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ABSTRACT OF DISSERTATION

DEVELOPMENTS IN NONPARAMETRIC REGRESSION METHODS WITH
APPLICATION TO RAMAN SPECTROSCOPY ANALYSIS

Raman spectroscopy has been successfully employed in the classification of breast
pathologies involving basis spectra for chemical constituents of breast tissue and re-
sulted in high sensitivity (94%) and specificity (96%) (Haka et al, 2005). Motivated
by recent developments in nonparametric regression, in this work, we adapt stacking,
boosting, and dynamic ensemble learning into a nonparametric regression framework
with application to Raman spectroscopy analysis for breast cancer diagnosis. In
Chapter 2, we apply compound estimation (Charnigo and Srinivasan, 2011) in Ra-
man spectra analysis to classify normal, benign, and malignant breast tissue. We
explore both the spectra profiles and their derivatives to differentiate different types
of breast tissue. In Chapters 3-5 of this dissertation, we develop a novel paradigm for
incorporating ensemble learning classification methodology into a nonparametric re-
gression framework. Specifically, in Chapter 3 we set up modified stacking framework
and combine different classifiers together to make better predictions in nonparametric
regression settings. In Chapter 4 we develop a method by incorporating a modified
AdaBoost algorithm in nonparametric regression settings to improve classification ac-
curacy. In Chapter 5 we propose a dynamic ensemble integration based on multiple
meta-learning strategies for nonparametric regression based classification. In Chap-
ter 6, we revisit the Raman spectroscopy data in Chapter 2, and make improvements
based on the developments of the methods from Chapter 3 to Chapter 4. Finally
we summarize the major findings and contributions of this work as well as identify
opportunities for future research and their public health implications.
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Chapter 1 Introduction

1.1 Nonparametric regression methods

Background

Parametric estimates of mean curves depend on the chosen parametric model. Al-

though they can be suitable for small sample sizes n, and are often easy to interpret,

parametric estimates might be too restricted within the assumed parametric structure

to fit unexpected features or complex features in the mean curve [35]. Furthermore, it

is not always clear how to choose a proper form of a parametric estimate for multivari-

ate X, because it is hard to visualize the data for multivariate X [31]. In these cases,

nonparametric regression or semiparametric regression may be appropriate when an

underlying parametric model cannot be identified.

Suppose the regression model has the form

Yi = µ(xi) + εi for i ∈ {1, . . . , n}, (1.1)

where xi ∈ X , Yi are observed responses, and εi are random errors with zero mean.

In parametric settings, the functional form of µ is known, and the parameters or

coefficients are to be determined. In nonparametric regression, on the other hand,

the functional form of µ is unspecified. Rather, a data driven technique is used

to determine the shape of a curve. The modeler determines the amount of local

curvature to be depicted in the curve [31]. The goal of nonparametric regression is

to directly estimate the regression function µ instead of estimating parameters [24].

Most methods of nonparametric regression implicitly assume that µ is a smooth,

continuous function. When using some nonparametric regression methods, decisions

must be made regarding polynomial order and bandwidth. Such decisions depend on

1



the presence of local curvature, desired degree of smoothing, and the minimization of

some global error criterion for tuning parameter selection [35].

This section describes four forms of nonparametric regression including kernel

estimation, local regression, smoothing splines and compound estimation. Then an

illustrative example is presented to show practical applications of these nonparametric

regression methods.

Common nonparametric regression methods

The following description pertains to scalar X, for simplicity.

Kernel Smooth

The main idea of the kernel method is to estimate the mean response at every point

x0.

The Nadaraya-Watson kernel estimator[6][55][94] is defined as

µ̂(x0) =

∑
iKh(x0, xi)Yi∑
iKh(x0, xi)

, (1.2)

where Kh(x0, xi) = 1
h
K(x0−xi

h
). The function K is called the kernel, and along with

the bandwidth h, it controls the weight given to the observations {xi} at each point

x0 based on their proximity. Two of the popular compactly supported kernels are the

Epanechnikov kernel

K(u) =
3

4
(1− u2)1{|u|≤1}

and the tri-cube kernel

K(u) = (1− |u|3)1{|u|≤1}.

The kernel function can also be chosen in another form such as Charnigo and Srini-

vasan(2011) described [18],

K(u) = 1|u|≤1

∞∑
m=0

amu
2m,

2



with various constraints on the am. The smoothing parameter h, also known as

bandwidth, controls the size of the neighbourhood around x0. If the bandwidth

decreases with the sample size at an appropriate rate, then the kernel estimators are

consistent: that is, µ̂(x)
P−→ µ(x). The mean squared error is dµ(x, h) = E[µ̂h(x) −

µ(x)]2. As n −→∞, h −→ 0, nh −→∞, under certain conditions, we have

dµ(x, h) ≈ (nh)−1σ2cK + h4d2
K [µ

′′
(x)]2/4,

where σ2 = V ar(εi), and cK =
∫
K2(u)du, dK =

∫
u2K(u)du [36][35]. Suppose that

xi’s are drawn from a distribution with density g(x), then the bias, which has the

form h2
(

1
2
µ
′′
(x) + µ′(x)g′(x)

g(x)

) ∫
u2K(u)du + o(h2) is increasing in h whereas the vari-

ance σ2

g(x)nh

∫
K2(u)du+ o( 1

nh
) is decreasing in h.

