12 research outputs found

    Efficient FPGA Implementation of PCA Algorithm for Large Data using High Level Synthesis

    Get PDF
    Principal Component Analysis (PCA) is a widely used method for dimensionality reduction in different application areas, including microwave imaging where the size of input data is large. Despite its popularity, one of the difficulties in using PCA is its high computational complexity, especially for large dimensional data. In recent years several FPGA implementations have been proposed to accelerate PCA computation. However, most of them use manual RTL design, which requires more time for design and development. In this paper, we propose an FPGA implementation of PCA using High Level Synthesis (HLS), which allows us to explore the design space more efficiently than with hand-coded RTL design. Starting from a PCA algorithm written in C++, we apply various hardware optimization techniques to the same code using Vivado HLS in order to quickly explore the design space. Our experiments show that the performance of the design obtained with the proposed method is superior to the state-of-the-art RTL design in terms of resource utilization, latency and frequency

    Design of Ultra-Wideband MIMO Antenna for Breast Tumor Detection

    Get PDF
    A MIMO antenna composed by microstrip line-fed circular slot antenna is proposed. This antenna is used in ultra-wideband microwave imaging systems aimed for early breast cancer detection. The antenna is designed to operate across the ultra-wideband frequency band in the air. The mutual coupling between the antenna elements has been investigated to be low enough for MIMO medical imaging applications. Both the simulation and measurement results are shown to illustrate the performances of the proposed antenna

    Improved Resolution and Reduced Clutter in Ultra-Wideband Microwave Imaging Using Cross-Correlated Back Projection: Experimental and Numerical Results

    Get PDF
    Microwave breast cancer detection is based on the dielectric contrast between healthy and malignant tissue. This radar-based imaging method involves illumination of the breast with an ultra-wideband pulse. Detection of tumors within the breast is achieved by some selected focusing technique. Image formation algorithms are tailored to enhance tumor responses and reduce early-time and late-time clutter associated with skin reflections and heterogeneity of breast tissue. In this contribution, we evaluate the performance of the so-called cross-correlated back projection imaging scheme by using a scanning system in phantom experiments. Supplementary numerical modeling based on commercial software is also presented. The phantom is synthetically scanned with a broadband elliptical antenna in a mono-static configuration. The respective signals are pre-processed by a data-adaptive RLS algorithm in order to remove artifacts caused by antenna reverberations and signal clutter. Successful detection of a 7 mm diameter cylindrical tumor immersed in a low permittivity medium was achieved in all cases. Selecting the widely used delay-and-sum (DAS) beamforming algorithm as a benchmark, we show that correlation based imaging methods improve the signal-to-clutter ratio by at least 10 dB and improves spatial resolution through a reduction of the imaged peak full-width half maximum (FWHM) of about 40–50%

    Classificação de tumores de cancro na mama através de radar de banda ultra-larga de microondas

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia BiomédicaA presente dissertação foi desenvolvida com a colaboração do Instituto de Biofísica e Engenharia Biomédica da Faculdade de Ciências da Universidade de Lisboa.A imagem por microondas é uma das técnicas mais promissoras de imagem médica para detecção e classificação do cancro da mama, explorando as diferenças das propriedades dieléctricas entre tecidos da mama e massas cancerígenas quando sujeitas a frequências microondas. O radar de banda ultra-larga de microondas baseia-se na iluminação da mama com um pulso de banda ultra-larga gravando o sinal resultante por retrodispersão. Esta técnica tem um grande potencial por ser relativamente barata, não invasiva, confortável para o paciente e utilizar radiação não-ionizante. A técnica de imagem por microondas tem sido estudada via simulação, sendo que os primeiros protótipos estão agora a ser construídos. Nesta dissertação é estudado o potencial do radar de banda ultra-larga de microondas para classificação de tumores baseada no tamanho e/ou na forma do tumor. Numa primeira parte foram estudados tumores numéricos, construídos com base em Gaussian Random Sphere, em simulações, e numa segunda parte foram estudados fantômas físicos de tumores com o uso de um protótipo. Três classificadores foram utilizados: Análise Discriminante Linear, Análise Discriminante Quadrática e Support Vector Machines. Várias arquitecturas foram estudadas, combinando a classificação por tamanho e depois por forma e vice-versa. Foram estudados cenários de fantômas da mama homogéneos e heterogéneos

