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ABSTRACT 

The common malignancy which causes deaths in women is breast cancer. Early 
detection of breast cancer using mammographic image can help in reducing the 
mortality rate and the probability of recurrence. Through mammographic examination, 
breast lesions can be detected and classified. Breast lesions can be detected using many 
popular tools such as Magnetic Resonance Imaging (MRI), ultrasonography, and 
mammography. Although mammography is very useful in the diagnosis of breast 
cancer, the pattern similarities between normal and pathologic cases makes the process 
of diagnosis difficult. Therefore, in this thesis Computer Aided Diagnosing (CAD) 
systems have been developed to help doctors and technicians in detecting lesions. The 
thesis aims to increase the accuracy of diagnosing breast cancer for optimal 
classification of cancer. It is achieved using Machine Learning (ML) and image 
processing techniques on mammogram images. This thesis also proposes an 
improvement of an automated extraction of powerful texture sign for classification by 
enhancing and segmenting the breast cancer mammogram images. The proposed CAD 
system consists of five stages namely pre-processing, segmentation, feature extraction, 
feature selection, and classification. First stage is pre-processing that is used for noise 
reduction due to noises in mammogram image. Therefore, based on the frequency 
domain this thesis employed wavelet transform to enhance mammogram images in 
pre-processing stage for two purposes which is to highlight the border of mammogram 
images for segmentation stage, and to enhance the region of interest (ROI) using 
adaptive threshold in the mammogram images for feature extraction purpose. Second 
stage is segmentation process to identify ROI in mammogram images. It is a difficult 
task because of several landmarks such as breast boundary and artifacts as well as 
pectoral muscle in Medio-Lateral Oblique (MLO). Thus, this thesis presents an 
automatic segmentation algorithm based on new thresholding combined with image 
processing techniques. Experimental results demonstrate that the proposed model 
increases segmentation accuracy of the ROI from breast background, landmarks, and 
pectoral muscle. Third stage is feature extraction where enhancement model based on 
fractal dimension is proposed to derive significant mammogram image texture 
features. Based on the proposed, model a powerful texture sign for classification are 
extracted. Fourth stage is feature selection where Genetic Algorithm (GA) technique 
has been used as a feature selection technique to select the important features. In last 
classification stage, Artificial Neural Network (ANN) technique has been used to 
differentiate between Benign and Malignant classes of cancer using the most relevant 
texture feature. As a conclusion, classification accuracy, sensitivity, and specificity 
obtained by the proposed CAD system are improved in comparison to previous studies. 
This thesis has practical contribution in identification of breast cancer using 
mammogram images and better classification accuracy of benign and malign lesions 
using ML and image processing techniques. 
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ABSTRAK 

