37,958 research outputs found

    Transdisciplinarity seen through Information, Communication, Computation, (Inter-)Action and Cognition

    Full text link
    Similar to oil that acted as a basic raw material and key driving force of industrial society, information acts as a raw material and principal mover of knowledge society in the knowledge production, propagation and application. New developments in information processing and information communication technologies allow increasingly complex and accurate descriptions, representations and models, which are often multi-parameter, multi-perspective, multi-level and multidimensional. This leads to the necessity of collaborative work between different domains with corresponding specialist competences, sciences and research traditions. We present several major transdisciplinary unification projects for information and knowledge, which proceed on the descriptive, logical and the level of generative mechanisms. Parallel process of boundary crossing and transdisciplinary activity is going on in the applied domains. Technological artifacts are becoming increasingly complex and their design is strongly user-centered, which brings in not only the function and various technological qualities but also other aspects including esthetic, user experience, ethics and sustainability with social and environmental dimensions. When integrating knowledge from a variety of fields, with contributions from different groups of stakeholders, numerous challenges are met in establishing common view and common course of action. In this context, information is our environment, and informational ecology determines both epistemology and spaces for action. We present some insights into the current state of the art of transdisciplinary theory and practice of information studies and informatics. We depict different facets of transdisciplinarity as we see it from our different research fields that include information studies, computability, human-computer interaction, multi-operating-systems environments and philosophy.Comment: Chapter in a forthcoming book: Information Studies and the Quest for Transdisciplinarity - Forthcoming book in World Scientific. Mark Burgin and Wolfgang Hofkirchner, Editor

    From Affective Science to Psychiatric Disorder: Ontology as Semantic Bridge

    Get PDF
    Advances in emotion and affective science have yet to translate routinely into psychiatric research and practice. This is unfortunate since emotion and affect are fundamental components of many psychiatric conditions. Rectifying this lack of interdisciplinary integration could thus be a potential avenue for improving psychiatric diagnosis and treatment. In this contribution, we propose and discuss an ontological framework for explicitly capturing the complex interrelations between affective entities and psychiatric disorders, in order to facilitate mapping and integration between affective science and psychiatric diagnostics. We build on and enhance the categorisation of emotion, affect and mood within the previously developed Emotion Ontology, and that of psychiatric disorders in the Mental Disease Ontology. This effort further draws on developments in formal ontology regarding the distinction between normal and abnormal in order to formalize the interconnections. This operational semantic framework is relevant for applications including clarifying psychiatric diagnostic categories, clinical information systems, and the integration and translation of research results across disciplines

    Bridging the Gap Between General-Purpose and Domain-Specific Compilers with Synthesis

    Get PDF
    This paper describes a new approach to program optimization that allows general purpose code to benefit from the optimization power of domain-specific compilers. The key to this approach is a synthesis-based technique to raise the level of abstraction of general-purpose code to enable aggressive domain-specific optimizations. We have been implementing this approach in an extensible system called Herd. The system is designed around a collection of parameterized kernel translators. Each kernel translator is associated with a domain-specific compiler, and the role of each kernel translator is to scan the input code in search of code fragments that can be optimized by the domain-specific compiler embedded within each kernel translator. By leveraging general synthesis technology, it is possible to have a generic kernel translator that can be specialized by compiler developers for each domain-specific compiler, making it easy to build new domain knowledge into the overall system. We illustrate this new approach to build optimizing compilers in two different domains, and highlight research challenges that need to be addressed in order to achieve the ultimate vision

    Spiers Memorial Lecture: Molecular mechanics and molecular electronics

    Get PDF
    We describe our research into building integrated molecular electronics circuitry for a diverse set of functions, and with a focus on the fundamental scientific issues that surround this project. In particular, we discuss experiments aimed at understanding the function of bistable [2]rotaxane molecular electronic switches by correlating the switching kinetics and ground state thermodynamic properties of those switches in various environments, ranging from the solution phase to a Langmuir monolayer of the switching molecules sandwiched between two electrodes. We discuss various devices, low bit-density memory circuits, and ultra-high density memory circuits that utilize the electrochemical switching characteristics of these molecules in conjunction with novel patterning methods. We also discuss interconnect schemes that are capable of bridging the micrometre to submicrometre length scales of conventional patterning approaches to the near-molecular length scales of the ultra-dense memory circuits. Finally, we discuss some of the challenges associated with fabricated ultra-dense molecular electronic integrated circuits

    Fully Observable Non-deterministic Planning as Assumption-Based Reactive Synthesis

    Get PDF
    We contribute to recent efforts in relating two approaches to automatic synthesis, namely, automated planning and discrete reactive synthesis. First, we develop a declarative characterization of the standard “fairness” assumption on environments in non-deterministic planning, and show that strong-cyclic plans are correct solution concepts for fair environments. This complements, and arguably completes, the existing foundational work on non-deterministic planning, which focuses on characterizing (and computing) plans enjoying special “structural” properties, namely loopy but closed policy structures. Second, we provide an encoding suitable for reactive synthesis that avoids the naive exponential state space blowup. To do so, special care has to be taken to specify the fairness assumption on the environment in a succinct manner.Fil: D'ippolito, Nicolás Roque. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Rodriguez, Natalia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Sardina, Sebastian. RMIT University; Australi
    corecore