
16 July 2022

POLITECNICO DI TORINO
Repository ISTITUZIONALE

CRIME: Input-Dependent Collaborative Inference for Recurrent Neural Networks / Jahier Pagliari, Daniele; Chiaro,
Roberta; Macii, Enrico; Poncino, Massimo. - In: IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. -
ELETTRONICO. - 70:10(2021), pp. 1626-1639. [10.1109/TC.2020.3021199]

Original

CRIME: Input-Dependent Collaborative Inference for Recurrent Neural Networks

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TC.2020.3021199

Terms of use:
openAccess

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2844792 since: 2021-09-19T16:55:24Z

IEEE

IEEE TRANSACTIONS ON COMPUTERS 1

CRIME: Input-Dependent Collaborative
Inference for Recurrent Neural Networks

Daniele Jahier Pagliari, Member, IEEE, Roberta Chiaro, Member, IEEE, Enrico Macii, Fellow, IEEE,
and Massimo Poncino, Fellow, IEEE

Abstract—The excellent accuracy of Recurrent Neural Networks (RNNs) for time-series and natural language processing comes at
the cost of computational complexity. Therefore, the choice between edge and cloud computing for RNN inference, with the goal of
minimizing response time or energy consumption, is not trivial. An edge approach must deal with the aforementioned complexity, while
a cloud solution pays large time and energy costs for data transmission. Collaborative inference is a technique that tries to obtain the
best of both worlds, by splitting the inference task among a network of collaborating devices. While already investigated for other types
of neural networks, collaborative inference for RNNs poses completely new challenges, such as the strong influence of input length on
processing time and energy, and is greatly unexplored.
In this paper, we introduce a Collaborative RNN Inference Mapping Engine (CRIME), which automatically selects the best inference
device for each input. CRIME is flexible with respect to the connection topology among collaborating devices, and adapts to changes in
the connections statuses and in the devices loads. With experiments on several RNNs and datasets, we show that CRIME can reduce
the execution time (or end-node energy) by more than 25% compared to any single-device approach.

Index Terms—Edge computing; recurrent neural networks; collaborative inference; deep learning; intelligent offloading; long
short-term memory

F

1 INTRODUCTION

IN recent years, deep learning (DL) has gained enormous
success in a variety of application domains, consistently

outperforming traditional machine learning methods [1].
The spread of DL has been partially fueled by the prolifer-
ation of IoT sensors and smart devices generating massive
amounts of data [2], [3]. Indeed, many IoT and mobile appli-
cations can be enhanced thanks to DL-based algorithms. In
particular, deep Recurrent Neural Networks (RNNs) such
as those based on the Long-Short Term Memory (LSTM)
architecture are commonly used for natural language and
audio processing in smart personal devices [4], [5], for elab-
orating inertial [6] and biometric [7] sensor signals, as well
as for processing time-series in smart cities, smart energy
and smart manufacturing tasks [8], [9].

Unfortunately, the previously unimaginable accuracy
reached by DL-based solutions comes at the cost of com-
putational and memory complexity, both in the training
and inference phases. To meet such computational require-
ments, a common approach is to offload these expensive
tasks to high-performance cloud infrastructures equipped
with GPUs and multi-core CPUs. However, pure cloud-
computing raises several issues [10]. First, sending raw data
to the cloud over a network link may yield long response
latency in case of slow or intermittent connections. Second,
this centralized approach is not scalable, as it imposes a lot
of stress on the network infrastructure. Third, most smart

• D. Jahier Pagliari, R. Chiaro and M. Poncino are with the Department
of Control and Computer Engineering, Politecnico di Torino, Turin, Italy,
10129. E-mail: {name.first surname}@polito.it

• E. Macii is with the Interuniversity Department of Regional and Urban
Studies and Planning, Politecnico di Torino, Turin, Italy, 10129. E-mail:
enrico.macii@polito.it

Manuscript received January XX, XXXX; revised January XX, XXXX.

and IoT devices are connected wirelessly, meaning that raw
data offloading to the cloud is also expensive in terms of
energy consumption. Lastly, processing in the cloud may
arise concerns with user data privacy.

In view of these issues, edge computing turns out to be a
convenient alternative, especially for the inference phase, and
could lead to several benefits in terms of responsiveness,
energy efficiency and security [2], [10], [11]. Research has
been ongoing to deploy optimizations that allow to sustain
the computational burden of deep learning inference on
resource-constrained edge devices.

Many studies have focused on hardware accelerator
designs, which exploit the parallelism of the matrix mul-
tiplication kernels that dominate Deep Neural Networks
(DNN) inference, and leverage techniques such as weight
quantization and pruning to reduce the memory bottle-
neck [12]. After initially targeting mostly Convolutional
Neural Networks (CNNs), recent research is trying to extend
DNN acceleration also to RNNs [13], [14], [15], [16], [17].

While accelerators are extremely time- and energy-
efficient, most low-budget mobile and IoT systems can-
not afford a dedicated inference hardware, and must rely
on general purpose embedded CPUs. For these systems,
despite the excellent latency and energy reduction results
achieved by model compression techniques such as quanti-
zation [18], [19] and pruning [20], [21], performing inference
entirely at the edge might still be sub-optimal. Indeed, it
has been ascertained that, for general purpose devices, even
better results in terms of latency and energy consumption
can often be achieved by splitting the inference computation
among edge and cloud devices [22], [23]. Such splitting can
be applied in principle on top of any model, including both
“vanilla” and compressed ones [23]. This approach, some-

IEEE TRANSACTIONS ON COMPUTERS 2

times called collaborative inference, allows greater degrees of
freedom in tuning the trade-off between the latency and en-
ergy overheads of transmitting data to the cloud and those
deriving from a local computation. Different approaches to
collaborative inference have been proposed [22], [23], [24],
[25], [26], [27] but only focusing on feed-forward DNNs and
CNNs. In contrast, collaborative inference for RNNs is an
almost uncharted territory.

Nonetheless, recurrent networks pose several novel
problems. For instance, as explained in Section 3, there is
no benefit in partitioning these networks (e.g. at the level of
layers) between multiple devices. Instead, the best approach
is to execute the entire network in one of the collabo-
rating devices. Moreover, since RNN inference complexity
depends on input data size, taking input-driven offloading
decisions is fundamental.

In this work, which extends [28], we present a Col-
laborative RNN Inference Mapping Engine (CRIME), able to
select the most suitable device for RNN inference among
those available in a collaborative network, with the aim
of minimizing the total inference execution time (or en-
ergy consumption). The mapping is driven by multiple
factors: the input size, the current connection status (latency,
bandwidth) and the computational resources of candidate
devices, affected by their current workload. Results based
on different RNNs and datasets show that CRIME can
significantly reduce the total execution time or energy con-
sumption by more than 25% with respect to any single-
device inference approach.

With respect to the preliminary work presented in [28],
this paper introduce the following main novel contributions:

• We extend our proposed collaborative inference
framework for RNNs to support an arbitrary num-
ber of devices and interconnections (e.g. end-nodes,
intermediate edge gateways and cloud servers).

• We propose a method to propagate variations in the
network connection speed or in the computational
load of individual devices at runtime.

• We describe in detail the distributed optimization
performed by each node of a CRIME network and
evaluate its effectiveness on an extended set of sce-
narios and applications.

The rest of the paper is organized as follows. Section 2
provides the needed theoretical background and reviews
the state-of-the-art overview of collaborative inference tech-
niques. Section 3 provides the motivation for our method,
while Section 4 presents the details of CRIME. Experimental
results are presented in Section 5, while Section 6 draws
conclusions and suggests possible future work.

2 BACKGROUND AND RELATED WORKS

2.1 RNN Inference
Recurrent neural networks (RNNs) are DNNs specifically
designed to solve sequential problems, whose distinctive
feature is the presence of temporal relations between se-
quence elements. RNN architectures are therefore character-
ized by feedback loops, that allow information from prior
steps to persist while processing sequences of data. The ba-
sic layers of RNNs are the so-called cells or units. There exist

several fundamental types of cell, including the “vanilla”
RNN cell, the Gated Recurrent Unit (GRUs) and the Long-
Short Term Memory (LSTM). Both GRUs and LSTMs are
designed to overcome the limitations of standard RNNs in
handling long term dependencies [1].

Here and in the rest of this paper, we focus our dis-
cussion on LSTMs due to their widespread usage in many
application domains. However, all fundamental considera-
tions and hence our mapping strategy, can also be applied
to GRUs and other variants. The functionality of a LSTM
cell is governed by the following equations:

it = σ(Wxixt +Whiht−1 + bi)

ft = σ(Wxfxt +Whfht−1 + bf)

gt = tanh(Wxgxt +Whght−1 + bg)

ot = σ(Wxoxt +Whoht−1 + bo)

ct = ft � ct−1 + it � gt
ht = ot � tanh(ct)

(1)

In this equation xt is the input vector at time t, while ht
and ct are called hidden state and cell state respectively, and
are fed-back to the cell in the next time-step, as shown in
Figure 1a. The details of LSTM functionality are out of the
scope of this work, and readers can refer to [1].

