1,389 research outputs found

    Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data

    Get PDF
    Determining the functional structure of biological networks is a central goal of systems biology. One approach is to analyze gene expression data to infer a network of gene interactions on the basis of their correlated responses to environmental and genetic perturbations. The inferred network can then be analyzed to identify functional communities. However, commonly used algorithms can yield unreliable results due to experimental noise, algorithmic stochasticity, and the influence of arbitrarily chosen parameter values. Furthermore, the results obtained typically provide only a simplistic view of the network partitioned into disjoint communities and provide no information of the relationship between communities. Here, we present methods to robustly detect coregulated and functionally enriched gene communities and demonstrate their application and validity for Escherichia coli gene expression data. Applying a recently developed community detection algorithm to the network of interactions identified with the context likelihood of relatedness (CLR) method, we show that a hierarchy of network communities can be identified. These communities significantly enrich for gene ontology (GO) terms, consistent with them representing biologically meaningful groups. Further, analysis of the most significantly enriched communities identified several candidate new regulatory interactions. The robustness of our methods is demonstrated by showing that a core set of functional communities is reliably found when artificial noise, modeling experimental noise, is added to the data. We find that noise mainly acts conservatively, increasing the relatedness required for a network link to be reliably assigned and decreasing the size of the core communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1 was not uploaded but is available by contacting the author. 27 pages, 5 figures, 15 supplementary file

    Machine Learning Approaches for Cancer Analysis

    Get PDF
    In addition, we propose many machine learning models that serve as contributions to solve a biological problem. First, we present Zseq, a linear time method that identifies the most informative genomic sequences and reduces the number of biased sequences, sequence duplications, and ambiguous nucleotides. Zseq finds the complexity of the sequences by counting the number of unique k-mers in each sequence as its corresponding score and also takes into the account other factors, such as ambiguous nucleotides or high GC-content percentage in k-mers. Based on a z-score threshold, Zseq sweeps through the sequences again and filters those with a z-score less than the user-defined threshold. Zseq is able to provide a better mapping rate; it reduces the number of ambiguous bases significantly in comparison with other methods. Evaluation of the filtered reads has been conducted by aligning the reads and assembling the transcripts using the reference genome as well as de novo assembly. The assembled transcripts show a better discriminative ability to separate cancer and normal samples in comparison with another state-of-the-art method. Studying the abundance of select mRNA species throughout prostate cancer progression may provide some insight into the molecular mechanisms that advance the disease. In the second contribution of this dissertation, we reveal that the combination of proper clustering, distance function and Index validation for clusters are suitable in identifying outlier transcripts, which show different trending than the majority of the transcripts, the trending of the transcript is the abundance throughout different stages of prostate cancer. We compare this model with standard hierarchical time-series clustering method based on Euclidean distance. Using time-series profile hierarchical clustering methods, we identified stage-specific mRNA species termed outlier transcripts that exhibit unique trending patterns as compared to most other transcripts during disease progression. This method is able to identify those outliers rather than finding patterns among the trending transcripts compared to the hierarchical clustering method based on Euclidean distance. A wet-lab experiment on a biomarker (CAM2G gene) confirmed the result of the computational model. Genes related to these outlier transcripts were found to be strongly associated with cancer, and in particular, prostate cancer. Further investigation of these outlier transcripts in prostate cancer may identify them as potential stage-specific biomarkers that can predict the progression of the disease. Breast cancer, on the other hand, is a widespread type of cancer in females and accounts for a lot of cancer cases and deaths in the world. Identifying the subtype of breast cancer plays a crucial role in selecting the best treatment. In the third contribution, we propose an optimized hierarchical classification model that is used to predict the breast cancer subtype. Suitable filter feature selection methods and new hybrid feature selection methods are utilized to find discriminative genes. Our proposed model achieves 100% accuracy for predicting the breast cancer subtypes using the same or even fewer genes. Studying breast cancer survivability among different patients who received various treatments may help understand the relationship between the survivability and treatment therapy based on gene expression. In the fourth contribution, we have built a classifier system that predicts whether a given breast cancer patient who underwent some form of treatment, which is either hormone therapy, radiotherapy, or surgery will survive beyond five years after the treatment therapy. Our classifier is a tree-based hierarchical approach that partitions breast cancer patients based on survivability classes; each node in the tree is associated with a treatment therapy and finds a predictive subset of genes that can best predict whether a given patient will survive after that particular treatment. We applied our tree-based method to a gene expression dataset that consists of 347 treated breast cancer patients and identified potential biomarker subsets with prediction accuracies ranging from 80.9% to 100%. We have further investigated the roles of many biomarkers through the literature. Studying gene expression through various time intervals of breast cancer survival may provide insights into the recovery of the patients. Discovery of gene indicators can be a crucial step in predicting survivability and handling of breast cancer patients. In the fifth contribution, we propose a hierarchical clustering method to separate dissimilar groups of genes in time-series data as outliers. These isolated outliers, genes that trend differently from other genes, can serve as potential biomarkers of breast cancer survivability. In the last contribution, we introduce a method that uses machine learning techniques to identify transcripts that correlate with prostate cancer development and progression. We have isolated transcripts that have the potential to serve as prognostic indicators and may have significant value in guiding treatment decisions. Our study also supports PTGFR, NREP, scaRNA22, DOCK9, FLVCR2, IK2F3, USP13, and CLASP1 as potential biomarkers to predict prostate cancer progression, especially between stage II and subsequent stages of the disease

