‖ = f(‖A‖) for any f by requiring that matrixA is symmetric, with nonnegative

entries and positive semidefinite. While symmetry of the matrix and nonnegative entries

are required throughout [40], positive semidefiniteness is required only in [40, Lemma 7.1].

Exploiting the fact that f in [40, Lemma 7.1] (i.e., in Theorem 3 herein) is the exponential

function f(·) = exp(·) and A is a real symmetric matrix with nonnegative entries, the

following lemmas show that the positive semidefiniteness requirement in [40, Theorem

5.1] can be relaxed for the settings herein.

Lemma 1 Suppose that f(·) = exp(·), and A is a real symmetric matrix. The eigenvalue

of A with the largest absolute value is real and nonnegative if and only if ‖f(A)‖ =

f(‖A‖).

Proof 7 It is well known that real symmetric matrices can be diagonalized, i.e., A =

UDUT where D is a diagonal matrix and U is an orthogonal matrix. Since the spectral

norm is unitarily invariant [110], it is straightforward to show that the following equalities
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hold

‖f(A)‖ = ‖UDUT‖ = ‖D‖ = ‖diag(f(λ1(A)), f(λ2(A)), . . . , f(λn(A))‖ =

= max
k
|f(λk(A))|. (4.29)

On the other hand, using definition of the induced matrix 2-norm ‖ · ‖, we have

f(‖A‖) = f(max
k
|σk|). (4.30)

In addition, real symmetric matrices have the following property

σk = |λk|. (4.31)

Using (4.31), and monotonicity and positivity of the exponential function, we conclude that

expressions (4.29) and (4.30) are equal if and only if the eigenvalue of A with the largest

absolute value is real and nonnegative.

Lemma 2 If A is a symmetric matrix with nonnegative entries, then the eigenvalue of A

with the largest absolute value is real and nonnegative.

Proof 8 This lemma follows from the Perron-Frobenius theory of nonnegative matrices

that can be found in, for example, [111, Chapter 8].

4.4.5 Minimization of ‖A‖ is a Convex Problem

Our goal is to minimize ‖A‖ in order to decrease γ̃e(τ) in (4.28). This leads to less conser-

vative τi’s in Problem 3. According to Theorem 3, we are solving the following optimiza-

tion problem:

minimize ‖A‖ (4.32a)

subject to A ∈ A+
ne (4.32b)

and g(t, x, e, ω̂p, eω) � Aē+ ỹ(t, x, ω̂p, eω) (4.32c)
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for all e ∈ Rne and all (t, x, ω̂p, eω) ∈ S. After analyzing the above optimization problem,

the following proposition is obtained.

Proposition 4 The optimization problem (4.32) is convex.

Proof 9 It is well known that ‖A‖ is a convex function ofA (see [112, Chapter 3]). Now, let

us prove that constraints (4.32b) and (4.32c) yield a convex set. First, a convex combina-

tion of two matrices in A+
ne is again in A+

ne . This is due to the fact that symmetric matrices

with nonnegative elements remain symmetric with nonnegative elements when multiplied

with nonnegative scalars and when added together. Let us now show that inequality (4.32c)

yields a convex set in A. Pick any (t′, x′, ω̂p, e
′
ω) ∈ S (recall that δ = ω̂p is constant by the

assumption of Theorem 3). Now, let us introduce substitutions E(ē) = g(t′, x′, e, ω̂p, e′ω)

and F = ỹ(t′, x′, ω̂p, e
′
ω). Our goal is to show that if

E(ē) � A1ē+ F, (4.33)

E(ē) � A2ē+ F, (4.34)

then

E(ē) � [(1− α)A1 + αA2]ē+ F (4.35)

where α ∈ [0, 1]. Using (4.33) and (4.34), we obtain

(1− α)A1ē+ αA2ē � (1− α)(E(ē)− F ) + α(E(ē)− F ) = E(ē)− F

which is equivalent to (4.35). Since (t′, x′, ω̂p, e
′
ω) was picked arbitrarily from S, therefore

(4.35) holds for all e ∈ Rne and all (t, x, ω̂p, eω) ∈ S . The fact that the intersection of

convex sets is a convex set concludes the proof.
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Figure 4.4: Interconnection of the nominal hybrid system Σδ
n and the output error hybrid

system Σδ
e.

4.5 Input-Output Triggering

We now apply the small gain theorem to the closed-loop system (4.16) in order to solve

Problem 3 for Cases 1, 2 and 3.

We treat (4.16) as a feedback interconnection of the nominal system Σδ
n given by the

first equations in (4.16a) and (4.16b) with the output ỹ obtained when applying Theorem

3, and the output error system Σδ
e given by the second equations in (4.16a) and (4.16b).

The interconnection of Σδ
n and Σδ

e is illustrated in Figure 4.4. The nominal system Σδ
n and

the input error vector eω is something that we cannot change, and the only information

available to us are measurements ω̂p and ŷ. What we are able to design are transmission

instants ti’s. By designing ti’s, we impact Lp-gains over a finite horizon of the output error

system Σδ
e. Recall that when ω̂p changes its value (i.e., switches) at time instant ti, then, for

the sake of convenience, we refer to such ti as tδj where j ≤ i. The possible mismatch in

indexes of ti and tδj is due to the fact that ω̂p does not necessarily change at each ti, i ∈ N.

In what follows, we lay out the main ideas put together in order to devise input-output

triggering.

Since we do not control values of the switching signal δ but merely switching instants,

we assume that Σδ
n is Lp-stable from (eω, e) to ỹ for some p ∈ [1,∞] and all δ ≡ c where

c ∈ P . The corresponding Lp-gains are denoted γδn.
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Let us investigate what happens with Lp-gains of Σδ
n and Σδ

e between two consecutive

switching instants tδi ’s. Since δ is constant between consecutive tδi ’s, the Lp-gain of Σδ
n is

γδn. Notice that Theorem 2 is applicable to Σδ
e with tδi ’s substituted with ti’s (this variant

of Theorem 2 is provided in [113]). In case that jumps of e at ti’s given by the second

equation in (4.16b) satisfy condition (4.24), we proceed as follows. By making sure that

γ̃δe(τi) < κ/γδn, where κ ∈ (0, 1), over all τi’s until the next switch, the small gain condition

γδnγ
δ
e ≤ κ is satisfied. Notice that γδe plays the same role as γM in Theorem 2. Since in this

chapter we are interested in obtaining intersampling intervals τi as large as possible, one

chooses κ as great as possible (e.g., κ = 0.999). Next, we assume that the second equation

in (4.16a) can be written in the form of (4.25), apply Theorem 3 and obtain a stabilizing

sampling policy τi ∈ (0, τ ∗i ] where

τ ∗i =
1

‖Aδ‖
ln

(
κ
‖Aδ‖
γδn

+ 1

)
. (4.36)

This policy yields the closed-loop system (4.16) Lp-stable over a horizon τ δi . In the above

expression we use Aδ instead of A to emphasize that Σδ
e, in general, exhibits switches.

Up to this point we did not take advantage of introducing S in Theorem 3. Let us from

now on require that the projection of S on Rnx × Rnω × Rnω for all t ∈ [ti, ti+1] is a

compact set Ci. Likewise, the corresponding Aδ is denoted Aδi . It is well known that ‖Aδi‖

is a continuous function of the entries of Aδi . If the entries of Aδi are continuous functions

of (x, ω̂p, eω) ∈ Ci, then ‖Aδi‖ attains its maximum and minimum on any compact Ci, i.e.,

‖Aδi‖ < ∞ on Ci. Therefore, the assumption ‖Aδi‖ < ∞ from Theorem 3 can be replaced

by the following assumptions:

i) t ∈ [ti, ti+1],

ii) Ci := {(x(t), ω̂p, eω(t)) : t ∈ [ti, ti+1]} is a compact set, and

iii) ‖Aδi‖ is a continuous function on Ci.
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We now write (4.36) as

τ ∗i =
1

‖Aδi‖
ln

(
κ
‖Aδi‖
γδn

+ 1

)
. (4.37)

Basically, at time instants ti, i ∈ N, we perform the following steps:

1. Obtain measurements ŷ(ti) and ω̂p(ti),

2. Extract state estimate x̂(ti) from the measurements,

3. Update the control law (4.6),

4. Actuate the plant with û(ti),

5. Estimate Ci from (4.5)-(4.6) using reachability analysis (for more refer to [52] and

[53]),

6. Compute τ ∗i using (4.37), and

7. Pick τi ∈ (0, τ ∗i ] such that Zeno behavior is avoided.

Sets Ci’s can be easily (over)estimated when the upper bound on ωp is known. The operator

· is defined in Subsection 4.3.1. Notice that a decrease in ‖Aδi‖ results in an increase in

τ ∗i according to (4.37). Therefore, in cases where more conservative estimates of Ci lead

to larger ‖Aδi‖, we want the estimate of Ci to be as accurate as possible. Notice that Aδi
and γδn are precisely what gives rise to input-output triggering. In other words, Aδi changes

as ω̂p(ti) and ŷ(ti) change, and γδn changes as ω̂p(ti) changes producing different τ ∗i ’s in

(4.37). A remark is in order regarding Step 2. Since Step 2 is essentially an estimation

problem, we assume this problem is solvable. For example, assuming that the controller

can access its state xc, a bijective mapping from xp to y given by (4.5) for any t ≥ t0 makes

this estimation problem solvable.

Lastly, let us investigate conditions that yield absence of Zeno behavior and accumula-

tion points of switching instants. In other words, let us show existence of a positive lower
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bound on τi’s. Before we proceed further, notice that τ ∗i given by (4.37) attains values in

R+ and is a monotonically decreasing function in both ‖Aδi‖ and γδn.

Assumption 2 Assume that supδ≡c,c∈P γ
δ
n ≤ Z, where Z is a positive constant. In addi-

tion, assume that supCi,i∈N ‖A
δ
i‖ ≤ V , where V is a positive constant.

Remark 4 Under Assumption 2, there exists τ ∗min = 1
V

ln
(
κV
Z

+ 1
)
> 0 such that for every

τ ∗i computed via (4.37) the following holds: τ ∗i ≥ τ ∗min. By choosing τi = ρτ ∗i , ρ ∈ (0, 1], in

Step 7, we infer that intervals τi’s between two consecutive transmission instants are lower

bounded by a strictly positive time ρτ ∗min. Hence, the unwanted Zeno behavior [55] and

accumulation of switching instants in finite time (refer to [114] and [100]) are avoided. In

other words, the triggering condition (4.37) does not yield continuous feedback that might

be impossible to achieve.

Existence of an upper bound on τi’s is shown under the following assumption.

Assumption 3 Assume that infδ≡c,c∈P γ
δ
n ≥ Zl, where Zl is a positive constant.

Remark 5 Under Assumption 3, we infer that τ ∗i ’s are upper bounded by

τ ∗max = lim
a↘0

1

a
ln

(
κ
a

Zl
+ 1

)
=

κ

Zl
.

By choosing τi = ρτ ∗i , ρ ∈ (0, 1], in Step 7, we infer that intervals τi’s between two

consecutive transmission instants are upper bounded by a strictly positive time ρτ ∗max.

From a robustness viewpoint one typically prefers γδn = 0 for some δ ≡ c, c ∈ P . However,

notice that even when state x of Σδ
n is detectable from (ỹ, eω, e), this state x can grow

unbounded on the infinite time horizon for some γδn = 0 due to Proposition 2. In other

words, Ci’s expand unbounded which in turn violates the compactness requirement on Ci.
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4.5.1 Input-Output Triggering for Case 1

For Case 1, the hybrid system (4.16) becomes

ẋ = f δ(t, x, e, 0)

ė = gδ(t, x, e, 0)

 t ∈
⋃
i∈N0

[ti, ti+1), (4.38a)

x(t+) = x(t)

e(t+) = 0

 t ∈ T . (4.38b)

In other words, ωp is known accurately at any time and the values of u and y are received

without delays and distortions at transmission instants ti’s.

Theorem 4 For p ∈ [1,∞) assume that

(i) There exists L ≥ 0 such that ωp � L 1nω ,

(ii) There exist Aδ ∈ A+
ne such that ‖Aδ‖ is a continuous function of (x, ω̂p, eω), and

that there exists a continuous function ỹ such that the output error dynamics (4.13a)

satisfies (4.25) for all e ∈ Rne and all (x, ω̂p, eω) ∈ Ci on t ∈ [ti, ti+1] where Ci is a

compact set,

(iii) Σδ
n is Lp-stable from (eω, e) to ỹ for every δ ≡ c, c ∈ P , with gain γδn such that Z

and Zl in Assumptions 2 and 3 exist,

(iv) Sampling policy (4.37) yields x that satisfies (4.24) for given δ : [t0,∞)→ P , and

(v) x is Lp to Lp detectable from (ỹ, eω, e).

Then, the equilibrium point (x, e) = 0 of the closed-loop system (4.38) is globally uni-

formly asymptotically stable for given δ.

Proof 10 Notice that (i) defines P used in (iii). The proof is in the Appendix.
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Theorem 5 For p =∞ replace condition (iv) of Theorem 4 with

(iv) Sampling policy (4.37) yields x that satisfies supi∈N ‖x(tδ+i )‖ ≤ K‖x(t0)‖ for given

δ : [t0,∞)→ P .

Then, the equilibrium point (x, e) = 0 of the closed-loop system (4.38) is globally uni-

formly stable for given δ.

Proof 11 Similarly to the previous proof, the small gain theorem yields

‖(x[t0, t], e[t0, t])‖∞ ≤ K‖(x0, e0)‖

for a constant K ≥ 0 and all t ≥ t0. Since ‖s[t0, t]‖∞ := supt′∈[t0,t] ‖s(t
′)‖ for a right-

continuous signal s(t), the proof is completed.

Remark 6 Let us consider the case where u or y (or both) is the output of a state observer.

In other words, the plant or controller (or both) is fed with an estimate provided by an

observer. Consequently, in (4.38b) we have e(t+) = eo(t) for all t ∈ T where eo(t) is

the observer error. For p ∈ [1,∞), if the observer error satisfies condition (4.24) (e.g.,

exponentially converging observers such as the Luenberger observer for linear systems),

then Theorem 4 holds. For p =∞, if the observer error is bounded, then Theorem 5 holds.

In addition, let us consider the case of lossy communication channels. If there is an upper

bound on the maximum number of successive dropouts, say ND ∈ N, simply use τ ∗i /N
D

as intertransmission intervals in order for Theorem 4 to hold.