Malignan biasa yang menyebabkan kematian kepada wanita ialah kanser 
payudara. Lesion payudara boleh dikesan dan diklasifikasikan secara pemeriksaan 
mammografi. Pengesanan awal kanser payudara menggunakan imej mammografi 
boleh membantu mengurangkan kadar mortaliti dan kebarangkalian berulang. Lesion 
payudara boleh dikesan menggunakan peralatan terkenal seperti Pengimejan Resonan 
Magnetik (MRI), ultrasonografi, dan mammografi. Walaupun mammografi sangat 
berguna untuk diagnosis kanser payudara, persamaan corak antara kes normal dan 
patologik menyebabkan proses diagnosis menjadi sukar. Oleh itu, dalam tesis ini 
sistem Diagnosis Berbantukan Komputer (CAD) telah dibangunkan untuk membantu 
doktor dan juruteknik mengesan lesion. Matlamat tesis ialah meningkatkan ketepatan 
mendiagnosis kanser payudara bagi pengkelasan kanser yang optimum. Ia dicapai 
menggunakan Pembelajaran Mesin (ML) dan teknik pemprosesan imej ke atas imej 
mammogram. Kajian ini juga mencadangkan penambahbaikan bagi pengekstrakan 
automatik isyarat tekstur berkuasa. Sistem CAD yang dicadangkan mengandungi lima 
peringkat iaitu pra-pemprosesan, segmentasi, pengekstrakan ciri, pemilihan ciri, dan 
pengkelasan. Peringkat pertama ialah pra-pemprosesan yang digunakan untuk 
mengurangkan hingar dalam imej mammogram. Oleh itu, berdasarkan domain 
frekuensi, kajian ini menggunakan penukaran wavelet untuk meningkatkan imej 
mammogram dengan dua tujuan iaitu untuk mendapatkan sempadan imej 
mammogram bagi peringkat segmentasi, dan untuk meningkatkan kawasan terpilih 
(ROI) menggunakan aras kabur adaptif dalam imej mammogram bagi tujuan 
pengekstrakan ciri. Tahap kedua adalah menggunakan proses segmentasi untuk 
mengenalpasti ROI imej mammogram. Proses segmentasi ini ialah tugas yang sukar 
disebabkan oleh isu tanda aras sempadan payudara dan artifak, begitu juga aspek otot 
pektoral dalam Oblik Medio-Lateral (MLO). Oleh itu, algoritma segmentasi automatik 
berdasarkan aras kabur baru digabungkan dengan teknik pemprosesan imej. 
Keputusan eksperimen menunjukkan bahawa teknik yang dicadang meningkatkan 
ketepatan bagi ROI daripada latarbelakang payudara, tanda aras, dan otot pektoral. 
Peringkat ketiga adalah pengekstrakan ciri yakni algoritma peningkatan berdasarkan 
dimensi fraktal dicadangkan untuk mendapatkan ciri tekstur imej mammogram. 
Berdasarkan model yang dicadangkan, isyarat tekstur berkuasa bagi tujuan 
pengkelasan telah diekstrakkan. Peringkat keempat ialah pemilihan ciri yakni 
algoritma genetik (GA) telah digunakan sebagai teknik pemilihan ciri untuk memilih 
ciri yang penting. Dalam peringkat terakhir, teknik rangkaian neural buatan (ANN) 
telah digunakan untuk membezakan antara kelas kanser benigna dengan malignan 
berasaskan ciri tekstur yang berkaitan. Sebagai kesimpulan, ketepatan, sensitiviti, dan 
spesifisiti pengkelasan yang diperolehi oleh sistem CAD yang dicadangkan telah 
diperbaiki setelah dibandingkan dengan kajian terdahulu. Dengan itu, kajian ini 
memberi sumbangan kepada pengenalpastian kanser payudara bagi imej mammogram 
dengan ketepatan lebih baik pengkelasan kanser benigna dan malignan menggunakan 
ML dan teknik pemprosesan imej. 

.  
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CHAPTER 1  

 

 

INTRODUCTION 

 Introduction 

Causes of global deaths are recognised to have been largely contributed by 

Noncommunicable Diseases (NCDs). Among the NCDs, cancer is identified as a 

primary contributor to an increase in mortality rate and a main impediment to 

improving the life span of humans across the globe in the 21st century. In 2015, the 

World Health Organization (WHO) reported that cancer is the leading or the second 

largest contributor of global deaths. In addition, the prevalence of cancer cases and 

cancer related deaths around the globe have witnessed a staggering growth. Root 

causes of cancer are difficult to be dissected but highlight the effect of population 

growth and aging, in addition to increment of incidences and widespread of primary 

risk factors of cancer, some of which are related to socioeconomic development (Bray 

et al., 2018). Uncontrollable cell growths trigger the occurrence of cancer diseases. 

Predominantly, masses or lumps are formed in cancerous cells, known as tumours, and 

are identified based on the region in the body in which they are detected. Various 

external factors could also lead to the formation of cancer cells including poor diet, 

infectious organisms, and tobacco, besides internal factors which include immune 

conditions, hormones, and hereditary genetic mutations.  