From a computational standpoint, (1) shows that each
LSTM inference step is characterized by the same set of
operations. In particular, the dominant kernels are large
matrix-vector multiplications involving weight matrices W ,
followed by non-linear operations (hyperbolic tangent tanh
and sigmoid σ). In practice, when performing inference on
an input sequence of length n, the LSTM cell is unrolled (i.e.
replicated) n times, as shown in Figure 1b for n = 4. Each
replica shares the same weight matrices, learned during
training, and computes the same operations. The outputs
of the last cell of the chain (h4 and c4 in the figure) provide
an encoded representation of the input sequence and are
typically fed to a classifier, such as a fully-connected NN.

Given (1), it is evident that RNN/LSTM computational
complexity grows linearly with the input length n. More-
over, although the cell performs a highly-parallel kernel,
parallelism among different time-steps is limited: each
replica cannot start the elaboration until it receives the
outputs from the previous step [14], [15]. As a consequence,
inference execution time in RNNs can also be expected to
grow linearly with input length.

A similar reasoning applies to energy consumption:
since each LSTM cell execution involves the same opera-
tions, the power consumption of the hardware performing
inference can be assumed constant throughout the process,
especially for a single-task system (e.g. a smart sensor).
Consequently, energy should also grow linearly with n.

Notice that batching, i.e. parallel processing of multiple
independent input sequences, while fundamental during
training, is not normally used for latency-sensitive inference
tasks, where response time is critical. The latter requires
a streaming approach, where individual sequences are pro-
cessed as soon as they are available.

2.2 Related Works
Optimizations to perform DNN inference totally or partially
at the edge are very actively researched. Excellent recent

IEEE TRANSACTIONS ON COMPUTERS 3

LSTM
h1

x1

h1

c1

h0
c0 LSTM

h2

x2

h2

c2 LSTM
h3

x3

h3

c3 LSTM
h4

x4

h4

c4
xt

ctct-1
ht-1 ht

LSTM

a) LSTM feedback loop b) Unrolled LSTM for n=4

Fig. 1. A LSTM cell with feedback loops (a) and its unrolled version for
n = 4 (b).

surveys can be found in [2], [3], [10], [29].
One of the most popular approaches to implement RNN

inference fully at the edge is through custom hardware
accelerators, implemented on ASIC or FPGA technology.
These designs optimize the most energy-intensive oper-
ations involved in the inference process (multiply-and-
accumulate loops), generally using SIMD or systolic archi-
tectures [13], [14], [15]. Among others, [16], [17] propose
respectively a LSTM-based and a GRU-based accelerator for
FPGA, while [30] introduces ESE, a framework to acceler-
ate compressed sparse LSTM models obtained by pruning
parameters. Alternatively, offloading to mobile-GPUs can
also be leveraged to accelerate edge inference [31]. In this
perspective, [32] proposes GRNN, a GPU-based library, for
serving RNN models with low latency, high scalability and
efficient resource utilization, while BatchMaker [33] enables
cell-level batching for RNNs with variable length inputs.

However, most mobile and IoT systems cannot afford
dedicated inference hardware and must rely on general
purpose embedded CPUs, much more limited in terms of
performance and energy efficiency. These limitations can be
partially mitigated by means of techniques that trade-off
accuracy and computational demand. The most significant
example is quantization, i.e. replacement of floating point
data and operations with low-precision integers [18], [19],
which simultaneously impacts the DNN memory footprint
and access costs, as well as its arithmetic complexity. Being
relatively straight-forward to apply on general purpose
hardware, quantization (down to 8-bit precision) is currently
supported by many inference libraries for edge CPUs [34].
Unfortunately, quantization of RNNs/LSTMs is less effec-
tive than for feed-forward networks [35]. Pruning [20], [21]
is another popular technique (potentially combinable with
quantization [36], [37]) which allows decreasing the model
size and, depending on the underlying hardware capabil-
ities, its latency and energy consumption, by removing re-
dundant weights from DNNs. Finally, approximate comput-
ing techniques [38] can also help in reducing the complexity
of DNNs with limited impact on accuracy. The downside of
these techniques it that they are not easy to apply on general
purpose CPUs, where they might not assure a sufficient
speed-up and energy efficiency. For instance, pruning often
negatively affects hardware utilization in Single-Instruction
Multiple-Data (SIMD) CPUs, and complicates the memory
access patterns for inference [39].

Because of these observations, researchers have started
to devise hardware-independent accuracy vs complexity
optimizations, working at the DNN model level. Most no-
tably, [19], [40], [41], [42], [43], [44], [45] propose adaptive
approaches, in which a different DNN model (or version
thereof) is selected depending on the complexity of the

processed input. Models can be completely separate, they
can share part of the network architecture (as in the early-
exit mechanism of [46]) or they can be even built by chang-
ing the parameters of a common architectural blueprint. In
particular, [43], [44], [45] target RNNs/LSTMs. The former
two tune the beam search width used in encoder/decoder
networks at runtime, based on a measure of input difficulty,
while the latter skips some LSTM cells entirely based on
input similarity.

Another promising set of techniques to optimize infer-
ence on edge devices is edge caching. This method involves
caching DNN inference results, locally or in the edge server,
and leveraging the reusability of the previous outputs based
on the similarity of the input. [47], [48], [49]

While hardware compression techniques and model op-
timizations can reduce the energy consumption and latency
of DNN processing by several orders of magnitude [20],
performing inference fully on-edge might still not be the
most efficient choice. Collaborative inference was developed
as an orthogonal research branch, aiming to find the opti-
mal combination of local processing and cloud offloading.
Collaborative and distributed execution of generic tasks
has been a long studied discipline [50], [51]. However, DL-
based inference tasks have peculiar characteristics from a
computational standpoint, such as the possibility of easily
estimating the execution time for a given input and network
architecture, thanks to the deterministic and data indepen-
dent amount of computations involved in each layer [22],
[23], [24], [28]. This calls for task-specific optimizations,
which have been demonstrated capable of yielding largely
superior results compared to generic approaches [22], [24].

One of the first works in this field is found in [22].
The authors propose a framework, called Neurosurgeon,
that intelligently decides where to partition a CNN layer-
wise, while accounting for connectivity conditions. Their
observation is that CNN feature sizes shrink for deeper
layers in the model. Therefore, computing a few layers
on the edge and then sending the last computed feature
tensor to the cloud can reduce latency and energy overheads
deriving from wireless transmission.

A similar approach is proposed in BottleNet [23], but
additionally, the network architecture is modified to favor
partitioned execution. Specifically, a reduction unit is added
after the layers assigned to be computed on the edge, to
compress the output sent to the cloud, where a decompres-
sor (restoration unit) restores the original tensor before con-
tinuing the computation. At training time, compression and
decompression are approximated by an identity function.

JointDNN [24] extends the previous approaches to con-
sider multiple split points, for DNNs where feature sizes
are not monotonically decreasing, such as autoencoders. The
authors map the problem of partitioning the computations
in a DNN to shortest path finding in a graph, and pro-
vide an ILP formulation to constrain the resolution with
limitations imposed by the edge device battery or by the
cloud congestion. The authors of [26] combine layer-wise
partitioning with an inference early-stopping mechanism to
further speed-up the computation.

IONN [52] considers the scenario in which different
devices in a distributed system do not store a copy of the
same DNN model. The authors introduce a partitioning-

IEEE TRANSACTIONS ON COMPUTERS 4

based offloading in which portions of layers’ weights are
transmitted to the cloud together with data, which allows
to start a partial execution before the entire DNN model is
uploaded. In [53] an improvement over IONN is proposed,
based on a finer-grain uploading plan.

Layer-wise partitioning is not the only possibility. For ex-
ample, DeepThings [25] splits each convolutional layer of a
CNN into multiple parallel execution tasks to be distributed
among edge node devices in a load balancing manner. The
authors of [54] propose another form of partitioning, specific
for applications that gather data from multiple IoT sensors.
Their hierarchical inference algorithm uses a properly de-
signed DNN architecture, which allows to decompose the
first layers into slots, each one involving only the subset
of features available on a given end-device. In this way,
sensors themselves perform partial inference based on the
data they can access locally, partially relieving the cloud of
the computational burden, and send a low-sized amount of
data to servers, with a decreased communication effort.

Similarly, collaborative systems are not limited to two
levels (edge and cloud). For example, the authors of [27]
propose a partitioning strategy that involves three offload-
ing levels (end-devices, edge servers and cloud), and also
consider the interaction between multiple independent and
concurrent inference tasks.

To the best of our knowledge, existing collaborative
inference strategies focus only on feed-forward networks,
in particular on CNNs. Our work is the first specifically
tailored for RNNs, which, as detailed in Section 3, require
a completely different collaborative strategy. Indeed, merely
extending a CNN-based solution to RNNs would not yield
any benefit. Instead, what our method has in common
with other collaborative solutions is being fully orthogonal to
single-device optimizations (such as quantization, pruning,
etc.) and freely combinable with them.

3 MOTIVATION

Existing works on collaborative inference for feed-forward
DNNs only propose input-independent policies. In other
words, the partitioning point (e.g. a layer) may vary at
runtime depending on connection status, cloud server load,
etc, but it is not influenced by the processed datum. This
is reasonable, given that the great majority of feed-forward
DNNs and CNNs can only process fixed-size inputs, hence
having a fixed computational complexity (i.e. number of
MAC operations) per input.

In contrast, as seen in Section 2.1, RNN inference com-
plexity grows linearly with input length. Therefore, an of-
floading strategy for these networks should consider the
input length as a fundamental decision parameter. In the
rest of this section, we first discuss why partitioning a sin-
gle RNN inference among multiple devices is sub-optimal.
Then, we discuss the potential benefits of mapping entire
inferences onto a network of collaborating devices, in an
input-dependent way.

