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This paper deals with the integrated use of distributed fiber-optic 
sensors and digital image correlation techniques to develop a 
two-stage monitoring method for damage detection, localiza-
tion, and quantification. The proposed methodology was applied 
in the laboratory on reinforced concrete beam specimens and is 
suitable for further field developments in concrete structures of 
large dimensions. The first stage is based on distributed strain 
monitoring through Brillouin scattering-based fiber-optic sensors 
to detect and locate potential damage zones within the entire 
structure, while the second focuses on verification of the critical 
regions identified by the optical-fiber sensor using the digital image 
correlation technique.

Keywords: cracks; digital image correlation (DIC); fiber-optic sensors 
(FOSs); reinforced concrete (RC) elements; structural health monitoring 
(SHM).

INTRODUCTION
Many countries around the world are facing serious prob-

lems with the aging of infrastructures. Besides the degrada-
tion process that is usually associated with aging, it is also 
important to consider the design standards that were origi-
nally used. Indeed, more updated regulations may have come 
into force, including methodologies unknown or impossible 
to apply at the time when the infrastructure was designed.

In this context, most of the bridges built after 1945 were 
designed with a service life of 50 to 100 years, many of which 
are still operational today, but with many uncertainties about 
their safety performance. In 2001, the European Union-
funded BRIME project identified that highway bridges in 
three different European countries (France, Germany, and 
the United Kingdom) present deficiencies at a rate of 39%, 
30%, and 37%, respectively, with the main cause being the 
corrosion of reinforcement.1 In Germany, for example, the 
federal government through the Federal Highway Research 
Institute is monitoring 39,621 bridges, of which 10.6% are 
in a condition that is not satisfactory and 1.8% are in poor 
condition, needing an urgent repair, according to the statis-
tics reported by The New York Times.2 Similarly, according 
to the 2013 ASCE Report Card, in the United States, a signif-
icant portion of infrastructures have exceeded their design 
service life, showing evidence of aging and deterioration.3

Despite the modern practices in the design of bridges, the 
increased frequency of extreme events such as earthquakes 
and hurricanes renders them unsafe unless their condi-
tions are properly monitored.4 Therefore, structural health 

monitoring (SHM) has been identified as one of the possible 
alternatives or complements to visual inspections because of 
its higher reliability and accuracy for assessing conditions 
due to access to quantitative information.5 In essence, real-
time monitoring of structures will prevent the imminence 
of collapse by the early detection of anomalies.6 The infor-
mation obtained from SHM provides valuable information 
for undertaking remedial actions and assuring the safety of 
structures. Furthermore, sensor-based quantitative moni-
toring of structures will be essential in reducing the life 
cycle costs in the maintenance of structures and adds to the 
knowledge base pertaining to structural behavior.7 In the 
United States, several SHM programs have been established 
for the installation of monitoring systems on major high-rise 
buildings, bridges, and dams, with special attention to the 
seismic and coastal regions. Table 1 provides a list of the 
major monitored bridges, which have been instrumented by 
using traditional sensors such as displacement transducers, 
strain gauges, and accelerometers.3

Damage conditions in bridge structures may lead to failure 
of structural components up to collapse; therefore, several 
SHM techniques have been implemented to prevent such 
failures. Nondestructive and non-contact methods are of 
special concern with respect to other solutions because they 
do not affect the structural performance.8 A nondestructive 
method to detect cracks may be based on distributed strain 
monitoring along the main span by using Brillouin scattering- 
based optical-fiber sensors.9 Indeed, this new generation of 
optical fibers makes possible innovative sensing solutions 
for SHM.10,11

