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Recurrent neural networks (RNNs) have shown promising results 

in audio and speech-processing applications. The increasing 

popularity of Internet of Things (IoT) devices makes a strong 

case for implementing RNN-based inferences for applications 

such as acoustics-based authentication and voice commands 

for smart homes. However, the feasibility and performance of 

these inferences on resource-constrained devices remain largely 

unexplored. The authors compare traditional machine-learning 

models with deep-learning RNN models for an end-to-end 

authentication system based on breathing acoustics.
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Sensors embedded in smart-
phones, wearables, and other  
Internet of Things (IoT) devices 
are increasingly being used 

to support both fine-grained monitor-
ing of users’ activities/ambient con-
text and richer forms of cyber-physical 
interaction (via gestures or natural lan-
guage interfaces). Illustrative scenarios 
include monitoring users’ steps to esti-
mate daily calorie expenditure, tracking 
eating gestures to capture food intake, 
and the use of microphone-equipped 
devices for voice-based home-automation 
control. Because these personal and 
edge devices learn and store individual- 
specific information and increasingly 
come in nontraditional forms, it is 
important to develop secure and usable 
user authentication techniques.  

In a recent work, we introduced the 
BreathPrint system, which utilizes 
acoustic features of a user’s breathing 
(captured by a commodity microphone) 
to support ubiquitous user authenti-
cation on mobile and IoT devices.1 In 
this article, we investigate whether 
recurrent neural network (RNN)–based 
deep-learning models can be effectively 
used on resource-constrained devices 
for BreathPrint. The original work on 
BreathPrint was cloud-based and used a 
conventional Gaussian mixture model 
(GMM)–based machine-learning model 
with manually curated features. 

This work is motivated by two 
main objectives. First, state-of-the-art 
speech recognition and speaker iden-
tification methods are RNN-based 
and significantly outperform classi-
cal methods such as support vector 
machines (SVMs), GMMs, and hidden 
Markov models (HMMs), especially in 
noisy environments,2 so it is import-
ant to evaluate the performance of 
BreathPrint using RNN models to 
boost the performance. Secondly, for 

unobtrusive and ubiquitous authenti-
cation applications, BreathPrint needs 
to be implemented on resource-con-
strained devices and must be able 
to authenticate users without cloud 
access. Thus, it is important to obtain 
an idea of the accuracy–resource 
tradeoff for BreathPrint. 

To this end, we conducted a per-
formance evaluation of an end-to-end 
RNN-based BreathPrint authentication 
system on three representative hard-
ware platforms: mobile (smartphone), 
wearable (smartwatch), and IoT (Rasp-
berry Pi 3). To the best of our knowledge, 
this is the first work that shows the fea-
sibility and performance of RNN-based 
deep-learning models for acoustics on 
limited-resource footprint devices.

We make the following key 
contributions.

›› We present performance eval-
uation results of an end-to-end 
authentication system based on 
both shallow models (SVM) and 
long short-term memory (LSTM, 
a variant of RNN) using breath-
ing acoustics on three represen-
tative IoT devices: smartphone, 
smartwatch, and Raspberry Pi.

›› We show that RNN-based 
models for acoustic classifi-
cation are smaller in size and 
more lightweight than pre-
viously reported results with 
convolutional neural network 
(CNN)–based models, and thus 
can be adopted on IoT devices. 
Specifically, an uncompressed 
RNN model is only 1.1 Mbytes 
in size (for relevant breathing 
gestures) and can run on smart-
phones and smartwatches with 
a latency of approximately 100 
to 200 ms and 700 to 1,000 ms, 
respectively.

›› We show how a linear  
quantization–based model- 
compression technique can help 
reduce the memory footprint of 
RNN models by a factor of 5 (to 
approximately 150 to 50 Kbytes) 
without suffering any conse-
quential drop in accuracy.