    High-performance wireless interface for implant-to-air communications

    Get PDF
    Nous élaborons une interface cerveau-machine (ICM) entièrement sans fil afin de fournir un système de liaison directe entre le cerveau et les périphériques externes, permettant l’enregistrement et la stimulation du cerveau pour une utilisation permanente. Au cours de cette thèse, nous explorons la modélisation de canal, les antennes implantées et portables en tant que propagateurs appropriés pour cette application, la conception du nouveau système d’un émetteur-récepteur UWB implantable, la conception niveau système du circuit et sa mise en oeuvre par un procédé CMOS TSMC 0.18 um. En plus, en collaboration avec Université McGill, nous avons conçu un réseau de seize antennes pour une détection du cancer du sein à l’aide d’hyperfréquences. Notre première contribution calcule la caractérisation de canal de liaison sans fil UWB d’implant à l’air, l’absorption spécifique moyennée (ASAR), et les lignes directrices de la FCC sur la densité spectrale de puissance UWB transmis. La connaissance du comportement du canal est nécessaire pour déterminer la puissance maximale permise à 1) respecter les lignes directrices ANSI pour éviter des dommages aux tissus et 2) respecter les lignes directrices de la FCC sur les transmissions non autorisées. Nous avons recours à un modèle réaliste du canal biologique afin de concevoir les antennes pour l’émetteur implanté et le récepteur externe. Le placement des antennes est examiné avec deux scénarios contrastés ayant des contraintés de puissance. La performance du système au sein des tissus biologiques est examinée par l’intermédiaire des simulations et des expériences. Notre deuxième contribution est dédiée à la conception des antennes simples et à double polarisation pour les systèmes d’enregistrement neural sans fil à bande ultra-large en utilisant un modèle multicouches inhomogène de la tête humaine. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à l’implantation ; nous étudions des matériaux à la fois flexibles et rigides et examinons des compromis de performance. Les antennes proposées sont conçues pour fonctionner dans une plage de fréquence de 2-11 GHz (ayant S11-dessous de -10 dB) couvrant à la fois la bande 2.45 GHz (ISM) et la bande UWB 3.1-10.6 GHz. Des mesures confirment les résultats de simulation et montrent que les antennes flexibles ont peu de dégradation des performances en raison des effets de flexion (en termes de correspondance d’impédance). Finalement, une comparaison est réalisée entre quatre antennes implantables, couvrant la gamme 2-11 GHz : 1) une rigide, à la polarisation simple, 2) une rigide, à double polarisation, 3) une flexible, à simple polarisation et 4) une flexible, à double polarisation. Dans tous les cas une antenne rigide est utilisée à l’extérieur du corps, avec une polarisation appropriée. Plusieurs avantages ont été confirmés pour les antennes à la polarisation double : 1) une taille plus petite, 2) la sensibilité plus faible aux désalignements angulaires, et 3) une plus grande fidélité. Notre troisième contribution fournit la conception niveau système de l’architecture de communication sans fil pour les systèmes implantés qui stimulent simultanément les neurones et enregistrent les réponses de neurones. Cette architecture prend en charge un grand nombre d’électrodes (> 500), fournissant 100 Mb/s pour des signaux de stimulation de liaison descendante, et Gb/s pour les enregistrements de neurones de liaison montante. Nous proposons une architecture d’émetteur-récepteur qui partage une antenne ultra large bande, un émetteur-récepteur simplifié, travaillant en duplex intégral sur les deux bandes, et un nouveau formeur d’impulsions pour la liaison montante du Gb/s soutenant plusieurs formats de modulation. Nous présentons une démonstration expérimentale d’ex vivo de l’architecture en utilisant des composants discrets pour la réalisation les taux Gb/s en liaison montante. Une bonne performance de taux d’erreur de bit sur un canal biologique à 0,5, 1 et 2 Gb/s des débits de données pour la télémétrie de liaison montante (UWB) et 100 Mb/s pour la télémétrie en liaison descendante (bande 2.45 GHz) est atteinte. Notre quatrième contribution présente la conception au niveau du circuit d’un dispositif d’émission en duplex total qui est présentée dans notre troisième contribution. Ce dispositif d’émission en duplex total soutient les applications d’interfaçage neural multimodal et en haute densité (les canaux de stimulant et d’enregistrement) avec des débits de données asymétriques. L’émetteur (TX) et le récepteur (RX) partagent une seule antenne pour réduire la taille de l’implant. Le TX utilise impulse radio ultra-wide band (IR-UWB) basé sur une approche alliant des bords, et le RX utilise un nouveau 2.4 GHz récepteur on-off keying (OOK).Une bonne isolation (> 20 dB) entre le trajet TX et RX