3.1 Sub-optimality of RNN model partitioning

A key difference between feed-forward DNNs and RNNs is
that, for most RNN-based tasks, partitioning of the inference

phase is not beneficial. In contrast, the offloading decision
should map the entire inference on one of the collaborating
devices. When illustrating this, we refer to a slightly more
detailed diagram of a 2-layer LSTM, shown in Figure 2,
where the possible ways in which the inference execution
could be partitioned are shown by dashed lines.

LSTM1

h1,1
c1,1

h1,0

c1,0 LSTM1

h1,2
c1,2 LSTM1

h1,3
c1,3 LSTM1

h1,4

c1,4

LSTM2

h2,1
c2,1

h2,0
c2,0 LSTM2

h2,2
c2,2 LSTM2

h2,3
c2,3 LSTM2

h2,4
c2,4

h1,1 h1,2 h1,3 h1,4

h2,1 h2,2 h2,3 h2,4

x1 x2 x3 x4

Fig. 2. A 2-layer LSTM network unrolled for n = 4, with three possible
partitioning solutions shown by dashed lines: layer-wise (purple), time-
wise (blue) and mixed (red).

The key unfavorable factor for partitioning is that RNN
inputs are typically small, and often also smaller than
intermediate outputs. As an example, inputs to Natural
Language Processing (NLP) applications are sequences of
word indexes in a vocabulary. Even if the latter is large
(say 10k words), each index can be encoded with 2 bytes,
and an entire sentence/paragraph, i.e. the typical inference
input, requires few 100s of bytes. Similarly, for time-series
processing applications [4], [8], inputs at each time-step are
vectors of few tens of features. A single LSTM hidden/cell
state vector, instead, is typically composed of few 100s of
float elements per time-step [1].

Due to these small data sizes, the transmission time
for inference offloading tends to be dominated by data-
independent components [58]. To explain why, we use the
following standard transmission time model, which is the
same used by the proposed CRIME framework:

Ttx,ij(n) = Trtt,ij +
S(n)

Bij
(2)

where Bij is the bandwidth of the network connection be-
tween two devices i and j, and Trtt,ij is the connection
round-trip time. S(n) is the size in bytes to be transmitted,
which in general depends on the processed input length
n. This also includes the transmission of results (e.g. class
labels) in the opposite direction.

As mentioned above, RNN inputs can be encoded with
few hundreds of bytes. Assuming S(n) ≈ 100B and a
relatively slow LTE link with Bij = 2Mbps, the fractional
term in (2) becomes 0.4ms. A typical value of Trtt,ij for
LTE is around 70ms, i.e. ≈200x larger [58]. So, for most
RNN inference applications, data offloading is bound by
the round-trip time, which is virtually independent of the
sequence length n. This is very different from what happens
in CNNs [23], where both inputs and intermediate layer
output sizes are orders of magnitude larger (e.g. even a
small 256x256 RGB image requires ≈ 200kB).

These observations show why RNN inference partition-
ing is sub-optimal. That is, even if a partial local processing
could yield some amount of data compression, the impact of

IEEE TRANSACTIONS ON COMPUTERS 5

such compression on the overall transmission time Ttx,ij(n)
would be negligible, as the latter is roughly independent
of the data size. In other words, with respect to directly
offloading the inputs, the additional time and energy costs
for partial local processing would be wasted, since they
would not contribute to reducing the subsequent cost for
transmission.

This is true both for layer-wise partitioning (the purple
line in Figure 2) as well as for time-wise partitioning (blue
line), and for mixed approaches (red line). In particular, the
layer-wise and mixed approaches are almost surely sub-
optimal, since, as mentioned, intermediate layer outputs are
often larger in size compared to inputs. The compression
ratio of the time-wise approach, instead, depends on a
number of parameters, including the input size and length,
the LSTM hidden size and its number of layers. However,
regardless of the ratio, this compression could have an im-
pact on the total transmission time only for very low-latency
connections, which are not realistic for IoT applications.

3.2 Potential benefits of input-dependent collaborative
inference for RNNs

Despite the fact that RNNs partitioning is not beneficial,
it is still possible to apply the principles of collaborative
inference to these networks, by mapping entire inferences to
a given device. The main technical challenge is that such
mapping should be performed in an adaptive way with
respect to the current input, due to the analysis of Section 2,
as well as to the current computational load of the various
devices and to the current speed of the network connection.
Figure 3 shows visually the potential benefits of collabora-
tive input-dependent RNN inference, using a 3-level system
as an example. To obtain the graphs, we have measured the
inference execution time of a popular LSTM architecture [55]
on three different computational platforms, representative
of typical end-nodes (e.g. a smartphone), edge gateways and
cloud servers. The characteristics of the LSTM and of the
devices are reported in the caption, and detailed in Section 5.
For each device, the figure shows the average inference
time for a given length (dots), the variability measured
by the execution time standard deviation (shaded areas),
and a linear regression model fitted on the data (lines).
Additionally, the measurements relative to the gateway and
server have been moved upwards to take into account the
additional transmission time for offloading over a network,
e.g. a WWAN link between end-node and gateway, and a
multi-hop Internet connection between gateway and cloud.

The regression scores reported in the caption, confirm
experimentally the analysis of Section 2.1 on the linear de-
pendence of RNN inference execution time with respect to
input length. Clearly, the dependencies have different slopes
due to the different performance of the corresponding de-
vice. Data transfers, instead, affect the models’ intercepts.

In its entirety, Figure 3 motivates our work. In fact, it
shows that to minimize the total execution time for this
particular example, inputs of length < 4 should be pro-
cessed locally by the end-node, while lengths between 4 and
11 should be offloaded to the gateway, and longer inputs
should be processed in the cloud.

WLAN/WWAN Latency
Internet Latency

Input Length

Av
era

ge
 Ex

. T
im

e [
s]

End-node
Gateway
Cloud

Fig. 3. Inference execution time versus input length for the CoVe net-
work [55], measured on exemplificative processing devices for end-
nodes (ARM Cortex A53), edge gateways (NVIDIA Jetson TX2) and
cloud servers (NVIDIA Titan XP). Points and colored areas represent
means and standard deviation intervals over 100 measurements. Lines
are linear regression fits. Regression scores: edge MSE = 6.08 ·10−4,
R2 = 0.997; gateway MSE = 6.98 · 10−5 R2 = 0.998; cloud
MSE = 1.45 · 10−6 R2 = 0.985

4 COLLABORATIVE RNN INFERENCE MAPPING

Based on the observations of Section 3, a smart collaborative
strategy aiming at minimizing the overall inference time
should execute RNNs on different devices depending on
their relative performance, on the current speed of the com-
munication links connecting them, and on the processed in-
put’s length. We propose CRIME, a fully distributed strategy
to perform this selection, in which each device performs an
independent decision to compute or to offload the current
input, based on local estimates of the processing speed of all
reachable devices and of the corresponding network links.
Initially, we formulate our optimization with the goal of
minimizing the total inference execution time. Later, in Sec-
tion 4.4 we show that, with few adaptations, CRIME can also
be applied to minimizing sensor nodes energy consumption.

4.1 Collaborative System Model
An overview of the underlying model used in CRIME is
illustrated in Figure 4. As shown, we model a collabora-
tive inference system as a Directed Acyclic Graph (DAG),
G(V,E) where nodes V = {vi} represent devices, and
edges E = {eij} represent the presence of a network
connection between vi and vj . The DAG has a single source
node v0 representing the device (sensor, smartphone, smart
speaker, etc.) where input data are gathered.

Our formulation does not require to directly consider
the presence of multiple data sources. This is because, as
explained below, the effect of other sources feeding inputs to
the system is indirectly taken into account as a variation of
the devices load. Similarly, CRIME does not impose any re-
striction on the topology and connectivity of the graph, but
for the absence of cycles. The most realistic topology, and
therefore the one considered in our experiments, is depicted
in Figure 4; here, nodes are organized in levels and edges are
only present between nodes in level l and l + 1. This is the
scenario in which an end-device is connected to one or more
intermediate edge gateways, which in turn are connected to
one or more cloud servers. In principle, however, nothing
forbids the presence of, for instance, horizontal connections
between devices at the same level.

IEEE TRANSACTIONS ON COMPUTERS 6

Point-to-point
links

BLE/LoRa/etc.

Tl,i(x) Tr,ij(x) Ttx,ij(x)

TCP/IP links

Mapping
Decision

Length: x Transmit

Model
Update

Propagate
Sensor/Mobile Gateways Servers

LSTM
Inference

Compute

v1

v2

v3

vn

v5

v6

vm

e12

e25

e1n

enm

e36

e2m

e26

e35

Fig. 4. Overview of the CRIME collaborative inference model, with the details of the main operations performed in a node. Although not shown for
visualization purposes, the same operations depicted for the source node are performed in all other nodes.

The pre-conditions of CRIME are as follows. First, as
mentioned in Section 3, for each input, the entire RNN infer-
ence is executed on a single node (i.e. our approach does not
involve network partitioning). Therefore, each device must
maintain a local copy of the RNN model and of its trained
weights. In general, thanks to the many tool-independent
NN storage formats and conversions tools available, devices
can collaborate despite using different inference engines.