Monitoring large-size civil structures represents a chal-
lenging task. Discrete sensors such as strain gauges can 
detect damage near the areas where they are located. Distrib-
uted optical sensors provide a high-density sensing network 
to cover the entire structure, collecting strain data all along 
the optical fiber.12 A review of technical literature reveals 
that fiber-optic sensors (FOSs) have been predominantly 
employed in bridges. Among the notable bridges monitored 
by FOS, the Brooklyn Bridge in New York City provides a 
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good example, where the cracking of the crests in its double-
span masonry vaults were investigated by serially multi-
plexed fiber Bragg grating (FBG) crack, temperature, and tilt 
sensors.13 The yearlong, daily, real-time monitoring of the 
bridge revealed seasonal thermal fluctuations as the cause 
for the vault cracks. The masonry vaults were immediately 
rehabilitated following these findings. The Taylor Bridge 
in Manitoba, Canada, is another example, where the bridge 
was fully instrumented with 63 FBG and distributed sensors 
along its span.14 Sixty percent of the properly sealed strain 
gauges malfunctioned due to excessive moisture resulting 
from the steam-curing process, while distributed FOSs were 
not affected and all survived. This confirms the distributed 
FOSs’ compatibility with concrete and their potential as 
preferred sensors in SHM.14

Another example of a bridge monitored by FOSs is the 
Kishwaukee River Bridge (Illinois). Analysis of the results 
led to the identification of five locations with anomalies. 
Visual inspection verified the presence of two microcracks 
and three misaligned sections at the shear keys of the box 
segments.9 Results of another study further verified the capa-
bility of distributed optical-fiber sensors in reference-free 
dynamic health monitoring of bridges subjected to truck 
traffic.15 Reference-free monitoring of damage under oper-
ating traffic conditions provides opportunities for the prac-
tical application of distributed sensors for condition assess-
ment of bridges without prior knowledge of their condition.

In Europe, SHM with FOSs has been studied in projects as 
Sustainable Bridges16 and COST.17

Among the nondestructive methods, digital image correla-
tion (DIC) could be an easier, low-priced, and competitive 
monitoring technique. Furthermore, it belongs to the class 
of non-contact and material-independent monitoring tech-
niques. Indeed, it provides a full-field displacements and 
deformations measurement through image processing that 
would be equivalent to the installation of several sensors in a 
two-dimensional domain.18 These features are fundamental 
for the detection of damage in quasi-brittle materials like 
concrete, where fracture usually develops as local micro-
cracks that may come together to form a macrocrack, seri-
ously affecting the performance of the whole structure.19 It 
has been demonstrated that DIC can locate invisible cracks 
in concrete, quantify their openings, and also measure point 
displacements and local deformations.20 DIC does need a 
stable, non-vibrating support, but if this condition is fulfilled, 

it can be successfully used also in fatigue21 and for full-scale 
tests to failure of bridges.22

The present contribution explores the feasibility of hybrid 
approaches for damage detection to localization and quanti-
fication in concrete structures. These aspects are examined 
by laboratory tests. In particular, it deepens the advantages 
of the integrated use of distributed FOS and DIC techniques 
to develop a two-stage monitoring and inspection method 
potentially suitable for large-scale concrete structures. The 
first stage is based on strain monitoring through distributed 
FOSs to detect and locate unusual behaviors on the rein-
forced concrete (RC) beams. The second stage is imple-
mented for damage quantification by using DIC.

Focusing on installation costs, the one-time original cost 
of the distributed FOS sensing system is higher compared 
with the cost of conventional local sensor equipment instal-
lation.23 However, in terms of costs associated with instal-
lation duration, computational efforts, sensors, and mate-
rials, distributed sensing has a lower cost. The second-stage 
monitoring system is non-contact, so it does not need special 
installation techniques. Therefore, by combining the two 
monitoring methods, as specified in this work, it may be 
possible to achieve a great compromise between total instal-
lation costs and the accuracy of results.

An experimental study through four-point bending tests on 
two RC beam specimens was performed to find out valuable 
information about potential damage detection and localiza-
tion by FOS distributed sensing, while the DIC technique 
has been implemented locally to quantify cracks. The basic 
theoretical knowledge of the selected techniques is intro-
duced in the next sections, along with the methodology. The 
beam specimens and the design of the test are then presented 
with the analysis of the results and their discussion.