est mis en oeuvre 1) par mise en forme des impulsions transmises pour tomber dans le spectre UWB non réglementé (3.1-7 GHz), et 2) par un filtrage espace-efficace du spectre de liaison descendante OOK dans un amplificateur à faible bruit RX. L’émetteur UWB 3.1-7 GHz peut utiliser soit OOK soit la modulation numérique binaire à déplacement de phase (BPSK). Le FDT proposé offre une double bande avec un taux de données de liaison montante de 500 Mbps TX et un taux de données de liaison descendante de 100 Mb/s RX, et il est entièrement en conformité avec les standards TSMC 0.18 um CMOS dans un volume total de 0,8 mm2. Ainsi, la mesure de consommation d’énergie totale en mode full duplex est de 10,4 mW (5 mW à 100 Mb/s pour RX, et de 5,4 mW à 500 Mb/s ou 10,8 PJ / bits pour TX). Notre cinquième contribution est une collaboration avec l’Université McGill dans laquelle nous concevons des antennes simples et à double polarisation pour les systèmes de détection du cancer du sein à l’aide d’hyperfréquences sans fil en utilisant un modèle multi-couche et inhomogène du sein humain. Les antennes fabriquées à partir de matériaux flexibles sont plus facilement adaptées à des applications portables. Les antennes flexibles miniaturisées monopôles et spirales sur un 50 um Kapton polyimide sont conçus, en utilisant high frequency structure simulator (HFSS), à être en contact avec des tissus biologiques du sein. Les antennes proposées sont conçues pour fonctionner dans une gamme de fréquences de 2 à 4 GHz. Les mesures montrent que les antennes flexibles ont une bonne adaptation d’impédance dans les différentes positions sur le sein. De Plus, deux antennes à bande ultralarge flexibles 4 × 4 (simple et à double polarisation), dans un format similaire à celui d’un soutien-gorge, ont été développés pour un système de détection du cancer du sein basé sur le radar.We are working on a fully wireless brain-machine-interface to provide a communication link between the brain and external devices, enabling recording and stimulating the brain for permanent usage. In this thesis we explore channel modeling, implanted and wearable antennas as suitable propagators for this application, system level design of an implantable UWB transceiver, and circuit level design and implementing it by TSMC 0.18 um CMOS process. Also, in a collaboration project with McGill University, we designed a flexible sixteen antenna array for microwave breast cancer detection. Our first contribution calculates channel characteristics of implant-to-air UWB wireless link, average specific absorption rate (ASAR), and FCC guidelines on transmitted UWB power spectral density. Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulations and experiments. Our second contribution deals with designing single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2–11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1–10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity. Our third contribution provides system level design of wireless communication architecture for implanted systems that simultaneously stimulate neurons and record neural responses. This architecture supports large numbers of electrodes (> 500), providing 100 Mb/s for the downlink of stimulation signals, and Gb/s for the uplink neural recordings. We propose a transceiver architecture that shares one ultra-wideband antenna, a streamlined transceiver working at full-duplex on both bands, and a novel pulse shaper for the Gb/s uplink supporting several modulation formats. We present an ex-vivo experimental demonstration of the architecture using discrete components achieving Gb/s uplink rates. Good bit error rate performance over a biological channel at 0.5, 1, and 2 Gbps data rates for uplink telemetry (UWB) and 100 Mbps for downlink telemetry (2.45 GHz band) is achieved. Our fourth contribution presents circuit level design of the novel full-duplex transceiver (FDT) which is presented in our third contribution. This full-duplex transceiver supports high-density and multimodal neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates. The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by spaceefficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18 um CMOS within a total size of 0.8 mm2. The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Our fifth contribution is a collaboration project with McGill University which we design single and dual-polarization antennas for wireless ultra-wideband breast cancer detection systems using an inhomogeneous multi-layer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50 um Kapton polyimide are designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2–4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching while in different positions with different curvature around the breast. Furthermore, two flexible conformal 4×4 ultra-wideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system