Remark 7 In order to account for possible delays introduced by the communication net-

works in Figure 4.2, one can use scattering transformation for the small gain theorem

[115]. Provided that Σδ
n and Σδ

e are input-feedforward output-feedback passive systems

satisfying certain conic relations, the work in [115] makes stability properties of (4.16)

independent of constant time delays and Theorem 4 is applicable again. In light of [43],

these constant time delays are allowed to be larger than the intersampling intervals τi’s.
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4.5.2 Input-Output Triggering for Case 2

Let us rewrite (4.16) as follows:

ẋ = f δ(t, x, e, eω)

ė = gδ(t, x, e, eω)

 t ∈
⋃
i∈N0

[ti, ti+1), (4.39a)

x(t+) = x(t)

e(t+) = 0

 t ∈ T . (4.39b)

Following the same approach as in the previous subsection, we reach the next result:

Theorem 6 When p ∈ [1,∞) assume that the conditions of Theorem 4 are met, and when

p = ∞ assume that the conditions of Theorem 5 are met. Then, the closed-loop system

(4.39) is Lp-stable from eω to (x, e) for given δ.

Proof 12 Following the proof of Theorem 4, we reach (A.22) which is Lp-stability from eω

to (x, e).

4.5.3 Input-Output Triggering for both Case 2 and Case 3

Let us rewrite (4.16) as follows:

ẋ = f δ(t, x, e, eω)

ė = gδ(t, x, e, eω)

 t ∈
⋃
i∈N0

[ti, ti+1), (4.40a)

x(t+) = x(t)

e(t+) = ν(t)

 t ∈ T , (4.40b)

where ν ∈ Rne models measurement noise and/or quantization error. Assume that ‖ν‖ has

an upper bound νB. Using Theorem 3, i.e., expression (A.10), one can verify that Σδ
e is

Lp-stable with bias

b = νB exp η (4.41)
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from ỹ to ewhere η = supδ,i∈N0
‖Aδi‖τ ∗i . Under the hypotheses of Theorem 7, Assumptions

2 and 3 hold (see the proof of Theorem 2). Hence, this supremum exists. The following

theorem concludes this subsection:

Theorem 7 Assume that the assumptions of Theorem 6 hold. Then, the closed loop system

(4.40) is Lp-stable with bias from (eω) to (x, e) for given δ.

Proof 13 First, let us show that the small gain theorem holds for Lp-stability with bias.

Assume we have

‖ỹ[t0, t]‖p ≤ Kn‖x(t0)‖+ γn‖e[t0, t]‖p + γn‖eω[t0, t]‖p,

and

‖e[t0, t]‖p ≤ Ke‖e(t0)‖+ γe‖ỹ[t0, t]‖p + ‖b[t0, t]‖p,

for all t ≥ t0 and such that γnγe < 1. Using the same steps as in the proof of the small

gain theorem in [56], we obtain

‖ỹ[t0, t]‖p ≤
1

1− γnγe
[γn‖eω[t0, t]‖p +Kn‖x(t0)‖+ γnKe‖e(t0)‖+ γn‖b[t0, t]‖p]

for all t ≥ t0. For ‖e[t0, t]‖p we obtain an analogous inequality. Using the fact that

‖(ỹ, e)[t0, t]‖p ≤ ‖ỹ[t0, t]‖p + ‖e[t0, t]‖p, we obtain

‖(ỹ, e)[t0, t]‖p ≤ K‖(x0, e0)‖+ γ‖eω[t0, t]‖p +K1‖b[t0, t]‖p

for all t ≥ t0 where K,K1, γ ≥ 0. Notice that the above expression is equivalent to (A.20).

Therefore, the small gain theorem holds for Lp-stable systems with bias. The remainder of

the proof follows the proof of Theorem 4.

Remark 8 Noisy measurements can be a consequence of quantization errors. According

to [116], interconnections of systems with linear Lp-gains prone to quantization errors

do not yield closed-loop systems with linear Lp-gains. Hence, Lp-stability with bias in

Theorem 7 cannot be relaxed without contradicting the work in [116].

Remarks 6 and 7 are applicable to both Case 2 and Case 3.

94



Chapter 4. Stability Under Intermittent Information

4.6 Case Study - Trajectory Tracking

In this section, we apply the input-output triggered update policy (4.37) to the trajectory

tracking controller presented in Section 4.1.

Since the controller (4.4) is not a dynamic controller, we have fc ≡ 0. Next, we take

xc = (vR1, ωR1) and

u = gc(t, xc) = xc. (4.42)

Recall that the states of the plant (4.3) are measured directly, i.e.,

y = gp(t, xp) = xp, (4.43)

and assume that the communication network for transmitting the control input (vR1, ωR1)

to the actuators ofR1 can be neglected due to on-board controllers. Because of the absence

of the communication network for transmitting u and fc ≡ 0, we have that eu ≡ 0. Conse-

quently, we can exclude xc from x and take x = xp. Notice that fp is given by (4.3). Recall

that the external input is ωp = (vR2, ωR2). Now we have

e = x̂− x = [e1 e2 e3]>, (4.44)

and

eω = ω̂p − ωp = [eω,1 eω,2]>. (4.45)

After substituting (4.3), (4.4), (4.42), (4.43), (4.44) and (4.45) into (4.14) and (4.15), we

obtain (compare with expression (4.16))

ė = −ẋ =

[
−Q−P (x2+e2)x2−k3(x3+e3)x2+R+k1(x1+e1)−S

ω̂R2x1+P (x2+e2)x1+k3(x3+e3)x1−T
eω,2+P (x2+e2)+k3(x3+e3)

]
︸ ︷︷ ︸

=gδ(t,x,e,eω)=−fδ(t,x,e,eω)

(4.46)
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and (compare with expression (4.25))

¯̇e �
[

k1 k2|v̂R2|M2 max{|v̂R2|,k3M2}
k2|v̂R2|M2 k2|v̂R2|M1 max{k2|v̂R2|,k3M1}

max{|v̂R2|,k3M2} max{k2|v̂R2|,k3M1} k3

]
︸ ︷︷ ︸

Aδi=initial point for the convex program (4.32)

ē+

+

[
k2|v̂R2|x2

2+|k1x1+eω,1 cosx3−ω̂R2x2−k3x2x3|
k2|v̂R2x1x2|+|ω̂R2x1+k3x1x3−T |

k2|v̂R2x2|+|eω,2+k3x3|

]
︸ ︷︷ ︸

ỹ(t,x,ω̂p,eω)

(4.47)

where

P = k2v̂R2
sin(x3 + e3)

x3 + e3

,

Q = ω̂R2x2,

R = v̂R2 cos(x3 + e3),

S = (v̂R2 − eω,1) cosx3,

T = (v̂R2 − eω,1) sinx3,

and |x1| ≤ M1, |x2| ≤ M2. Constants M1 and M2 are obtained from the compact sets Ci’s

(see the next paragraph for more details about computing M1 and M2). We choose k1 =

1.5, k2 = 1.2 and k3 = 1.1. In addition, ωp takes values in [−3, 3]×[−3, 3]. Since scenarios

with both Case 2 and 3 are more realistic, this section includes numerical results for such

a scenario. When emulating noisy environments, we use eω ∈ U([−0.3, 0.3]× [−0.3, 0.3])

and ν ∈ U([−0.15, 0.15]× [−0.15, 0.15]× [−0.15, 0.15]) where U(C) denotes the uniform

distribution over a compact set C.

Before presenting numerical results, let us verify that the hypotheses of Theorem 7 hold

and provide details for Steps 1-7 (these steps are found below expression (4.37)). Since the

upper bound on ωp is known, we confine measurements ω̂p to the same set, i.e., δ ∈ P =

[−3, 3] × [−3, 3]. Hence, hypothesis (i) holds. In other words, if we obtain ω̂p(ti) 6∈ P

due to measurement noise, we use the closest value in P (with respect to the Euclidean

distance) for ω̂p(ti). Using such ω̂p(ti) and ŷ(ti), we update control signal u(ti). Notice

that the second and the third component of Ci belong to compact sets [−3, 3]× [−3, 3] and
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[−0.3, 0.3] × [−0.3, 0.3], respectively. The first component of Ci is computed as follows

(i.e., this is Step 5). Utilizing ŷ(ti), we obtain x̂(ti) ∈ ŷ(ti)±[−0.15, 0.15]×[−0.15, 0.15]×

[−0.15, 0.15]. Starting from this x̂(ti), and due to the fact that u(ti) is the linear and angular

velocity of R1 and remains constant until ti+1, we readily obtain reachable states x̂(ti+ τi)

for any τi ≥ 0 using u(ti) and the upper bounds on ωp. Inspecting the form of Aδi in (4.47),

we infer that the first two components of x are needed for (4.47) to hold on any Ci. Due

to the properties of �, we choose the maximum values of |x1| and |x2| in Ci denoted M1

and M2, respectively. Since Aδi and ỹ are continuous functions, we infer that hypothesis

(ii) is fulfilled. Combining the approach of [101] and the power iterations method [106],

we estimate L2-gains Σδ
n over P and obtain Z = 96 and Zl = 9. Hence, hypothesis (iii)

holds. Hypothesis (iv) is verified as the simulation progresses for given δ : [t0,∞) → P .

In case hypothesis (iv) may get violated, simply decrease τi’s in Step 7 by decreasing ρ (see

Remark 4). We point out that ρ = 1 was used in the simulations in this section. Finally,

hypothesis (v) is inferred from (4.46) and (4.47) as follows. It can be shown that

‖x‖2 ≤ k
(
‖ỹ‖2 + ‖(e, eω)‖2

)
for any k ≥ 2. Integrating both sides of the last inequality over [t0, t] for any t ≥ t0 and

taking the square root, yields

‖x[t0, t]‖2 ≤
√
k‖ỹ[t0, t]‖2 +

√
k‖(e, eω)[t0, t]‖2.

In other words, the state x of the system Σδ
n is L2 to L2 detectable from (e, eω, ỹ).

In the simulations, we use ωp(t) = (1, 1)t[0,2.26) + (0.6, 0.15)t[2.26,9.25) + (2, 2)t[9.25,12],

where tI is the indicator function on an interval I, i.e., tI = t when t ∈ I and zero

otherwise. The corresponding L2-gains Σδ
n are as follows: γ(0.6,0.15)

n = 22, γ(1,1)
n = 53

and γ(2,2)
n = 56. In order to illustrate Theorem 7 and the mechanism behind (4.37), we

superpose a continuous signal eω(t) ∈ [−0.3, 0.3]× [−0.3, 0.3], where t ∈ [0, 12], onto the

above ωp(t), and update the control law with ω̂p being (0.6, 0.15), (1, 1) or (2, 2) accord-

ingly. This way, we are able to use a fixed γδn between two switches so that the impact of
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changes in ŷ on τi’s is easier to observe. The obtained numerical results are provided in

Figure 4.5. As can be seen from Figure 4.5, intersampling intervals τi’s tend to increase as

‖x‖ approaches the origin becauseM1 andM2 decrease. In addition, the abrupt changes of

τi at 2.26 s and 9.25 s, visible in Figure 4.5(c), are the consequence of the abrupt changes

in ω̂p. In other words, τi’s adapt to the changes in ω̂p. This adaptation of τi’s follows

from (4.37) where individual gains are considered instead of the unified gain [99]. The

simulation results obtained using the unified gain supδ≡c,c∈P γ
δ
n = Z = 96 achieved for

δ ≡ (3, 3) and the corresponding A(3,3)
i in (4.37) are shown in Figure 4.6. Apparently, the

use of the unified gains decreases τi’s, does not allow for adaptation of τi, and yet does

not necessarily yield stability of the closed-loop system since (4.24) does not have to hold

(a similar observation is found in [99]). Consequently, the number of transmissions in the

scenario depicted in Figure 4.5 is 580 while in the scenario depicted in Figure 4.6 is 1377.

Finally, it should be mentioned that oscillations of x in Figures 4.5(a) and 4.6(a) are an

inherited property of the controller, and not a consequence of intermittent feedback.

4.7 Conclusion

In this chapter we present a methodology for input-output triggered control of nonlinear

systems. Based on the currently available measurements of the output and external input

of the plant, a sampling policy yielding the closed-loop system stable in some sense is

devised. Using the formalism of Lp-gains and Lp-gains over a finite horizon, the small

gain theorem is employed to prove stability, asymptotic, and Lp-stability (with bias) of the

closed-loop system. Different types of stability are a consequence of different assump-

tions on the noise environment causing the mismatch between the actual external input

and output of the plant, and the measurements available to the controller via feedback.

The closed-loop systems are modeled as hybrid systems, and a novel result regarding Lp-

stability of such systems is presented. Finally, our input-output triggered sampling policy
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is exemplified on a trajectory tracking controller for velocity-controlled unicycles.

The future work is dedicated to applying scattering transformation between the con-

troller and plant in order to eliminate detrimental effects of delays. Furthermore, actuators

with saturation will be analyzed. In order to obtain larger intertransmission intervals, zero-

order hold estimation strategies will be replaced with model-based estimation of control

signals and plant outputs. Finally, we expect our results (with slight modifications) to hold

for ISS of hybrid systems.
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Figure 4.5: A realistic scenario illustrating input-output triggering: (a) States x of the
tracking system; (b) Norm of (x, e); (c) Values of intersampling intervals τi’s between two
consecutive transmissions. Red stems indicate time instants when changes in δ happen;
and, (d) A detail from Figure 5.4(c).
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Figure 4.6: A realistic scenario illustrating input-output triggering using the unified gains:
(a) States x of the tracking system; (b) Norm of (x, e); and (c) Values of intersampling
intervals τi’s between two consecutive transmissions. Red stems indicate time instants
when changes in δ happen.
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Chapter 5

Optimal Self-Triggering

Recent years have witnessed an increasing interest in event-triggered implementations of

control laws (refer to Chapter 4). Many works, such as [45], [46], [42], [47], [117] and [48],

replace the traditional periodic paradigm, where up-to-date information are transmitted and

control laws are executed in a periodic fashion, with the event-triggered paradigm. In the

event-triggered paradigm, one defines a desired performance, and sampling (i.e., transmis-

sion of up-to-date information) is triggered when an event, called a triggering event, rep-

resenting the unwanted performance occurs. The work in [46] successfully applies event-

triggering to control, estimation and optimization tasks. A variant of event-triggering,

known as self-triggering, uses the current sampling instance to predict and preclude an

occurrence of the triggering event (refer to [46], [47] and [48]). In comparison with event-

triggering, self-triggering decreases requirements posed on sensors and processors in em-

bedded systems. There is also a state-triggered variant of self-triggering that exploits the

value of the system state in the last feedback transmission [45]. In order to simplify the

presentation of this chapter and improve readability, we refer to all these paradigms sim-

ply as intermittent feedback. This term is found in, for example, [3] and [4]. Intermittent

feedback is motivated by the rational use of expensive resources at disposition in an ef-

fort to decrease energy consumption, processing and sensing requirements. Consequently,
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autonomy and life span of the components increase.