Second, each device vi should maintain three pieces of
information needed to perform a mapping decision:

• A local model Tl,i(n) of its own inference execution
time as a function of the length n of the processed
input.

• A set of remote models Tr,ij(n) ∀j : eij ∈ E of the
inference execution time as a function of n for all
directly connected nodes.

• A set of models Ttx,ij(n) ∀j : eij ∈ E of the trans-
mission time as a function of n for all directly con-
nected nodes.

Given the linear dependency of RNN inference com-
plexity with respect to input length, the local model Tl,i(n)
is obtained with a simple linear regression, as in the blue
plot of Figure 3. Remote models Tr,ij(n) instead, are in
general piece-wise linear, as explained in Section 4.2. The
total execution time for local inference is therefore simply
estimated as:

Ttot,i(n) = Tl,i(n) = αl,in+ βl,i (3)

In contrast, when computations are offloaded to remote
node vj , the total execution time is estimated as:

Ttot,i(n) = Ttx,ij(n) + Tr,ij(n) (4)

In turn, the transmission time Ttx,ij(n) can be modeled as in
(2), where both Trtt,ij andBij can have very different values
depending on the type of link. However, the round-trip
latency is dominant in the majority of cases, as explained
in Section 3. This is why the gateway and cloud curves of
Figure 3 just receive a fixed vertical offset as an effect of data
transmission.

In order to select the most appropriate inference device
for an input of length n, each node vi performs the following
local optimization. First, the best remote device v̂ is selected

as the one that yields the shortest total execution time
(including transmission and remote processing):

̂ = arg min
j:eij∈E

(Ttx,ij(n) + Tr,ij(n)) (5)

Then, the choice between local inference and offloading is
simply performed as:

vtarget =

{
vi if Tl,i(n) ≤ Ttx,î(n) + Tr,î(n)

v̂ otherwise
(6)

Notice that, to perform this choice, vi only needs to have
an estimate of the time taken by other connected nodes vj
to process the input. It does not need to be aware of how
the result will be produced. This means that, when node
vi (e.g. a mobile device) selects remote offloading, node
v̂ (e.g. a gateway) will receive the input and in turn will
decide whether to process it locally or offload it further
(e.g. to a cloud server). All of this happens transparently
for vi, so that there is no need for a global orchestration of
the inference, which would incur additional communication
overheads.

4.2 Remote execution time models
Each CRIME node receives remote execution time models
Tr,ij(n) directly from its successors in the graph, i.e. models
“flow” in the direction opposite to the graph edges. As an
example, consider the DAG of Figure 5a. Nodes v3 and v4
are both leaves of the DAG. Therefore, when they receive an
input, their only available choice is local execution, and the
total execution time is simply:

Ttot,3(n) = Tl,3(n), Ttot,4(n) = Tl,4(n) (7)

Both v3 and v4 will periodically transmit their local models
to the common predecessor v2, which will store them as
Tr,23(n) and Tr,24(n) respectively. The details of this trans-
mission are described in Section 4.3.

Node v2 therefore has three mapping choices: it can
execute the inference locally, or it can offload it either to v3
or to v4. In the most general scenario, the three mappings are
optimal for different ranges of input length n, as shown in
Figure 5b, where the offsets of the red and green curves are
due to transmission times. Specifically, in the example the
optimal inference node determined using (5) and (6) would
be v2 for n ≤ n23, v3 for n23 < n ≤ n34 and v4 for n > n34.

IEEE TRANSACTIONS ON COMPUTERS 7

n

Ttot(n)

Run
 lo

ca
lly

Offload to v3

Offload to v4

n

Ttot(n)

v1

v2

v3 v4

(a) DAG (b) v2 mapping choices (c) v1 mapping choices

Trtt,23(n)

Trtt,24(n)
Trtt,12(n)

Offload to v2

n23 n34 n12

Fig. 5. (a) DAG representing a reference configuration of connected col-
laborating devices, (b)-(c) regression models associated with mapping
choices available respectively for v2 and v1.

To indirectly inform v1 of its multiple mapping choices,
v2 will transmit to v1 the minimum of the blue, green and red
lines of Figure 5b, which v1 will internally store as Tr,12(n).
This model will have the piece-wise linear shape of the
orange curve in Figure 5c. Here, the curve is further shifted
upwards due to the transmission time Ttx,12(n), to show the
mapping trade-off available to v1. In particular, the optimal
choice for v1 is to execute locally for n ≤ n12 and offload to
v2 for n > n12.

If v1 was not the source node of the graph, the min-
imum of the blue and orange curves of Figure 5 would
be further propagated to its predecessors. Importantly, as
anticipated in Section 4.1, with this propagation mechanism
each node only has to store a limited number of remote
models, corresponding to its direct successors, and does
not have to be aware of the entire DAG topology nor of
the choices performed by other nodes. This also simplifies
system configuration changes during runtime. For example,
adding a new node to the DAG, e.g. a previously not
present intermediate gateway, or a new cloud server for load
balancing, only requires informing its direct predecessors.

In CRIME, we assume that RNN parameters (i.e.
weights) are loaded once at the beginning of the execution
and kept in memory thereafter. This is a realistic scenario,
since in IoT end-nodes (e.g. smart sensors, smart speakers,
etc.), inference is typically executed as part of a task con-
stantly running in the background, waiting from new inputs
(e.g. sensor data, voice recordings, etc.) to be processed.
In edge gateways and cloud servers, instead, inference is
provided as a service, thus the corresponding task must
be constantly in execution, listening to new requests from
lower-level devices.

4.3 Model updating and propagation

If all execution time models were constant in time, it would
be possible to compute the break-even lengths between
different mapping choices (n12, n23 and n34 in Figure 5) just
once at design time, and the optimal mapping would reduce
to a comparison with these thresholds. Unfortunately this is
not the case, which is why storing and propagating models
as described in Section 4.2 is needed. Taking again the
example of Figure 5b, there are two main elements that can
vary over time:

• The transmission times to offload an input to v3 or v4,
i.e. Ttx,23(n) and Ttx,24(n), are affected by variations
in the link speed.

• The local execution time Tl,2(n) is influenced by other
tasks running on the same device. For example, a
server may receive inference requests from multiple
devices, which affect its available compute resources
and therefore its execution time for a given length n.

When one of these two types of variation happens, the
remote models relative to v2 stored in other nodes, i.e.
Tr,i2(n), become outdated and must be refreshed.

4.3.1 Transmission time updating
We combine two mechanisms to keep the information about
the transition time between nodes up to date. First, every-
time node vi offloads a task to node vj , both nodes attach
time-stamps to the data upon their transmission/reception.
With these time-stamps, when results are returned to vi,
the latter can estimate the parameters of (2) autonomously.
Given the discussion of Section 3.1, the round-trip la-
tency dominates the overall transmission time. Therefore,
although adding these timestamps slightly increases the size
of the transmitted data packets, the effect on Ttx,ij(n) is
negligible.

While the time-stamps mechanism is effective, it is not
sufficient, as the transmission time is only updated when vi
offloads a task to vj . To see why, consider again Figure 5b,
and assume that v2 offloads a task to v4 during a momentary
spike in the network latency, e.g. due to noise or traffic. As
a consequence, the estimate of Ttx,24(n) stored in v2 will
increase dramatically, i.e. the red curve in the figure will
be moved upwards. Depending on the amount of this shift,
the break-even length n34 might reach a value so high that
it never happens in practice. In other words, v2 will start
to assume that offloading to v4 is never convenient. As a
result, even when the network latency decreases again, v2
will never send tasks to process to v4, and therefore will
never correct its outdated transmission time estimate.

To solve this problem, every time no tasks have been
offloaded to a particular destination for a time longer than
Tping (for example, more than 1 minute), the source will
exchange a ping packet (i.e. a packet with no payload)
with it, in order to update its round-trip latency estimate.
Ping packets are transmitted rarely, in order to minimize
their overhead in terms of transmission time and energy.
In practice, for realistic graph sizes, the impact of these
periodic latency updates on the overall execution time is
limited, as shown in Section 5.

4.3.2 Local execution time updating
While IoT sensors are normally single-task systems, mobile
devices, edge gateways and cloud servers handle multiple
concurrent tasks at the same time, hence they are affected by
load variations. This might influence the time required to lo-
cally process an input Tl,i(n). Nonetheless, the dependency
between inference time and input length remains linear, as
shown in Figure 6.

Different colors represent different load conditions.
Points represent the inference time for different input
lengths on a real edge computing device, averaged over 100
inferences. Load variations have been simulated executing
1, 4 or 8 inferences in parallel, with randomized lengths or-
ders. As shown, the effect of multiple concurrent processing

IEEE TRANSACTIONS ON COMPUTERS 8

Input Length

Av
era

ge
 Ex

. T
im

e [
s] 1 Inference

4 Inferences
8 Inferences

Fig. 6. Execution time versus input length for the CoVe network [55],
measured on a NVIDIA Jetson TX 2 when performing a different number
of concurrent inferences. Points and colored areas represent means
and standard deviation intervals over 100 measurements. Regression
scores: single inference MSE = 5.71 · 10−5, R2 = 0.998; 4 concurrent
inferences MSE = 1.48 · 10−4 R2 = 0.998; 8 concurrent inferences
MSE = 6.96 · 10−4 R2 = 0.998

requests is just a change in the slope of the regression model,
not in its shape. Given this observation, we account for load
variations by periodically refitting the local Tl,i(n) estimate.
To this end, each node measures the execution time of all
inferences performed locally, and stores these values in a
sliding window. Once every Ml local inferences, the internal
linear regression is updated. Model refitting clearly has an
overhead as it involves additional computations. However,
linear regression fitting on a small amount (e.g. 10-100) of
time measurements is much simpler computationally than
RNN inference, hence by appropriately tuning Ml, this
overhead can be made negligible while keeping a relatively
up-to-date execution time model.

