5,831 research outputs found

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following ļ¬ndings in cognitive psychology, our model is composed of layers representing maps at diļ¬€erent levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    Development of reaching to the body in early infancy: From experiments to robotic models

    Get PDF
    We have been observing how infants between 3 and 21 months react when a vibrotactile stimulation (a buzzer) is applied to different parts of their bodies. Responses included in particular movement of the stimulated body part and successful reaching for and removal of the buzzer. Overall, there is a pronounced developmental progression from general to specific movement patterns, especially in the first year. In this article we review the series of studies we conducted and then focus on possible mechanisms that might explain what we observed. One possible mechanism might rely on the brain extracting ā€œsensorimotor contingenciesā€ linking motor actions and resulting sensory consequences. This account posits that infants are driven by intrinsic motivation that guides exploratory motor activity, at first generating random motor babbling with self-touch occurring spontaneously. Later goal-oriented motor behavior occurs, with self-touch as a possible effective tool to induce informative contingencies. We connect this sensorimotor view with a second possible account that appeals to the neuroscientific concepts of cortical maps and coordinate transformations. In this second account, the improvement of reaching precision is mediated by refinement of neuronal maps in primary sensory and motor corticesā€”the homunculiā€”as well as in frontal and parietal corti- cal regions dedicated to sensorimotor processing. We complement this theoretical account with modeling on a humanoid robot with artificial skin where we implemented reaching for tactile stimuli as well as learning the ā€œsomatosensory homunculiā€. We suggest that this account can be extended to reflect the driving role of sensorimotor contingencies in human development. In our conclusion we consider possible extensions of our current experiments which take account of predictions derived from both these kinds of models

    Development of reaching to the body in early infancy: from experiments to robotic models

    Get PDF
    We have been observing how infants between 3 and 21 months react when a vibrotactile stimulation (a buzzer) is applied to different parts of their bodies. Responses included in particular movement of the stimulated body part and successful reaching for and removal of the buzzer. Overall, there is a pronounced developmental progression from general to specific movement patterns, especially in the first year. In this article we review the series of studies we conducted and then focus on possible mechanisms that might explain what we observed. One possible mechanism might rely on the brain extracting ā€œsensorimotor contingenciesā€ linking motor actions and resulting sensory consequences. This account posits that infants are driven by intrinsic motivation that guides exploratory motor activity, at first generating random motor babbling with self-touch occurring spontaneously. Later goal-oriented motor behavior occurs, with self-touch as a possible effective tool to induce informative contingencies. We connect this sensorimotor view with a second possible account that appeals to the neuroscientific concepts of cortical maps and coordinate transformations. In this second account, the improvement of reaching precision is mediated by refinement of neuronal maps in primary sensory and motor corticesā€”the homunculiā€”as well as in frontal and parietal corti- cal regions dedicated to sensorimotor processing. We complement this theoretical account with modeling on a humanoid robot with artificial skin where we implemented reaching for tactile stimuli as well as learning the ā€œsomatosensory homunculiā€. We suggest that this account can be extended to reflect the driving role of sensorimotor contingencies in human development. In our conclusion we consider possible extensions of our current experiments which take account of predictions derived from both these kinds of models

    Decoding learning: the proof, promise and potential of digital education

    Get PDF
    With hundreds of millions of pounds spent on digital technology for education every year ā€“ from interactive whiteboards to the rise of oneā€“toā€“one tablet computers ā€“ every new technology seems to offer unlimited promise to learning. many sectors have benefitted immensely from harnessing innovative uses of technology. cloud computing, mobile communications and internet applications have changed the way manufacturing, finance, business services, the media and retailers operate. But key questions remain in education: has the range of technologies helped improve learnersā€™ experiences and the standards they achieve? or is this investment just languishing as kit in the cupboard? and what more can decision makers, schools, teachers, parents and the technology industry do to ensure the full potential of innovative technology is exploited? There is no doubt that digital technologies have had a profound impact upon the management of learning. institutions can now recruit, register, monitor, and report on students with a new economy, efficiency, and (sometimes) creativity. yet, evidence of digital technologies producing real transformation in learning and teaching remains elusive. The education sector has invested heavily in digital technology; but this investment has not yet resulted in the radical improvements to learning experiences and educational attainment. in 2011, the Review of Education Capital found that maintained schools spent Ā£487 million on icT equipment and services in 2009-2010. 1 since then, the education system has entered a state of flux with changes to the curriculum, shifts in funding, and increasing school autonomy. While ring-fenced funding for icT equipment and services has since ceased, a survey of 1,317 schools in July 2012 by the british educational suppliers association found they were assigning an increasing amount of their budget to technology. With greater freedom and enthusiasm towards technology in education, schools and teachers have become more discerning and are beginning to demand more evidence to justify their spending and strategies. This is both a challenge and an opportunity as it puts schools in greater charge of their spending and use of technolog