    Πειραματική μελέτη θερμικής ετερογένειας αθηρωματικής πλάκας με τη μέθοδο της ακτινομετρίας μικροκυμάτων. Συσχέτιση με την ενδοστεφανιαία θερμομέτρηση

    Get PDF
    Σκοπός. Ο σκοπός της παρούσης μελέτης είναι να διερευνηθεί εάν: 1) η MWR μπορεί να εφαρμοστεί με ασφάλεια για τη μη επεμβατική μέτρηση της θερμοκρασίας των αρτηριακών τοιχωμάτων και 2) οι μετρήσεις που πραγματοποιούνται με την τεχνική της MWR συσχετίζονται με τις μετρήσεις που καταγράφονται με τη μέθοδο της IVT και με την τοπική φλεγμονώδη αντίδραση όπως αυτή ανιχνεύεται με ιστολογικές τεχνικές. Μέθοδος. Στη μελέτη χρησιμοποιήθηκαν 24 λευκά κουνέλια Νέας Ζηλανδίας (με βάρος 3.8 ± 0.5 kg) εκ των οποίων 12 τυχαιοποιήθηκαν σε αυτά που ακολούθησαν κανονική διατροφή, ενώ τα υπόλοιπα ακολούθησαν διατροφή πλούσια σε χοληστερόλη για 6 μήνες. Στη συνέχεια όλα τα κουνέλια προετοιμάστηκαν για τη διενέργεια ενδαγγειακής αγγειογραφίας, IVT και MWR της κοιλιακής αορτής. Η αορτή διαιρέθηκε σε 5 τμήματα των 2cm. Ως διαφορά θερμοκρασίας (ΔT IVT, ΔT MR,) κάθε τμήματος ορίστηκε η θερμοκρασία κάθε τμήματος μείον την ελάχιστη θερμοκρασία που καταγράφηκε και στα 5 τμήματα της αορτής. Ως μέγιστη διαφορά θερμοκρασίας (ΔT IVTmax, ΔT MR,) ορίστηκε η διαφορά της μέγιστης θερμοκρασίας που σημειώθηκε σε ολόκληρη την κοιλιακή αορτή μείον την ελάχιστη. Οι θερμογραφικές μετρήσεις με τις δύο μεθόδους συσχετίσθηκαν μεταξύ τους καθώς και με τα ιστολογικά ευρήματα. Αποτελέσματα. Και με τις δύο μεθόδους, οι διαφορές θερμοκρασίας ήταν υψηλότερες στα αθηρωματικά κουνέλια σε σχέση με την ομάδα ελέγχου. Σε όλα τα τμήματα, υπήρχε θετική συσχέτιση μεταξύ των διαφορών θερμοκρασίας που ανιχνεύτηκαν και με τις δύο μεθόδους (p < 0.001, R = 0.94). Παρατηρήθηκε θετική συσχέτιση μεταξύ της ΔT MR και το αντίστοιχο πάχος της αθηρωματικής πλάκας όπως καθορίζεται με ιστολογικές μεθόδους. Τα τεμάχια αορτής με αυξημένη φλεγμονώδη αντίδραση είχαν υψηλότερη ΔT MR και ΔT IVT σε σχέση με τεμάχια αορτής με χαμηλή φλεγμονώδη αντίδραση. Συμπεράσματα. Η MWR ανιχνεύει με ασφάλεια και ακρίβεια τη θερμοκρασία των αρτηριακών τοιχωμάτων, η οποία αντανακλά την τοπική φλεγμονώδη αντίδραση και φαίνεται να έχει καλή συσχέτιση με την IVT, τα ιστολογικά και τα ανοσοϊστοχημικά ευρήματα.Aim. The purpose of this study is to investigate whether: 1) MWRcan be safely applied for non-invasive measurement of arterial wall temperature and 2) measurements made using the MWR technique are correlated with the measurements recorded by the IVT method and with the local inflammatory response as detected by histological techniques.Methods. The study used 24 white New Zealand rabbits (3.8 ± 0.5 kg), 12 of which were randomized to those following a normal diet, while the rest followed a cholesterol-rich diet for 6 months. All rabbits were then prepared to perform ventral aortic intravascular angiography, IVT and MWR. The aorta was divided into 5 sections of 2cm. The temperature difference (ΔT IVT, ΔT MR,) of each segment was defined as the temperature of each segment minus the minimum temperature recorded in all 5 parts of the aorta. The maximum temperature difference (ΔT IVTmax, ΔT MR,) determined the difference in the maximum temperature observed throughout the abdominal aorta minus the minimum. Thermographic measurements with both methods were correlated with each other as well as histological findings.Results. With both methods, temperature differences were higher in atherosclerotic than in the control group. In all segments, there was a positive correlation between the temperature differences detected by both methods (p <0.001, R = 0.94).A positive correlation between ΔTMR and the corresponding thickness of the atherosclerotic plaque as determined by histological methods. Aortic fragments with an increased inflammatory response had higher ΔTMR and ΔTIVT than aortic fragments with a low inflammatory response.Conclusions. MWR safely and accurately detects arterial wall temperature, which reflects the local inflammatory response and appears to have good correlation with IVT, histological and immunohistochemical findings