Cancer type that is commonly suffered by the female population globally is 

breast cancer. Different cancers affect the female population as well, however, breast 

cancer is the primary cause of cancer-related deaths among women, trailed by 

colorectal and lung cancers. Globally, in 2018, there are approximately 2.1 million 

women that have been diagnosed with breast cancer. This type of cancer is recognised 

as a deadly cancer disease. Among all cancers, breast cancer is the second most 

frequently diagnosed cancer and stands as the fifth deadly cancer that could lead to 

death. Incidences of breast cancer are rampant in developing nations. One way to curb 
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this worrying trend is to perform an early diagnosis, as this could potentially cure the 

sufferers (Diniz et al., 2018 and Bray et al., 2018). Occurrences of breast cancer seem 

unbiased on a specific ethnic group in Malaysia. Statistics of breast cancer incidences 

in Malaysia, as reported by the International Agency for Research on Cancer (IARC) 

in 2012 estimated that new breast cancer cases would reach 5400 incidences while 

cancer-related mortality would peak at 2500 incidences. The most commonly 

diagnosed cancers among women include breast, cervix uteri, and colorectum cancers. 

Mortality associated with breast cancer has caused 2500 deaths, while lung cancer has 

caused 1300 deaths, meanwhile, colorectum cancer resulted in 1000 deaths. In terms 

of incidences and death rates associated with breast cancer, by country, Malaysia is 

among the leading country in the Southeast Asia region with the highest reported 

incidences and death rates. Specifically, the Age Standardised Ratio (ASR) of death 

rates associated with breast cancer stands at 38.7 incidences for every 100,000 persons 

in Malaysia, which is palpably higher than Thailand (29.3), Myanmar (22.1), 

Cambodia (19.3), and Laos (19). Malaysia’s breast cancer-related deaths are estimated 

to reach 4546 incidences from 9248 newly reported breast cancer cases in 2030. In 

terms of percentages, the increment of new breast cancer incidences translates to a 

28% increment in 2020, while a staggering 76% increment in 2030 (Refer to Table 

1.1) (Sajahan and Omer, 2018).  

Table 1.1 Prediction of Number of New Cases and Breast Cancer Deaths in the 
Years 2012, 2020 and 2030 in Malaysia 

Year Incidence (Number) Increase (%) Mortality (Number) Increase (%) 
2012 5410 - 2572 - 
2020 6977 28 3386 31 
2030 9248 70 4546 76 

  

Breast cancer could be effectively diagnosed through employing a medical 

image examination. Various techniques of medical imaging may be used to perform 

the examination including Infrared Thermography (IRT), microscopic (histological) 

images, Magnetic Resonance Imaging (MRI), Ultrasound (US), and Digital 

Mammogram (DM). Among the techniques, breast cancer could be detected by using 

a non-sophisticated DM technique. In medical imaging, fatty tissue is manifested in a 

dark coloration (black) while dense breast tissues appear in lighter colouration (white), 
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which can be mistaken as tumours or masses in breast due to their similar colouration 

(Zhang et al., 2018). State-of-the-art development into the medical imaging field saw 

the emergence of DM as a highly favoured technique, in contrast to screen film or 

analogue mammography, attributed to various cost-related and practical motives. 

Primary motivation for the adoption of DM is concerning the relative ease in acquiring 

and storing the data of medical images which eventually lead to a substantial reduction 

of associated costs. In addition, digitisation of image acquisition and storage allow 

healthcare providers to keep a digital record of patients, which is useful as patients’ 

files may be re-visited in years to come by radiologists, thus, highlighting the 

robustness and cost-effectiveness of digital mammography in practice. 

Long term survival chances and cancer diagnosis may be improved through 

employing early detection techniques. Such techniques employed in medical imaging 

is key to detecting and diagnosing cancer earlier. Interpreting medical images in large 

volumes manually consumes a significant amount of time, is a monotonous process, 

and is vulnerable to mistakes and biases due to the nature of human judgments. This 

was the motivation towards the development of Computer-Aided Diagnosis (CAD) 

systems in the 1980s, which was designed to aid medical practitioners to efficiently 

interpret medical images to a certain extent of accuracy and speed (Hu et al., 2018). 