RESEARCH SIGNIFICANCE
This work provides an advancement from damage detec-

tion to localization and quantification that could be exploited 
from laboratory applications to field applications for long-
span concrete structures.24 It deepens the advantages of the 
integrated use of distributed FOS and DIC techniques to 
develop a two-stage monitoring and inspection approach. 
Their combined use may be possible to achieve a great 
compromise between total cost installation and accuracy of 
results. The two-stage SHM method proves effective in labo-
ratory RC specimens in detecting, locating, and quantifying 
the presence of cracks of the same size as those that can be 

Table 1—Major instrumented bridges in United States

Name Year Location Type

Golden Gate Bridge 1937 San Francisco, CA Suspension

Vincent Thomas Bridge 1964 Los Angeles, CA Suspension

Commodore Barry Bridge 1974 Pennsylvania/New Jersey Truss

Sunshine Skyway Bridge 1987 Terra Ceia, FL Cable-stayed

Fred Hartman Bridge 1995 La Porte, TX Cable-stayed

Bill Emerson Memorial Bridge 2003 Missouri/Illinois Cable-stayed

Alfred Zampa Memorial Bridge 2003 Vallejo, CA Suspension

I-35W Saint Anthony Falls Bridge 2008 Minneapolis, MN Post-tensioned concrete box girder
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measured in real conditions on concrete structures of large 
dimensions.

Digital image correlation technique
Digital image correlation (DIC) is an effective and widely 

used non-contact and material-independent technique 
for measuring material deformation.25 It was originally  
developed by Sutton et al.26 in the 1980s, and it is widely 
used for full-field deformation measurements due to its 
advantages of simple equipment and high precision. The 
principle of DIC is based on two key technologies: a camera 
to take images at different conditions, and a DIC algorithm.

Considerable progress has been made in recent decades 
in both developing new experimental DIC techniques and 
in enhancing the performance of the relevant computa-
tional algorithms.27-34 Nowadays, there are some commer-
cial two-dimensional (2-D) and three-dimensional (3-D) 
DIC systems on the market, but these systems are usually 
too expensive for many research institutes to afford. The  
development of a low-cost DIC system such as NCORR 
or XJTUDIC is of special interest.35 In particular, the high-
quality, flexible DIC software package called NCORR can 
be used to trace the displacement field (u, v) and the related 
deformations in small and finite deformations, accounting 
for discontinuities as well (cracking).36

Two-dimensional DIC using a single fixed camera is 
employed to measure plan deformations on external surfaces. 
The details of the monitoring system can be found in Sutton 
et al.37 Three-dimensional DIC is developed to get the 3-D 
deformation field and is based on the principle of binocular 
stereovision.38-41 The 2-D DIC, using a single fixed camera, 
is adopted for the laboratory experimental tests on RC beam 
specimens. The measurements are limited to the plane 
deformation field on the lateral surface of the specimens. It 
consists of the following three steps:

1. Specimen and experimental preparations with the appli-
cation of a speckle pattern;

2. Recording images at different loading steps from the 
initial reference condition; and

3. Processing of the collected images to obtain the 
displacement and deformation fields.

Figure 1 shows the experimental setup for the 2-D DIC. 
Random gray intensity distribution (that is, random speckle 
pattern) has to be applied on the specimen surface. The 
pattern deforms together with the specimen and allows the 
DIC algorithm to the reference to compute both the displace-
ment and the deformation fields. The specimen surface has 
to be prepared flat and to remain on the same plane parallel 
to the charge-coupled device (CCD) of the camera. Further-
more, the system should not suffer from geometric distor-
tion; otherwise, correction techniques should be applied.42-48 
Alternatively, laser speckle-based techniques have been 
developed to avoid the physical establishment of speckle 
patterns on the surface of concrete.49-51

Image processing algorithms are used to track the relative 
displacements of material points between a reference image 
and the current one. In recent years, computation algo-
rithms have improved, and the NCORR open-source one 
was used in this study. It is implemented in MATLAB and 

can be adapted to the user’s needs.36 The reference image is 
partitioned into subsets. A homogeneous deformation field 
is assumed for each subset. Within the NCORR process, 
the subdomains are initially a contiguous circular group of 
points that are on integer pixel locations in the reference 
configuration. A linear first-order transformation is used to 
transform the coordinates of these points from the reference 
to the current configuration
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In Eq. (1), xrefi and yrefj are the x- and y-coordinates of an 
initial reference subset point, while the coordinates of the 
center of the initial reference subset are xrefc and yrefc, whereas
xcuri and ycuri

 are the coordinates of a current subset point. 
The generalized deformation vector is defined by Eq. (2). 
The relative location of the points with respect to the center 
of the subset is indicated by indexes (i, j); S comprehends 
all of the subset points. The transformation from the refer-
ence to the current coordinate system is highlighted by the 
subscript rc. The strain field is noise sensitive because strain 
computation implies displacement differentiation. In Pan et 
al.,52 the NCORR algorithm is introduced to compute the 
displacement gradients to compensate noise. More details on 
the algorithm can be found in Blaber et al.36

