2,497 research outputs found

    Fully automated breast boundary and pectoral muscle segmentation in mammograms

    Get PDF
    Breast and pectoral muscle segmentation is an essential pre-processing step for the subsequent processes in Computer Aided Diagnosis (CAD) systems. Estimating the breast and pectoral boundaries is a difficult task especially in mammograms due to artifacts, homogeneity between the pectoral and breast regions, and low contrast along the skin-air boundary. In this paper, a breast boundary and pectoral muscle segmentation method in mammograms is proposed. For breast boundary estimation, we determine the initial breast boundary via thresholding and employ Active Contour Models without edges to search for the actual boundary. A post-processing technique is proposed to correct the overestimated boundary caused by artifacts. The pectoral muscle boundary is estimated using Canny edge detection and a pre-processing technique is proposed to remove noisy edges. Subsequently, we identify five edge features to find the edge that has the highest probability of being the initial pectoral contour and search for the actual boundary via contour growing. The segmentation results for the proposed method are compared with manual segmentations using 322, 208 and 100 mammograms from the Mammographic Image Analysis Society (MIAS), INBreast and Breast Cancer Digital Repository (BCDR) databases, respectively. Experimental results show that the breast boundary and pectoral muscle estimation methods achieved dice similarity coefficients of 98.8% and 97.8% (MIAS), 98.9% and 89.6% (INBreast) and 99.2% and 91.9% (BCDR), respectively

    Development of 3D MRI-Based Anatomically Realistic Models of Breast Tissues and Tumours for Microwave Imaging Diagnosis

    Get PDF
    Breast cancer diagnosis using radar-based medical MicroWave Imaging (MWI) has been studied in recent years. Realistic numerical and physical models of the breast are needed for simulation and experimental testing of MWI prototypes. We aim to provide the scientific community with an online repository of multiple accurate realistic breast tissue models derived from Magnetic Resonance Imaging (MRI), including benign and malignant tumours. Such models are suitable for 3D printing, leveraging experimental MWI testing. We propose a pre-processing pipeline, which includes image registration, bias field correction, data normalisation, background subtraction, and median filtering. We segmented the fat tissue with the region growing algorithm in fat-weighted Dixon images. Skin, fibroglandular tissue, and the chest wall boundary were segmented from water-weighted Dixon images. Then, we applied a 3D region growing and Hoshen-Kopelman algorithms for tumour segmentation. The developed semi-automatic segmentation procedure is suitable to segment tissues with a varying level of heterogeneity regarding voxel intensity. Two accurate breast models with benign and malignant tumours, with dielectric properties at 3, 6, and 9 GHz frequencies have been made available to the research community. These are suitable for microwave diagnosis, i.e., imaging and classification, and can be easily adapted to other imaging modalities.info:eu-repo/semantics/publishedVersio

    Anatomy Segmentation of Breast Ultrasound images

    Get PDF
    Breast cancer is one of the most common cancers in women, affecting hundreds of women. Even though the detection of cancer has been largely studied, the decision of which strategy to take concerning oncoplastic surgery still relies almost exclusively on the surgeon's perception of post-surgical aesthetic result, which sometime leads to unsatisfactory outcomes. In order to empower the patients on the joint decision process there needs to exist a better communication between the parts. This can be achieved by developing medical grade 3D models of the breast and explaining better the surgical options and their results. In order to obtain such models, some effort has been made concerning multi-modality radiological imaging combination. This line of research has yet to mature. In turn, the modality alignment requires accurate landmarks to be produced. 2D Ultrasound imaging has not been sufficiently studied for multimodal registration due to the image characteristics and thus, landmark segmentation is of utmost importance. This task can be challenging since US data presents high specular noise levels and the presence of some tissues alters the perception of other tissues. Objectives: ● Study and evaluation of different techniques for anatomical landmark segmentation, such as Skin, Fat and Glandular tissue, Lesions (masses and cysts), Pectoral muscle; ● Development of Ultrasound segmentation methods for acquiring landmarks; ● Evaluation of the developed methods with manual annotations and comparison of results with the current algorithm alternatives.Breast cancer is one of the most common cancers in women, affecting hundreds of women. Even though the detection of cancer has been largely studied, the decision of which strategy to take concerning oncoplastic surgery still relies almost exclusively on the surgeon's perception of post-surgical aesthetic result, which sometime leads to unsatisfactory outcomes. In order to empower the patients on the joint decision process there needs to exist a better communication between the parts. This can be achieved by developing medical grade 3D models of the breast and explaining better the surgical options and their results. In order to obtain such models, some effort has been made concerning multi-modality radiological imaging combination. This line of research has yet to mature. In turn, the modality alignment requires accurate landmarks to be produced. 2D Ultrasound imaging has not been sufficiently studied for multimodal registration due to the image characteristics and thus, landmark segmentation is of utmost importance. This task can be challenging since US data presents high specular noise levels and the presence of some tissues alters the perception of other tissues. Objectives: ● Study and evaluation of different techniques for anatomical landmark segmentation, such as Skin, Fat and Glandular tissue, Lesions (masses and cysts), Pectoral muscle; ● Development of Ultrasound segmentation methods for acquiring landmarks; ● Evaluation of the developed methods with manual annotations and comparison of results with the current algorithm alternatives