The primary role of a CAD system is to resolve the challenge of interpreting 

mammogram images. The goals of the system include to effectively diagnose cancer 

and to correctly interpret mammogram images. CAD systems come in quasi-automatic 

and fully automatic versions, which assist medical practitioners; not only in 

mammography but also in different application areas that are often utilised by medical 

practitioners. In general, five processes are involved in a standard CAD system: 1) Pre-

processing for de-noising, 2) Segmenting image into several Region-of-Interest (ROI) 

segments, 3) Extracting features from Region of Interest (ROI), 4) Feature selection, 

and finally, 5) Classifying features. Therefore, in this thesis attempts have been done 

to enhance a CAD framework. Based on the literature review it has been investigated 

CAD stages been an improvement. Thus, this thesis adopted the development of the 

pre-processing stage to enhance mammograms for segmentation and feature 

extraction. Wavelet transform will be exploited to propose two models for these two 

purposes. In the next stage, a segmentation technique will be improved based on the 

proposed new threshold value as well as building a machine learning model. Fractal 
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Dimension (FD) technique will be enhanced based on blocking and threshold value to 

extract powerful features. Finally, the developed technique is able to increase the 

classification accuracy to discover the cancer subtype.   

 Research Background 

Lately, there is an extremely widespread image recognition applications, 

because of the crucial roles they play in many life sectors including engineering, 

medicine, and science. The most advanced sense of a human being is vision, but 

sometimes, the human vision is limited in it is the capacity to process images. 

Therefore, through the concept of image processing and machine learning, 

computerized systems are able to acquire information about a problem that the human 

vision cannot acquire. This means that sometimes computerized systems are required 

in cases whereby the human vision is limited and cannot distinguish a problem. 

Machine learning techniques and image processing have made great contributions to 

the area of medicine through the digitalization of medical images, which allows the 

analysis and investigation of phenomena using a computer. There has been a 

significant contribution to the field of medicine through the continuous progress in the 

research and development in the area of image analysis. Medical images are crucial to 

the process of disease diagnosis and analysis like chest and breast-related ailments, 

blood disorder and abdominal illness and more. A disease can be further analysed 

using the digital format of the medical images, thereby enhancing the accuracy of 

diagnosis as well as optimal patient treatment and management. The use of such 

images can also be employed in teaching and research. More specifically, the kind of 

digital medical images which this study focuses on, are mammographic images. 

Regularly, the components of the breast and the changes that occur in them are 

analysed through clinical tests and diagnosis (Obaid et al., 2018). 

The leading reason for cancer deaths between women is breast cancer which 

ranked as second leading. Thus, it is considered as one of the most popular malignancy 

in women. Presently, there are no efficient ways through which breast cancer can be 

prevented since it causes is yet unknown. However, the only effective way of 



5 
 

diagnosing and managing breast cancer is early detection which consider as a higher 

chance of full recovery from breast cancer. Thus, the mortality and morbidity rates can 

be reduced through early detection (Otsu, 1979). Medical imaging techniques 

encompass different modalities like Computer Tomography (CT scan), US, 

conventional X-Ray, MRI, and more. With the use of these techniques, tissues, organs, 

and bones can be scanned through, the waves of ultrasound, X-ray radiation, as well 

as both waves magnetic and radio, respectively. These waves are made to pass over 

the parts of the human body for medical examination. These medical examinations 

produce results that can be used by radiologists and clinicians for the assessment and 

diagnosis of abnormalities, to be able to decide the most appropriate treatment for the 

patient. Over the years, mammography has assured to be the tool that is most efficient 

for detecting early and treatment of breast cancer. Therefore, it remains the main 

imaging modality for screening and breast cancer diagnosis. More so, with 

mammography, other pathologies can be detected, and nature (malignant, normal or 

benign) can be determined. One of the most ground-breaking advancements in the area 

of breast imaging is the introduction of digital mammography (Nagi et al., 2010).  

The life span of a person with malignant growth can be longer if the detection 

is done at an early stage (Filipczuk et al., 2011 and Tang et al., 2009). The 5-year life 

span approximate for females with bosom malignant growth has increased from 63% 

in the mid-1960s to 89% presently. The life span estimate for ladies with restricted 

breast malignant (harmful malignancy that has spread to lymph hubs or different areas 

outside the breast) is 98% (Székely et al., 2006). Mammography is the most popular 

and powerful technique used by clinicians to detect breast cancer. Even though the use 

of x-ray has been employed in the examination of breast cancer, most researchers have 

noted that mammogram is the most reliable technique which can be utilized in the 

early cancer detection, which in turn reduces death rates in females with the disease 