RELATED WORK
Motivated by the breakthroughs in 
training deep neural networks (DNNs) 
and the impressive performance gains 
(deep networks have outperformed 
conventional machine-learning mod-
els and even human experts), a vari-
ety of recent work has focused on 
the challenges (such as higher mem-
ory requirement or excessive com-
putational latency) of executing 
deep-learning models on resource- 
constrained devices. Table 1 summa-
rizes some of these notable efforts and 
the techniques employed. Broadly 
speaking, these efforts utilize one or 
more of the following three approaches: 
offloading neural network process-
ing to GPUs, which are more efficient 
in vectorized computations; reducing 
the time and memory requirements 
to load the fully connected layers; and 
faster execution of the convolutional 
layer tasks.

Early work by Nicholas D. Lane and 
his colleagues investigated the per-
formance characteristics, resource 
requirements, and execution bot-
tlenecks for deep-learning models 
(CNN and DNN) on mobile, wearable, 
and IoT devices to support audio- and 
vision-based apps.7 Results indicated 
that although smaller deep-learning 
models work without issues on these 
devices, more complex CNN models 
such as AlexNet do not work well under 
the resource constraints. To address 
this problem, Sourav Bhattacharya 
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and his colleagues proposed Spars-
eSep, which focuses primarily on 
finding a sparse representation of the 
fully connected layers and using sep-
arate filters for the convolutional ker-
nels.3 These techniques reduce the 
number of parameters and convolu-
tional operations required to execute a 
deep-learning model and can thus sig-
nificantly reduce the computational 
and space complexity on resource- 
constrained devices.

Several works have focused on opti-
mizing deep networks for audio- and 
image-sensing applications. Deep-
Ear is an audio-sensing application 
for smartphones based on DNNs.2 It 
was implemented in the digital sig-
nal processor of a smartphone and 
imposed only 6 percent additional 
overhead in daily energy consump-
tion. DeepEye deploys CNNs on wear-
ables for continuous vision applica-
tions.4 It avoids resource bottlenecks 
by using interleaving to orchestrate 
the execution of computation-heavy  
convolutional layers with memory- 
heavy fully connected layers. DeepEye 
also employs caching to load the fully 
connected layers faster and utilizes a sin-
gular value decomposition (SVD)–based 
layer-factorization approach to com-
press the fully connected layer. Deep-
Mon focuses on reducing the process-
ing latency of convolutional layers (via 
multiple optimization techniques) for 
continuous vision applications.5 It uses 
a combination of caching (exploiting 
similarities between successive images) 
and model decomposition (breaking up 

convolutional layers into smaller layers) 
to reduce the computational overhead. 
DeepMon also offloads tasks in convo-
lutional layers to mobile GPUs for faster 
processing. Finally, MobiRNN applies 
GPU offloading to execute RNNs faster 
on smartphones to support activity- 
recognition tasks.6

As evident from Table 1, most of the 
work to date has focused on CNNs and 
DNNs. For example, even audio analysis 
and speaker identification tasks have 
been performed using CNN and DNNs. 
In general, CNNs are good at exploiting 
features defined on spatial data (such as 
images), whereas RNNs are more appro-
priate for identifying and using tempo-
ral features defined over datastreams 
(such as audio or text). RNN-based mod-
els are less complex than CNN-based 
models as they deal with less complex 
data and do not use convolutional fil-
ters. They also require lower computa-
tional power and memory than CNN-
based models.6,7

BreathPrint proposes a technique 
to authenticate users based on their 
breathing acoustics on mobile and 
IoT devices. It is based on the hypoth-
esis that each individual’s breath-
ing pattern is unique. The proposed 
approach is also highly usable, as it 
merely requires the user to perform a 
few breathing gestures. Our interest 
in RNNs is thus driven by our belief 
that this uniqueness is manifested 
via temporal variations in a user’s 
breathing pattern, and that RNNs 
are more capable of identifying and 
exploiting such temporal features. 

However, BreathPrint’s full potential 
can only be realized if the user iden-
tification can be performed locally 
(on the device) and with minimal 
latency. Accordingly, in this work, 
we investigate the central question: 
“Can BreathPrint be practically real-
ized using an RNN-based model on 
resource-constrained devices?”