Distributed fiber-optic sensors
Civil infrastructures are usually characterized by their 

oversized dimensions that do not allow for conventional 
point-mode monitoring techniques; therefore, the use of 
distributed optical fiber optic systems has increased over 
time for the detection of anomalies and cracks in civil engi-
neering. As shown in Fig. 2, a single FOS cable sensor can 
be applied throughout the entire structure length, surface, 
or volume, creating a powerful approach for global and yet 
detailed condition assessment of structures. In addition, other 
attributes of optical fibers which contribute to the effective 

Fig. 1—Experimental setup for 2-D DIC.



94 ACI Structural Journal/November 2021

detection of damage in concrete structures are geometric 
adaptability, immunity to electrical and magnetic interfer-
ence, high resolution, and a high signal-to-noise ratio.53

Shi et al.54 studied distributed monitoring for slope engi-
neering, explaining Brillouin spectroscopy as the main point 
technique for developing the Brillouin optical time-domain 
reflectometer (BOTDR). It is enabled to measure strain 
generated in optical fibers as distributed in the longitudinal 
direction by optical time-domain reflectometry (ODTR).55 
Indeed, when the optical fiber is strained in the longitudinal 
direction, the backscattered light of Brillouin is subjected 
to a frequency shift proportional to the strain. Equation (3) 
expresses the Brillouin frequency shift as a function of the 
strain ε

 v v v
B B
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( ) ( )
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�
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where vB(ε) is the current Brillouin frequency; vB(0) is the 
reference Brillouin frequency; and δvB(ε)/δε is the propor-
tional coefficient of strain. One of the main advantages of 
BOTDR systems, compared with others, consists in the 
pulse light launched into one end of an optical fiber and the 
Brillouin backscattered light that can be detected at the same 
end. The BOTDR detection principle can be summarized 
in the following way: the laser light source emits a contin-
uous light that can be separated into the probe light to the 

optical fiber output and the reference light for heterodyne 
detection. Then, an intensity modulator adapts the probe 
light into the pulse light, so the Brillouin backscattered light 
takes place as the pulse light launched into the optical fiber 
interacts with the acoustic phonons, and the frequency shift 
of Brillouin backscattered light occurs compared with the 
frequency of the launched pulse light. The frequency shift 
amount is proportional to the longitudinal strain of the 
optical fiber. Figure 3 summarizes the functioning and the 
measurement diagrams of the BOTDR system. A frequency 
shift is detected between positions z1 and z2 where the strain 
is located.

Although sensitive along the entire length, the FOSs 
measure at discrete points that are spaced by a constant value 
called the sampling interval (SI), and the measured param-
eter (for example, strain) is averaged over a selected aver-
aging length, spatial resolution (SR), which is dependent on 
the capabilities of the specific BOTDR system employed 
(Fig. 4). The averaged strain over the SR of the Brillouin- 
based systems is described as56
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where εi is the weighted average strain at sampling point i; 
d is the SR or the length over which the BOTDR system 
averages the strain; s is the spatial distance along the fiber; δs 
is the increment between measured strain locations; and εi(s) 
is the actual strain at a distance, s, from the section under 
consideration. Therefore, distributed FOSs provide the same 
information as discrete sensors in an equally spaced layout.57 
The wider the spatial resolution, the more the measurement 
of imperfections and inhomogeneities is attenuated, and 
therefore it is more difficult to identify them. This can be 
advantageous for inhomogeneous materials. However, if 
the goal of the SHM system is to detect local defects such 
as small cracks, then a small spatial resolution would be 
useful. Obviously, the size of the monitored structure also 

Fig. 2—Idealized rendering of fiber-optic sensors in civil 
infrastructures.43

Fig. 3—Functioning and measurement diagrams of BOTDR system.
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affects the choice of SI and SR parameters, and a reason-
able balance between monitoring system efficiency (for 
example, processing time and output size) and accuracy is a 
relevant issue for field applications. BOTDR measurements 
are also sensitive to temperature variations, so if the struc-
ture is subjected to both strain and temperature variations a 
temperature correction is applied. In the case of laboratory 
tests at constant temperature, this is not necessary.