(Ganesan et al., 2012). More so, mammogram is considered as a cheaper and more 

accessible option. Breast cancer can be efficiently remedying if at an early stage it is 

detected using a mammogram (Ganesan et al., 2013). After the detection of breast 

malignancy in a female, further testing is required, and this may involve breast 

scanning using a mammogram, fine center needle goal. In the fine center needle goal, 

the use of analgesic is involved, and a needle is used to assemble cells which are 

embedded in the breast for biopsy. To extract the cell from the suspected region of the 
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breast, a sedative is used on the patient. The needle is used within a restricted area 

when the malignancy is confirmed. Breast cancer is treated using lumpectomy or 

mastectomy. Fundamental treatment of breast cancer involves the use of either 

chemotherapy or tamoxifen, which is a medication for the treatment of malignant 

growth. 

One of the tools that has been very helpful in the breast cancer detection early, 

is the CAD, which marks suspicious regions on a screening mammogram, thereby 

facilitating the reduction of the rate of death among women with breast cancer. Here, 

abnormalities in mammograms are detected using computer technologies. With the 

results of the CAD, a radiologist is able to characterize lesions by analysing the image 

automatically. Due to the fact that the detection of some lesions is more difficult than 

some, there may be variation in the performance of the CAD; the difficulty in the 

detection is due to the similarity between the characteristics of malignant and normal 

tissue. However, continuous research is needed so as to reduce the number of incorrect 

diagnosis. A high level of accuracy is required during the detection and classification 

of different medical images because the lives of humans are involved. As a result, most 

medical institutions resort to using computerized techniques of detection because they 

are able to reduce the rate of false negatives. It has been proven that the detection of 

tumor can be enhanced by double reading of medical images. However, the cost of 

double reading is high, and as such, medical institutions are more inclined towards 

using good software for such a task.  

Against this backdrop, it is important to study the different approaches used in 

the production of medical images. It is also important to have a knowledge of the most 

appropriate technique to use for a specific kind of medical image to obtain better 

results. It has been found in the literature, that many techniques have been introduced 

for computed tomography like different kinds of MRI images, X-rays and other 

radiological techniques. Despite the fact that much efforts have been made in this area 

of research; more improvements need to be made as the area of medical image 

processing requires continuous expansion (Ganesan et al., 2013). The main goal of 

using computerized methods of detection is to reduce possible human errors to the 
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barest minimum so that better results can be obtained, this is crucial to reducing 

mortality rates.  

 Problem Statement 

Due to the fact that breast cancer's cause is still unknown, disease prevention 

remains a major challenge in the medical field. However, effectively diagnosing breast 

cancer can increase the possibility of total recovery at an early stage. This means that 

the rates of morbidity and mortality associated with breast cancer can be decreased if 

it is identified early. Depending on radiographic breast imaging and screening the 

breast cancer diagnosis advances have been done an earlier stage. Nevertheless, 

statistics have shown that missed 10% to 30% of malignant biopsy proven as a result 

of different factors like technical problems that arise in imaging procedure, 

misinterpreted abnormalities and abnormalities that are not obvious (Raba et al., 

2005). It has been mentioned earlier that when traditional screening mammography is 

used, the rates of missed cases will be high (Mudigonda et al., 2000). Producing a big 

set of images by mammogram screening, a huge workload for tests by a few 

radiologists is responsible for interpreting the images. However, the workload of these 

radiologists can be reduced through the use of computerized mammographic analysis 

that can help the radiologist detect breast cancer. The structure and characteristics of 

breast abnormalities make the detection of abnormality challenging. One of the most 

reliable ways through breast cancer can be screened is through the use of a 

mammogram. However, just like any other screening technique, the mammogram is 

not a perfect technique, as it has it is shortcomings. Some of the concerns associated 

with mammograms include such as the occurrence of false-negative test results 

(screening test results may show that the breast is normal in spite of the presence of 

breast cancer). Moreover, the occurrence of false-positive test results (screening test 

results may show that the breast is abnormal despite the absence of breast cancer) 

(American Cancer Society, 2015; Hong and Sohn, 2009).  