Rate of convergence Let AMSE denote the asymptotic MSE. We may write de-

noting constant terms by C1 and C2, respectively

AMSE(n, h) =
1

nh
C1 + h4C2.

Minimizing the expression with respect to h gives the optimal bandwidth hopt ∼ n−1/5

with mean square convergence O(n−2/5) [36]. In the more general case that µ(J+1)(x)

is continuous, where J is a positive integer, the optimal bandwidth is O(n−
1

2J+3 ),

the corresponding mean square error is O(n−
2(J+1)
2J+3 ), and the convergence rate is

Op(n
− J+1

2J+3 ). Since the above optimal bandwidth is unavailable due to its dependence

on the unknown function µ(x), two approaches for choosing appropriate bandwidth

including cross validation and the generalized cross validation are commonly used

[93].

Cross validation Define a leave-one-out estimator:

µ̂h,−i(Xi) =

∑
j 6=iKh(Xi −Xj)Yj∑
j 6=iKh(Xi −Xj)

,

and cross validation function is

CV (h) =
1

n

n∑
i=1

{Yi − µ̂h,−i(Xi)}2,

3



where µ̂(−i) denotes the estimator of µ obtained when (xi, yi) is excluded. Then the

smoothing parameter can then be chosen by minimizing CV (h).

Generalized cross validation

Using cross validation sometimes leads to too small an h. Generalized cross validation

is one type of penalizing function for CV (h) which aims at an asymptotic cancellation

of the bias[35](Craven and Wahba, 1979). In the setting of equidistant Xi on the unit

interval, the GCV functions can be written as

GCV (h) = CV (h)(1− n−1h−1K(0))−2.

The smoothing parameter chosen by GCV is asymptotically optimal.

The Nadaraya-Watson kernel estimator often suffers from bias, both at the bound-

aries and in the interior when the xi are not uniformly distributed due to the asym-

metric effect of the kernel in these regions. Moreover, it is not infinitely differentiable

if the underlying function K is not.

Local Regression

In local regression[48], we can fit straight lines locally instead of constants, which

could reduce the problems arising from kernel smoothing, therefore local regression

modifies kernel smoothing in such a way that the bias is largely eliminated. In local

linear regression, a separate weighted least squares problem is solved at each target

point x0,

(α̂, β̂) = arg min
α,β

∑
i

Kh(x0, xi)(yi − α− xiβ)2. (1.3)

The estimate is then µ̂(x0) = α̂ + x0β̂. Again, selection of the bandwidth h is

critical.

The LLR estimator behaves better at the boundary of the support of Xi. Its

4



asymptotic distribution can be given by

√
nh(µ̂(x)− µ(x)− 1

2
σ2
Kh

2µ′′(x))
D−→ N(0,

CKσ
2(x)

g(x)
),

assuming x is not a boundary point. Local polynomial regression extends the linear

model to the polynomial model, which could further correct for bias in regions of high

curvature, yet at the expense of increased variability. The local regression smooth is

not in general infinitely differentiable, and even when differentiable, may not satisfy

µ̂′(x0) = d
dx
µ̂(x)|x=x0 .

Smoothing Splines

A spline that could pass close to the observations {xi, yi} without passing through

all of them is called a smoothing spline [62]. In smoothing splines, the target is to

find the function µ(x) with two continuous derivatives that minimizes the penalized

sum of squares
n∑
i=1

{yi − µ(xi)}2 + λ

∫
{(µ′′(u))}2du. (1.4)

The solution turns out to be a natural cubic spline [29]. Speckman(1985)[78] obtained

the optimal rates of convergence for smoothing spline estimators under certain con-

ditions. The tuning parameter λ plays a role like the bandwidth of local regression

in trading off bias for variability. However, λ is not immediately interpretable as the

size of a neighbourhood.

Compound estimator and the self-consistency property

Charnigo and Srinivasan (2011) have proposed a compound estimator that has the

self-consistency property in that its derivative estimates the derivatives of the mean

response function [18]. This is a desirable property when not only the regression curve

itself is the target of interest, but also its derivatives. Self-consistency is important

if estimates of multiple derivatives are used to make inferences.
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Compound estimator The first step in defining the compound estimator is to

specify pointwise estimators of cj;a := µ(j)(a)/j! for 0 ≤ j ≤ J and a ∈ In, where In

is a finite subset of [−1, 1] . Let c̃j;a denote these estimators.