Figure 1 shows some real-world 
applications where BreathPrint can 
be used as an entry point or a contin-
uous authentication mechanism. As 
an entry point authentication, the 
primary use case is unlocking smart 
devices such as smartphones and wear-
ables. Unlocking devices is required 
to get access to the device as well as 
to get personalized user experiences. 
For example, in an industrial setting, 
an augmented-reality smartglass that 
overlays product-specific knowledge 
on equipment can adjust content and 
instructions based on the individ-
ual worker’s profile. Other use cases 
include operating IoT devices such as 
sensor-enabled doors or coffee makers 
in smart spaces. The user needs to re- 
authenticate if the device goes to sleep 
or is in inactive mode. In addition, 
BreathPrint can be employed on smart 
respirators to adjust humidity levels 
to match an individual worker’s pref-
erences in an industrial setting, or it 
can continuously authenticate users 
based on their breathing patterns. The 
re-authentication time in a continuous 
authentication scheme can be config-
ured according to the required levels of 
security. Continuous authentication 

TABLE 1. Deep learning (DL) on resource-constrained devices.

Name Type of DL Architecture Application Techniques

SparseSep3 Convolutional neural network 
(CNN), deep neural network (DNN)

Multiple layers Image classification, speaker 
identification, and scene analysis

Sparsification and separation

DeepEar2 DNN 5 layers Audio sensing NA

DeepEye4 CNN Multiple layers Continuous vision Interleaving, caching, and compression

DeepMon5 CNN 16 layers Continuous vision GPU offloading, caching, and 
decomposition

MobiRNN6 Recurrent neural network (RNN) 2 layers Activity recognition GPU offloading
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does not require user intervention 
unless re-authentication fails.

This work differs significantly from 
BreathPrint in numerous ways. First, 
the two works have different focuses. 
BreathPrint introduces a new behav-
ioral modality for user authenti-
cation. The focus of this work is to 
evaluate the performance of shallow 
and deep-learning models to see if 
BreathPrint can be used to perform 
real-time authentication on resource- 
constrained devices. Secondly, this 
work deals with user identification 
compared to BreathPrint’s user verifi-
cation. In user identification, the job of 
an authentication system is to predict 
which user is trying to get access from 
a closed set of users. In user verifica-
tion, an authentication system checks 
if a user X trying to access the system is 
actually user X.

EXPERIMENTAL SETUP
To evaluate the feasibility of RNN-
driven breathing-based authentica-
tion, we utilized the breathing acous-
tics dataset collected in our previous 
work.1 The dataset consists of acoustic 
samples of three breathing gestures—
deep breathing, normal breathing, and 
sniffing (two quick inhalations)—of 10 
users collected over three sessions. For 
each gesture, the dataset contains 30, 
30, and 10 samples collected on the first 
day (session 1), the fourth day (session 
2), and the seventh or eighth day (ses-
sion 3), respectively. In this article, we 
focus only on two breathing gestures 
(deep breathing and sniffing), as our 
earlier investigations revealed that 
these two perform better in authentica-
tion applications compared to normal 
breathing. Refer to our original article 
for further details on the dataset.1

For each user, we selected the first 50 
samples for model training and tuning 

purposes. Because a deep-learning 
model requires larger sample sizes for 
training, we applied two commonly 
used data-augmentation techniques 
to increase the number of data sam-
ples. We used a combination of fre-
quency wrapping8 and amplitude 
scaling.9 Each sample was scaled 10 
times along the time axis and the 
amplitude by selecting two separate 
values from a uniform distribution; 
∼U (0.8, 1.2). Overall, we obtained an 
11-fold boost in the number of training 
examples (550 training samples per 
participant), consisting of both origi-
nal samples and their augmented ver-
sions. The remaining 10 original sam-
ples (from sessions 2 and 3) were kept 
intact for testing.

We performed an experimental 
evaluation using four devices belong-
ing to three distinct types (listed in 
Table 2)—two smartphones (mobile), 
a smartwatch (wearable), and a Rasp-
berry Pi (IoT). All the devices run a dif-
ferent variant of an Android-based OS 
and are representative of popular com-
mercial mobile, wearable, and embed-
ded platforms.