Thus, this research is motivated by the need to design and create a CAD system, 

which is able to detect abnormalities through advanced image analysis techniques. The 
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goal of this study is to improve the accuracy, sensitivity, and specificity of CAD. The 

success rate of the CAD system is depending on the entire stages of CAD. Typically, 

a CAD system comprises of some steps including, pre-processing, segmentation, 

extraction of feature, feature selection, and classification. Some challenges accompany 

each of the steps, and the result of each step is affected by the outcome of a previous 

step. This study only concentrates on the pre-processing, segmentation, and feature 

extraction stages. For the classification stage, previous Machine Learning (ML) 

techniques were employed to continue the process and classify breast cancer into its 

subtype. Therefore, there are three subjects considered to drive this thesis in relation 

to improve the performance of CAD which are pre-processing, segmentation, and 

feature extraction. 

It has been investigating this research faces three main problems that made the 

work of the CAD not affective. Three main limitations have been listed below that are 

this research faced by.  

1. The noise and artifacts are one of the major problems that faces with the medical 

images, especially in mammogram. Those two factors have side effect on the 

stages that used to build the CAD (i.e segmentation and features extraction). The 

noise has made the edge of the ROI not clear as well as cannot capture a good 

texture features that can help to identify the risk in early stage. In addition, the 

artifact has made the segmentation very hard due to that the artifacts will appear 

as a false positive object. Therefore, this research should propose different filters 

to prepare the images for the segmentation task and feature extraction task. 

2. Using the traditional methods such as threshold, region growing, and watershed 

will not produce a good quality of segmentation with the medical image specially 

with mammogram. With this type of images, the border or the edge of the ROI 

is not clear and that will end up with over-segmentation problem. Moreover, the 

artifacts that mentioned before has made the problem more complicated. 

Therefore, this research should find a powerful solution that can help to identify 

the ROI from the non-ROI.  
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3. Based on the existing papers that have reviewed in the literature, it has been 

found that one of the difficult issues that the researchers faces is find a new sign 

(features) and classification to identify the risk of the malignant in early stage. 

Thus, this research attempts to develop a feature extraction technique to extract 

significant features from mammogram images. 

Basically, in the pre-processing stage the resolution and the quality of the 

information of images are significant elements that influence the segmentation and 

classification precision of automated images characterization frameworks, including 

mammogram classification. Noise often has a negative impact on contrast of image 

and blurring edges which affects the image segmentation and other post-processing 

operations. One of the major activities of the pre-processing stage involves segmenting 

the breast region in mammograms precisely. Even though there are many reasons why 

this is important, it is mainly done because it enables the reduction of the search area 

for abnormalities without too much influence from the mammogram’s background. 

Thus, pre-processing is important to highlight and contrast the ROI and make 

difference with its background. More so, the noise often has a negative impact on 

image quality by, in particular, hiding important details and may eventually reduce the 

overall diagnostic value of the image. Thus, one more activity of this stage is to 

eliminate existing noise which can be affected by the image features. In order to extract 

the powerful features which, lead to better classification pre-processing stage is a 

crucial task. Therefore, the wavelet transform has been exploited to enhance 

mammogram images for segmentation and feature extraction stages. 

Furthermore, in the segmentation stage the image must segment to extract 

features automatically. Nevertheless, the most important determinant of accurate 

segmentation is the quality of the image because the task can be made more 

challenging because of the presence of artifacts like signal dropout, noise, and 

shadows. The implication of these quality impacts can be missed boundaries as a result 

of the existing of these low contrasts of both artifacts and acquisition orientation 

between the ROI. Tape artifacts, high-intensity rectangular labels, and low-intensity 

labels are information included in mammograms background which must be 

segmented and excluded from the region of mammogram. Mammogram screening in 
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Medio-Lateral Oblique (MLO) view in the upper posterior margin of mammogram a 

triangular region with high intensity is always appear which is called pectoral muscle. 

This kind of challenge is dealt with in the fifth chapter of this thesis by proposing the 

extraction of breast border and suppression of pectoral muscle. In this thesis, a new 

approach is presented for the automatic segmentation of breast images from static 

images, which is strongly indicative of the kind of cancer. 

Essentially, the feature extraction purpose is to obtain numerous image 

characteristics. That could use in differentiating the labels of the images by the label 

another image than in finding the subsets of feature which affects CAD performance. 