    Fully automated breast segmentation on spiral breast computed tomography images

    Full text link
    INTRODUCTION The quantification of the amount of the glandular tissue and breast density is important to assess breast cancer risk. Novel photon-counting breast computed tomography (CT) technology has the potential to quantify them. For accurate analysis, a dedicated method to segment the breast components-the adipose and glandular tissue, skin, pectoralis muscle, skinfold section, rib, and implant-is required. We propose a fully automated breast segmentation method for breast CT images. METHODS The framework consists of four parts: (1) investigate, (2) segment the components excluding adipose and glandular tissue, (3) assess the breast density, and (4) iteratively segment the glandular tissue according to the estimated density. For the method, adapted seeded watershed and region growing algorithm were dedicatedly developed for the breast CT images and optimized on 68 breast images. The segmentation performance was qualitatively (five-point Likert scale) and quantitatively (Dice similarity coefficient [DSC] and difference coefficient [DC]) demonstrated according to human reading by experienced radiologists. RESULTS The performance evaluation on each component and overall segmentation for 17 breast CT images resulted in DSCs ranging 0.90-0.97 and in DCs 0.01-0.08. The readers rated 4.5-4.8 (5 highest score) with an excellent inter-reader agreement. The breast density varied by 3.7%-7.1% when including mis-segmented muscle or skin. CONCLUSION The automatic segmentation results coincided with the human expert's reading. The accurate segmentation is important to avoid the significant bias in breast density analysis. Our method enables accurate quantification of the breast density and amount of the glandular tissue that is directly related to breast cancer risk

    Segmenting breast cancerous regions in thermal images using fuzzy active contours

    Get PDF
    Breast cancer is the main cause of death among young women in developing countries. The human body temperature carries critical medical information related to the overall body status. Abnormal rise in total and regional body temperature is a natural symptom in diagnosing many diseases. Thermal imaging (Thermography) utilizes infrared beams which are fast, non-invasive, and non-contact and the output created images by this technique are flexible and useful to monitor the temperature of the human body. In some clinical studies and biopsy tests, it is necessary for the clinician to know the extent of the cancerous area. In such cases, the thermal image is very useful. In the same line, to detect the cancerous tissue core, thermal imaging is beneficial. This paper presents a fully automated approach to detect the thermal edge and core of the cancerous area in thermography images. In order to evaluate the proposed method, 60 patients with an average age of 44/9 were chosen. These cases were suspected of breast tissue disease. These patients referred to Tehran Imam Khomeini Imaging Center. Clinical examinations such as ultrasound, biopsy, questionnaire, and eventually thermography were done precisely on these individuals. Finally, the proposed model is applied for segmenting the proved abnormal area in thermal images. The proposed model is based on a fuzzy active contour designed by fuzzy logic. The presented method can segment cancerous tissue areas from its borders in thermal images of the breast area. In order to evaluate the proposed algorithm, Hausdorff and mean distance between manual and automatic method were used. Estimation of distance was conducted to accurately separate the thermal core and edge. Hausdorff distance between the proposed and the manual method for thermal core and edge was 0.4719 ± 0.4389, 0.3171± 0.1056 mm respectively, and the average distance between the proposed and the manual method for core and thermal edge was 0.0845± 0.0619, 0.0710 ± 0.0381 mm respectively. Furthermore, the sensitivity in recognizing the thermal pattern in breast tissue masses is 85 % and its accuracy is 91.98 %.A thermal imaging system has been proposed that is able to recognize abnormal breast tissue masses. This system utilizes fuzzy active contours to extract the abnormal regions automatically
    corecore