At the moment, the research community is interested in extending intersampling inter-

vals as much as possible without taking into account a deterioration in the performance due

to intermittent feedback. In cases where energy consumption for using sensors, transmit-

ting the obtained information, and executing control laws is relatively inexpensive com-

pared to the slower convergence and excessive use of control power, extending intersam-

pling intervals is not desirable. For instance, think of an airplane driven by an autopilot

system designed to follow the shortest path between two points. Any deviation from the

shortest path caused by intermittent feedback increases total fuel consumption. This in-

crease in fuel consumption is probably more costly than the cost of energy saved due to

intermittent feedback (i.e., a decrease in energy consumption due to obtaining up-to-date

measurements, transmitting them to controllers, and executing control laws less often). In

this chapter, we encode these energy consumption trade-offs in a cost function, and design

an Approximate Dynamic Programming (ADP) approach that yields optimal intertrans-

mission intervals with respect to the cost function.

The main contributions of this chapter are threefold: a) formulation of the optimal self-

triggering problem as a Dynamic Programming (DP) problem; b) employment of Particle

Filters (PFs) fed by intermittent feedback to account for partially observable states; and c)

formulation of properties that successful approximation architectures in ADP approaches

satisfy. To the best of our knowledge, the problem of optimal intermittent feedback has yet

to be addressed.

The remainder of the chapter is organized as follows. Section 5.1 presents the problem

of optimal intermittent feedback and assumptions under which the problem is solved. The

methodology brought together to solve the problem is presented in Section 5.2. The pro-

posed methodology is verified on a trajectory tracking controller in Section 5.3. Finally,

conclusions are drawn in Section 5.4.
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5.1 Problem Statement and Assumptions

Consider a time-invariant nonlinear feedback control system consisting of a plant

ẋp = fp(xp, u, ωp),

y = gp(xp), (5.1)

and a controller

ẋc = fc(xc, y, ωc),

u = gc(xc) (5.2)

where xp ∈ Rnp and xc ∈ Rnc are the states, y ∈ Rny and u ∈ Rnu are the outputs, and

ωp ∈ Rnωp and ωc ∈ Rnωc are the external/exogenous inputs or disturbances of the plant

and controller, respectively. Notice that y is the input of the controller, and u is the input

of the plant. Let us denote the compound state of the closed-loop systems (5.1) and (5.2)

by x = (xp, xc) where x ∈ Rnx .

In the above control system, one tacitly assumes that the controller is fed continuously

and instantaneously by the output y and the external input ωp of the plant. However, in real-

life applications this assumption is rarely fulfilled, and sometimes excessively demanding

since stability of closed-loop systems can be achieved via intermittent feedback. For ex-

ample, extremely fast processing units, sensors and communication devices are needed in

order to emulate continuous and instantaneous feedback using digital technology. At the

same time, intermittent feedback has detrimental effects on the performance of the control

loop.

In order to account for the intermittent knowledge of y and ωp by the controller, we

model the links between the plant and controller as communication networks that cause

intermittent exchange of information. More precisely, we introduce the output error vector

e as follows:

e(t) := ŷ(t)− y(t) (5.3)
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Figure 5.1: A diagram of a plant and controller with discrete transmission instants and
communication channels giving rise to intermittent feedback.

where ŷ is an estimate of y performed from the perspective of the controller, and the input

error vector eω as follows:

eω(t) := ω̂p(t)− ωp(t) (5.4)

where ω̂p is an estimate of ωp from the perspective of the controller. For the sake of

simplicity, we take ŷ and ω̂p to be the most recently communicated values (or transmitted

measurements) of the output and external input of the plant. This zero-order-hold strategy

is commonly used for estimation and control under communication network constraints

[17]. Now we introduce T := {ti : i ∈ N0} as the set of time instants when outputs and

externals inputs of the plant are transmitted over communication networks. Finally, many

control laws are designed such that ωc = ω̂p. Examples are trajectory tracking controllers

as in [47], [117] and [98]. An illustration of a control system indicating the communication

channels that cause intermittent information is provided in Figure 5.1.

Next, we want to minimize the following cost function V : Rnx → R that captures

performance vs. energy trade-offs

Vτi(x0) = E
eω

{
∞∑
i=1

γi
[ ti∫
ti−1

(xTpQxp + uTRu)dt+ S

︸ ︷︷ ︸
l(xp,u,τi)

]}
(5.5)
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over all sampling policies τi and for all initial conditions x0 ∈ Rnx . In addition, γ ∈ (0, 1)

is a discount factor that makes the sum (5.5) finite provided that l(xp, u, τi) is bounded over

all [ti−1, ti] where ti ∈ T and

ti = ti−1 + τi−1. (5.6)

For clarity, we use τi instead of τ(ŷ(ti), ω̂p(ti)), but one has to keep in mind that, in general,

intersampling intervals τi’s depend on the most recently transmitted information from the

plant, i.e., on ŷ(ti) and ω̂p(ti). In addition, Q and R are positive definite matrices, and

S ∈ R such that S ≥ 0 is the cost incurred for sampling y and ωp, transmitting ŷ and ω̂p,

and updating the control signal u. In (5.5), the conditional expectation over a stochastic

signal eω is denoted E
eω

.

The main problem considered herein can now be stated:

Problem 4 For the system (5.1) and (5.2) with values of ω̂p and ŷ received at ti, i ∈ N0,

find time intervals τi’s until the next transmission instants such that (5.5) is minimized.

We solve the above problem under the following assumptions:

Assumption 4 ŷ is corrupted by measurement noise.

Assumption 5 ω̂p is corrupted by measurement noise, and ωp is arbitrary between two

consecutive ti’s.

Due to these assumptions, we have to deal with partially observable states (see Subsection

5.2.5 for more details).
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5.2 Methodology

This section presents the tools brought together to solve Problem 4 under Assumptions 4

and 5. Starting from the input-output triggering that provides maximal stabilizing inter-

sampling intervals, we find optimal τ ∗i ’s for the cost function (5.5) resorting to ADP and

PF.

5.2.1 Input-Output Triggering via the Small Gain Theorem

Building on the small gain theorem, we develop input-output triggering in Chapter 4. In

other words, based on the currently available but outdated measurements of the outputs

and external inputs of a plant, a simple expression for when to obtain new up-to-date mea-

surements and execute the control law is provided. The details of this approach are out of

scope of this chapter, and not needed in order to follow the remainder of the chapter. In fact,

with slight modifications, our ADP approach is applicable to any self-triggered sampling

policy (e.g., [45], [46], [47] and [48]). Essentially, our input-output triggered sampling

policy outputs maximal allowable intersampling intervals τmax
i ’s that provably yield stable

closed-loop system (5.1) and (5.2). Starting from these τmax
i ’s, the work presented herein

finds

τ ∗i ∈ [0, τmax
i ] (5.7)

that minimize (5.5). Because we know the upper bounds τmax
i ’s of stabilizing sampling

policies, τ ∗i ’s obtained in this chapter provably stabilize the plant. A comprehensive treat-

ment of the problem whether ADP solutions of optimal problems yield stability can be

found in [118].

107



Chapter 5. Optimal Self-Triggering

5.2.2 Dynamic Programming

Notice that the cost function (5.5) has the standard DP form. Let us now introduce a state

transition function f that maps x(ti−1), u(ti−1) and ω̂p(ti−1) to x(ti) given some eω over

[ti−1, ti], i.e.,

x(ti) = f(x(ti−1), u(ti−1), τi−1, ω̂p(ti−1), eω). (5.8)

Due to intermittent feedback and presence of nonlinearities in the plant and controller,

the state transition function over τi’s, in general, cannot be given in closed form with, for

example, a difference equation [36]. This is a typical impediment one faces when analyzing

nonlinear systems under intermittent feedback. Therefore, in general, the state transition

function (5.8) needs to be simulated using (5.1), (5.2), ŷ(ti−1), ω̂p(ti−1) and eω over time

horizon τi−1.

Next, let us assume that eω is a stationary stochastic process. Consequently, since we

consider the infinite horizon problem (5.5) and a time-invariant control system (5.1) and

(5.2), τi is not a function of ti. Hence, we simply write τ instead of τi in the remainder

of the chapter. Solving the DP problem of minimizing (5.5) backwards through time is

combinatorially impossible since the state space x in (5.5) is uncountable. Therefore, we

write the stochastic control problem of minimizing (5.5) over τ in its equivalent form

known as the Hamilton-Jacobi-Bellman equation

V ∗(z) = inf
τ∈[0,τmax]

(
l(z, u, τ) + γ E

eω
{V ∗(f(z, u, τ, ω̂p, eω))}

)
(5.9)

where V ∗(z) is called the optimal value function (or optimal cost-to-go function), and

represents the cost incurred by an optimal policy τ ∗ when the initial condition in (5.5) is

z. It is well known that V ∗ is the unique fixed point of (5.9). Therefore, the problem of

minimizing (5.5) boils down to finding V ∗ in (5.9).

For notational convenience, we introduce the Bellman operatorM as

Mg = (Mg)(z) = inf
τ∈[0,τmax]

(
l(z, u, τ) + γ E

eω
{g(f(z, u, τ, ω̂p, eω))}

)
(5.10)
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for any g : Rnx → R. Since γ ∈ (0, 1), it can be shown thatM is a contraction, i.e.,

‖Mu−Mv‖s ≤ γ‖u− v‖s (5.11)

where ‖v‖s = supz∈Rnx v(z). This contraction result is found in, among others, [64, Propo-

sition 3.9.2] and [119]. The set B of all bounded, real valued functions with the norm ‖ · ‖s
is a Banach space. Therefore, for each initial V 0 ∈ B, the sequence of value functions

V n+1 =MV n =Mn+1V 0 converges to V ∗.

Due to the “curses of dimensionality”, solving (5.9) for V ∗(z) or iterating an initial V 0

is deemed intractable for most of the problems of interest; hence, we employ ADP. In what

follows, our goal is to find an approximation V̂ ∗ of V ∗.

Two remarks are in order. First, it can be shown that the problem of finding an optimal

τ ∗ for each state in (5.9) is non-convex. However, since τ is confined to a rather small

compact set [0, τmax], we utilize gradient search methods with constraints starting from

different initial points in order to obtain τ ∗. Second, the conditional expectation E
eω

in

(5.9) can be obtained in closed form only for special cases. Otherwise, it can be calculated

numerically by replacing the integral with a sum using a quadrature approximation. In

Section 5.3, we use the Simpson formula [120].

5.2.3 Approximate Dynamic Programming - Value Iteration

Among a number of methods in ADP, we choose the Value Iteration (VI) method for its

simplicity and a wide spectrum of applications. Notice that B is an infinite dimensional

vector space, meaning that it takes infinitely many parameters to describe V ∗. Therefore,

one introduces an approximate value function V̂ i of V i where i ∈ N0. Then, the VI method

iteratively appliesM to an approximate value function V̂ 0 until ‖V̂ i+1 − V̂ i‖s < ε where

ε > 0. Approximate value functions V̂ i, i ∈ N0, can be represented in finite parameter

approximation architectures such as neural networks (NNs). Note that it is not possible to
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obtain true value functions V i’s but only their approximations; hence, we write V̂ i instead

of V i. Basically, VI performs

V̂ i+1 =MV̂ i, (5.12)

until

‖V̂ i+1 − V̂ i‖s < ε. (5.13)

In order to calculate V̂ i+1 in (5.12), we need to apply (5.10) over all z ∈ Rnx . Ob-

viously, this is computationally impossible since Rnx contains uncountably many points.

Therefore, many ADP approaches focus on a compact subset Cx ⊂ Rnx , choose a finite set

of points X ⊂ Cx, and calculate V̂ i+1 only for the points in X . Afterwards, the values of

V̂ i+1 for Cx \ X are obtained via some kind of interpolation/generalization.

5.2.4 Approximation Architecture

The problem of choosing an approximation architecture that fits V̂ i+1 to V̂ i+1(X ) and,

at the same time, is able to interpolate/generalize for V̂ i+1(Cx \ X ) appears to be crucial

in order for ADP to converge. It is considered that ADP in not converging when either

the stopping criterion (5.13) is never reached (refer to [119] and [121]) or V̂ ∗ is not an

accurate approximation of V ∗ [122]. The latter criterion is concerned with suboptimality

of the obtained solution. In this chapter, we focus on the former deferring suboptimality

analyses for future work.

It appears that the key property that has to be preserved by an approximation architec-

ture is the contraction property (5.11) (refer to [119], [121] and [123]). In [119], the author

classifies function approximators as expansion or contraction approximators. Expansion

approximators, such as linear regressors and NNs, exaggerate changes on Cx\X . Contrac-

tion approximators (or local averagers), such as k-nearest-neighbor, linear interpolation,
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grid methods and other state aggregations methods, conservatively respond to changes in

X . Therefore, on the one hand, a VI that includes a contraction approximator always con-

verges, in the sense of (5.13), to the fixed point determined by the approximator, say V̂ ∗ca.

However, not much can be said about the value ‖V ∗ − V̂ ∗ca‖s (see [119] and [121]). On the

other hand, a VI that includes an expansion approximator might diverge [121]. However,

NNs are still a widely used approximation architecture due to their notable successes (for

example, [124], [125], and [126]), adaptive architectures [127], performance guarantees

under certain assumptions [123], and inventions of novel NN architectures. These novel

NN architectures are also called nonparametric approximation [123] and they adapt to the

training data. Examples are kernel-based NNs (refer to [128] and [129]) and recurrent NNs

(refer to [130] and [129]). Almost all references in this subsection provide advantages and

disadvantages of different approximation architectures. This fact shows the importance of

the choice of approximation architectures.

A goal of this chapter is not to advocate certain architectures. Instead, based on our

experience and the references above, we define properties that successful approximation

architectures possess (e.g., contraction approximators and kernel-based NNs). Based on

the specifics of the problem (dimensionality of the problem, availability and density of

data, available processing power, memory requirements, etc.), one should choose a suitable

architecture.