Design of beam
Two RC beam specimens were designed to show ductile 

behavior with a progressive and gradual propagation of 
cracks under four-point monotonic loading conditions. The 
cross section was 150 mm wide and 300 mm high. The longi-
tudinal steel reinforcements consisted of two bars of 14 mm 
diameter in the compressive region and two bars of 18 mm 
diameter in the tensile one. Stirrups of 8 mm diameter as 
shear reinforcements were installed with 70 mm spacing 
from the bearings to 500 mm. In the central portion of the 
beam, the shear reinforcements were installed with 140 mm 
spacing (Fig. 5). Concrete and steel materials have been 
selected adopting C20/25 and B450C types, respectively.58

Both Beams 1 and 2 have the same design. However, in 
Beam 1, two notches in the concrete cover were positioned 
at 1530 mm from the bearings to facilitate cracks at that 
positions, while, for Beam 2, a section at 20 cm from the 
midspan was weakened by halving the cross section of the 
longitudinal reinforcements to initiate the main crack in that 
position. The schematic plan of the notches with the general 
scheme of the four-point bending tests is shown in Fig. 6.

Random speckle pattern
The random speckle pattern was imposed on the lateral 

surface of the beam specimens within the midspan region of 
the beams (750 mm on each side) using different techniques 
of black and white paint. On Beam 1, the pattern was prepared 
manually, varnishing the lateral face with white color and 
then punctuating with a felt-tip pen. On the contrary, on 

Beam 2, a random-based algorithm was used to generate 
an automatic pattern. Then a solid template (a stencil) was 
made by a 3-D printing procedure to apply the numerically 
processed pattern, spraying with black varnish (Fig. 7). Both 
patterns provided equivalent displacement and deformation 
fields using the same software package (NCORR35,36). The 
automatically generated pattern, however, had the advantage 
of being faster to apply after creating the reference solid 
template.

FOS installation and four-point bending test
Different types of FOSs were embedded in the speci-

mens before concrete placing and afterwards glued onto the 
external surface of the beams once the beams completed the 
curing period. The first type (Sensor 1) is a unique FOS used 
for the evaluation of distributed strain and temperature over 
several kilometers, using different scattering technologies 
(Brillouin and Raman). It contains four single-mode and 
two multi-mode optical fibers embedded in plastic material. 
Sensor 2 is composed of two bonded and two free single-
mode optical fibers protected by a polyethylene thermoplastic 
profile. Temperature measurements were made by free fibers 
(not physically attached to concrete), and strains by bonded 
fibers. Sensor 3 is a single-mode optical fiber embedded in a 
glass fiber-reinforced polymer/epoxy tape, typically used for 
surface installation or embedding directly into composites. 
Sensor 4 is an optical fiber in a plastic matrix with a high 
Young’s modulus. The fifth and last sensor (Sensor 5) was 
exclusively employed for temperature measurement. Figure 
8 depicts the configuration of sensors within the specimens, 
and Fig. 9 pertains to the test setup.

The embedded optical-fiber sensors within the concrete 
beam had a pretension to keep them in a straight line config-
uration along the beam axis. The cable sensors embedded 
near the top and bottom surfaces of the beam were held in 
place by connections to stirrups. The compressive strength 
of the concrete was determined by testing four cubic speci-
mens per beam. The cubic specimens were 150 mm on each 

Fig. 4—Spatial resolution and sampling interval of BOTDR.