4.3.3 Model propagation
In Sections 4.3.1 and 4.3.2 we have described how CRIME
nodes update their local execution and transmission time
models. These models, however, must be also propagated
to each node’s predecessors. Propagating models incurs an
additional transmission overhead. Therefore, we do it only
when (i) we can attach this information to another necessary
transmission or (ii) the remote models of predecessors differ
too much from the local version.

The first case corresponds to the piggybacking of model
information: whenever vi offloads an inference to vj , the
latter attaches its new model parameters to the response
packet containing the inference outcome. The complete re-
sponse packet format is shown in Figure 7. The first obvious

Payload (e.g. class label) Rx timestamp (n, T) pairs

4-4n bytes 12 bytes 8 bytes/pair

Fig. 7. Format of a data packet sent as a response to offloaded inference
tasks in CRIME.

component is the payload, i.e. the inference result. This can
be a single class label (e.g. a 4-byte integer) for applications
such as sentiment analysis, or a sequence of n labels for
applications such as question answering. Next, the packet
contains the data reception timestamp, used to update vi’s
estimate of the transmission time Ttx,ij(n), as explained in
Section 4.3.1. This can be represented, for example, as an

8-byte integer for the time-from-epoch, plus a 4-byte float
to represent fractions of a second. The last element of the
packet is the information about vj ’s execution time model,
i.e. the piece-wise linear curve described in Section 4.2. This
is transmitted as a set of (n, T (n)) pairs, each represented
as (int, float), requiring 8 bytes.

Although these additional information significantly en-
large the total size of the packet, their impact on transmis-
sion time is negligible. Indeed, the total size is still only
in the order of 10s-100s of bytes. Therefore, as explained in
Section 3.1, the size-independent round-trip latency will still
dominate the total transmission time.

Besides piggybacking, updated models are also broad-
casted to all predecessors when the difference between the
last transmitted version and the current one exceeds a
threshold. To this end, each node stores a copy of the latest
model transmitted to its predecessors. After each internal
update, the node computes the maximum time difference
over all input lengths between the new model and prede-
cessors’ version. A broadcast is triggered when this value
exceeds a threshold Tth. Broadcasting is especially useful
when a device becomes “not appealing” for some time, e.g.
because of a high load. In that scenario, given (5) and (6),
predecessors will start to avoid offloading to that device.
Therefore, even when its load decreases, the node would
not receive inferences, and would not have the opportunity
to piggyback its new model. Broadcasting solves this issue
and ensures that relevant variations in the speed of a device
are propagated through the system.

Notice that, with this scheme, models automatically
propagate through multiple levels in the graph (possibly
up to the source). In the example of Figure 5, a relevant
load variation in v3 (i.e. in the slope of the green curve of
Figure 5b) would be propagated to v2, This, in turn, would
modify the shape of the piece-wise linear curve in Figure 5c.
If this modification is greater than Tth, v2 will then broadcast
it to its predecessors (only v1 in this case).

4.4 Energy Optimization

Up to this point, we have considered the task of minimizing
the total response time of a collaborative RNN inference
system. In this section, we discuss the differences when the
goal is energy minimization. As noted in previous works [22],
[24], energy is a critical goal mostly for battery-operated
systems, such as IoT sensors. Therefore, in our work, we
focus on minimizing energy only at the source node in the
DAG of Figure 4.

In Section 2, we have anticipated that RNN inference
power consumption should be approximately constant,
since each time-step involves the exact same operations.
This is confirmed in Figure 8, which shows the average
power consumption for different input lengths when run-
ning two different RNNs. Power measurements are per-
formed with a digital multimeter (HP 34401A) attached to a
thermally stable shunt resistor, with a period of 1s, running
1000 inferences per each value of n. The target device is the
same used as “end-node” in Figure 3. The graphs show the
power increment in percentage with respect to the baseline
consumption of the system, measured when the CPU is idle,
with unused peripherals disabled. Power values in Watts are

IEEE TRANSACTIONS ON COMPUTERS 9

0 10 20 30
Input Length

30

40

50

60

70

80
Po

we
r I

nc
re

as
e

[%
]

(a) CoVe [55]

25 50 75 100
Input Length

30

35

40

45

50

55

60

65

70

Po
we

r I
nc

re
as

e
[%

]
(b) IMDB [56]

Fig. 8. Power consumption versus input length for two RNNs. Points
and colored areas represent means and standard deviation intervals
over 1000 inferences. The solid line is the best constant fit of the
data. Baseline power: 1.81W, CoVe average increment: 1.00W, MSE =
0.44 ·10−3W (a), IMDB average increment: 0.91W, MSE = 0.15 ·10−3W
(b).

reported in the caption. As expected, despite some fluctua-
tions, the average power remains approximately constant,
as shown by the small MSE obtained by the constant fits.

Given Figure 8, we estimates the source node energy for
local inference as:

Etot,i(n) = Pl,i · Ttot,i(n) (8)

where Pl,i is a constant power increment measured as
shown in the figure.

Communication energy clearly depends on the wireless
protocol used by the source node. In general, however, the
total energy consumed when the source node offloads a task
to a remote device can be modeled as [58]:

Etot,ij(n) = Etx0,ij(n) + Ptx,ij · Ttot,i(n) (9)

In this equation, the first component Etx0,ij(n) is the energy
required to actually upload (download) input (output) data.
This component can have different relations with the input
length n for different protocols. The second addend of (9),
instead, is the additional energy spent by the radio chip
while waiting for the response (e.g. for keeping the connec-
tion open). This second components shows that, regardless
of the chosen protocol, once the source node decides to
offload a task, spendingEtx0,ij for uploading/downloading
data, the faster the response is obtained (i.e. the smaller
Ttot,i), the better for total energy.

In other words, changing from time minimization to
energy minimization only affects the decision performed
by the source node. The latter must simply use (8) and
(9) as the two elements of the comparison in (6). Once the
source decides to offload an inference, however, all other
nodes should perform their mapping decision with the goal
of minimizing time, exactly as described in Section 4.1. In
general, the decision performed by the source can also be
based on a cost function that considers a combination of time
and energy reduction, as described in [28].

5 EXPERIMENTAL RESULTS

5.1 Experimental setup
In order to assess the effectiveness of CRIME, we perform
several experiments considering three types of computing

resources, representative of the different devices available
within a collaborative network:

• ARM Cortex A-53@1.2GHz, 1GB RAM, as represen-
tative of a (powerful) end-node, such as a smart-
phone, smart speaker, etc.

• NVIDIA Jetson TX2, including a Pascal GPU with 256
CUDA cores, as an example of a high performance
DL inference chip that could be equipped on an edge
server.

• Dual Intel Xeon E5-2630@2.40GHz, 128GB RAM plus
NVIDIA Titan XP GPU, to represent a typical cloud
server.

All three devices run a Linux OS and exploit TensorFlow
for RNN inference. Since our focus is only on inference, we
use pre-trained RNNs for our experiments. In particular, we
evaluate our approach on the CoVe network [55], composed
of 2 stacked LSTM layers and used to pre-process sequences
for a variety of NLP tasks, including sentiment analysis,
question classification/answering, etc. In this work, we
test CoVe against the Stanford Natural Language Infer-
ence (SNLI) Corpus and the Stanford Question Answering
Dataset (SQuAD). Moreover, to show the independence of
our method from RNN architecture details, we also consider
a lighter network [56], composed of a single LSTM layer and
trained on the IMDB dataset for sentiment classification.

The code of CRIME is written in Python. The time over-
head of our engine (< 1ms per inference on the Cortex A-53)
is negligible, even compared to an inference of length 1. All
inferences are performed on the real devices and execution
times and energy consumption are measured using the
“time” package and the HP 34401A multimeter respectively.

The CRIME code can support the autonomous execution
of the entire distributed system, including data transmis-
sion, which is based on a REST API [57]. However, for
the experiments of this paper, network transmissions are
simulated, in order to have reproducible experiments and
to assess the impact of different predictable network conditions
on the effectiveness of our methodology. Indeed, it would
be impossible to reproduce results obtained with a real net-
work, especially for what concerns the connection to cloud
servers, which is typically a multi-hop link over the Internet,
whose latency and bandwidth are totally uncontrollable.
The network simulator simply processes some connection
profile files, formatted as time series of latency/bandwidth
pairs. Clearly, these profiles can also be filled with real
network data, as we do in Sections 5.2.2 and 5.3 to mimic a
realistic (unpredictable) network. Importantly, the process-
ing of each input still takes place on the device determined
by CRIME, based on the simulated network’s status. The
only difference with respect to a stand-alone execution is
therefore that, when computing the aggregated inference
time and energy, the values of the real connection are
replaced with the simulated ones at that instant.