METHODOLOGY
Our overall goal is user authenti-
cation, or deciding whether a sam-
ple belongs to one of N preregistered 
possible users. This is effectively a 
problem of closed-set user identifica-
tion that can be mapped as a multi-
class classification problem (where a 

User

Entry point or
continuous authentication

Unlock devices

Personalized
experience

Continuous authentication (re-authenticate when con�gurable timer expires)

Entry point authentication (re-authenticate if device in sleep or inactive mode)

Operate
devices (IoT)

FIGURE 1. Applications of BreathPrint.

TABLE 2. Hardware configuration of the devices..

Device OS CPU GPU Memory

Nexus 5 smartphone Android 6.0 2.26 GHz Quadcore Adreno 330 2 Gbytes

Pixel smartphone Android 7.0 2.15 and 1.6 GHz 
Quadcore

Adreno 530 4 Gybtes

LG G Watch R Android Wear 2.0 1.2 GHz Quadcore Adreno 305 512 Mbytes

Raspberry Pi 3 Android Things 5.0 1.2 GHz Quadcore VideoCore IV 1 Gbyte
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single class represents one user). Fig-
ure 2 shows our system. A target user 
X first does a breathing gesture on the 
microphone of a device (for example, 
to unlock the device) from which fea-
tures are extracted. The features are 
then put into a classifier to get the pre-
diction output. If the predicted user is 
the same as the target user, then the 
authentication is successful.

Our approach involved some pre-
processing of the original acoustics 
signal so that it could be fed into an 
RNN model. For a comparative base-
line that uses a shallow classifier, we 
also trained an SVM model.

Feature extraction
We divided each audio file into 10-ms 
nonoverlapping frames with Ham-
ming window–based smoothing. For 
each frame, we calculated 96 mel- 
frequency cepstral coefficients (MFCC) 
features (32 MFCC, 32 Delta MFCC, 
and 32 Double Delta MFCC) using JSTK 
(Java Speech Toolkit; https://github 
.com/sikoried/jstk). Then we used 
windowing to combine these frames 
so that temporal information between 
the frames is retained. For sniffing 
and deep-breathing gestures, we tried 
window sizes of length {20, 25, 30, 35} 
and {200, 250, 300, 350}, respectively. 
There are two factors to consider 
when selecting a suitable window size. 
Each window must be large enough to 
retain a significant part of a breath-
ing gesture. However, the duration 
of a single breath varies significantly 
across users; consequently, if a larger 
window size is selected, some testing 
samples could be missed from users 

with relatively short breathing dura-
tion. To balance these considerations, 
we ended up with window sizes {20, 
25, 30} for sniffing and {200, 250} for 
deep-breathing gestures, respectively. 
To further augment the training data-
set, we created overlapping windows 
for a given breathing sample. We chose 
three overlap sizes (90 percent, 70 per-
cent, and 50 percent) of the window 
size. For each window size and overlap 
value pair, we trained the classifiers as 
discussed below.

Training and testing datasets
We used the samples created from aug-
mentation for the training. More spe-
cifically, we created overlapping win-
dows from these samples and randomly 
shuffled them—we used 80 percent of 
the windows as the training set and the 
rest (20 percent) as the validation set to 
tune hyperparameters. We refer to the 
overlapping windows created from the 
rest of the 10 audio samples in session 
2 as the intra-set and overlapping win-
dows created from the 10 audio samples 
in session 3 as the inter-set.

Models
We used an RNN architecture similar 
to the one described in Nils Y. Ham-
merla and his colleagues’ work.10 This 
architecture is illustrated in Figure 3. 
The hidden unit size of the LSTM units 
was 128, and we used two LSTM lay-
ers. We implemented the model using 
Tensorflow. We used 32 as the batch 
size and trained the network over 
500 iterations. As a baseline classi-
fier, we also trained a multiclass SVM 
classifier with a linear kernel using 