Fig. 5—Steel reinforcements: (a) cross section; and (b) longitudinal profile of beams.
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side and reached their ultimate compressive strength within 
the 500 to 600 kN range (Beam 1: Cube 1 was 550 kN, 
Cube 2 was 600 kN, Cube 3 was 500 kN, and Cube 4 was 
550 kN; Beam 2: Cube 1 was 500 kN, Cube 2 was 600 kN, 
Cube 3 was 550 kN, and Cube 4 was 600 kN). It means a 
stress limit in the range of 22 to 26 MPa that is compatible 
with the concrete quality was selected during the design of 
the beams (C20/25). Figure 10 corresponds to a typical cube 
test for Beam 1.

After the preliminary materials characterization, the 
four-point bending tests were performed. The cracking and 
yielding loads were measured at 10 and 85 kN in compar-
ison to the design estimates of 7 and 80 kN, respectively, 
for Beam 1. Beam 2 showed a lower strength and also a 
brittle behavior (Fig. 10), whereas Beam 1 showed a ductile 
response that allowed for capturing the progression and 
growth of the cracks. The crack paths at the completion 

of the Beam 1 test are shown in Fig. 11(a). Vertical cracks 
between the loading positions characterized the constant 
bending moment region, while 45-degree inclined cracks 
due to shear developed between the supports and loading 
points. Figure 11(c) depicts the global behavior of Beam 1: 
the horizontal plateau characterizing ductile behavior can 
be observed. The test was interrupted before the collapse. 
Figures 11(b) and (d) depict the main cracks of the weak-
ened section for Beam 2 at failure and its brittle response in 
terms of the force-displacement curve, respectively.

RESULTS
Four-point bending tests in quasi-static conditions were 

performed on Beam 1 and 2, for which data was acquired 
by the proposed two-stage methodology. SR and SI were 
selected as those usually employed for field applications 
on real long-span structures (SR = 50 cm and SI = 20 cm) 

Fig. 6—(a) General scheme for four-point bending tests with positioning of notches for Beam 1; and (b) location of steel weak-
ened section for Beam 2. (Note: Mrd is design bending moment.)



97ACI Structural Journal/November 2021

to detect and locate the unusual behavior due to cracking 
phenomena in the beam samples.

Figures 12(a) and (b) correspond to the increase in strain 
as a function of the increased load for Beams 1 and 2, 
respectively. The strain data shown in Fig. 12(a) and (b) 
were acquired by the distributed FOSs connected to the 
tension longitudinal steel reinforcements (refer also to the 
beams’ global response in Fig. 11(c) and 11(d)). In Beam 1, 
which was designed to perform within the ductile domain, 
strains developed within the elastic range in the second load 
steps, with increased cracking in Load Steps 4 through 8, all 
the way to the yielding of reinforcements (Steps 10 to 12). 
However, the cracking propagation is mainly highlighted at 
the highest loading values (Steps 10 to 12), while at lower 
values incipient concentration of strain is evident in Step 8.

Crack quantification was performed by analyzing the 
region within the central span of Beam 1 by the DIC tech-
nique. Figure 12(c) corresponds to Load Step 12, where 
several cracks developed with a strain intensity of the same 
order of magnitude as those in Fig. 12(a). DIC results allow 
for accurate quantification of the cracks—that is, for the 
same load step, two cracks are evident in Fig. 12(c), at 30 
and 45 cm, respectively, from the midspan at strain levels 
of 7000 με.

Figure 12(b) pertains to the distributed strains for Beam 2, 
which are characterized by the weakened section. FOS 
results allowed detection and location of the concentrated 
crack from Steps 6 to 8. During the same steps, measure-
ments by DIC enable quantification of the main crack at the 
weakened section at a strain value of 12,000 με.

For both tested beams, FOSs installed on the reinforce-
ments were able to locate damages exclusively at the highest 
loading values. This peculiar behavior can be related to 
their installation. Indeed, they were placed loose—that 

is, the optical fiber sensors were not pretensioned along 
their lengths. On the contrary, FOS cables positioned in 
the concrete bulk that have been installed with preten-
sion detected the cracks even at lower loading levels. This 
is demonstrated in Fig. 13(a) for Beam 2, where the clear 
peak at Step 4 identifies the concentrated crack opening at 
the weakened section. At higher loading steps (6 to 8), this 
effect was still present but averaged by the development of 
additional cracks within the measurement SR that made it 
less evident.