Since CRIME is the first collaborative inference approach
for RNNs, the baselines for comparison correspond to the
execution of all inferences on a single device. Moreover, we
also compare it to an oracle policy, i.e. one that always selects
the best inference platform for each input. This oracle is
not affected by all possible causes of wrong mapping in
CRIME, such as errors in the local execution time estimate

IEEE TRANSACTIONS ON COMPUTERS 10

(due to regression errors or to the unpredictable variability
of compute times for the same length), outdated connection
speed estimates and remote models, etc.

Server

End-node

Gateway

Fig. 9. DAG configurations considered in the experiments of Section 5:
(a) two-level scenario (b) three-level scenario (c) three-level scenario
with two cloud servers.

5.2 Two-level execution time minimization

In these experiments, we demonstrate the effectiveness of
input-dependent collaborative inference for RNNs. For this,
we consider the simplest collaborative system, composed of
a single end-node (Cortex A53) and a single cloud server
(Xeon + Titan XP), shown as “A” in Figure 9.

5.2.1 Fixed connection speed
First, we evaluate the execution time reduction obtained by
CRIME compared to edge-only and cloud-only solutions, as
a function of the connection conditions. Specifically, we fix
the Bij = 2Mbps and vary the round-trip latency Trtt,ij
which as explained in Section 3.1 is the most influential pa-
rameter. For each latency value, we perform RNN inference
on a large number of randomly sorted inputs and measure
the total execution time.

vs Cloudvs End-node

a) SNLI dataset b) SQuAD dataset

c) SNLI dataset (200 units) d) IMDB

Round-trip Time [s] Round-trip Time [s]

Round-trip Time [s] Round-trip Time [s]

Ex
. T

im
e R

ed
uc

tio
n [

%]

Ex
. T

im
e R

ed
uc

tio
n [

%]

Ex
. T

im
e R

ed
uc

tio
n [

%]

Ex
. T

im
e R

ed
uc

tio
n [

%]

Fig. 10. Execution time reduction with respect to “edge-only” and “cloud-
only” solutions. Results for different (fixed) network latencies and band-
width fixed at 2Mbps. Comparison of the results on different datasets (a,
b) and on different RNN architectures (c,d)

Figures 10a and 10b show the results obtained for CoVe,
sampling 100k inputs from SNLI and SQuAD. For each
value of Trtt,i,j on the x axis, the two curves show the
reduction of the total execution time achieved by CRIME

compared to a solution that performs all inferences locally
(red curve) and to one that offloads everything to the cloud
(blue). Clearly, the smaller Trtt,i,j , the more cloud offloading
is convenient, even for short inputs. In this condition, our
policy reduces to the cloud-only approach, substantially
speeding up the execution with respect to a fully on-edge
approach. On the other hand, for very large latency values,
local execution is always preferable, and our strategy tends
to coincide with the edge-only scenario. The most inter-
esting results are achieved for intermediate latency values,
where our policy outperforms both baselines. For example,
on SNLI and for Trtt,ij = 200ms, total execution time is
reduced by 19% and 10% with respect to edge-only and
cloud-only approaches respectively.

Comparing Figure 10a and 10b shows the impact of
the dataset on the performance of our method (for a fixed
RNN). In particular, the benefits with respect to the cloud-
only solution are greater for SQuAD, with an execution
time reduction > 40% for large Trtt,ij . This is because
SQuAD contains generally shorter inputs (median length
= 9, versus the SNLI median length = 12), allowing to
exploit edge processing more frequently.

Similarly, Figure 10c shows the impact of the RNN size.
The graph has been generated using the same data as
Figure 10a, but using a modified version of CoVe, in which
the hidden state vector size has been reduced to 200 units
instead of the original 300. This RNN simplification makes
local inference faster and therefore more convenient. As a
consequence, the execution time reduction versus the cloud-
only solution increases significantly for a given Trtt,ij . Fi-
nally, Figure 10d refers to the IMDB dataset. The RNN used
for this inference is significantly smaller than CoVe, even
in its the reduced version. The purpose of this experiment
is to show that the range of Trtt,ij for which our system
obtains gains with respect to both baselines (x axis) varies
significantly depending on the size of the RNN.

5.2.2 Variable connection speed
In this experiment, we consider a time-varying connection,
to evaluate how CRIME adapts to changes in the trans-
mission time. First, we consider an artificial time-varying
network profile: we let Trtt,ij increase from 100ms to 200ms
at 1/3 of the inference process and from 200ms to 300ms
at 2/3, with Bij always fixed at 2Mbps. Second, following
the method in [59] we mimic a real latency profile using
data from RIPE Atlas, an open source database of Internet
measurements. We extrapolate a 3-hour-long record of con-
nection speed between two random nodes in the database
and use it as time-varying Trt,ij profile (Trt,ij ranges from
100ms to 245ms). Results are reported in Table 1.

The significant speed-ups obtained for the artificial pro-
file are explained by the fact that the edge-only solution
is sub-optimal in the initial phase, when latency is small,
whereas at the end the cloud-only approach suffers from
high transmission delays. On the contrary, CRIME selects
the best inference target dynamically, based on the network
conditions. An exception is the IMDB experiment, for which
given the small size of the RNN, edge processing remains
close to optimal throughout the experiment. With the real
network profile from RIPE Atlas the savings are slightly
smaller due to the less dramatic variation of Trt,ij . However,

IEEE TRANSACTIONS ON COMPUTERS 11

TABLE 1
Experimental results for variable network latency. RIPE ATLAS Meas.
ID: 1437285, Probe ID: 6222, Date and time: May 3rd 2018, 3-6 p.m

Profile Test
Ex. time

reduction [%]
Ex. time

increment [%]
vs end-node vs cloud vs oracle

Artificial

SNLI 25.66 17.29 0.28
SQuAD 15.67 25.99 0.40
SNLI200 20.93 7.84 0.18
IMDB 1.51 23.47 0.01

RIPE Atlas

SNLI 21.35 8.64 0.24
SQuAD 8.06 15.72 0.28
SNLI200 3.48 36.51 0.032
IMDB 0.12 56.23 0.002

they still show the effectiveness of CRIME in adapting to
varying connection statuses, RNN sizes and datasets. In
both cases, the effectiveness of transmission time model
updating is demonstrated by the small execution time in-
crement (< 1%) with respect to the oracle policy.

5.3 Execution time minimization on larger systems

5.3.1 Multiple levels

This experiment considers the case of a three-level system,
including also an intermediate edge server (Jetson TX2),
shown as configuration “B” in Figure 9. We generally refer
to this server as “gateway” in the following. This experiment
assesses the effectiveness of model propagation through
multiple levels as described in Section 4.3. In this case, we
use a real Bluetooth Low Energy (BLE) connection between
the end-node and the gateway (GW), while we resort again
to RIPE Atlas for the link between gateway and server.

Results for the same RNNs and datasets of Section 5.2
are reported in the leftmost 5 columns of Table 2. As shown,
the speedups with respect to single-device mappings vary
significantly depending on the RNN and dataset, but there
is at least one condition for which CRIME reduces the exe-
cution time by > 35% compared to each device. Speedups
are on average larger compared to Table 1, showing that
CRIME is even more effective in a 3-level scenario. The
IMDB experiment reports a negative time reduction with
respect to a solution that executes all inferences on the end-
node device. This is because for that RNN and dataset, and
given the device compute speeds and connection profiles
used in this experiment, the end-node is indeed the optimal
device for all inputs. Intuitively, the GW device is not “fast
enough” to justify offloading, despite the relatively short
latency of the BLE connection, and sending inputs to the
cloud is equally not convenient because it requires two
“hops”. The main reason why CRIME performs slightly
worse than the Oracle in this experiment is the additional
time overhead of periodic ping transmissions needed to ob-
tain updated network status estimates, and to the reception
of propagated regression models from higher-level devices.
Wrong offloading choices due to network fluctuations or to
regression errors, instead, have a negligible impact, meaning
that CRIME does make the correct mapping decision for
the great majority of inputs. Overall, despite the negative
result, this experiment is still useful in showing the small
overheads introduced by CRIME. In fact, the small time

increment due to model propagations and periodic “pings”
remains < 1% even in this corner case.

The main advantage of CRIME lies in its input-
dependent selection of the inference target. Therefore, in
Figure 11 we show an example of how inputs are distributed
between these three levels based on their length, for the
SQuAD dataset. The graph shows one bar for each input
length present in the tested dataset. Bars are normalized
to 100%, and colors show the percentage of inputs of that
length that are processed on each device. As expected,
short inputs are executed locally, intermediate inputs are
processed by the gateway, and longer inputs are offloaded
to the cloud. For a large portion of these lengths the choice
is not univocal, because CRIME dynamically adapts to con-
nection speed variations. For example, length-15 inputs are
offloaded to the cloud when the GW-to-cloud link Trt,ij is
small, and retained by the gateway otherwise.

End-node
Gateway
Cloud

Input Length

M
ap

pin
g [

%]

Fig. 11. Distribution of 100k inputs over end-node, gateway and cloud
determined by CRIME for the SQuAD test.

5.3.2 Competing offloading devices and variable load
In this experiment we consider a complete collaborative
inference system, shown as “C” in Figure 9. Using this
configuration, we demonstrate two other features of CRIME;
the selection among two competing offloading devices at
the same level (the two servers shown in the DAG) and
the response to load variations. The latter in particular
are induced in the gateway: after processing half of the
inputs, the gateway is artificially slowed down by starting
7 additional inference tasks in parallel, simulating requests
from other end-nodes.