Desired Properties

Assume that V ∗(x) is a smooth function on Cx, and choose a smooth function approxima-

tor. At the ith step, where i ∈ N0, randomly pick any x′ ∈ Cx, calculate (MV̂ i)(x′), and

fit V̂ i(x′) to (MV̂ i)(x′) obtaining V̂ i+1. We are looking for an approximation architecture

that satisfies the following properties

(i) V̂ i+1(x′) = (MV̂ i)(x′);
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(ii) supp(V̂ i+1− V̂ i) = Ci, where supp(f) = {x : f(x) 6= 0} is the support of a function

f , and Ci ⊂ Cx is a convex and compact neighborhood of x′; and

(iii) for any c ∈ ∂Ci, where ∂Ci denotes the boundary of Ci, the following holds

V̂ i+1[S] ⊆ [V̂ i+1(c), V̂ i+1(x′)], (5.14)

where V̂ i+1[S] is the image of the segment S connecting x′ and c,

in order to have ‖V i+1 − V i‖s → 0 as i→∞.

Remark 9 Let us consider two value functions ûi and v̂i in the ith step, and applyM at

a randomly chosen x′i. Due to (5.11), we have ‖(Mûi)(x′i) − (Mv̂i)(x′i)‖ ≤ γ‖ûi(x′i) −

v̂i(x′i)‖. From property (i), we conclude that ‖ûi+1(x′i)− v̂i+1(x′i)‖ ≤ γ‖ûi(x′i)− v̂i(x′i)‖.

Since the approximator is smooth, we know that there exists a neighborhood C ′i ⊆ Ci of

x′i such that supx∈C′i ‖û
i+1(x)− v̂i+1(x)‖ ≤ supx∈C′i ‖û

i(x)− v̂i(x)‖. This means that the

nonexpansion property required in [119] is obtained locally around x′i. The nonexpansion

property from [119] is basically (5.11) when γ is replaced with 1. Finally, property (iii)

eliminates counterexamples in which the Lebesgue measures of C ′i, i ∈ N0, tend to zero.

Consequently, generalization of the approximation architecture is ensured.

Remark 10 Property (i) is the accuracy requirement in order to preserve (5.11). Property

(ii) is the “local property” found in [119], [121] and [127]. This local property is built in

the activation functions of the kernel-based NNs. Property (iii) is used to ensure that C ′i’s

are not merely x′i’s. In addition, property (iii) curbs expansiveness on Ci \ C ′i.

Remark 11 Notice that Desired Properties imply online learning of NNs [129]. The mo-

tivation behind this choice lies in the fact that it is straightforward to check properties (i),

(ii) and (iii) in online learning. Moreover, since we randomly pick points x′i ∈ Cx in each

step, we do not have to specify X . By choosing random x′i’s, we also avoid the problem of
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exploration vs. exploitation (see [64] and [65] for more). On the other side, when using

batch learning, properties (i), (ii) and (iii) cannot be guaranteed since NNs are expansion

approximators. In fact, not until we switched to online learning in the example from Sec-

tion 5.3, convergence was obtained. An extension of Desired Properties for batch learning

and the problem of choosing X are left for the future work.

Remark 12 As the stopping criterion we use the following: when ‖V̂ i+1 − V̂ i‖s < ε for

N ∈ N consecutive steps, the value iteration method has converged.

5.2.5 Partially Observable States

Notice that the approximate value function V̂ (x) is a function of state x. Up to this point we

did not take into account that x is not available due to Assumptions 4 and 5. In other words,

we are solving the DP problem (5.5) with partially observable states. More details about

strategies for solving DP problems with partially observable states are found in Chapter 5

of [62].

Let us assume that the controller can access its state xc. Consequently, the controller

can calculate u at any given time. However, the controller does not have access to the

state of the plant xp but merely to ω̂p and ŷ. We circumvent this problem by introducing a

particle filter (refer to [29] and [30]) that provides estimates x̂p of the actual state xp. More

details about the problem of estimation under intermittent information can be found in [2].

It is well known that particle filters are suitable for nonlinear processes, non-Gaussian and

nonadditive measurement and process noise.

More precisely, we model the closed-loop system (5.1) and (5.2) as

xp(ti) = fdp (x(ti−1), u(ti−1), τi−1, ω̂p(ti−1), eω),

ŷ(ti) = g(xp(ti), ν), (5.15)
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where fdp represents a discrete transition function of the plant obtained in similar fashion

as (5.8), and statistics of the process noise eω and measurement noise ν are known and

time invariant. Based on (5.15), we build a particle filter that extracts x̂p from ω̂p and ŷ and

feeds the controller. Details of our particle filter implementation can be found in Chapter

3.

We deal with partially observable states by first obtaining V̂ ∗(x) for the case of perfect

state information. Then, we employ particle filtering and iterate V̂ ∗(x) using (5.12) to ob-

tain the approximation of V̂ ∗(x̂) for the case of partially observable states. The motivation

behind obtaining V̂ ∗(x̂) from V̂ ∗(x) lies in the fact that particle filters need several steps

to obtain a reliable estimate x̂ starting from a poor initial estimate. Basically, since V̂ ∗(x)

is a close estimate of V̂ ∗(x̂) when x̂ is a close estimate of x, we exploit V̂ ∗(x) to fine tune

V̂ ∗(x̂) without a need to explore.

5.3 Case Study - Trajectory Tracking

In this section, we apply the optimal self-triggered sampling policy to the trajectory track-

ing controller presented in [98]. Besides for trajectory tracking, this controller can be

employed in leader-follower, target-pursuit, obstacle avoidance and waypoint following

problems.

In [98], a velocity-controlled unicycle robot R1 given by

ẋR1 = vR1 cos θR1, ẏR1 = vR1 sin θR1, θ̇R1 = ωR1 (5.16)

tracks a trajectory generated by a virtual velocity-controlled unicycle robot R2 with states

(xR2, yR2, θR2), and linear and angular velocities vR2 and ωR2, respectively. See Figure 5.2
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Figure 5.2: An illustration of the trajectory tracking problem considered in Chapter 5.

for an illustration. The tracking error xp in the coordinate frame {M} of robotR1 becomes

xp =


xp1

xp2

xp3

 =


cos θR1 sin θR1 0

− sin θR1 cos θR1 0

0 0 1



xR2 − xR1

yR2 − yR1

θR2 − θR1

 . (5.17)

Applying the following control law

vR1 = vR2 cosx3 + k1x1,

ωR1 = ωR2 + k2vR2
sinx3

x3

x2 + k3x3 (5.18)

where k1, k2 and k3 are positive control gains, [98] shows that control law (5.18) makes the

origin xp = [0 0 0]T globally asymptotically stable provided that vR2(t), ωR2(t) and their

derivatives are bounded for all times t ≥ 0 and limt→∞ vR2(t) 6= 0 or limt→∞ ωR2(t) 6= 0.

Since the controller (5.18) is not a dynamic controller, we have that x = xp. Next, for

the sake of simplicity, we use the following measurement model

ŷ(ti) = x(ti) + ν. (5.19)
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In addition, the external input is ωp = [vR2 ωR2]T . When emulating noise in (5.15), we use

eω ∈ U([−0.3, 0.3]× [−0.3, 0.3]) and ν ∈ U([−0.15, 0.15]× [−0.15, 0.15]× [−0.15, 0.15])

where U(S) denotes the uniform distribution over a compact set S .

The following coefficients were used in the cost function (5.5): Q = 0.1I3, R = 0.1I2,

S = 15 and γ = 0.96 where In is the n × n identity matrix and n ∈ N. A remark is in

order regarding the choice of Q, R and S. On the one hand, as we decrease S and keep Q

and R fixed, the obtained sampling policy τ approaches zero. In other words, as the energy

consumption for sampling, transmitting and processing decreases, the optimal intermittent

feedback turns into continuous feedback. On the other hand, as S becomes greater, τ

approaches τmax. The above choice of Q, R and S yields τ ∈ [0.6τmax, 0.9τmax].

As the approximation architecture we choose a Multilayer Perceptron (MLP) with 100

hidden neurons. In addition, we confine x to the set Cx = [−100, 100]2 × [−30π, 30π].

Not until we used that many hidden neurons, properties (i), (ii) and (iii) were satisfied on

Cx. Even though activation functions in MLPs are not locally responsive, we were able

to satisfy (i), (ii) and (iii). We presume the reason is low dimensionality of the considered

tracking problem. For high dimensional problems, the kernel-based NNs appear to be more

suitable. In the stopping criterion from Remark 12 we choose ε = 1 and N = 10, and

obtain V̂ ∗(x) in about 300 to 400 steps depending on the initial V̂ 0(x) and ωp. Afterwards,

we obtain V̂ ∗(x̂) from V̂ ∗(x) using (5.12) and x̂ fed from the particle filter. With ε = 1

and N = 10, it takes about 50 simulations for V̂ ∗(x̂) to converge starting from V̂ ∗(x). The

obtained approximation V̂ ∗(x̂) of V ∗(x) for ωp = (1, 1) is illustrated in Figure 5.3.

In the simulation included in this chapter, we choose k1 = 1.5, k2 = 1.2 and k3 = 1.1.

Figure 5.4 is obtained for the trajectory generated with

ωp(t) = [1 1]>t[0,1.83) + [0.6 0.15]>t[1.83,8.8) + [2 2]>t[8.8,12],

where tI is the indicator function on an interval I, i.e., tI = t when t ∈ I and zero

otherwise. Stability of the obtained sampling policy can be inferred from 5.4(a) and 5.4(b).
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Figure 5.3: An approximation V̂ ∗(x̂) of the optimal value function V ∗(x) for ωp = (1, 1)
depicted as a function of x̂1 ∈ [−70, 70] and x̂2 ∈ [−70, 70] when x̂3 = 0.

In addition, Figure 5.4 shows that the intersampling interval τ tends to increase as ‖x‖

approaches the origin. Finally, it should be mentioned that oscillations of x in Figure

5.4(a) are an inherited property of the controller, and not a consequence of intermittent

feedback.
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5.4 Conclusion

This chapter investigates the problem of optimal input-output triggering for nonlinear sys-

tems. We replace the traditional periodic paradigm, where up-to-date information are trans-

mitted and control laws are executed in a periodic fashion, with optimal intermittent feed-

back. In other words, we develop a methodology that, based on the currently available

but outdated measurements of the outputs and external inputs of a plant, provides time

instants when to obtain new up-to-date measurements and execute the control law such

that a given cost function is minimized. The optimization problem is formulated as a DP

problem, and ADP is employed to solve it. In addition, because the investigated problems

contain partially observable states, our methodology includes Particle Filtering under in-

termittent feedback. Furthermore, instead of advocating one approximation architecture

over another in ADP, we formulate properties that successful approximation architectures

satisfy. Finally, our approach is successfully applied to a trajectory tracking controller for

velocity-controlled unicycles.

In the future, the main goal is to further investigate the properties of successful approx-

imation architectures. In addition, we plan to estimate how suboptimal the methodology

developed in this chapter is.
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Figure 5.4: An illustration of the optimal input-output triggering: (a) State x of the tracking
system; (b) Norm of (x, e); (c) Values of the sampling period τ between two consecutive
transmissions. Red stems indicate time instants when changes in ωp happen; and, (d) A
detail from Figure 5.4(c).
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Decentralized Output Synchronization

In order to reconcile the radio network and local model of wireless networks (see subsec-

tion 1.2.5), we partition the set of agents in subsets with the following property: when all

agents in a subset broadcast simultaneously, the wireless network is collision free. Basi-

cally, we do not allow agents, that belong to different partitions, to broadcast at the same

time due to possibility of message collisions. Consequently, agents in the same partition

synchronously broadcast their outputs via wireless. We take advantage of the predictability

in synchronous wireless networks to detect possible changes in the communication topol-

ogy among the agents. When a receiver does not receive a message in an alloted time

interval, we say that an event has occurred and a decentralized topology discovery algo-

rithm is triggered.

In order to determine when agents in different partitions should broadcast, we utilize

self-triggered feedback developed in Chapter 4. Essentially, based on the current topology

(captured in the graph Laplacian matrix) and dynamics of the agents, each agent computes

when to broadcast its outputs such that output synchronization is achieved. In other words,

the communication between agents is neither continuous nor periodic as in [67], [68]

and [72], but adapts to changes in the topology. The motivation behind self-triggering is
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to reduce communication and computational load without compromising stability. In ad-

dition, valid self-triggered broadcasting policies must guarantee that broadcasting instants

do not accumulate in finite time which is known as Zeno behavior (see [100], [55] and Re-

mark 15). Consequently, self-triggering eliminates the problem of arbitrary fast switching

(refer to [68, Chapter 2], [131] and [100]) since changes in the communication topology

between broadcasting instants do not impact stability. See Remark 18 for more details.

The remainder of the chapter is organized as follows. Section 6.1 presents the notation,

concepts from graph theory and stability notions utilized in this chapter. In addition, the

notion of average dwell-time for switched systems is presented. Section 6.2 formulates

the problem of decentralized output synchronization with intermittent communication and

switching topology. The methodology brought together to solve the problem is presented

in Section 6.3. The case of switching topology is investigated in Section 6.4. The proposed

methodology is verified using numerical simulations in Section 6.5. Conclusions and future

challenges are in Section 6.6.

6.1 Mathematical Preliminaries

6.1.1 Notation

To shorten the notation, we use (x, y) := [x> y>]>. The dimension of a vector x is

denoted nx. We use

‖f [a, b]‖p :=

(∫
[a,b]

‖f(s)‖pds
)1/p

(6.1)

to denote the Lp norm of a Lebesgue measurable function f when restricted to the interval

[a, b] ⊂ R. In this chapter, ‖ · ‖ refers to the Euclidean norm of a vector. If the argument of

‖ · ‖ is a matrix, then it denotes the induced matrix 2-norm. The set of all eigenvalues of a
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matrix A is denoted λ(A). Given x ∈ Rn, we define

x = (|x1|, |x2|, . . . , |xn|),

where | · | denotes the absolute value function. When the argument of | · | is a set, then it

denotes the cardinality of the set. Given x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) ∈

Rn, the partial order � is given as

x � y ⇐⇒ xi ≤ yi ∀i ∈ {1, · · · , n}.

An n-dimensional vector with all entries 0 is denoted 0n. The setA+
n denotes the subset of

all n× n matrices that are symmetric and have nonnegative entries. Finally, let Rn
+ denote

the nonnegative orthant.