LIBSVM (www.csie.ntu.edu.tw/cjlin/
libsvm). Testing LIBSVM on Android 
devices utilizes LIBSVM-AndroidJNI 
(https://github.com/cnbuff410/libsvm 
-androidjni). Note that while an SVM 
model with a nonlinear kernel might 
provide better results than a linear 
kernel, we found that because of the 
large number of support vectors, SVM 
models with a nonlinear kernel could 
not be loaded on any of the devices. The 
number of support vectors included in 
an SVM model with a nonlinear ker-
nel is higher than the support vectors 
needed for a linear kernel. GMM is not 
suitable for solving multiclass clas-
sification problems due to scalability 
issues. SVM is more suitable for mul-
ticlass classification. Because of the 
issues present with nonlinear kernels 
and GMM, we evaluated SVM with a 
linear kernel as a baseline.

Model selection
We used early termination to select the 
best model because we observed that 
after some iterations, the model accu-
racy reached the maximum and stayed 
approximately in the same region for 
the validation set, while the accuracy 
in the intra- and inter-sets showed a 
slight declining trend.

To select a suitable elbow point of 
the accuracy graphs, we first applied 
20-point moving averaging to the 
validation set accuracy graph and 
then selected the point from which 
the accuracy does not improve by 5 
percent for the next four consecutive 
points. An accuracy graph shows the 
accuracy achieved at different iter-
ations for a deep-learning model. 
The moving average window and the 
improvement threshold was decided 
empirically. Once the elbow point was 
decided, we selected 11 models (five 
previous models and the five next 

Feature
extractor

Machine-
learning
model

Prediction
==

user XPrediction

MFCC,
 ,   2

Target user X
No

Yes

LSTM,
SVM

FIGURE 2. User identification. MFCC: mel-frequency cepstral coefficients; LSTM: long 
short-term memory; SVM: support vector machine. 
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models including the model at the 
elbow point). To present the perfor-
mance results, we selected the models 
that gave the highest average accuracy 
over all three datasets. The window 
and overlap configurations that gave 
the highest accuracy were window size 
30 with 90 percent overlap for sniffing 
and window size 250 with 90 percent 
overlap for deep breathing. For SVM, 
we picked the model with the best 
cross-validation accuracy.

Model reduction
To empirically study the computa-
tional overhead versus the latency–
accuracy tradeoff, we compressed the 
selected RNN models using the inbuilt 
256-level quantization function pro-
vided in Tensorflow (www.tensorflow 
.org/performance/quantization). This 
function extracts the minimum and 
maximum for each layer and then 
compresses each float value to an 
eight-bit integer. Note that this option 
will save space in zipped formats that 
are usually used in Android applica-
tions. We executed the original as well 
as quantized models.

RESULTS
We used four performance metrics for 
our experimental evaluation.

1.	 Accuracy: the percentage of 
correct user identifications.

2.	 Feature extraction time: time 
taken to extract MFCC features 
from an audio file.

3.	 Model loading time: time to 
load the machine-learning 
model into the memory.

4.	 Inference time: time to predict 
the user label once the feature 
extraction is done and the 
learning model is loaded into 
memory.

Performance of LSTM
Here, we report average values of the 
execution times for different phases 
of the classification process. The fea-
ture extraction time was in the range 
of 40 to 60 ms for the sniffing gesture 
and in the range of 126 to 484 ms for 
the deep-breathing gesture across the 
four devices. As expected, the Pixel 
smartphone (the most powerful plat-
form with the highest memory) and the 
smartwatch impose the least and high-
est feature extraction times, respec-
tively. Figure 4 plots the results for the 
other three metrics. Note that the time 
scale on the y-axis is in log scale. 

We made the following observations. 

›› Model loading time decreases 
linearly with the RAM of the 
device. Loading the LSTM model 
to the Pixel smartphone takes 
around 100 ms (4 Gbytes RAM), 
while the same model takes 
roughly twice the time (200 ms) 
on the Nexus 5 smartphone (2 
Gbytes RAM), four times longer 
(400 ms) on Rasberry Pi (1 Gbyte 
RAM), and seven times longer 
(700 ms) on the smartwatch (512 
Mbytes RAM) for the sniffing ges-
ture. The same observation holds 
for the deep-breathing gesture.