The results are shown in the rightmost part of Table 2.
Comparing these numbers with the ones obtained in the
previous experiment, the most relevant difference is an
increase in the execution time reduction compared to a
gateway-only approach. The reason is that executing en-
tirely on the gateway becomes much less effective due to
the load increment. In contrast, CRIME promptly adapts,
starting to process more inputs locally and forwarding those
that reach the GW to one of the two cloud servers.

Despite the fact that execution time reductions with
respect to the two cloud servers are similar, CRIME does
not select them randomly. Since this is not apparent from
Table 2, Figure 12 summarizes visually the entire test for
the SNLI dataset. The topmost chart shows the round-trip
latency profiles of all three connection links in the system,
while the central and lowermost charts visualize the map-
ping choices performed by CRIME and by the oracle policy.
The time axis is divided in slots of 15s, and the colored bars

IEEE TRANSACTIONS ON COMPUTERS 12

TABLE 2
Experimental results on a three-level collaborative system, and on a system with two alternative cloud servers. RIPE ATLAS Meas.ID: 1437285,

Probe ID: 6222, Date and Time: May 3rd 2018, 12-16 p.m [GW to cloud1] and May 6th 2018, 7:30-11:30 a.m [GW to cloud2]

Test

Three-Levels Three-Levels and Two-Servers

Ex. time reduction [%]
Ex. time
incr. [%] Ex. time reduction [%]

Ex. time
incr. [%]

vs end-node vs gateway vs cloud vs oracle vs end-node vs gateway vs cloud1 vs cloud2 vs oracle
SNLI 35.57 5.93 25.33 0.32 35.56 45.38 26.11 25.13 0.72

SQuAD 26.40 1.49 31.92 0.99 23.22 35.12 32.98 29.51 1.18
SNLI200 4.52 20.22 37.48 0.85 4.75 50.87 44.73 37.69 1.15
IMDB -0.46 68.49 59.22 0.46 -0.70 80.45 64.35 59.12 0.71

represent the percentage of inputs processed in that slot that
are mapped to each device. The orange background area
represents the portion of the test in which the gateway load
has been increased.

Oracle mapping

CRIME mapping

La
ten

cy
 [s

]

Time [s]

End-node Gateway Cloud1 Cloud2

End-node to GW

Time [s]

Time [s]

M
ap

pin
g [

%]
M

ap
pin

g [
%]

GW to Cloud1 GW to Cloud2

Fig. 12. CRIME mapping and Oracle mapping for the SNLI test with
a three-level system and two competing cloud servers. The shaded
orange area indicates the portion of the test in which the gateway is
subjected to an higher load.

Overall, the figure clearly shows how CRIME adapts to
changing conditions. For instance, in the initial portion of
the test, cloud server 2 is selected more often, since the
round-trip latency to reach it is low (and in particular lower
than that of server 1). When the transmission time to server 2
increases (around 3000s), the gateway starts to process most
inputs locally. In turn, when the GW load increases at about
8000s, performing inference there stops being convenient,
and CRIME maps an increasing percentage of inputs to the
end-node and to both cloud servers. Towards the end of the
test, cloud server 1 is the most selected device due to the
lower transmission latency.

Comparing the two mapping charts of Figure 12 ev-
idently shows the similarity between the selections per-
formed by CRIME and by the Oracle policy. This is quantita-
tively confirmed by the small overheads reported in Table 2.

Figure 13 shows the impact of Tping , the maximum time
that each CRIME node waits without offloading inputs to
a given successor before sending an empty ping packet to
update its transmission latency estimate. We discuss this
parameter in this section since the larger DAG makes Tping

101 102 103

Max Ping Interval [s]
0

20

40

60

80

100

%
 C

RI
M

E
Ri

gh
t C

ho
ice

s

1

2

3

4

5

%
 In

cr
em

en
t v

s O
ra

cle

Fig. 13. Impact of Tping on the percentage of correct CRIME mappings
and on the total execution time overhead, for the SNLI experiment.

expiration more probable. Specifically, the graph reports
the percentage of correct mappings identified by CRIME
and the total execution time overhead with respect to the
oracle as functions of Tping . The time curve clearly identifies
a trade-off: for too small Tping , the overhead associated
with ping packets causes a not negligible increment in the
total inference time of CRIME (about 5%). At the other
extreme, a too large Tping causes again an overhead, this
time because of the wrong mapping decisions performed by
CRIME due to outdated transmission time estimates. The
optimum is obtained for intermediate values, approximately
in the range 1-10 minutes.

5.4 Energy minimization

As a final experiment, we assess the effectiveness of CRIME
for energy minimization. We refer again to the experimental
setup described in Section 5.2 but this time using (8) and
(9) in the optimization performed by the source node. To
estimate transmission energy, we use the model of [58]
for 4G LTE technology. We compare the achieved energy
reduction with the results provided by edge-only and cloud-
only solutions for different round-trip latency conditions.
Results are presented only for the SNLI and SQuAD tests
for sake of space, and are shown in Figure 14.

Energy reduction trends mirror those obtained for ex-
ecution time minimization (see Figure 10) because of the
close relationship between energy usage and inference time
described in Section 4.4. However, due to the large trans-
mission consumption of the selected WWAN technology,
offloading becomes a more costly operation when energy is
the target metric. Therefore, CRIME tends to favor local pro-
cessing even if this is does not yield the smallest response
time. As a consequence, with respect to Figures 10a and 10b,
the saving curves are shifted to the left.

IEEE TRANSACTIONS ON COMPUTERS 13

SNLI dataset SQuAD dataset

Round-trip Time [s]

En
erg

y R
ed

uc
tio

n[
%]

Energy Reduction vs End-node Energy Reduction vs Cloud
Round-trip Time [s]

En
erg

y R
ed

uc
tio

n[
%]

Fig. 14. Energy reduction with respect to “edge-only” and “cloud-only”
solutions. Results for different (fixed) network latency values and band-
width fixed at 2Mbps.

6 CONCLUSION

We have presented CRIME, a light-weight and distributed
mapping engine for collaborative RNN inference. In CRIME
each collaborating device performs a local optimization,
greadily selecting the fastest (or least consuming) mapping
between local processing and remote offloading. This se-
lection is based on estimates of the total processing time
both locally and in the directly connected devices (including
transmission time), which are constantly updated and prop-
agated through the network. Importantly, these estimates
account for the length of the processed input, which has a
significant influence on RNN processing time.

With experiments on three different datasets and three
different RNNs, we have shown that CRIME yields signif-
icant execution time and energy reductions with respect to
any static mapping solution. These results are very close to
those achieved by an Oracle policy that always selects the
most appropriate target for inference. In our future work, we
plan on extending the CRIME framework to support other
types of deep learning models for sequence processing, such
as attention-based transformers, which show different de-
pendencies between input length and inference complexity.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, The MIT
Press, 2016.

[2] V. Sze et al, “Efficient Processing of Deep Neural Networks: A
Tutorial and Survey,” Proc. of the IEEE, vol. 105, no. 12, pp. 2295–
2329, 2017.

[3] Z. Zhou et al, “Edge Intelligence: Paving the Last Mile of Artificial
Intelligence with Edge Computing,” in Proc. of the IEEE, pp. 1738–
1762, 2019.

[4] A. Kusupati et al, “FastGRNN: A Fast, Accurate, Stable and Tiny
Kilobyte Sized Gated Recurrent Neural Network,” Proc. of NIPS,
2018, pp. 9017–9028.

[5] J. Chauhan et al, “Breathing-Based Authentication on Resource-
Constrained IoT Devices using Recurrent Neural Networks,” Com-
puter, vol. 51, no. 5, pp. 60–67, 2018.

[6] Zia Uddin, “A wearable sensor-based activity prediction system
to facilitate edge computing in smart healthcare system”, Journal
of Parallel and Distributed Computing, vol. 123, pp. 46–53, 2019.

[7] N. Wadhwani et al, “IOT Based Biomedical Wireless Sensor
Networks and Machine Learning Algorithms for Detection of
Diseased Conditions,” Proc. of i-PACT, 2019, pp. 1-7.

[8] W. Zhang et al., “LSTM-Based Analysis of Industrial IoT Equip-
ment,” IEEE Access, vol. 6, pp. 23551-23560, 2018

[9] H. Shi et al, “Deep Learning for Household Load Forecasting—A
Novel Pooling Deep RNN,” IEEE TSG, vol. 9, no. 5, pp. 5271-5280,
2018.

[10] J. Chen and X. Ran, “Deep Learning With Edge Computing: A
Review,” Proc. of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[11] W. Shi et al, “Edge Computing: Vision and Challenges,” IEEE
Internet of Things Journal, vol. 3, no. 5, pp. 637–646, 2016.

[12] Y. H. Chen et al, “Eyeriss: An Energy-Efficient Reconfigurable Ac-
celerator for Deep Convolutional Neural Networks,” IEEE JSSC,
vol. 52, no. 1, pp. 127–138, 2017.

[13] T. Mealey et al, “Accelerating inference in long short-term memory
neural networks,” Proc. of NAECON, 2018, pp. 382–390.

[14] S. Cao et al, “Efficient and Effective Sparse LSTM on FPGA with
Bank-Balanced Sparsity,” in Proc. of FPGA, 2019, pp. 63–72.