Secondly, define a polynomial µ̃J ;a(x) :=
∑J

j=0 c̃j;a(x− a)j for each a ∈ In.

Finally, the compound estimator is defined by

µ∗(x) :=
∑
a∈In

Wa,n(x)µ̃J ;a(x),

and for 1 ≤ j ≤ J , µ(j)(x) is estimated by

dj

dxj
µ∗(x) =

∑
a∈In

j∑
k=0

(
j

k

)
dk

dxk
µ̃J ;a(x)

dj−k

dxj−k
Wa,n(x),

where Wa,n(x) can be defined as exp[−βn(x−a)2]∑
c∈In exp[−βn(x−c)2]

, in which βn is a nondecreasing

sequence of positive real numbers.

The compound estimator µ∗(x) is self-consistent by construction and it can also

achieve an almost optimal convergence rate arbitrarily close to Op(n
− J+1

2J+3 ). Moreover,

the derivatives dj

dxj
µ∗(x) achieve almost optimal convergence rates arbitrarily close to

Op(n
−J+1−j

2J+3 ).

Self consistency property An estimator µ̂(x) and companion estimators d̂j

dxj
µ(x),

j ∈ J , are self-consistent if dj

dxj
µ̂(x) exists and equals d̂j

dxj
µ(x) for every j ∈ J , where

J ⊂ N , and N denotes the set of natural numbers[18].

A spline smooth in the form of a degree J piecewise polynomial is self-consistent

with J = {1, 2, . . . , J − 1}. However, the results may not be stable (i.e. may exhibit

considerable variability) when approaching the maximum number of differentiations

that can be performed on µ̂(x)[18].
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Application to real dataset

Now consider an illustrative example using the above different nonparametric regres-

sion methods. The dataset is from the 2006 National Health and Nutrition Exami-

nation Survey(NHANES) study on the serum levels of two variables for 3026 adult

women: triglycerides(TRG), and apolipoprotein B (APB). Apolipoprotein B (Apo

B) is the dominant protein constituent of LDL. It is known that elevated Apo B is

associated with increased risk of vascular disease[3]. The objective is to identify the

relationship between serum levels of APB and TRG in order to predict serum APB

level by TRG, since lab tests for TRG are more commonly conducted than lab tests

for APB in the general population. Since the covariate TRG is not close to uniformly

spaced, this example will illustrate the utility of a nearest neighbour approach to

bandwidth/tuning parameter specification.

First of all, we can test whether there is a significant difference between the re-

sults of non-parametric regression and parametric regression. A linear (or quadratic)

relationship between APB and TRG differs significantly from nonparametric regres-

sion results if the fitted line (or parabola) lies at least partially outside the confidence

bands accompanying the non-parametric regression results. This idea is illustrated

in Figure 1.1. Linear regression (or quadratic regression) would not be an appropri-

ate choice to estimate the APB by TRG relationship because the line (parabola)falls

partially outside the confidence bands from local regression. Locfit.raw function was

employed to perform local regression, in which the nearest neighbour parameter was

set to 0.1.

Figure 1.2 shows the estimated mean responses of APB level using nonparametric

regression methods including kernel smooth, local regression, smoothing spline and

compound estimation. In the kernel regression, Gaussian kernel function was used,

and bandwidth was chosen to be 28 by cross validation. In local regression, the degree

7
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Figure 1.1: Estimated mean APB level using parametric models versus confidence bands
from Local regression. Shown are estimated mean responses for APB level by local re-
gression and parametric methods. Parametric results (line and parabola), falling partially
outside the confidence bands of local regression, are not satisfactory to demonstrate the
relationship.

of local polynomials was set to be 1, and the tricube weight function was used. The

smooth. spline function was used to perform spline smoothing, and the smoothing

parameter was chosen by generalized cross validation to be 1. The nearest neighbours

fraction and convolution parameter with local regression pointwise estimators were

selected to be 0.18 and 0.25 by generalized cross validation. Overall the relationship

between APB and TRG appears to be approximately a concave function. The fitted

smoothing spline is the smoothest curve among the four. Kernel regression and lo-

cal regression fits appear less smooth, and are noticeably more oscillatory in regions

8
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Figure 1.2: Estimated mean responses of APB level using different nonparametric regression
methods

where TRG often falls compared with smoothing spline fit in the same regions. The

compound estimation fit appears intermediate.