Thus, another challenge that accompanies the detection of breast cancer, is obtaining 

accurate results of the automatic extraction of the best features of breast abnormality. 

The Fractal Dimension (FD) technique has been exploited in this thesis to extract 

significant features. based on blocking and thresholding values the FD technique 

enhanced to extract multi features which is called Multi- Fractal Dimension (M-FD).  

Additionally, the final result of abnormality detection can be influenced by the kind of 

classifier used. Artificial Neural Network (ANN) classification model is used to 

classify the breast cancer subtype into benign and malignant. The ANN classification 

performance of breast cancer is depended on the extracted features representing the 

mammogram images as provide data input for the classification. Thus, not powerful 

features as an input for the ANN classifier will result in low classification performance. 

Therefore, in this thesis fractal dimension technique is exploited with the feature 

extraction process in generating powerful features. Besides, the performance of the 

breast cancer diagnosis can be enhanced by feeding powerful features to the ANN 

classifier. As a result, it will improve the performance of the CAD. All these challenges 

are dealt with in this thesis through the investigation of different techniques of pre-

processing, segmentation, feature extraction, feature fusion, and classification in the 

fourth, fifth, and sixth chapters of this thesis. The task of breast cancer detection is 

challenging because masses are different in shape, size and density, they are poor in 

image contrast, usually identical from adjacent tissues, highly connected to the 

surrounding tissue, and surrounded by inconsistent tissue background with similar 

characteristics. 



11 
 

 Research Questions 

In literature, many CAD has been proposed for mammogram images to achieve 

good performance. However, there remain several challenges that should be 

considered when any researcher tries to propose CAD with high accuracy. These 

challenges can be discussed as follows: 

 

1. How to enhance the mammogram images for the segmentation stage. 

2. How to enhance the mammogram images for the feature extraction stage. 

3. How to use the most effective filter for both stages. 

4. How to extract the ROI from the mammogram. 

5. How to enhance texture features for mammogram images. 

In order to achieve good answers to the above questions, other secondary 

questions will address the problem with more accuracy, and are formed as follows:  

 

1. How to propose a model to reduce the noise and highlight the ROI from the 

background based on the wavelet transform? 

2. How to propose a model to reduce the noise and enhance texture feature for 

classification based on wavelet transform? 

3. How to evaluate the proposed models and see the limitations? Based on this 

investigation, enhance the most effective model and use it for both 

segmentation and feature extraction tasks? 

4. How to propose a multi-level segmentation model to extract ROI from the 

mammogram? 

5. How to propose a new model for texture feature extraction and to make them 

suitable for the mammogram images? 
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 Research Objectives 

The main aim of this study is to develop a diagnostic methodology for breast 

cancer through the use of ML and image processing techniques on mammogram 

images. Firstly, in this thesis, a discussion on the relevant ML and image processing 

techniques is given, to facilitate the identification of the most appropriate approach for 

the diagnosis of breast cancer. The research aims at increasing the accuracy of 

diagnosing breast cancer for the optimal classification of the disease; this is done using 

ML and image processing techniques. To this end, the following specific objectives 

have been formulated to achieve the purpose of the study: 

(a) To design an efficient wavelet-based image enhancement model for 

segmentation and feature extraction purposes. 

(b) To improve threshold-based and trainable segmentation model for Region of 

Interest (ROI) derivation. 

(c) To develop Multi-Fractal Dimension (M-FD) feature extraction model 

for to extract significant texture features for breast cancer 

identification. 

  Research Scope 

In order to achieve the desired goals and objectives of this research, it is very 

important to define the research scope, which can be stated as below: 

1. The domain choice for this research is breast cancer detection using 

mammogram images. 

2. The frequency domain is used in this research to enhance the mammogram 

images. 
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3. Mini Mammographic Image Analysis Society (Mini-MIAS) and Digital 

Database for Screening Mammography (DDSM) are the datasets used to test 

the proposed framework. All images in the MIAS database are used whereas 

some samples from the DDSM database are used for testing. 

5. The proposed framework is implemented and tested using the MATLAB 

programming language. 

6. Mammogram enhancement test done by implementing different 

performance analysis methods which are Mean Square Error (MSE), 

Peak Signal to Noise Ratio (PSNR), and Signal to Noise Ratio (SNR) 

whereas the evaluation performance for the classification of breast 

cancer detection is performed based on sensitivity, specificity, and 

accuracy. 

