20,091 research outputs found

    Integrated Multiparametric Radiomics and Informatics System for Characterizing Breast Tumor Characteristics with the OncotypeDX Gene Assay

    Get PDF
    Optimal use of multiparametric magnetic resonance imaging (mpMRI) can identify key MRI parameters and provide unique tissue signatures defining phenotypes of breast cancer. We have developed and implemented a new machine-learning informatic system, termed Informatics Radiomics Integration System (IRIS) that integrates clinical variables, derived from imaging and electronic medical health records (EHR) with multiparametric radiomics (mpRad) for identifying potential risk of local or systemic recurrence in breast cancer patients. We tested the model in patients (n = 80) who had Estrogen Receptor positive disease and underwent OncotypeDX gene testing, radiomic analysis, and breast mpMRI. The IRIS method was trained using the mpMRI, clinical, pathologic, and radiomic descriptors for prediction of the OncotypeDX risk score. The trained mpRad IRIS model had a 95% and specificity was 83% with an Area Under the Curve (AUC) of 0.89 for classifying low risk patients from the intermediate and high-risk groups. The lesion size was larger for the high-risk group (2.9 ± 1.7 mm) and lower for both low risk (1.9 ± 1.3 mm) and intermediate risk (1.7 ± 1.4 mm) groups. The lesion apparent diffusion coefficient (ADC) map values for high- and intermediate-risk groups were significantly (p \u3c 0.05) lower than the low-risk group (1.14 vs. 1.49 × 10−3 mm2/s). These initial studies provide deeper insight into the clinical, pathological, quantitative imaging, and radiomic features, and provide the foundation to relate these features to the assessment of treatment response for improved personalized medicine

    Synergistic drug combinations from electronic health records and gene expression.

    Get PDF
    ObjectiveUsing electronic health records (EHRs) and biomolecular data, we sought to discover drug pairs with synergistic repurposing potential. EHRs provide real-world treatment and outcome patterns, while complementary biomolecular data, including disease-specific gene expression and drug-protein interactions, provide mechanistic understanding.MethodWe applied Group Lasso INTERaction NETwork (glinternet), an overlap group lasso penalty on a logistic regression model, with pairwise interactions to identify variables and interacting drug pairs associated with reduced 5-year mortality using EHRs of 9945 breast cancer patients. We identified differentially expressed genes from 14 case-control human breast cancer gene expression datasets and integrated them with drug-protein networks. Drugs in the network were scored according to their association with breast cancer individually or in pairs. Lastly, we determined whether synergistic drug pairs found in the EHRs were enriched among synergistic drug pairs from gene-expression data using a method similar to gene set enrichment analysis.ResultsFrom EHRs, we discovered 3 drug-class pairs associated with lower mortality: anti-inflammatories and hormone antagonists, anti-inflammatories and lipid modifiers, and lipid modifiers and obstructive airway drugs. The first 2 pairs were also enriched among pairs discovered using gene expression data and are supported by molecular interactions in drug-protein networks and preclinical and epidemiologic evidence.ConclusionsThis is a proof-of-concept study demonstrating that a combination of complementary data sources, such as EHRs and gene expression, can corroborate discoveries and provide mechanistic insight into drug synergism for repurposing

    Prognosis research strategy (PROGRESS) 1: a framework for researching clinical outcomes.

    Get PDF
    The PROGRESS series (www.progress-partnership.org) sets out a framework of four interlinked prognosis research themes and provides examples from several disease fields to show why evidence from prognosis research is crucial to inform all points in the translation of biomedical and health related research into better patient outcomes. Recommendations are made in each of the four papers to improve current research standards What is prognosis research? Prognosis research seeks to understand and improve future outcomes in people with a given disease or health condition. However, there is increasing evidence that prognosis research standards need to be improved Why is prognosis research important? More people now live with disease and conditions that impair health than at any other time in history; prognosis research provides crucial evidence for translating findings from the laboratory to humans, and from clinical research to clinical practice This first article introduces the framework of four interlinked prognosis research themes and then focuses on the first of the themes - fundamental prognosis research, studies that aim to describe and explain future outcomes in relation to current diagnostic and treatment practices, often in relation to quality of care Fundamental prognosis research provides evidence informing healthcare and public health policy, the design and interpretation of randomised trials, and the impact of diagnostic tests on future outcome. It can inform new definitions of disease, may identify unanticipated benefits or harms of interventions, and clarify where new interventions are required to improve prognosis

    Clinical applications of personalized medicine: a new paradigm and challenge

    Get PDF
    The personalized medicine is an emergent and rapidly developing method of clinical practice that uses new technologies to provide decisions in regard to the prediction, prevention, diagnosis and treatment of disease. The continue evolution of technology and the developments in molecular diagnostics and genomic analysis increased the possibility of an even more understanding and interpretation of the human genome and exome, allowing a "personalized" approach to clinical care, so that the concepts of "Systems Medicine" and "System Biology" are increasingly actual. The purpose of this study is to evaluate the personalized medicine about its indications and benefits, actual clinical applications and future perspectives as well as its issues and health care implications. It was made a careful review of the scientific literature on this field that highlighted the applicability and usefulness of this new medical approach as well as the fact that personalized medicine strategy is even more increasing in numerous fields of applications

    Towards a New Science of a Clinical Data Intelligence

    Full text link
    In this paper we define Clinical Data Intelligence as the analysis of data generated in the clinical routine with the goal of improving patient care. We define a science of a Clinical Data Intelligence as a data analysis that permits the derivation of scientific, i.e., generalizable and reliable results. We argue that a science of a Clinical Data Intelligence is sensible in the context of a Big Data analysis, i.e., with data from many patients and with complete patient information. We discuss that Clinical Data Intelligence requires the joint efforts of knowledge engineering, information extraction (from textual and other unstructured data), and statistics and statistical machine learning. We describe some of our main results as conjectures and relate them to a recently funded research project involving two major German university hospitals.Comment: NIPS 2013 Workshop: Machine Learning for Clinical Data Analysis and Healthcare, 201
    • …
    corecore