6.1.2 Graph Theory

A directed graph, or digraph, is a pair G = (V , E) where V = {v1, . . . , vN} is a nonempty

set of nodes (or vertices) with unique ID numbers, and E ⊂ V × V is the set of the cor-

responding edges. When the edge (i, j) belongs to E it means that there is an information

flow from the node i to the node j. We do not allow self-loops, i.e., edges that connect

a vertex to itself. When both (i, j) and (j, i) belong to E , we say that the link between i

and j is bidirectional. Otherwise, the link between i and j is unidirectional. The set of

neighbors of the node vi is Ni = {j ∈ V : (j, i) ∈ E} which is all nodes that the node

vi can obtain information from. A path in a graph is a sequence of vertices such that from

each of its vertices there is an edge to the next vertex in the sequence. The distance be-

tween two vertices in a graph is the number of edges in a shortest path connecting them.

The greatest distance between any pair of vertices is called the diameter of a graph and is

denoted diam(G). A cycle in G is a directed path with distinct nodes except for the starting

and ending node. An inclusive cycle for an edge is a cycle that contains the edge on its

path.
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Given a graph G, the graph Laplacian matrix L ∈ R|V|×|V| is defined as

L = [lij], lij =


−1, j ∈ Ni

|Ni|, j = i

0, otherwise

.

For more details about algebraic graph theory refer to [132].

6.1.3 Stability Notions

Consider a hybrid (or impulsive) system

Σ


ẋ = f(x, ω)

y = g(x, ω)

 t ∈
⋃
i∈N0

[ti, ti+1),

x(t+) = h(x(t)) t ∈ T ,

(6.2)

with the state x ∈ Rnx , output y ∈ Rny and input ω ∈ Rnω . We assume enough regularity

on f and h to guarantee existence of the solutions given by right-continuous functions

t 7→ x(t) on [t0,∞) starting from x0 at t = t0. Jumps of the state x occur at each t ∈ T :=

{ti : i ∈ N}. The value of the state after the jump is given by x(t+) = limt′↘t x(t′) for

each t ∈ T .

Definition 13 (global exponential stability) For ω ≡ 0, the equilibrium point x = 0

of Σ is Globally Exponentially Stable (GES) if there exist k, l ≥ 0 such that ‖x(t)‖ ≤

k exp(−l(t− t0))‖x(t0)‖ for all t ≥ t0 and for any x(t0).

Definition 14 (input-to-state stability) The system Σ is input-to-state stable (ISS) if there

exist a class-KL function β and a class-K∞ function γ such that, for any x(t0) and every

input ω, the corresponding solution x(t) satisfies ‖x(t)‖ ≤ β(‖x0‖, t−t0)+γ(‖ω[t0, t]‖∞).
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Definition 15 (uniform bounded-input bounded-output stability) The system Σ is uni-

formly bounded-input bounded-output stable if there exists a finite constant η such that, for

any t0 and any input signal ω(t), the corresponding zero-state response (i.e., x0 = 0nx)

satisfies ‖x[t0, t]‖∞ ≤ η‖ω[t0, t]‖∞.

Definitions 13 and 14 are taken from [56] while Definition 15 is taken from [133].

6.1.4 Switched Systems and Average Dwell-Time

Consider a family of systems (6.2) indexed by the parameter ρ taking values in a set

P = {1, 2, . . . ,m}. Let us define a right-continuous and piecewise constant function

σ : [t0,∞)→ P called a switching signal [100]. The role of σ is to specify which system

is active at any time t ≥ t0. The resulting switched system is given by

Σσ


ẋ = fσ(x, ω)

y = g(x, ω)

 t ∈
⋃
i∈N0

[ti, ti+1),

x(t+) = hσ(x(t)) t ∈ T .

(6.3)

For each switching signal σ and each t ≥ t0, let Nσ(t, t0) denote the number of disconti-

nuities, called switching times, of σ on the open interval (t0, t). We say that σ has average

dwell-time τa if there exist two positive numbers N0 and τa such that

Nσ(t, t0) ≤ N0 +
t− t0
τa

(6.4)

for every t ≥ t0. For a comprehensive discussion refer to [100] and [131]. In this chapter,

different values of σ correspond to different topologies L.
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6.2 Problem Statement

Consider N linear systems, i.e., agents, given by

ẋi = Aixi +Biui,

yi = Cixi, (6.5)

where xi ∈ Rnxi is the state, ui ∈ Rnui is the input, yi ∈ Rny is the output of the ith

system, i ∈ {1, 2, . . . , N}, and Ai, Bi, Ci are matrices of appropriate dimensions. Since

these agents are vertices of a communication graph, the set of all agents is denoted V .

Hence, |V| = N . Motivated by [68, Chapter 2], we consider the following decentralized

control policy

ui = −Ki

∑
j∈Ni

[(yi − yj)− (di − dj)] + ωi, (6.6)

where Ki is a nui × ny matrix, Ni denotes the set of neighbors of the ith system, di ∈ Rny

is the bias term, and ωi ∈ Rny is the disturbance term. Next, we define the following

stack vectors x := (x1, x2, . . . , xN), y := (y1, y2, . . . , yN), d := (d1, d2, . . . , dN) and

ω := (ω1, ω2, . . . , ωN). Knowing the Laplacian matrix L of a communication graph G, the

closed-loop dynamic equation of (6.5) given the control law (6.6) becomes

ẋ = Aclx−Bcld+Bdω,

y = Cclx, (6.7)

where

Acl = [Acl
ij], Acl

ij =

Ai − liiBiKiCi, i = j

−lijBiKiCj, otherwise
,

Bcl = [Bcl
ij], Bcl

ij = −lijBiKi,

Ccl = diag(C1, C2, . . . , CN),

Bd = diag(B1, B2, . . . , BN).
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In the above expressions, Acl
ij and Bcl

ij are matrix blocks while diag(·, ·, . . . , ·) denotes the

block-diagonal matrix.

Assumption 6 Acl is Hurwitz.

Remark 13 Using the Geršgorin circle theorem, the work in [69] provides sufficient con-

ditions for Acl to be Hurwitz. Applying these sufficient conditions to Acl herein, we obtain

that when

(i) Ai − liiBiKiCi is Hurwitz for all i ∈ {1, 2, · · · , N}, and

(ii) minλi∈λ{Ai−liiBiKiCi}{|λi|} ≥
∑

j∈Ni ‖BiKiCj‖,

are fulfilled, the matrixAcl is Hurwitz. Thus, by changingKi’s for different topologies, one

can ensure that Assumption 6 is satisfied.

When ω ≡ 0ny , the equilibrium of (6.7) is given by

xeq =
(
Acl
)−1

Bcld (6.8)

with the corresponding output

yeq = Cclxeq. (6.9)

Definition 16 Suppose we have a system ofN agents given by (6.5). We say that the agents

output synchronize if ‖y − yeq‖ → 0 as t→∞.

Remark 14 The above definition of output synchronization differs from the definition fo-

und in, for instance, [43] where it is required that ‖yi − yj‖ → 0 as t → ∞ for all

i, j ∈ {1, 2, . . . , N}. Our definition aims at controlling the asymptotic values yeq of the

outputs y regardless of initial conditions. Problems in which the asymptotic values of y
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depend on initial conditions will be considered in the future work. These problems are

characterized by matrices Acl that have an eigenvalue at the origin of the complex plane.

In our definition, notice that one can change yeq by changing d. For example, one can

change formations by changing d.

It is well known that substitutions x′ = x − xeq and y′ = y − yeq transform (6.7) into

the equivalent system

ẋ′ = Aclx′ +Bdω,

y′ = Cclx′, (6.10)

such that x′eq = 0 is the equilibrium point when ω ≡ 0ny . From Assumption 6 and [56,

Corollary 5.2.], we infer that the closed-loop system (6.10) is Lp-stable from ω to y′ for

each p ∈ [1,∞].

Since we do not consider continuous feedback in (6.6), the control signal becomes

ui = −Ki

∑
j∈Ni

[(ŷi − ŷj)− (di − dj)] + ωi, (6.11)

where ŷj is the most recently transmitted value of the output of the jth agent. Let Ti :=

{tji : j ∈ N} denote the set of broadcasting time instants of the ith agent and T := ∪Ni=1Ti.

In order to account for the fact that outdated ŷi’s are used in control law (6.6) and not the

actual outputs yi’s, we introduce the output error vector

e =


e1

e2

...

eN

 :=


ŷ1 − y1

ŷ2 − y2

...

ŷN − yN

 = ŷ − y. (6.12)

The above expression uses ŷ := (ŷ1, ŷ2, . . . , ŷN). Taking e into account, the closed-loop

dynamics (6.10) become

ẋ′ = Aclx′ +Bcle+Bdω. (6.13)
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Since ˙̂y = 0 and ẏeq = 0, the corresponding output error dynamics are

ė = −Cclẋ′. (6.14)

The following three problems are solved in the remainder of this chapter.

Problem 5 Partition the set of agents V into subsets Pi’s with the following property:

when all agents in each Pi broadcast simultaneously, message collisions are avoided.

Problem 6 Given a fixed topology, design sets of broadcasting instants Ti, where i ∈

{1, 2, . . . , N}, such that the outputs of agents synchronize in the sense of Definition 16.

Problem 7 Find conditions that preserve output synchronization under switching commu-

nication topology.

6.3 Methodology

6.3.1 Decentralized Topology Discovery for Directed Graphs

In order to solve Problem 5, each agent has to know the communication topology, i.e., the

graph Laplacian matrix L. This problem is known as topology discovery and has been an

active area of research (e.g., [79], [80], [81] and [82]). In this chapter we implement the

approach from [79] due to its applicability to directed graphs. The approach in [79] utilizes

the flooding algorithm to propagate information about the graph topology. This approach

converges in finite time ∆ after the network topology stops changing. ∆ is proportional

to diam(G). Since we consider a finite number of agents N , there exists an upper bound

on ∆, denoted ∆u, for all admissible topologies. The admissible topologies are those that

satisfy Assumptions 6 and 7.
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Assumption 7 All unidirectional links have an inclusive cycle.

Assumption 7 is the main assumption in [79]. In order to simplify the exposition of the

chapter, we neglect ∆u, i.e., we take ∆u = 0. In case ∆u 6= 0, one should take into

account ∆u when designing Ti’s in Problem 6. Basically, broadcasting instants in T should

leave enough time for topology discovery to be completed without compromising output

synchronization. In addition, by assuming ∆u = 0, the agents have the access to the

up-to-date topology when designing Ti, i ∈ {1, . . . , N}.

A remark is in order. Notice that leader-follower topologies do not satisfy Assump-

tion 7. In case of fixed communication topologies, Assumption 7 can be omitted as this

assumption is needed only for decentralized topology discovery. Thus, the work presented

herein is applicable to time-invariant leader-follower topologies as well.

6.3.2 Partitioning the Agents

After obtaining L using the approach from [79], we have to partition the set V in order to

avoid message collisions according to the radio network model described in Introduction.

In other words, we want to allow simultaneous broadcast of agents that have no common

receivers and are not receivers themselves at that particular time instants. Notice that, if

one is not concerned with message collisions, then there is no need to partition the agents.

Consider the graph depicted in Figure 6.1. The corresponding graph Laplacian matrix

is

L1 =



2 − 1 0 − 1 0

0 1 − 1 0 0

0 0 1 0 − 1

− 1 − 1 0 2 0

0 0 − 1 − 1 2


. (6.15)
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Figure 6.1: The graph partition P1 = {1, 3}, P2 = {2, 5} and P3 = {4} obtained via
Algorithm 1. Nodes belonging to different partitions are colored differently.

Notice that this graph satisfies Assumption 7. Next, we partition V = {1, 2, 3, 4, 5} in

Figure 6.1 using Algorithm 1. In Algorithm 1, the element-wise product of the ith and

the jth column of L is denoted L(i).L(j) while the N th-dimensional vector of all zeros is

denoted 0N . The input to the algorithm is L, and the outputs are subsets Pi. The number

of nonempty Pi’s is T ≤ N , and we prune empty Pi’s.

At this point, Problem 5 is solved. In the following subsection, we utilize L, Pi, i ∈

{1, . . . , T}, and expressions (6.13) and (6.14) to solve Problem 6.

6.3.3 Designing Broadcasting Instants

In order to solve Problem 6, we use the extensions of [40] found in Chapter 4. In what

follows, we provide only the scheduling protocol considered herein and adapt results from

Chapter 4 to this specific protocol. In other words, even though the framework presented in

this subsection is applicable to the larger group of uniformly persistently exciting schedul-

ing protocols [40], we do not pursue that direction in this chapter.

Let us consider the following scheduling protocol:

Protocol 1 The agents from P[(i+1) mod N ]+1 broadcast their outputs τ seconds after the
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Algorithm 1 Algorithm developed for graph partitioning. Taking L as the input, the algo-

rithm outputs {P1, . . . ,PN}.
1: Pi ← {∅} for all i ∈ {1, . . . , N}; k ← 0

2: for i = 1 to N do

3: if i 6∈ Pm for every m ∈ {1, . . . , N} then

4: k ← k + 1

5: Pk ← Pk ∪ {i}

6: for j = i+ 1 to N do

7: if L(i).L(j) = 0N for all i ∈ Pk then

8: Pk ← Pk ∪ {j}

9: end if

10: end for

11: end if

12: end for

agents from P[i mod N ]+1 have broadcast their outputs, where mod is the module opera-

tor.

Protocol 1 is a variant of round-robin scheduling [134]. Notice that elements of the set

T[(i+1) mod N ]+1 are equal to elements T[i mod N ]+1 increased by τ . The impact of broad-

casting agents’ outputs is as follows:

Property 1 If the ith agent broadcasts at time t, the corresponding components of e reset

to zero while other components remain unchanged, i.e.,

e+
(i−1)ny+1(t) = . . . = e+

iny
(t) = 0,

e+
j (t) = ej(t),

 (6.16)

for all j ∈ {1, . . . , Nny} \ {(i− 1)ny + 1, . . . , iny}, where the set difference is denoted \.

Now, let us interconnect dynamics (6.13) and (6.14) and employ the small gain theorem
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[56]. To this end, we upper bound the output error dynamics (6.14) as follows:

¯̇e = −Ccl(Aclx′ +Bcle+Bdω) � A∗ē+ ỹ(x′, ω), (6.17)

where

A∗ = [a∗ij] := max{|c∗ij|, |c∗ji|}, (6.18)

ỹ(x, ω) := Ccl(Aclx+Bdω). (6.19)

In (6.18), we use −CclBcl = [c∗ij]. Notice that A∗ ∈ A+
ne and ỹ : Rnx × Rnω → Rne

+

is a continuous function. With this choice of A∗ and ỹ, the upper bound (6.17) holds for

all (x′, e, ω) ∈ Rnx × Rne × Rnω and all t ∈ R. The above exposition brings us to the

following theorem.