    Integrative characterisation and prediction of the radiation response in radiation oncology

    Get PDF

    DeepOrgan: Multi-level Deep Convolutional Networks for Automated Pancreas Segmentation

    Full text link
    Automatic organ segmentation is an important yet challenging problem for medical image analysis. The pancreas is an abdominal organ with very high anatomical variability. This inhibits previous segmentation methods from achieving high accuracies, especially compared to other organs such as the liver, heart or kidneys. In this paper, we present a probabilistic bottom-up approach for pancreas segmentation in abdominal computed tomography (CT) scans, using multi-level deep convolutional networks (ConvNets). We propose and evaluate several variations of deep ConvNets in the context of hierarchical, coarse-to-fine classification on image patches and regions, i.e. superpixels. We first present a dense labeling of local image patches via PConvNetP{-}\mathrm{ConvNet} and nearest neighbor fusion. Then we describe a regional ConvNet (R1ConvNetR_1{-}\mathrm{ConvNet}) that samples a set of bounding boxes around each image superpixel at different scales of contexts in a "zoom-out" fashion. Our ConvNets learn to assign class probabilities for each superpixel region of being pancreas. Last, we study a stacked R2ConvNetR_2{-}\mathrm{ConvNet} leveraging the joint space of CT intensities and the PConvNetP{-}\mathrm{ConvNet} dense probability maps. Both 3D Gaussian smoothing and 2D conditional random fields are exploited as structured predictions for post-processing. We evaluate on CT images of 82 patients in 4-fold cross-validation. We achieve a Dice Similarity Coefficient of 83.6±\pm6.3% in training and 71.8±\pm10.7% in testing.Comment: To be presented at MICCAI 2015 - 18th International Conference on Medical Computing and Computer Assisted Interventions, Munich, German

    Integrative characterisation and prediction of the radiation response in radiation oncology

    Get PDF

    Computer-aided Detection of Breast Cancer in Digital Tomosynthesis Imaging Using Deep and Multiple Instance Learning

    Get PDF
    Breast cancer is the most common cancer among women in the world. Nevertheless, early detection of breast cancer improves the chance of successful treatment. Digital breast tomosynthesis (DBT) as a new tomographic technique was developed to minimize the limitations of conventional digital mammography screening. A DBT is a quasi-three-dimensional image that is reconstructed from a small number of two-dimensional (2D) low-dose X-ray images. The 2D X-ray images are acquired over a limited angular around the breast. Our research aims to introduce computer-aided detection (CAD) frameworks to detect early signs of breast cancer in DBTs. In this thesis, we propose three CAD frameworks for detection of breast cancer in DBTs. The first CAD framework is based on hand-crafted feature extraction. Concerning early signs of breast cancer: mass, micro-calcifications, and bilateral asymmetry between left and right breast, the system includes three separate channels to detect each sign. Next two CAD frameworks automatically learn complex patterns of 2D slices using the deep convolutional neural network and the deep cardinality-restricted Boltzmann machines. Finally, the CAD frameworks employ a multiple-instance learning approach with randomized trees algorithm to classify DBT images based on extracted information from 2D slices. The frameworks operate on 2D slices which are generated from DBT volumes. These frameworks are developed and evaluated using 5,040 2D image slices obtained from 87 DBT volumes. We demonstrate the validation and usefulness of the proposed CAD frameworks within empirical experiments for detecting breast cancer in DBTs

    DEVELOPMENTS IN NONPARAMETRIC REGRESSION METHODS WITH APPLICATION TO RAMAN SPECTROSCOPY ANALYSIS

    Get PDF
    Raman spectroscopy has been successfully employed in the classification of breast pathologies involving basis spectra for chemical constituents of breast tissue and resulted in high sensitivity (94%) and specificity (96%) (Haka et al, 2005). Motivated by recent developments in nonparametric regression, in this work, we adapt stacking, boosting, and dynamic ensemble learning into a nonparametric regression framework with application to Raman spectroscopy analysis for breast cancer diagnosis. In Chapter 2, we apply compound estimation (Charnigo and Srinivasan, 2011) in Raman spectra analysis to classify normal, benign, and malignant breast tissue. We explore both the spectra profiles and their derivatives to differentiate different types of breast tissue. In Chapters 3-5 of this dissertation, we develop a novel paradigm for incorporating ensemble learning classification methodology into a nonparametric regression framework. Specifically, in Chapter 3 we set up modified stacking framework and combine different classifiers together to make better predictions in nonparametric regression settings. In Chapter 4 we develop a method by incorporating a modified AdaBoost algorithm in nonparametric regression settings to improve classification accuracy. In Chapter 5 we propose a dynamic ensemble integration based on multiple meta-learning strategies for nonparametric regression based classification. In Chapter 6, we revisit the Raman spectroscopy data in Chapter 2, and make improvements based on the developments of the methods from Chapter 3 to Chapter 4. Finally we summarize the major findings and contributions of this work as well as identify opportunities for future research and their public health implications
    corecore