1,954 research outputs found

    Temperature and Strain Measurements with Fiber Optic Sensors for Steel Beams Subjected to Fire

    Get PDF
    This paper presents measurements of high temperatures using a Brillouin scattering based fiber optic sensor and large strains using an extrinsic Fabry-Perot interferometric sensor for assessing the thermo-mechanical behaviors of simply supported steel beams subjected to combined thermal and mechanical loading. The distributed fiber optic sensor captures detailed, non- uniform temperature distributions that are compared with thermocouple measurements resulting in an average relative difference of less than 5 % at 95 % confidence level. The extrinsic Fabry- Perot interferometric sensor captures large strains at temperatures above 1000 C. The strain results measured from the distributed fiber optic sensors and extrinsic Fabry-Perot interferometric sensors were compared, and the average relative difference was less than 10 % at 95 % confidence level

    Cracking assessment in concrete structures by distributed optical fiber

    Get PDF
    In this paper, a method to obtain crack initiation, location and width in concrete structures subjected to bending and instrumented with an optical backscattered reflectometer (OBR) system is proposed. Continuous strain data with high spatial resolution and accuracy are the main advantages of the OBR system. These characteristics make this structural health monitoring technique a useful tool in early damage detection in important structural problems. In the specific case of reinforced concrete structures, which exhibit cracks even in-service loading, the possibility to obtain strain data with high spatial resolution is a main issue. In this way, this information is of paramount importance concerning the durability and long performance and management of concrete structures. The proposed method is based on the results of a test up to failure carried out on a reinforced concrete slab. Using test data and different crack modeling criteria in concrete structures, simple nonlinear finite element models were elaborated to validate its use in the localization and appraisal of the crack width in the testing slab.Peer ReviewedPostprint (author’s final draft

    Review: optical fiber sensors for civil engineering applications

    Get PDF
    Optical fiber sensor (OFS) technologies have developed rapidly over the last few decades, and various types of OFS have found practical applications in the field of civil engineering. In this paper, which is resulting from the work of the RILEM technical committee “Optical fiber sensors for civil engineering applications”, different kinds of sensing techniques, including change of light intensity, interferometry, fiber Bragg grating, adsorption measurement and distributed sensing, are briefly reviewed to introduce the basic sensing principles. Then, the applications of OFS in highway structures, building structures, geotechnical structures, pipelines as well as cables monitoring are described, with focus on sensor design, installation technique and sensor performance. It is believed that the State-of-the-Art review is helpful to engineers considering the use of OFS in their projects, and can facilitate the wider application of OFS technologies in construction industry

    Analysis of the applicability of singlemode optical fibers for measurement of deformation with distributed systems BOTDR

    Get PDF
    Distributed optical fiber sensors allow monitoring physical effects across the whole cable. The paper presents results obtained from the performed tests and shows that single mode fibers can provide analyses of the deformation changes, when distributed optical systems BOTDR used. We used standard optical fiber G.652.D with primary and secondary protected layers and specialized cable SMC-V4 designed for this purpose. The aim was to compare the deformation sensitivity and determine which fiber types are the best to use. We deformed the fiber in the longitudinal and transverse directions and mechanically stressed in orthogonal directions to find how to localize optical fibers. They could be deployed in real use. For achieving optimal results of mechanical changes and acting forces, sensor fibers have to be located carefully

    Applied Fiber Optic Measurement for Geohydraulic Engineering

    Get PDF
    Engineers have long sought the possibility of measuring parameters such as temperature and pressure continuously in the underground with high precision, high spatial resolution and high band width of parameters. Distributed fibre optic measurement offers the use of a very fast, robust, precise, light and small gauges with an high spatial resolution. In this paper we would like to compile fibre-optic measure-methods which are available now for projects in geohydraulical engineering. This paper will propose new problems for future research work on parameter identification for such parameters as conductivity and anisotropy

    Distributed opto-mechanical analysis of liquids outside standard fibers coated with polyimide

    Full text link
    The analysis of surrounding media has been a long-standing challenge of optical fiber sensors. Measurements are difficult due to the confinement of light to the inner core of standard fibers. Over the last two years, new sensor concepts have enabled the analysis of liquids outside the cladding boundary, where light does not reach. Sensing is based on opto-mechanical, forward stimulated Brillouin scattering interactions between guided light and sound waves. In most previous works, however, the protective polymer coating of the fiber had to be removed first. In this work, we report the opto-mechanical analysis of liquids outside commercially available, standard single-mode fibers with polyimide coating. The polyimide layer provides mechanical protection but can also transmit acoustic waves from the fiber cladding towards outside media. Comprehensive analysis of opto-mechanical coupling in coated fibers that are immersed in liquid is provided. The model shows that forward stimulated Brillouin scattering spectra in coated fibers are more complex than those of bare fibers, and strongly depend on the exact coating diameter and the choice of acoustic mode. Nevertheless, sensing outside coated fibers is demonstrated experimentally. Integrated measurements over 100 meters of fiber clearly distinguish between air, ethanol and water outside polyimide coating. Measured spectra are in close quantitative agreement with the analytic predictions. Further, distributed opto-mechanical time-domain reflectometry mapping of water and ethanol outside coated fiber is reported, with a spatial resolution of 100 meters. The results represent a large step towards practical opto-mechanical fiber sensors

    Improving Distributed Fiber-Optic Sensor Measures by Digital Image Correlation: Two-Stage Structural Health Monitoring

    Get PDF
    This paper deals with the integrated use of distributed fiber-optic sensors and digital image correlation techniques to develop a two-stage monitoring method for damage detection, localization, and quantification. The proposed methodology was applied in the laboratory on reinforced concrete beam specimens and is suitable for further field developments in concrete structures of large dimensions. The first stage is based on distributed strain monitoring through Brillouin scattering-based fiber-optic sensors to detect and locate potential damage zones within the entire structure, while the second focuses on verification of the critical regions identified by the optical-fiber sensor using the digital image correlation technique

    Optical fibre sensors - applications and potential

    Get PDF
    Fibre optic sensors have progressed considerably during the past few years and are now establishing their potential as very real contenders in the environmental, structural monitoring and industrial sensing areas. This paper will explore some examples of these emerging applications and analyse the benefits which optical fibre technology offers within these measurement sectors. We shall then continue to explore emerging prospects which offer new opportunities for future research and exploitation
    corecore