Theorem 8 Suppose that Protocol 1 is implemented. In addition, suppose that τ ∈ (0, τ ∗),

where τ ∗ := ln(2)
‖A∗‖T . Then, the output error system (6.14) is Lp-stable from ỹ to e for any

p ∈ [1,∞] with gain

γe =
T exp(‖A∗‖(T − 1)τ)(exp(‖A∗‖τ)− 1)

‖A∗‖(2− exp(‖A∗‖Tτ))
. (6.20)

Proof 14 This result is obtained by following the proof of [40, Theorem 5.1]. However,

the assumptions of [40, Theorem 5.1] require A∗ both to be positive semidefinite and to

belong to A+
ne . Positive definiteness of A∗ together with the requirement that A∗ ∈ A+

ne is

needed in [40] to establish equality ‖ exp(A∗)‖ = exp(‖A∗‖). Using Lemma 1 and 2, we

know that equality ‖ exp(A∗)‖ = exp(‖A∗‖) holds for matrices in A+
ne . In other words,

the requirement on A∗ to be positive semidefinite is redundant. This concludes the proof.

Next, take (e, ω) to be the input and ỹ, obtained in Theorem 8, to be the output of

the dynamics (6.13). For given p ∈ [1,∞], the corresponding Lp-gain from (e, ω) to ỹ is
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denoted γ. Hence, systems (6.13) and (6.14) are interconnected according to Figure 6.2.

We point out that ỹ is an auxiliary signal used to interconnect (6.13) and (6.14), but does

not exist physically. According to the small gain theorem, the open loop gain γγe must be

strictly less than one in order for this interconnection to be Lp-stable from ω to (e, ỹ).

Theorem 9 Suppose that Protocol 1 is implemented. If the interbroadcasting interval τ in

(6.20) is such that γγe < 1, then the interconnection in Figure 6.2 is Lp-stable from ω to

(e, ỹ) for given p ∈ [1,∞].

Proof 15 From Assumption 6 and [56, Corollary 5.2.], we infer that (6.13) is Lp-stable

from (e, ω) to ỹ with gain γ and (6.14) is Lp-stable from ỹ to e with gain γe given by

(6.20). In other words, we have

‖ỹ[t0, t]‖p ≤ K‖x′0‖+ γ‖(e, ω)[t0, t]‖p,

‖e[t0, t]‖p ≤ Ke‖e0‖+ γe‖ỹ[t0, t]‖p.

After manipulating the above inequalities we obtain

‖ỹ[t0, t]‖p ≤
1

1− γγe
[
K‖x′0‖+ γKe‖e0‖+ γ‖ω[t0, t]‖p

]
, (6.21)

‖e[t0, t]‖p ≤
1

1− γγe
[
γeK‖x′0‖+Ke‖e0‖+ γγe‖ω[t0, t]‖p

]
. (6.22)

Using the fact that ‖(ỹ, e)[t0, t]‖p ≤ ‖ỹ[t0, t]‖p + ‖e[t0, t]‖p, we obtain

‖(e, ỹ)[t0, t]‖p ≤
1

1− γγe
[
(K + γeK)‖x′0‖+

+ (Ke + γKe)‖e0‖+ (γ + γγe)‖ω[t0, t]‖p
]
,

which proves the claim.

Remark 15 Notice that γe(τ) in (6.20) is a monotonically increasing function of τ ∈

[0, τ ∗). In addition, notice that γe(0) = 0. By the assumption of Theorem 9, we know
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Figure 6.2: Interconnection of the nominal and the output error dynamics.

that γ < ∞. Since our goal it to design τ such that γγe(τ) < 1, we first find τ ′ such

that γγe(τ ′) = 1, and then compute τ = κτ ′, where κ ∈ (0, 1). Due to monotonicity of

γe(τ), the obtained τ ′ is strictly positive; hence, τ = κτ ′ is strictly positive. Consequently,

the unwanted Zeno behavior [55] is avoided. In other words, our approach does not yield

continuous feedback that is impossible to achieve with digital technology. Since we are

interested in obtaining the interbroadcasting interval τ as large as possible, we choose κ

as great as possible (e.g., κ = 0.999).

Remark 16 Let us consider the case of lossy communication channels. If there is an

upper bound on the maximum number of successive dropouts in the wireless network, say

ND ∈ N, simply use τ/ND as the interbroadcasting interval in order for Theorem 9 to

hold.

Remark 17 Notice that ‖v‖ = ‖v‖ for any v ∈ Rnv . From (6.1) we infer that ‖v[t0, t]‖p =

‖v[t0, t]‖p for any t ≥ t0 and any p ∈ [1,∞], where v(t) : R → Rnv . Therefore, the Lp-

gain from (e, ω) to Ccl(Aclx+Bdω) equals the Lp-gain from (e, ω) to ỹ given by (6.19).

From Assumption 6 and [56, Corollary 5.2.], we infer that for (6.13) there exist Kd ≥

0 and γd ≥ 0 such that ‖x′[t0, t]‖p ≤ Kd‖x′0‖ + γd‖(e, ω)[t0, t]‖p for any p ∈ [1,∞].

Consequently, x′ is Lp to Lp detectable from (e, ω, ỹ) for any p ∈ [1,∞] (see inequality

(6.23)).

134



Chapter 6. Decentralized Output Synchronization

Corollary 2 Assume that the conditions of Theorem 9 are met. Then, output synchroniza-

tion of systems given by (6.5) is Lp-stable from ω to (e, x′) for given p ∈ [1,∞].

Proof 16 Detectability of x′ from (e, ω, ỹ) means

‖x′[t0, t]‖p ≤ Kd‖x′0‖+ γd‖ỹ[t0, t]‖p + γd‖(e, ω)[t0, t]‖p. (6.23)

Combining (6.21) and (6.23) yields

‖x′[t0,t]‖p ≤ (Kd +
γdK

1− γγe
)‖x′0‖+

γdγKe

1− γγe
‖e0‖+

+ γd‖e[t0, t]‖p + (γd +
γdγ

1− γγe
)‖ω[t0, t]‖p. (6.24)

Combining (6.22) and (6.24), we obtain

‖x′[t0, t]‖p ≤ (Kd +
γdK + γdγeK

1− γγe
)‖x′0‖+

+
γdγKe + γdKe

1− γγe
‖e0‖+ (γd +

γdγ + γdγγe
1− γγe

)‖ω[t0, t]‖p. (6.25)

Using the fact that ‖(x′, e)[t0, t]‖p ≤ ‖x′[t0, t]‖p + ‖e[t0, t]‖p, from (6.22) and (6.25) we

obtain

‖(e, x′)[t0, t]‖p ≤ (Kd +
γdK + γdγeK + γeK

1− γγe
)‖x′0‖+

+
γdγKe + γdKe +Ke

1− γγe
‖e0‖+

γd + γdγ + γγe
1− γγe

‖ω[t0, t]‖p, (6.26)

which proves the claim.

Corollary 3 Assume that the conditions of Theorem 9 are met. Then, output synchroniza-

tion of systems given by (6.5) is ISS from ω to (e, x′).

Proof 17 For p ∈ [1,∞) let us define

K1 := max
{
Kd +

γdK + γdγeK + γeK

1− γγe
,
γdγKe + γdKe +Ke

1− γγe

}
,

γ1 :=
γd + γdγ + γγe

1− γγe
.
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Recall that all norms on finite dimensional vector spaces are equivalent. In what follows,

we use the following inequalities:
√∑nw

i=1 |wi|2 ≤
∑nw

i=1 |wi| ≤
√
nw
√∑nw

i=1 |wi|2 where

w = (w1, . . . , wnw) ∈ Rnw . Now, inequality (6.26) can be written as

‖(e, x′)[t0, t]‖p ≤ K1

√
ne + nx‖(e0, x

′
0)‖+ γ1‖ω[t0, t]‖p.

Now, raise both sides of the above inequality to the pth power. Using the following inequal-

ity

(a+ b)p ≤ (1 + ε)p−1ap +
(

1 +
1

ε

)p−1

bp,

where a, b ≥ 0 and ε > 0, yields

‖(e, x′)[t0, t]‖pp ≤ (1 + ε)p−1Kp
1 (ne + nx)

p/2‖(e0, x
′
0)‖p+

+
(

1 +
1

ε

)p−1

γp1‖ω[t0, t]‖pp.

Introducing K2 = (1 + ε)p−1Kp
1 (ne + nx)

p/2 and γ2 =
(

1 + 1
ε

)p−1

γp1 yields∫ t

t0

‖(e(s), x′(s)‖pds ≤ K2‖(e0, x
′
0)‖p + γ2

∫ t

t0

‖ω(s)‖pds.

The above inequality has the form of inequality (2) in [135] which is equivalent to ISS.

When p =∞, follow the line of reasoning in Subsection 6.4.2. This proves the claim.

6.4 Stability under Switching Topology

The switched system with impulsive effects we are considering herein isẋ′
ė

 =

 Aclσ Bcl
σ

−CclAclσ −CclBcl
σ

x′
e

+

 Bd

−CclBd


︸ ︷︷ ︸

Bω

ω, t 6∈ T ,

x′+(t) = x′(t)

e+(t) = Γie(t)

 t ∈ T , (6.27)
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where matrix Γi implements Property 1 at the ith broadcasting instant. To shorten the

notation, we use z := (x′, e).

6.4.1 Switching without Disturbances

After setting ω ≡ 0ny in (6.27), we obtain the following result:

Theorem 10 Suppose that the conditions of Corollary 2 hold and ω ≡ 0ny . In addition,

assume that L is fixed. Then, the equilibrium point (e, x′) = 0 of the closed-loop system

(6.13) and (6.14) is GES.

Proof 18 Let us show that (6.13) and (6.14) satisfy the assumptions of [40, Theorem 2.5].

In other words, we show that there exist nonnegative constants L1, L2, L3 and L4 such that

‖Aclx′ +Bcle‖ ≤ L1(‖x′‖+ ‖e‖)

‖CclAclx′ + CclBcle‖ ≤ L2(‖x′‖+ ‖e‖)

‖x′+(t)‖ ≤ L3‖x′(t)‖

‖e+(t)‖ ≤ L4‖e(t)‖


(6.28)

for all x′ ∈ Rnx and all e ∈ Rne . Notice that x′ does not experience jumps when new infor-

mation arrives; hence, we can take L3 = 1. From (6.16) it follows that the last inequality is

satisfied with L4 = 1. Finally, it is straightforward to show that L1 = max{‖Acl‖, ‖Bcl‖}

and L2 = max{‖CclAcl‖, ‖CclBcl‖} satisfy above inequalities. The GES property follows

from [40, Theorem 2.5].

Next, notice that the equilibrium point xeq given by (6.8) is a function of L. In other

words, different communication topologies result in different xeq, i.e., different x′. In order

to apply results from [131] and [100], xeq must be the same for all admissible topologies.

This can be achieved by adapting d in (6.8) such that xeq is constant as the topology changes
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or one can simply use d = 0nd yielding xeq = 0nx . For the sake of simplicity, we use

d = 0ny herein. Consequently, x′ = x holds so we use x instead of x′ in the remainder of

the chapter.

For a finite number of agents N , there can be at most 2N
2−N different topologies as

self-loops are not allowed. Hence, our switched system consists of a finite number of

subsystems. The index set of these subsystems is P = {1, 2, . . . ,m}, where m ≤ 2N
2−N

is the number of admissible topologies.

According to Theorem 10, each subsystem in P is GES. Let us now apply [136, The-

orem 15.3.] to each subsystem in P . From (6.28) we infer that the flow and jump maps

are Lipschitz continuous and are zero at zero. In addition, jump times ti’s are predefined

(i.e., time-triggered and do not depend on the actual solution of the system), and such

that 0 < t1 < t2 < . . . < ti and limi→∞ ti = ∞ hold. Consequently, all conditions

of [136, Theorem 15.3.] are met. From [136, Theorem 15.3.], we know that there exist

functions Vρ : R × Rnx+ne → R, ρ ∈ P , that are right-continuous in t and Lipschitz

continuous in z, and satisfy the following inequalities

c1,ρ‖z‖2 ≤ Vρ(t, z) ≤ c2,ρ‖z‖2, t ≥ t0, (6.29)

D+
ρ Vρ(t, z) ≤ −c3,ρ‖z‖2, t 6∈ T , (6.30)

Vρ(t
+, z+) ≤ Vρ(t, z), t ∈ T , (6.31)

for all z ∈ Rnx+ne , where c1,ρ, c2,ρ and c3,ρ are positive constants. These constants are

readily obtained once k and l from Definition 9 are known (see the proof of [136, Theorem

15.3.]). In the above inequalities, D+
ρ Vρ(t, z) denotes the upper right derivative of function

Vρ with respect to the solutions of the ρth system. The upper right derivative of Vρ is given

by

D+
ρ Vρ(t, z) := lim sup

h→0,h>0

(1

h
[Vρ(t+ h, z(t+ h))− Vρ(t, z(t))]

)
,
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where z(t), t ≥ t0, denotes the trajectory of the ρth system. We now rewrite (6.29) and

(6.30) as follows

c1‖z‖2 ≤ Vρ(t, z) ≤ c2‖z‖2, t ≥ t0, (6.32)

D+
ρ Vρ(t, z) ≤ −2λ0Vρ(t, z), t 6∈ T , (6.33)

Vρ(t, z) ≤ µV%(t, z), t ≥ t0, (6.34)

for all z ∈ Rnx+ne and all ρ, % ∈ P , where

c1 = min
ρ∈P

c1,ρ > 0, c2 = max
ρ∈P

c2,ρ > 0,

λ0 = min
ρ∈P

c3,ρ

2c1,ρ

> 0, µ = max
ρ,%∈P

c2,ρ

c1,%

> 0.

Notice that µ > 1 in the view of interchangeability of ρ and % in (6.34). Following ideas

from [100] and [131], we obtain the following result:

Theorem 11 Consider the family of m systems for which (6.31), (6.32), (6.33) and (6.34)

hold. Then the corresponding switched system (6.27) is GES uniformly in t0 for every

switching signal σ with average dwell-time

τa >
lnµ

2λ0

(6.35)

and N0 arbitrary.