[15] J. Kung et al, “Peregrine: A Flexible Hardware Accelerator for
LSTM with Limited Synaptic Connection Patterns,” in Proc. of
DAC, 2019, pp. 209:1–209:6.

[16] Y. Guan et al, “FPGA-based accelerator for long short-term mem-
ory recurrent neural networks,” in ASP DAC 2017, pp. 629–634.

[17] C. Gao et al, “EdgeDRNN: Enabling low-latency recurrent neural
network edge inference,” in AICAS 2020, p. 41-45.

[18] P. Gysel, “Hardware-Oriented Approximation of Convolutional
Neural Networks,” CoRR, http://arxiv.org/abs/1605.06402, 2016.

[19] D. Jahier Pagliari et al, “Dynamic Bit-width Reconfiguration for
Energy-Efficient Deep Learning Hardware,” in Proc. of ISLPED,
2018, pp. 47:1—-47:6.

[20] S. Han et al, “Deep compression: Compressing deep neural net-
works with pruning, trained quantization and huffman coding,”
in Proc. of ICLR, 2015, pp. 1–14.

[21] T. Yang et al, “Designing Energy-Efficient Convolutional Neural
Networks Using Energy-Aware Pruning,” in Proc. of CVPR, 2017,
pp. 6071–6079.

[22] Y. Kang et al, “Neurosurgeon: Collaborative Intelligence Between
the Cloud and Mobile Edge,” Proc. of ASPLOS, 2017, pp. 615–629.

[23] A. E. Eshratifar et al, “BottleNet: A Deep Learning Architecture
for Intelligent Mobile Cloud Computing Services,” CoRR, http://
arxiv.org/abs/1902.01000, 2019.

[24] A. E. Eshratifar et al, “Jointdnn: An efficient training and inference
engine for intelligent mobile cloud computing services,” IEEE
TMC, vol. PP, 01 2018.

[25] Z. Zhao et al, “Deepthings: Distributed adaptive deep learning
inference on resource-constrained iot edge clusters,” IEEE TCAD,
vol. 37, no. 11, pp. 2348–2359, 2018.

[26] E. Li et al, “Edge AI : On-Demand Accelerating Deep Neural
Network Inference via Edge Computing,” CoRR, https://arxiv.
org/abs/1910.05316, 2019.

[27] Y. Huang et al, “Deepar: A hybrid device-edge-cloud execution
framework for mobile deep learning applications,” in Proc. of
INFOCOM Workshops, 2019, pp. 892–897.

[28] D. Jahier Pagliari et al, “Input-dependent edge-cloud mapping of
recurrent neural networks inference,” in Proc. of DAC, 2020, pp.
1–6.

[29] Y. Han et al, “Convergence of edge computing and deep learn-
ing: A comprehensive survey,” CoRR, https://arxiv.org/abs/1907.
08349, 2019.

[30] S. Han et al, “ESE: Efficient Speech Recognition Engine with
Sparse LSTM on FPGA,” in Proc. of ACM 2017, pp. 75–84.

[31] Q. Cao et al, “Mobirnn: Efficient recurrent neural network execu-
tion on mobile gpu,” in Proc. of EMDL@MobySys, 2017, pp. 1–6.

[32] C. Holmes et al, “Grnn: Low-latency and scalable rnn inference on
gpus,” in Proc. of Eurosys 2019. pp. 1-16.

[33] P. Gao et al. “Low latency rnn inference with cellular batching,” in
Proc of EuroSys 2018, pp.1-15.

[34] L. Lai et al, “CMSIS-NN: Efficient Neural Network Kernels for
Arm Cortex-M CPUs,” CoRR, http://arxiv.org/abs/1801.06601,
2018.

[35] J. Ott et al, “Recurrent Neural Networks With Limited Numerical
Precision,” CoRR, http://arxiv.org/abs/1611.07065, 2016.

[36] B. Reagen et al, “Minerva: Enabling low-power, highly-accurate
deep neural network accelerators,” in ACM SIGARCH, vol. 44, no.
3, pp. 267–278, 2016.

[37] S. Liu et al, “On-demand deep model compression for mobile
devices: A usage-driven model selection framework,” in Proc. of
ACM, 2018, pp. 389–400.

[38] D. Jahier Pagliari et al, “Energy-Efficient Digital Processing via
Approximate Computing,” in Smart Systems Integration and Simu-
lation. Springer, Cham, Chapter 4, pp. 55–89, 2016.

[39] J. Yu et al, “Scalpel: Customizing DNN pruning to the underlying
hardware parallelism,” in Proc. of ISCA, 2017 pp. 548-560.

IEEE TRANSACTIONS ON COMPUTERS 14

[40] E. Park et al, “Big/little deep neural network for ultra low power
inference,” in Proc. of CODES+ISSS, 2015, pp. 124–132.

[41] H. Tann et al, “Runtime configurable deep neural networks for
energy-accuracy trade-off,” in Proc. of CODES, 2016, pp. 1–10.

[42] B. Taylor et al, “Adaptive Deep Learning Model Selection on
Embedded Systems,” in Proc. of LCTES, 2018, pp. 31–43.

[43] D. Jahier Pagliari et al., “Dynamic Beam Width Tuning for Energy-
Efficient Recurrent Neural Networks,” in Proc. of GLSVLSI, 2019,
pp. 69–74.

[44] D. Jahier Pagliari et al., “Sequence-To-Sequence Neural Networks
Inference on Embedded Processors Using Dynamic Beam Search,”
Electronics, vol. 9, no. 2, p. 337, feb 2020.

[45] J. Jo et al, “Similarity-Based LSTM Architecture for Energy-
Efficient Edge-Level Speech Recognition,” Proc. of ISLPED, 2019,
pp. 1–6.

[46] S. Teerapittayanon et al, “Branchynet: Fast inference via early
exiting from deep neural networks,” ICPR, 2016, pp. 2464–2469.

[47] H. Chen et al, “Glimpse: Continuous, real-time object recognition
on mobile devices,” in Proc. of ACM Sensys, 2015.

[48] U. Drolia et al, “Cachier: Edge-caching for recognition applica-
tions,” in Proc. of IEEE ICDCS, 2017.

[49] P. Guo et al, “ Foggycache: Cross-device approximate computation
reuse,” in Proc. of ACM Mobicom,” in Proc. of ACM Mobicom, 2018.

[50] E. Cuervo et al, “MAUI: Making Smartphones Last Longer with
Code Offload,” in Proc. of MobiSys, 2010, pp. 49–62.

[51] M.-R. Ra et al, “Odessa: Enabling Interactive Perception Applica-
tions on Mobile Devices,” in Proc. of MobiSys, 2011, pp. 43–56.

[52] H.-J. Jeong et al, “IONN: Incremental Offloading of Neural Net-
work Computations from Mobile Devices to Edge Servers,” in
Proc. of SoCC, 2018, pp. 401–411.

[53] K. Shin et al, “Enhanced partitioning of dnn layers for uploading
from mobile devices to edge servers,” in Proc. of EMDL@MobiSys,
2019, pp. 35–40.

[54] A. Thomas et al, “Hierarchical and Distributed Machine Learning
Inference Beyond the Edge,” in Proc. of ICNSC 2019, 2019, pp.
1004–1009.

[55] B. McCann et al, “Learned in Translation: Contextualized Word
Vectors,” CoRR, http://arxiv.org/abs/1708.00107, 2017.

[56] Online: https://github.com/keras-team/keras, Accessed March
2020.

[57] Online: https://docs.cherrypy.org, Accessed July 2020.
[58] J. Huang et al, “A close examination of performance and power

characteristics of 4g lte networks,” in Proc. of MobiSys, 2012, pp.
225–238.

[59] M. Mouchet et al, “Statistical Characterization of Round-Trip
Times with Nonparametric Hidden Markov Models,” in Proc. of
IM, 2019, pp. 43–48.

Daniele Jahier Pagliari (M’15) received the
M.Sc. and Ph.D. degrees in computer engineer-
ing from Politecnico di Torino, Torino, Italy, in
2014 and 2018, respectively. He is currently an
Assistant Professor in the same institution. His
research interests include computer-aided de-
sign of digital systems, approximate computing
and low-power optimizations for embedded sys-
tems, with particular focus on embedded ma-
chine learning.

Roberta Chiaro (M’20) is a Research Assistant
at Politecnico di Torino. She received a degree in
Physics of Complex Systems from Politecnico di
Torino, in 2013. Her research interests concern
machine learning for embedded systems and
industry 4.0.

Enrico Macii (SM’02-F’05) is a Full Professor
of Computer Engineering with the Politecnico di
Torino, Torino, Italy. He holds a Laurea degree
in electrical engineering from the Politecnico di
Torino, a Laurea degree in computer science
from the Università di Torino, Turin, and a PhD
degree in computer engineering from the Politec-
nico di Torino. His research interests are in the
design of electronic digital circuits and systems,
with a particular emphasis on low-power con-
sumption aspects. He is a Fellow of the IEEE.

Massimo Poncino (SM’12-F’18) is a Full Pro-
fessor of Computer Engineering with the Politec-
nico di Torino, Torino, Italy. His current research
interests include several aspects of design au-
tomation of digital systems, with emphasis on
the modeling and optimization of energy-efficient
systems. He received a PhD in computer engi-
neering and a Dr.Eng. in electrical engineering
from Politecnico di Torino. He is a Fellow of the
IEEE.