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    Development of reaching to the body in early infancy: From experiments to robotic models

    Get PDF
    We have been observing how infants between 3 and 21 months react when a vibrotactile stimulation (a buzzer) is applied to different parts of their bodies. Responses included in particular movement of the stimulated body part and successful reaching for and removal of the buzzer. Overall, there is a pronounced developmental progression from general to specific movement patterns, especially in the first year. In this article we review the series of studies we conducted and then focus on possible mechanisms that might explain what we observed. One possible mechanism might rely on the brain extracting ā€œsensorimotor contingenciesā€ linking motor actions and resulting sensory consequences. This account posits that infants are driven by intrinsic motivation that guides exploratory motor activity, at first generating random motor babbling with self-touch occurring spontaneously. Later goal-oriented motor behavior occurs, with self-touch as a possible effective tool to induce informative contingencies. We connect this sensorimotor view with a second possible account that appeals to the neuroscientific concepts of cortical maps and coordinate transformations. In this second account, the improvement of reaching precision is mediated by refinement of neuronal maps in primary sensory and motor corticesā€”the homunculiā€”as well as in frontal and parietal corti- cal regions dedicated to sensorimotor processing. We complement this theoretical account with modeling on a humanoid robot with artificial skin where we implemented reaching for tactile stimuli as well as learning the ā€œsomatosensory homunculiā€. We suggest that this account can be extended to reflect the driving role of sensorimotor contingencies in human development. In our conclusion we consider possible extensions of our current experiments which take account of predictions derived from both these kinds of models

    To appear, AAAI-07, Integrated Intelligence Track 1 An Integrated Robotic System for Spatial Understanding and Situated Interaction in Indoor Environments

    Get PDF
    A major challenge in robotics and artificial intelligence lies in creating robots that are to cooperate with people in human-populated environments, e.g. for domestic assistance or elderly care. Such robots need skills that allow them to interact with the world and the humans living and working therein. In this paper we investigate the question of spatial understanding of human-made environments. The functionalities of our system comprise perception of the world, natural language, learning, and reasoning. For this purpose we integrate state-of-the-art components from different disciplines in AI, robotics and cognitive systems into a mobile robot system. The work focuses on the description of the principles we used for the integration, including cross-modal integration, ontology-based mediation, and multiple levels of abstraction of perception. Finally, we present experiments with the integrated ā€œCoSy Explorer ā€ 1 system and list some of the major lessons that were learned from its design, implementation, and evaluation

    Art and Medicine: A Collaborative Project Between Virginia Commonwealth University in Qatar and Weill Cornell Medicine in Qatar

    Get PDF
    Four faculty researchers, two from Virginia Commonwealth University in Qatar, and two from Weill Cornell Medicine in Qatar developed a one semester workshop-based course in Qatar exploring the connections between art and medicine in a contemporary context. Students (6 art / 6 medicine) were enrolled in the course. The course included presentations by clinicians, medical engineers, artists, computing engineers, an art historian, a graphic designer, a painter, and other experts from the fields of art, design, and medicine. To measure the student experience of interdisciplinarity, the faculty researchers employed a mixed methods approach involving psychometric tests and observational ethnography. Data instruments included pre- and post-course semi-structured audio interviews, pre-test / post-test psychometric instruments (Budner Scale and Torrance Tests of Creativity), observational field notes, self-reflective blogging, and videography. This book describes the course and the experience of the students. It also contains images of the interdisciplinary work they created for a culminating class exhibition. Finally, the book provides insight on how different fields in a Middle Eastern context can share critical /analytical thinking tools to refine their own professional practices

    The Michigan Robotics Undergraduate Curriculum: Defining the Discipline of Robotics for Equity and Excellence

    Full text link
    The Robotics Major at the University of Michigan was successfully launched in the 2022-23 academic year as an innovative step forward to better serve students, our communities, and our society. Building on our guiding principle of "Robotics with Respect" and our larger Robotics Pathways model, the Michigan Robotics Major was designed to define robotics as a true academic discipline with both equity and excellence as our highest priorities. Understanding that talent is equally distributed but opportunity is not, the Michigan Robotics Major has embraced an adaptable curriculum that is accessible through a diversity of student pathways and enables successful and sustained career-long participation in robotics, AI, and automation professions. The results after our planning efforts (2019-22) and first academic year (2022-23) have been highly encouraging: more than 100 students declared Robotics as their major, completion of the Robotics major by our first two graduates, soaring enrollments in our Robotics classes, thriving partnerships with Historically Black Colleges and Universities. This document provides our original curricular proposal for the Robotics Undergraduate Program at the University of Michigan, submitted to the Michigan Association of State Universities in April 2022 and approved in June 2022. The dissemination of our program design is in the spirit of continued growth for higher education towards realizing equity and excellence. The most recent version of this document is also available on Google Docs through this link: https://ocj.me/robotics_majorComment: 49 pages, approximately 25 figure
    • ā€¦
    corecore