    Microwave imaging for ultra-wideband antenna based cancer detection

    Get PDF
    Breast cancer is one of the most widespread types of cancer in the world. The key factor in treatment is to reliably diagnose the cancer in the early stages. Moreover, currently used clinical diagnostic methods, such as X-ray, ultra-sound and MRI, are limited by cost and reliability issues. These limitations have motivated researchers to develop a more effective, low-cost diagnostic method and involving lower ionization for cancer detection. In this thesis, radar based microwave imaging is proposed as a method for early breast cancer detection. This imaging system has advantages such as low cost, being non- invasive and easy to use, with high image resolution and its thus good potential for early cancer detection. In the first stage, an ultra-wideband Vivaldi antenna and a slot Vivaldi antenna are proposed, simulated and fabricated for breast cancer detection. The designed antennas exhibit an ultra-wideband working frequency. The radiation patterns also achieve the desired directional radiation patterns. The second stage of this study presents a planar breast phantom and a hemisphere breast phantom. These two breast phantoms are simulated and fabricated using CST microwave studio and tissue-mimicking materials respectively. Mono-static radar systems based on a single antenna configuration and an antenna pair configuration are then proposed. These two systems are used to measure the planar breast phantom and hemi- sphere breast phantom, with the scattering signals measured in the frequency and time domains. Based on the measurement results, it is concluded that the reflected energy increases when the antenna moves close to the tumour; otherwise, the reflected energy is reduced when the antenna moves away from the tumour. The received time domain scattering signals are processed first and then used to create microwave images to indicate tumour position. A clutter removal method is proposed to extract the tumour response from the received signals. The microwave images are then created using the tumour response based on the simulation and experimental results. The imaging results indicate that a 5 mm radius tumour can be detected. The tumour burial depth is also studied. A multi bio- layer phantom which contains deep and shallow buried tumours is simulated and measured using the Vivaldi antenna. A spectrum analysis method is proposed to distinguish between different tumour depths. The results indicate that a difference in depth of 15 mm results in a mean change of 0.3 dB in the magnitude of the spectrum. Discrimination between benign and malignant tumours is also considered in this study. The singularity expansion method (SEM) for breast cancer is proposed to discriminate between benign and malignant tumours based on their morphology. Two cancerous breast phantoms are developed in CST. The benign tumour is a 5mm radius sphere and the malignant tumour is a spiny sphere with an average radius of 5mm. The use of the SEM leads to the successful discrimination of these two tumours. This method provides a solution to discriminate between benign and malignant tumours similar size when the resulting images cannot provide sufficient resolution. A preliminary study of brain cancer detection is also concluded. Research in this area has never been implemented. A cancerous brain model is designed and simulated in CST. The antenna pair configuration is then used to measure the cancerous brain, with the scattering signals measured. Microwave images for brain cancer detection are then created based on the measurement results. The tumour is correctly indicated in the resulting images

    Analysis and Design of Radio Frequency Integrated Circuits for Breast Cancer Radar Imaging in CMOS Technology

    Get PDF
    Breast cancer is by far the most incident tumor among female population. Early stage prevention is a key factor in delivering long term survival of breast cancer patients. X-ray mammography is the most commonly used diagnostic technique to detect non-palpable tumors. However, 10-30% of tumors are missed by mammography and ionizing radiations together with breast compression do not lead to comfort in patient treatment. In this context, ultrawideband microwave radar technology is an attractive alternative. It relies on the dielectric contrast of normal and malignant tissues at microwave frequencies to detect and locate tumors inside the breast. This work presents the analysis and design of radio frequency integrated circuits for breast cancer imaging in CMOS technology. The first part of the thesis concerns the system analysis. A behavioral model of two different transceiver architectures for UWB breast cancer imaging employing a SFCW radar system are presented. A mathematical model of the direct conversion and super heterodyne architectures together with a numerical breast phantom are developed. FDTD simulations data are used to on the behavioral model to investigate the limits of both architectures from a circuit-level point of view. Insight is given into I/Q phase inaccuracies and their impact on the quality of the final reconstructed images. The result is that the simplicity of the direct conversion architecture makes the receiver more robust toward the critical impairments for this application. The second part of the thesis is dedicated to the circuit design. The main achievement is a 65nm CMOS 2-16GHz stepped frequency radar transceiver for medical imaging. The RX features 36dB conversion gain, >29dBm compression point, 7dB noise figure, and 30Hz 1/f noise corner. The TX outputs 14dBm with >40dBc harmonic rejection and <109dBc/Hz phase noise at 1MHz offset. Overall power dissipation is 204mW from 1.2V supply. The radar achieves 3mm resolution within the body, and 107dB dynamic range, a performance enabling the use for breast cancer diagnostic imaging. To further assess the capabilities of the proposed radar, a physical breast phantom was synthesized and two targets mimicking two tumors were buried inside the breast. The targets are clearly identified and correctly located, effectively proving the performance of the designed radar as a possible tool for breast cancer detection
    corecore