Strains within the compression section of Beam 1 are 
shown in Fig. 13(b). The measured distributed strains corre-
spond to the FOSs attached to the compression reinforcing 
bars. The development of higher compressive strains is 
evidenced at sections along the reinforcing bar, where tensile 
cracks had progressed further up towards the compression 
zone (Fig. 12(a) and (b)).

External FOS cables glued on the bottom side of beams 
allowed an accurate crack detection and location as well. 
Figure 14 reports the results for Beam 2, as measured by 
three different sensors (Sensors 1, 2, and 3). All three sensor 
types were able to detect and locate the crack openings, as 
shown in Fig. 14(a) to (c). Damage locations were verified 
by the concentrated strain regions by DIC. The first crack 
in Fig. 14(d), at approximately 2000 με, propagated, and 
then it was complemented by other cracks of lower intensity 
(Fig. 14(e) and (f)). From Step 3 to 4, cracks at the midspan 
region of Beam 2 doubled their intensity.

CONCLUSIONS
The development of a two-stage structural health moni-

toring (SHM) method for damage detection, location, and 
quantification in concrete structural elements was presented. 
It integrates the use of distributed fiber-optic sensors (FOSs) 

Fig. 7—Speckle patterns on: (a) Beam 1; and (b) Beam 2 lateral surface.
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over an entire structure with local digital image correclation 
(DIC) measures. To evaluate the proposed method, two rein-
forced concrete (RC) beams were tested in the laboratory, 
installing FOSs in different positions to collect longitudinal 
strain measures. The sensors were: 1) embedded within the 

concrete; 2) connected to the longitudinal steel reinforce-
ments; and 3) glued onto the external surfaces of the rein-
forced concrete beams. The fiber-optic interrogator had the 
characteristics of those employed for field applications, with 
spatial resolution (SR) and sampling interval (SI) that cannot 

Fig. 8—FOS arrangement in cross sections: (a) Beam 1; and (b) Beam 2; (c) beam preparation with formwork; and (d) top 
view detail of longitudinal and transversal reinforcements with embedded FOSs.

Fig. 9—Test setup.
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directly give accurate information about damage quanti-
fication. To improve the SHM process, the DIC technique 
was adopted in a second stage in the area where the FOS 
system located the unusual behavior that could be related to 
cracking phenomena.

The beam samples were tested through four-point bending 
experiments. Beam 1 was designed to show a ductile 
response, and Beam 2 was characterized by a weakened 
section at 20 cm from the midspan. The FOS cables on the 

tension steel reinforcements were installed without any 
pretensioning. For both Beams 1 and 2, they were able to 
identify the crack openings at the highest loading conditions, 
beyond the yield strength limit of the steel reinforcing bars. 
On the other hand, the pretensioned FOS cables embedded 
within the concrete core in the tension zone were able to 
identify the crack openings, even at lower load values.

Three different surface-mounted FOSs were also employed 
to identify unusual behaviors in the concrete beams, and 

Fig. 10—Cube 3 beam compression test: (a) Step 1; (b) Step 4; and (c) Step 6.

Fig. 11—(a) Crack path of Beam 1 at end of test, before collapse; (b) crack path of Beam 2 at collapse; force-displacement 
diagrams for (c) Beam 1; and (d) Beam 2.
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they were able to detect and locate the opening of the cracks 
from their early stages of development.

The DIC technique was then applied to the area where the 
FOSs identified the unusual behavior. The results confirmed 
the presence of cracks with satisfactory accuracy in terms 
of detection and quantification of cracks from their earlier 
development when they were undetectable to a visual 
inspection.

The proposed two-stage SHM method for damage iden-
tification proved effective in laboratory RC specimens for 
detecting, locating, and quantifying the presence of cracks 
of the same size as those that can be measured in real condi-
tions on concrete structures of large dimensions. Further-
more, monitoring systems of the same class used for real 
structures were employed in the laboratory study. However, 

DIC, as presented and employed in the current application, 
is not practical for field applications in civil structures. 
Its use in the current application is limited to laboratory- 
controlled experiments for verification of the inte-
grated use with distributed FOSs. Therefore, further  
developments on full-scale structures such as tunnel linings 
or long-span bridges will be needed.
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