 Research Significance  

The most common malignancy which causes deaths in women is breast cancer. 

One of the best ways through which mastectomy can be avoided is through early 

detection of the cancer. More so, early detection can help in reducing the mortality rate 

and the probability of reoccurrence. Through the mammographic examination, breast 

lesions can be detected and characterized. Therefore, it is crucial for women to be 

aware of this disease and have themselves checked frequently using automatic 

methods. After the females must have acquired a certain age, regular mammography 

x-rays are required. The lesions on the breast can be detected using many techniques 

such as magnetic resonance imaging, ultrasonography, and mammography is the most 

popular choice. Although mammography is very useful in breast cancer diagnosis, the 

similarities between normal and pathologic patterns make the process of diagnosis 

difficult. Therefore, CAD systems have been developed to help doctors and other 

technicians in detecting mammary lesions, thus, providing an alternative.  

This study is motivated by the urgent need for the aforementioned diagnosis. 

It is strongly believed that a multi-disciplinary ability for breast images can be 
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provided by ample computer-aided diagnostics, thereby helping specialists identify the 

disease with a high level of accuracy, which in turn reduces the reduction in the rates 

of false positive and false negative results. This can also ameliorate sensitivity and 

specificity results. This research was prompted by the need to improve the methods of 

breast cancer identification. The major contribution of this research is to develop a 

new method of image analysis that can facilitate the production of accurate and 

credible results. This way, the mammography can be screened to identify patients with 

a high risk of developing breast cancer. With such identification, screening resources 

can better be allocated, cancer can be detected at an early stage, and mortality results 

can be minimized. It is expected that with the proposed system, doctors will be able to 

efficiently detect cancer and make better decisions. Consequently, the proposed system 

will help reduce the total cost which patient have to bear for diagnosis. 

 Thesis Organization 

The proposed research is presented through this thesis and organized into 

seven chapters, which can be outlined as follows: 

  

Chapter 1: Apart from this introductory chapter 1, an introduction to the 

proposed research was done including problem formulation and the various structural 

components of the study present including a description of research the research 

questions, research objectives, scope, and significance of the study. 

Chapter 2: This chapter previous studies and related issues are discussed in 

detail. This chapter covers several fields: cancer, breast cancer, stages of breast cancer, 

medical imaging. More so, an in-depth review of relevant literature on breast cancer 

based on mammograms is presented. A detailed review of the relevant literature of 

mammogram pre-processing, segmentation, feature extraction, feature reduction, and 

classification. The limitations of the existing methods in each stage and the need for 

the development of the existing methods are highlighted as well. 
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Chapter 3: In this chapter, the roadmap of the study is presented so that the 

reader can have a quick grasp of the detailed research framework. Emphasis is placed 

on the benefits associated with the use of the newly developed methods. More so, the 

layout of the whole research framework, procedures, and strategies, is given.  

Chapter 4: This chapter proposed two pre-processing models using wavelet 

transform in terms of mammogram enhancement for segmentation and feature 

extraction. The method is applied to MIAS datasets to highlight the breast border as 

well as to reduce the noise. The evaluation has been done on both models based on 

different criteria. Evaluate the model used for segmentation enhancement with the 

classification accuracy whereas the model used for feature extraction with the PSNR, 

MSE, and SNR. 

Chapter 5: This chapter proposed a multi-level segmentation method for 

MIAS datasets to extract ROI from background and pectoral muscle. The performance 

of the proposed models is rectified by it is classification accuracy. 

Chapter 6: This chapter proposed a method to extract powerful features. In 

this chapter Fractal Dimension (FD) technique has been exploited. The technique is 

developed to extract more than one feature based on different thresholds. This method 

is applied to MIAS and DDSM datasets to extract powerful features and feed them to 

a suitable classifier. The proposed models are evaluated by classification accuracy, 

sensitivity, and specificity. 

Chapter 7: The conclusion of the thesis is given in this chapter by emphasizing 

the major contributions, significant findings, while areas for future research are 

recommended for the expansion of the contributions of the present study. 
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