191 research outputs found

    Breathing-based authentication on resource-constrained IoT devices using recurrent neural networks

    Get PDF
    Recurrent neural networks (RNNs) have shown promising results in audio and speech-processing applications. The increasing popularity of Internet of Things (IoT) devices makes a strong case for implementing RNN-based inferences for applications such as acoustics-based authentication and voice commands for smart homes. However, the feasibility and performance of these inferences on resource-constrained devices remain largely unexplored. The authors compare traditional machine-learning models with deep-learning RNN models for an end-to-end authentication system based on breathing acoustics

    Machine Learning in IoT Security:Current Solutions and Future Challenges

    Get PDF
    The future Internet of Things (IoT) will have a deep economical, commercial and social impact on our lives. The participating nodes in IoT networks are usually resource-constrained, which makes them luring targets for cyber attacks. In this regard, extensive efforts have been made to address the security and privacy issues in IoT networks primarily through traditional cryptographic approaches. However, the unique characteristics of IoT nodes render the existing solutions insufficient to encompass the entire security spectrum of the IoT networks. This is, at least in part, because of the resource constraints, heterogeneity, massive real-time data generated by the IoT devices, and the extensively dynamic behavior of the networks. Therefore, Machine Learning (ML) and Deep Learning (DL) techniques, which are able to provide embedded intelligence in the IoT devices and networks, are leveraged to cope with different security problems. In this paper, we systematically review the security requirements, attack vectors, and the current security solutions for the IoT networks. We then shed light on the gaps in these security solutions that call for ML and DL approaches. We also discuss in detail the existing ML and DL solutions for addressing different security problems in IoT networks. At last, based on the detailed investigation of the existing solutions in the literature, we discuss the future research directions for ML- and DL-based IoT security

    Real-Time Sensor Networks and Systems for the Industrial IoT

    Get PDF
    The Industrial Internet of Things (Industrial IoT—IIoT) has emerged as the core construct behind the various cyber-physical systems constituting a principal dimension of the fourth Industrial Revolution. While initially born as the concept behind specific industrial applications of generic IoT technologies, for the optimization of operational efficiency in automation and control, it quickly enabled the achievement of the total convergence of Operational (OT) and Information Technologies (IT). The IIoT has now surpassed the traditional borders of automation and control functions in the process and manufacturing industry, shifting towards a wider domain of functions and industries, embraced under the dominant global initiatives and architectural frameworks of Industry 4.0 (or Industrie 4.0) in Germany, Industrial Internet in the US, Society 5.0 in Japan, and Made-in-China 2025 in China. As real-time embedded systems are quickly achieving ubiquity in everyday life and in industrial environments, and many processes already depend on real-time cyber-physical systems and embedded sensors, the integration of IoT with cognitive computing and real-time data exchange is essential for real-time analytics and realization of digital twins in smart environments and services under the various frameworks’ provisions. In this context, real-time sensor networks and systems for the Industrial IoT encompass multiple technologies and raise significant design, optimization, integration and exploitation challenges. The ten articles in this Special Issue describe advances in real-time sensor networks and systems that are significant enablers of the Industrial IoT paradigm. In the relevant landscape, the domain of wireless networking technologies is centrally positioned, as expected

    Secure and Usable Behavioural User Authentication for Resource-Constrained Devices

    Full text link
    Robust user authentication on small form-factor and resource-constrained smart devices, such as smartphones, wearables and IoT remains an important problem, especially as such devices are increasingly becoming stores of sensitive personal data, such as daily digital payment traces, health/wellness records and contact e-mails. Hence, a secure, usable and practical authentication mechanism to restrict access to unauthorized users is a basic requirement for such devices. Existing user authentication methods based on passwords pose a mental demand on the user's part and are not secure. Behavioural biometric based authentication provides an attractive means, which can replace passwords and provide high security and usability. To this end, we devise and study novel schemes and modalities and investigate how behaviour based user authentication can be practically realized on resource-constrained devices. In the first part of the thesis, we implemented and evaluated the performance of touch based behavioural biometric on wearables and smartphones. Our results show that touch based behavioural authentication can yield very high accuracy and a small inference time without imposing huge resource requirements on the wearable devices. The second part of the thesis focus on designing a novel hybrid scheme named BehavioCog. The hybrid scheme combined touch gestures (behavioural biometric) with challenge-response based cognitive authentication. Touch based behavioural authentication is highly usable but is prone to observation attacks. While cognitive authentication schemes are highly resistant to observation attacks but not highly usable. The hybrid scheme improves the usability of cognitive authentication and improves the security of touch based behavioural biometric at the same time. Next, we introduce and evaluate a novel behavioural biometric modality named BreathPrint based on an acoustics obtained from individual's breathing gestures. Breathing based authentication is highly usable and secure as it only requires a person to breathe and low observability makes it secure against spoofing and replay attacks. Our investigation with BreathPrint showed that it could be used for efficient real-time authentication on multiple standalone smart devices especially using deep learning models

    A Cognitive Routing framework for Self-Organised Knowledge Defined Networks

    Get PDF
    This study investigates the applicability of machine learning methods to the routing protocols for achieving rapid convergence in self-organized knowledge-defined networks. The research explores the constituents of the Self-Organized Networking (SON) paradigm for 5G and beyond, aiming to design a routing protocol that complies with the SON requirements. Further, it also exploits a contemporary discipline called Knowledge-Defined Networking (KDN) to extend the routing capability by calculating the “Most Reliable” path than the shortest one. The research identifies the potential key areas and possible techniques to meet the objectives by surveying the state-of-the-art of the relevant fields, such as QoS aware routing, Hybrid SDN architectures, intelligent routing models, and service migration techniques. The design phase focuses primarily on the mathematical modelling of the routing problem and approaches the solution by optimizing at the structural level. The work contributes Stochastic Temporal Edge Normalization (STEN) technique which fuses link and node utilization for cost calculation; MRoute, a hybrid routing algorithm for SDN that leverages STEN to provide constant-time convergence; Most Reliable Route First (MRRF) that uses a Recurrent Neural Network (RNN) to approximate route-reliability as the metric of MRRF. Additionally, the research outcomes include a cross-platform SDN Integration framework (SDN-SIM) and a secure migration technique for containerized services in a Multi-access Edge Computing environment using Distributed Ledger Technology. The research work now eyes the development of 6G standards and its compliance with Industry-5.0 for enhancing the abilities of the present outcomes in the light of Deep Reinforcement Learning and Quantum Computing

    CRIME: Input-Dependent Collaborative Inference for Recurrent Neural Networks

    Get PDF
    The excellent accuracy of Recurrent Neural Networks (RNNs) for time-series and natural language processing comes at the cost of computational complexity. Therefore, the choice between edge and cloud computing for RNN inference, with the goal of minimizing response time or energy consumption, is not trivial. An edge approach must deal with the aforementioned complexity, while a cloud solution pays large time and energy costs for data transmission. Collaborative inference is a technique that tries to obtain the best of both worlds, by splitting the inference task among a network of collaborating devices. While already investigated for other types of neural networks, collaborative inference for RNNs poses completely new challenges, such as the strong influence of input length on processing time and energy, and is greatly unexplored.In this paper, we introduce a Collaborative RNN Inference Mapping Engine(CRIME), which automatically selects the best inference device for each input. CRIME is flexible with respect to the connection topology among collaborating devices, and adapts to changes in the connections statuses and in the devices loads. With experiments on several RNNs and datasets, we show that CRIME can reduce the execution time (or end-node energy) by more than 25% compared to any single-device approach
    • …
    corecore