›› Inference time depends on the 
processing power of the device. 
The inference time (using the 
LSTM model) for the sniffing 
gesture is on average 23 ms for 

Nexus 5, 40 ms for Pixel, and 
around 100 ms for both the 
smartwatch and Raspberry Pi. 
In contrast, the inference time 
for the deep-breathing gesture is 
approximately 180 ms for Nexus 
5, 200 ms for Pixel, 900 ms for 
Raspberry Pi, and 1,000 ms for 
the smartwatch.

›› The accuracy of the system 
was around 90 percent for both 
gestures for the intra-set. We 
also observed that the accuracy 
of LSTM models was slightly 
higher than SVM. This indicates 
that the deep-learning model 
can perform at least as well as 
the alternative SVM approach, 
even though the volume of train-
ing data was fairly small. Note 
that the accuracy of user iden-
tification drops to 75 percent 
and 70 percent for the sniffing 
and deep-breathing gestures, 
respectively, when applied to 
the inter-set data. This result is 
consistent with our prior results1 
and suggests that a larger train-
ing corpus will be needed to 
accommodate a wider range of 
context-dependent variations in 
breathing patterns.

Benefit of quantization
The results in Figure 4a and 4b also 
show that the use of a quantized model 
does not result in any loss of classi-
fication accuracy (compared to the 

LSTM LSTM

Softmax prediction

...

...

...

LSTM

Window size

LSTM LSTM LSTM

LSTM

LSTM

96 MFCC features

FC layers 

FC layers 

FIGURE 3. Recurrent neural network (RNN) architecture. FC: fully connected. 



66	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

EMBEDDED DEEP LEARNING

original LSTM model). However, quan-
tization reduces the size of the model 
and offers some execution benefits. 
The size of the quantized model is 175 
Kbytes (compared to 1.1 Mbytes for the 
uncompressed model) for the sniffing 
gesture and 264 Kbytes (compared 
to 1.1 Mbytes for the uncompressed 
model) for the deep-breathing gesture. 
The quantized model thus reduces the 
memory footprint significantly (by a 
factor of 4 to 6), enabling it to be loaded 
a bit faster.

LSTM versus SVM
Contrary to popular belief, the shal-
low SVM model does provide accuracy 
comparable to the LSTM model, but 
takes much longer (50 to 100 seconds) 
to load into memory. Moreover, the 
execution time taken to predict the 
user label is also 5 to 20 times higher 
than the corresponding time for the 
LSTM-based model across all devices. 
The best model we tested with SVM for 
the sniffing gesture is 280 Mbytes in 
size. Comparatively, the LSTM model 
size is 2 Mbytes when uncompressed 
and only a few hundred Kbytes when 
quantized. The large size of SVM 
models is due to the large number of 

support vectors needed to support 
the multiclass classification, which 
does not happen for binary class clas-
sification. In fact, the size of the SVM 
model for deep breathing is 2 Gbytes or 
higher, so it could not be loaded on any 
of the devices. Our results suggest that 
the LSTM-based deep-learning model 
is more lightweight and robust (espe-
cially with the quantized LSTM model) 
than the SVM-based shallow classifier.

Our experiments reveal that 
an RNN-based approach for 
user authentication based on 

breathing acoustics is not only robust 
but is also lightweight enough to 
be effectively executed on a variety 
of resource-constrained embedded 
devices. An appropriately quantized 
LSTM-based deep-learning model 
can authenticate users with accuracy 
higher than 90 percent and utilizes 
models that are modestly sized (a cou-
ple of hundred Kbytes). The resulting 
user authentication latency is small not 
only for representative smartphones 
(less than or equal to 200 ms) but also 
for the highly resource-limited smart-
watch platform (less than or equal 

to 1 second). Note that these perfor-
mance numbers are achieved using 
CPU-only computation and should 
be significantly improved using GPU- 
offloading approaches proposed by 
other researchers. 

Our investigations suggest that 
RNNs offer a compelling lightweight 
alternative to CNNs for many sensor- 
driven pervasive applications, espe-
cially if the application utilizes tem-
poral features of the underlying sen-
sor data. 
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