Proof 19 This proof follows the proof of [100, Theorem 3.2]. Pick an arbitrary T > 0, let

t0 := 0, and denote the switching times on the interval (0, T ) by t1, . . . , tNσ(T,0). Consider

the function W (t) := exp(2λ0t)Vσ(t)(t, z(t)). On each interval [tj, tj+1) we have

D+
σ(tj)

W = 2λ0W + exp(2λ0t)D
+
σ(tj)

Vσ(tj)(t, z) ≤ 0

due to (6.33). Due to (6.31), when state jumps occur we have Vσ(tj)(t
+, z+) ≤ Vσ(tj)(t, z)

no matter whether the jump times coincide with the switching times or not. Therefore, W
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is nonincreasing between two switching times. This together with (6.31) and (6.34) yields

W (tj+1) = exp(2λ0tj+1)Vσ(tj+1)(tj+1, z(tj+1)) ≤

≤ µ exp(2λ0tj+1)Vσ(tj)(tj+1, z(tj+1)) ≤

≤ µ exp(2λ0t
−
j+1)Vσ(tj)(t

−
j+1, z

−(tj+1)) = µW (t−j+1) ≤ µW (tj).

In the above expressions, the time instant just before t is denoted t−. When the functions

of interest are continuous in t, then t− = t, but we still write t− instead of t for clarity.

In addition, the left limit of a solution z(t) at instant t is denoted z−(t). Iterating the last

inequality from j = 0 to j = Nσ(T, 0)− 1, we obtain

W (T−) ≤ W (tNσ(T,0)) ≤ µNσ(T,0)W (0).

Using the definition of W , the above inequality and (6.31) we have

exp(2λ0T )Vσ(T−)(T, z(T )) ≤ exp(2λ0T
−)Vσ(T−)(T

−, z(T−)) ≤

≤ µNσ(T,0)Vσ(0)(0, z(0)).

Now suppose that σ has the average dwell-time property (6.4). Hence, we can write

Vσ(T−)(T, z(T )) ≤ exp(−2λ0T + (N0 +
T

τa
) lnµ)Vσ(0)(0, z(0)) =

= exp(N0 lnµ) exp((
lnµ

τa
− 2λ)T )Vσ(0)(0, z(0)).

From the above inequality, we infer that if τa satisfies (6.35), then Vσ(T−)(T, z(T )) con-

verges to zero exponentially as T → ∞, i.e., it is upper-bounded by µN0 exp(−2λT )

Vσ(0)(0, z(0)) for some λ ∈ (0, λ0). From (6.32) we obtain ‖z(T )‖ ≤
√

c2
c1
µN0 exp(−2λT )

‖z(0)‖. This proves GES.

Notice that the value of the initial time t0 was fixed to 0 for convenience. In fact, (6.27)

is GES for any t0, i.e., it is GES uniformly in t0.

Remark 18 Recall that changes of the topology in [ti, ti+1), where ti, ti+1 ∈ T , remain

unnoticed until ti+1 (or even later). Therefore, if mini∈P τi ≥ τa, then we effectively have
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that the switched system (6.27) is GES uniformly in t0 for any switching signal. Obvi-

ously, we want to obtain τi’s in Subsection 6.3.3 as large as possible. This is yet another

motivation for developing self-triggered control policies.

6.4.2 Switching with Disturbances

After proving that the outputs of (6.5) synchronize exponentially in the absence of distur-

bance ω provided that the switching signal σ has the average dwell-time τa given by (6.35),

we now analyze output synchronization when ω is present. Basically, this subsection pro-

vides a result similar to Corollary 3 but for the switched system (6.27).

Notice that (6.27) can be interpreted as a linear time-varying impulsive system. From

Theorem 11 we infer that the state transition matrix Φ(t, t0) of (6.27) satisfies

‖Φ(t, t0)‖ ≤ k exp(−l(t− t0)), (6.36)

where k =
√

c2
c1
µN0 and l = λ for some λ ∈ (0, λ0). For the explicit form of state transition

matrices of linear time-varying impulsive systems refer to [136, Chapter 3]. From the

corresponding variation of constants formula (see [136, Chapter 3])

z(t) = Φ(t, t0)z(0) +

∫ t

t0

Φ(t, s)Bωω(s)ds,

and (6.36), we obtain

‖z(t)‖ ≤ k exp(−l(t− t0))z(0) + bk

∫ t

t0

exp(−l(t− s))‖ω(s)‖ds,

where ‖Bω‖ ≤ b. Since t ≥ t0, therefore
∫ t
t0

exp(−l(t−s))ds ≤ 1/l for any t0. Using [133,

Theorem 12.2], we infer that (6.27) is uniformly bounded-input bounded-state stable which

in turn implies ISS (refer to [68, Theorem 2.35 & Remark 2.36] for more details). We

conclude the above discussion in the following theorem.
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Theorem 12 Assume that Theorem 11 holds so that the system (6.27) is GES uniformly in

t0 for every switching signal σ with average dwell-time (6.35). Then, output synchroniza-

tion of systems given by (6.5) is ISS from ω to (e, x).

6.5 Example

Consider the following five agents:

A1 =

−3 1

2 −1

 , B1 =

−4

−4

 , C1 =
[
−4 1

]
, K1 = 2,

A2 =
[
1
]
, B2 =

[
−1
]
, C2 =

[
−5
]
, K2 = 4,

A3 =

−2 −5

1 −1

 , B3 =

−2

−1

 , C3 =
[
−1 −1

]
, K3 = −2,

A4 =

−3 −1

5 −3

 , B4 =

−4

−2

 , C4 =
[
0 −4

]
, K4 = 4,

A5 =


1 3 1

0 −1 1

1 0 0

 , B5 =


−1

−1

1

 , C5 =
[
−1 −1 −1

]
, K5 = 5.

In addition to topology L1 given by (6.15), we consider another topology given by

L2 =



1 − 1 0 0 0

0 1 − 1 0 0

0 0 1 0 − 1

− 1 0 0 1 0

0 0 − 1 − 1 2


. (6.37)

One can easily verify that the correspondingAcl
1 andAcl

2 are Hurwitz even though condition

(i) from Remark 13 is not fulfilled for i = 3. In addition, matrices A2 and A5 contain

unstable eigenvalues. Notice that L2 satisfies Assumption 7. Applying Algorithm 1 to L2,
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we obtain the partition P1 = {1, 3}, P2 = {2, 4} and P3 = {5}. According to Section 6.4,

let us choose d = 0nd . Consequently, x′ = x.

Let us compute τ for the first topology given by L1. For L1, equations (6.13) and (6.14)

become

ẋ =


−67 17 40 0 0 0 32 0 0 0
−62 15 40 0 0 0 32 0 0 0

0 0 −19 4 4 0 0 0 0 0
0 0 0 2 −1 0 0 −4 −4 −4
0 0 0 3 1 0 0 −2 −2 −2
64 −16 80 0 0 −3 −129 0 0 0
32 −8 40 0 0 5 −67 0 0 0
0 0 0 5 5 0 20 −9 −7 −9
0 0 0 5 5 0 20 −10 −11 −9
0 0 0 −5 −5 0 −20 11 10 10


︸ ︷︷ ︸

Acl
1

x+

+


16 −8 0 −8 0
16 −8 0 −8 0
0 4 −4 0 0
0 0 −4 0 −4
0 0 −2 0 −2
−16 −16 0 32 0
−8 −8 0 16 0
0 0 −5 −5 10
0 0 −5 −5 10
0 0 5 5 −10


︸ ︷︷ ︸

Bcl
1

e+


−4 0 0 0 0
−4 0 0 0 0
0 −1 0 0 0
0 0 −2 0 0
0 0 −1 0 0
0 0 0 −4 0
0 0 0 −2 0
0 0 0 0 −1
0 0 0 0 −1
0 0 0 0 1


︸ ︷︷ ︸

Bd

ω,

ė = −

[ −4 1 0 0 0 0 0 0 0 0
0 0 −5 0 0 0 0 0 0 0
0 0 0 −1 −1 0 0 0 0 0
0 0 0 0 0 0 −4 0 0 0
0 0 0 0 0 0 0 −1 −1 −1

]
︸ ︷︷ ︸

Ccl

ẋ.

Let us consider the case p = 2 and apply [56, Theorem 5.4]. State space matrices for [56,

Theorem 5.4] are: A = Acl
1 , B = [Bcl

1 Bd], C = CclAcl
1 and D = Ccl[0 Bd], where

0 is the matrix with all zero entries and dimensions equal the dimensions of Bcl
1 . The

corresponding transfer function G(s) = C(sI −A)−1B+D is obtained in MATLAB. Us-

ing the MATLAB function norm(G(s), inf), the corresponding L2-gain is readily obtained:

γ1 = 132. From (6.18) we obtain

A∗1 =



48 24 0 32 0

24 20 20 32 0

0 20 6 0 6

32 32 0 64 5

0 0 6 5 10


.
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Figure 6.3: Outputs of the agents for: (a) Scenario without disturbance; and, (b) Scenario
with disturbance. Magenta dots indicate switching instants.

Solving (6.20) with T = 3 such that γ1γe,1 < 1 yields τ1 = 1.1 ∗ 10−3 s. This corresponds

to broadcasting frequency of 307 Hz for each agent. The same steps for L2 yield γ2 = 267,

τ2 = 8.7 ∗ 10−4 s and broadcasting frequency 383 Hz for each agent.

In order to verify results of Section 6.4, we toggle between topologies L1 and L2.

Numerical results for two scenarios are provided in Figure 6.3. In the first scenario, we

choose ω ≡ 0ny . In the second scenario, we choose ωi(t) = 5t[0,4.4) − 5t[4.4,8.8) + 0t[8.8,13],

i ∈ {1, . . . , nd}, where tI is the indicator function on an interval I. In other words, tI = t

when t ∈ I and zero otherwise. According to Theorem 10, we know that each topology is

GES. At the moment, we are devising methods to obtain constants k and l from Definition

9 for these two topologies. Consequently, we are not able to explicitly compute the lower

bound on τa in (6.35). However, in a number of performed simulations, we were not

able to find a switching signal σ(t) that would destabilize the system. This suggests that

min{τ1, τ2} ≥ τa (see Remark 18).
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6.6 Conclusions and Future Work

This chapter investigates a problem of decentralized output synchronization for heteroge-

neous linear systems. Motivated by the rational use of limited resources, we develop a

self-triggered output broadcasting policy for the interconnected systems. In other words,

each system broadcasts its outputs only when is needed in order for the outputs of all sys-

tems to synchronize. Thus, the control signal of each system is updated based on currently

available but outdated outputs received from its neighbors. These broadcasting instants

adapt to the current communication topology. For a fixed topology, we prove that our

broadcasting policy yields global exponential output synchronization, and Lp-stable output

synchronization in the presence of disturbances. When switching topology is considered,

we provide an average dwell-time condition that yields disturbance-to-state stable output

synchronization. We point out that our approach is applicable to directed and unbalanced

communication topologies.

The future work is dedicated to computing the average dwell-time explicitly. In ad-

dition, we plan to incorporate noisy measurements and delays. Taking into account our

previous work, an extension to nonlinear systems seems straightforward.
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Proofs of main results from Chapter 4

Lemma 3 For p ∈ [1,∞), Lp-stability from input ω to state x implies ISS.

Proof 20 Take inequality

‖x[t0, t]‖p ≤ K‖x0‖+ γ‖ω[t0, t]‖p

and raise both sides to the pth power. Using the following inequality found in [137]

(a+ b)p ≤ (1 + ε)p−1ap +
(

1 +
1

ε

)p−1

bp,

where a, b ≥ 0 and ε > 0, we obtain

‖x[t0, t]‖pp ≤ (1 + ε)p−1Kp‖x0‖p +
(

1 +
1

ε

)p−1

γp‖ω[t0, t]‖pp.

Introducing K1 = (1 + ε)p−1Kp and γ1 =
(

1 + 1
ε

)p−1

γp yields

∫ t

t0

‖x(s)‖pds ≤ K1‖x0‖p + γ1

∫ t

t0

‖ω(s)‖pds.

The above inequality has the form of inequality (2) in [135] which is equivalent to ISS.

This proves the claim.
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Proof 21 (Proof of Theorem 2) We prove this theorem for the case p ∈ [1,∞). The proof

for the case p =∞ is similar.

(Sufficiency) Let us start from some initial condition x(t0) and apply inputw to a hybrid

system Σ given by (4.11) to obtain the state trajectory t 7→ x(t) and associated output

t 7→ y(t). Now, we can write for every t ≥ t0

‖y[t0, t]‖pp =

∫ t

t0

‖y(s)‖pds =
J−1∑
i=0

∫ tδi+1

tδi

‖y(s)‖pds+

∫ t

tδJ

‖y(s)‖pds

=
J−1∑
i=0

‖y[tδi , t
δ
i+1]‖pp + ‖y[tδJ , t]‖pp, (A.1)

where J = arg max{j : tδj ≤ t}. From (4.21) we obtain

‖y[t0, t]‖pp ≤
J−1∑
i=0

(
K̃(τ δi ))‖x(tδ+i )‖+ γ̃(τ δi )‖ω[tδi , t

δ
i+1]‖p

)p
+

+
(
K̃(τ δJ))‖x(tδ+J )‖+ γ̃(τ δJ)‖ω[tδJ , t]‖p

)p
. (A.2)

Using (4.22) and (4.23) yields

‖y[t0, t]‖pp ≤
J−1∑
i=0

(
KM‖x(tδ+i )‖+ γM‖ω[tδi , t

δ
i+1]‖p

)p
+

+
(
KM‖x(tδ+J )‖+ γM‖ω[tδJ , t]‖p

)p
. (A.3)

In what follows we use the following version of the Minkowski inequality(
M∑
i=1

(ai + bi)
p

)1/p

≤

(
M∑
i=1

api

)1/p

+

(
M∑
i=1

bpi

)1/p

, (A.4)

where ai, bi ≥ 0 and M ∈ N ∪ {∞}. Taking the pth root of (A.3) yields

‖y[t0, t]‖p ≤

(
J−1∑
i=0

(
KM‖x(tδ+i )‖+ γM‖ω[tδi , t

δ
i+1]‖p

)p
+

+
(
KM‖x(tδ+J )‖+ γM‖ω[tδJ , t]‖p

)p) 1
p

. (A.5)
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Applying (A.4) to the right hand side of (A.5) leads to

‖y[t0, t]‖p ≤KM

(
‖x(t0)‖p +

J∑
i=1

‖x(t+i )‖p
)1/p

+ γM

(
J−1∑
i=0

‖ω[tδi , t
δ
i+1]‖pp+

+ ‖ω[tδJ , t]‖pp

) 1
p

. (A.6)

Let us now apply (a + b)1/p ≤ a1/p + b1/p where a, b ≥ 0 to the first term in (A.6), and

notice that

J−1∑
i=0

‖ω[tδi , t
δ
i+1]‖pp + ‖ω[tδJ , t]‖pp = ‖ω[t0, t]‖pp

as in (A.1). Hence,

‖y[t0, t]‖p ≤ KM

(
‖x(t0)‖+

J∑
i=1

‖x(tδ+i )‖
)

+ γM‖ω[t0, t]‖p. (A.7)

Applying (4.24) we obtain

‖y[t0, t]‖p ≤ KM(K + 1)‖x(t0)‖+ γM‖ω[t0, t]‖p (A.8)

for all t ≥ t0.

(Necessity) Let us show that if at least one of the two conditions in the theorem is not

met, then Σδ is not Lp-stable with the constant KM(K + 1) and gain γM for a given δ.

Basically, we have to find an input ω and a sequence of x(tδ+i )’s that violate the constant

KM(K + 1) and/or gain γM .

First, assume that condition (i) is not satisfied, i.e., there exists at least one j ∈ N0

such that K̃(τ δj ) > KM or γ̃(τ δj ) > γM or KM = ∞ or γM = ∞. If either KM = ∞

or γM = ∞, Σδ is not Lp-stable by definition since KM 6∈ R or γM 6∈ R. Without

loss of generality, let us assume that j is unique. If γ̃(τ δj ) > γM , take x(t0) = 0 and

ω ≡ 0 everywhere but on the horizon τ δj . On the horizon τ δj , take ω[tδj , t
δ
j+1] that yields

gain γ̃(τ δj ) > γM . Obviously, Σδ is not Lp-stable with gain γM . If K̃(τ δj ) > KM , choose
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x(tδ+i )’s such that
∑j

i=1 ‖x(tδ+i )‖ = K‖x(t0)‖ and ‖x(tδ+i )‖ = 0 for i > j. Since on the

horizon τj we have that K̃(τ δj ) > KM , Σδ is not Lp-stable with the constant KM(K + 1).

If condition (ii) is violated, say ‖x(tδ+i )‖ = ‖x(t0)‖ 6= 0 for all i ∈ {1, 2, ...}, then Σδ

is not Lp-stable because, for example, the zero input ω ≡ 0 ∈ Lp[t0,∞] yields the state

x 6∈ Lp[t0,∞]. From the detectability assumption and Definition 12, we conclude that

y 6∈ Lp[t0,∞] even though ‖ω[t0,∞]‖p = 0. This concludes the proof.

Let Df(t) denote the left-handed derivative of f : R→ Rn, i.e.,

Df(t) = lim
h→0,h<0

f(t+ h)− f(t)

h
.

The following two lemmas and theorem are taken from [40] and slightly modified.

Lemma 4 Let I = [t0, t1], v ∈ Rn and consider

Dv � Av + d(t), v(t0) = v0, ∀t ∈ I

where A ∈ A+
ne , ‖A‖ < ∞, and d(t) : I → Rn is continuous. Then, for all t ∈ I , v(t) is

bounded by

v(t) � exp(A(t− t0))v0 +

∫ t

t0

exp(A(t− s))d(s)ds.

Lemma 5 (Young’s Inequality) Let ∗ denote convolution over the interval I , f ∈ Lp[I]

and f ∈ Lq[I]. The Young’s inequality is ‖f ∗ g‖r ≤ ‖f‖p‖g‖q for 1/r = 1/p + 1/q − 1

where p, q, r > 0.

Theorem 13 (Riesz-Thorin Interpolation Theorem) Let F : A+
n → A+

n be a linear op-

erator and suppose that p0, p1, q0, q1 ∈ [1,∞] satisfy p0 < p1 and q0 < q1. For any

t ∈ [0, 1] define pt, qt by 1/pt = (1 − t)/p0 + t/p1 and 1/qt = (1 − t/q0) + t/q1. Then,

‖F‖pt→qt ≤ ‖F‖1−t
p0→q0‖F‖

t
p1→q1 . In particular, if ‖F‖p0→q0 ≤ M0 and ‖F‖p1→q1 ≤ M1,

then ‖F‖pt→qt ≤M1−t
0 M t

1.

149



Appendix A. Proofs of main results from Chapter 4

Proof 22 (Proof of Theorem 3) By the hypotheses of the theorem, we have

¯̇e = g(t, x, e, ω̂p, eω) � Aē+ ỹ(t, x, ω̂p, eω)

on each interval I , and the ith component of ¯̇e is given by:∣∣∣ d
dt
ei(t)

∣∣∣ =
∣∣∣limh→0,h<0

ei(t+h)−ei
h

∣∣∣ ≥ lim
h→0,h<0

|ei(t+ h)| − |ei|
h

= Dēi(t).

Therefore,

Dē � Aē+ ỹ(t).

Using Lemma 4, we can write

ē(t) � exp(A(t− t0))ē(t0) +

∫ t

t0

exp(A(t− s))ỹ(s)ds. (A.9)

Setting the input term ỹ ≡ 0, we obtain

ē(t) � exp (A(t− t0))ē(t0).

Taking the norm of both sides of the this inequality and using Lemmas 1 and 2 we obtain:

‖ē(t)‖ ≤ exp (‖A‖(t− t0))‖ē(t0)‖. (A.10)

Raising to the pth ∈ [1,∞) power and integrating over [t0, t] yields

‖ē[t0, t]‖pp ≤
exp(‖A‖p(t− t0))− 1

p‖A‖
‖ē(t0)‖p.

Taking the pth root yields

‖ē[t0, t]‖p ≤

(
exp(‖A‖p(t− t0))− 1

p‖A‖

)1/p

‖ē(t0)‖, p ∈ [1,∞). (A.11)

The L∞ bound is easily obtained by taking limp→∞ ‖ē[t0, t]‖p obtaining

‖ē[t0, t]‖∞ ≤ exp(‖A‖(t− t0))− 1)‖ē(t0)‖.
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Let us now set ē(t0) = 0 and estimate the contribution from the input term. From (A.9)

we have:

ē(t) �
∫ t

t0

exp(A(t− s))ỹ(s)ds.

Using Lemmas 1 and 2 we obtain

‖ē(t)‖ ≤
∫ t

t0

exp(‖A‖(t− s))‖ỹ(s)‖ds. (A.12)

Let us denote φ(s) = exp(‖A‖s). Integrating the previous inequality and using Lemma 5

with p = q = r = 1 yields the L1-norm estimate:

‖ē[t0, t]‖1 ≤ ‖φ[0, t− t0]‖1‖ỹ[t0, t]‖1. (A.13)

Applying the L∞-norm to (A.12) and using Lemma 5 with q = r =∞ and p = 1 yields the

L∞-norm estimate:

‖ē[t0, t]‖∞ ≤ ‖φ[0, t− t0]‖1‖ỹ[t0, t]‖∞. (A.14)

We can think of (A.9) as a linear operator G mapping ỹ to ē with bound for the norms

‖G‖1 ≤ ‖G‖∗1 and ‖G‖∞ ≤ ‖G‖∗∞ where ‖G‖∗1 and ‖G‖∗∞ are given by (A.13) and (A.14),

respectively. Because ‖G‖∗1 = ‖G‖∗∞, Theorem 13 gives that ‖G‖p ≤ ‖G‖∗1 = ‖G‖∗∞ for

all p ∈ [1,∞]. This yields

‖ē[t0, t]‖p ≤ ‖φ[0, t− t0]‖1‖ỹ[t0, t]‖p, p ∈ [1,∞].

Since ‖φ[0, t− t0]‖1 = exp(‖A‖(t−t0))−1
‖A‖ , we obtain

‖ē[t0, t]‖p ≤
exp(‖A‖(t− t0))− 1

‖A‖
‖ỹ[t0, t]‖p, p ∈ [1,∞]. (A.15)

After summing the contributions of (A.11) and (A.15), the statement of the theorem follows.

Proof 23 (Proof of Theorem 4) The following proof (with slight modifications) is used in

all stability theorems of Section 4.5. That is why we first derive general results, and later

specify the obtained results for Case 1.
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Let us first analyze what happens on horizons τ δi , i ∈ N0, in between two consecutive

switching instants. Without loss of generality, let us analyze τ δ0 . From assumption (iii) we

have

‖ỹ[t0, t]‖p ≤ Kδ
n‖x(t0)‖+ γδn‖(e, eω)[t0, t]‖p,

i.e.,

‖ỹ[t0, t]‖p ≤ Kδ
n‖x(t0)‖+ γδn‖e[t0, t]‖p + γδn‖eω[t0, t]‖p, (A.16)

for all t ≥ t0. Next, from assumption (ii) for the continuous dynamics of Σδ
e we have

‖e[ti, t′]‖p ≤ K̃δ
e (τi)‖e(t+i )‖+ γ̃δe(τi)‖ỹ[ti, t

′]‖p (A.17)

for all ti < t0 + τ δ0 and all t′ ∈ [ti, ti+1]. Constants K̃δ
e (τi) and γ̃δe(τi) are given by

(4.27) and (4.28). Due to the perfect resets of e given by (4.38b), condition (4.24) becomes

0 =
∑∞

i=1 ‖e(t
+
i )‖ ≤ Kδ

e‖e(t0)‖ so we can choose Ke = 0 for Case 1.

From Figure 4.4 it can be concluded that the open loop gain is γδnγ
δ
e where γδn and γδe

are classical Lp-gains. Recall that the small gain theorem requires γδnγ
δ
e < 1 (see [56]).

Now, let us design τi’s in (A.17) such that γδe , obtained from γ̃δe(τi) using (4.23), satisfies

γδeγ
δ
n < 1. Hence, we want all γ̃δe(τi) to satisfy γ̃δe(τi) ≤ κ/γδn. Using (4.28), we obtain

exp(‖Aδi‖τi)− 1

‖Aδi‖
≤ κ

γn
. (A.18)

Solving the above inequalities for τi yields

τ ∗i =
1

‖Aδi‖
ln

(
κ
‖Aδi‖
γn

+ 1

)
.

Using the above τ ∗i ’s in (4.27), we calculateKδ
M,e from K̃δ

e (τi)’s via (4.22). This supremum

exists since τ ∗i are upper bounded by Remark 5 (below we show that ‖Aδi‖ is bounded for

all Ci’s). Now, all conditions of Theorem 2 are satisfied and we have

‖e[t0, t]‖p ≤ Kδ
M,e‖e(t0)‖+ γδe‖ỹ[t0, t]‖p (A.19)
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for any t ≥ t0.

Applying the small gain theorem with (A.16) and (A.19), we obtain:

‖(ỹ, e)[t0, t]‖p ≤ Kδ
1‖(x0, e0)‖+ γδ1‖eω[t0, t]‖p (A.20)

for all t ≥ t0 where Kδ
1 ≥ 0 and γδ1 ≥ 0 are functions of Kδ

M,e, K
δ
n, γδn and γδe . For

more details regarding the application of the small gain theorem in our settings, refer to

the proof of Theorem 7. Using the detectability assumption (v) on x, from Proposition 2

and (A.20) we obtain

‖(x, e)[t0, t]‖p ≤ Kδ
2‖(x0, e0)‖+ γδ2‖eω[t0, t]‖p (A.21)

for all t ≥ t0 where Kδ
2 ≥ 0 and γδ2 ≥ 0.

Let us now verify that condition ‖Aδi‖ < ∞ of Theorem 3 follows from (i), (ii), (iii)

and (v) and that a lower bound on dwell times is assured. In other words, we want to

ensure existence of V in Assumption 2 using the assumptions of Theorem 4. The initial

condition (x0, e0) ∈ Rnx×ne implies ‖(x0, e0)‖ < ∞. Next, due to (i), we infer that ω̂p �

L1 1nω where L1 ≥ L accounts for the noise in ω̂p. Notice that (i) defines P . Therefore,

eω � (L + L1) 1nω . The right-continuity of solutions yields bounded (x(t), e(t)) on finite

horizons (i.e., on bounded and closed intersampling intervals [t0, t1]) starting from (x0, e0)

provided that γδnγ
δ
e < 1. What we have so far is C0 = {(x(t), ω̂p, eω(t))

∣∣t ∈ [t0, t0 + τ0]}

where ω̂p and eω are bounded for any t ≥ t0 and the set of possible x is bounded and

closed for a bounded τ0. The set of values that x can attain on finite horizons is calculated

applying reachability analysis to (4.5)-(4.6) starting from t0. Notice that, as t grows, so

does C0 and consequently ‖Aδ0‖ (or stays the same). If we are able to choose a bounded τ0,

then C0 is compact and ‖Aδ0‖ is bounded. Notice that the left side of (A.18) is continuous

in τ0, equals zero for τ0 = 0, and monotonically increases in both τ0 and ‖Aδ‖. Due to

(iii), there exists a bounded and closed τ ∗0 such that (A.18) is satisfied. The same procedure

is applied for the subsequent intersampling intervals τi’s. However, as t increases in the

subsequent [ti, ti+1]’s, it might happen that x→∞ yielding ‖Aδi‖ → ∞ and τ ∗i → 0, i.e.,
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the undesired Zeno behavior may occur. Because eω is bounded in (A.21), Lemma 3 from

the Appendix yields that x is bounded on τ δ0 , i.e., V from Assumption 2 exists. Hence, Zeno

behavior and accumulation of switching instants in finite time are avoided.

So far we have constructed Lp-stable systems when δ is constant. Now, we allow

for switches and patch together systems on different τ δi ’s using Theorem 2 again. Since

supδ≡c,c∈P γ
δ
n < ∞, γδnγ

δ
e ≤ κ on all τ δi ’s and all τi’s are bounded, it can be shown that

suprema (4.22) and (4.23) exist. Using (iv) and applying Theorem 2, we conclude that

there exist K ≥ 0 and γ ≥ 0 such that

‖(x, e)[t0, t]‖p ≤ K‖(x0, e0)‖+ γ‖eω[t0, t]‖p (A.22)

for all t ≥ t0 given some δ.

For Case 1 we have ‖eω[t0, t]‖p = 0 yielding

‖(x, e)[t0, t]‖p ≤ K‖(x0, e0)‖.

Using Lemma 3, we know that there exists a class-KL function β such that ‖(x(t), e(t))‖ ≤

β(‖(x(t0), e(t0))‖, t − t0). Consequently, the closed-loop system (4.38) is globally uni-

formly asymptotically stable. This concludes the proof.
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[102] D. Tolić and R. Fierro, “Stability of feedback linearization under intermittent infor-
mation: A target-pursuit case,” in American Control Conference, 2011, pp. 3184
–3190.
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