The estimated first derivatives of the mean response using different nonparametric

regression methods are shown in Figure 1.3. Locfit.raw function was used to gener-

ate the estimated first derivative of the mean response using local regression, since

this is not equal to the derivative of the estimated mean response. Due to lack of

self-consistency, in local regression, zeros of the estimated first derivatives do not

occur at local extrema. For example, there is an estimated peak at which TRG is

120 in local regression. Yet the estimated derivative when TRG is equal to 120 is

negative. Regarding kernel smoothing, using a fixed bandwidth instead of a nearest
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Figure 1.3: Estimated first derivatives of mean responses using different nonparametric
regression methods

neighbour approach may have been anticipated to result in too much smoothing for

small TRG(high bias, low variance), and in too little smoothing for large TRG(high

variance, low bias), although from Figure 1.3, this appears not to have been the case,

because the fitted first derivative from kernel smoothing is oscillatory across all TRG

values. With compound estimation, the fitted first derivative is rather oscillatory for

small TRG but less so for large TRG, exhibiting a similar pattern to local regression

but less pronounced. As expected, the fitted first derivative by spline smoothing is

very smooth.

Notably, small differences in fitted mean responses translated into larger differ-

ences in fitted first derivatives. We emphasize that compound estimation, like kernel
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smoothing and spline smoothing, enjoys self-consistency so that derivatives of mean

response may be estimated by differentiating estimates of the mean response. One

caveat for all four methods in this example is that they have not incorporated the

NHANES survey weights.

1.2 Pattern Recognition

Pattern recognition has been an active area of research in a wide range of fields, such

as diagnosing diseases, recognizing dangerous driving conditions, identifying which

customers will be spotting good opportunities on the financial markets, classifying

galaxies by shape, and identifying handwritten symbols[64]. Recently nonparametric

regression methods have also been applied in pattern recognition to characterize the

nanoparticles[15]. Different from traditional statistical methods, which usually em-

phasize hypothesis testing, in pattern recognition(also known as statistical learning

or data mining), the goal is to use available inputs to predict or classify an output[28].

In more traditional parlance, inputs and outputs correspond to independent and de-

pendent variables respectively. This is more exploratory and associated with “past

experience or knowledge”(Kennedy 1997)[42].The framework in its simplest form is

as follows. Each object(person or other experimental unit) gives rise to certain mea-

surements which together form the input which we call the feature vector X. The

output will be from among a fixed number of categories or classes, say 1, . . . , K. The

task is to classify an object to one category on the basis of the observed value X = x.

Stacking[95] and boosting [68] are two learning algorithms which we plan to apply in

nonparametric regression settings.
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Stacking

Stacked generalization, also known as stacking, combines multiple classifiers using

another classifier, often referred to as a meta-level classifier, to give improved pre-

diction accuracy by learning the way that their multiple classifiers’ outputs correlate

with the true class[95]. Generally cross-validation and least squares are used under

non-negativity constraints to determine the coefficients in the combination[8]. Stack-

ing can be applied recursively, which generates a hierarchical combiner.

The aim of stacking is combining multiple classifiers generated by different learning

algorithms L1, . . . , LN on a single dataset S, which consists of examples si = (xi, yi),

i.e., pairs of feature vectors (xi) and their classifications (yi). Its framework can be

described as follows [22]: in the first phase, a set of base-level classifiers C1, C2, . . . , CN

is generated, where Ci = Li(S). In the second phase, a meta-level classifier learns to

combine the outputs of the base-level classifiers. To generate a training set for learn-

ing of the meta-level classifier, a cross validation procedure is applied [84]. Using

meta-level classifier, stacking infers reliable and unreliable base classifiers. Using out-

put probabilities corresponding to each label can improve the performance of stacking

[1].The most important issues in stacking are the choice of the features and the algo-

rithm for learning at the meta-level [22].

The idea of stacking is also applicable to a continuous response variable. To illus-

trate stacking in a non-parametric setting, suppose that a scalar response variable C

and a vector of predictor variables X are governed by Ci = µ(Xi) + εi for 1 ≤ i ≤ n,

where µ is an unknown mean function and ε1, . . . , εn are error terms. In this scenario,

letting µ̂1, . . . , µ̂J denote candidate estimators of µ, one might stack the candidate

estimators into a final estimator of the form
∑J

j=1 ŵjµ̂j(X), where ŵ1, . . . , ŵJ are

chosen to minimize the cross-validated sum of squares
∑n

i=1(Ci −
∑

j=1wjµ̂
−i
j (Xi))

2,

where superscript −i denotes a calculation excluding observation i.
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Boosting

Boosting is one of the most important recent developments in classification method-

ology [68]. Boosting uses a set of weak learners to create a single strong learner[69].

A weak learner is a classifier which is only slightly correlated with the true classifi-

cation, whereas a strong learner is a classifier that is arbitrarily well-correlated with

the true classification[70].

The idea of boosting is applying a classification algorithm sequentially to reweighted

versions of the training data and then taking a weighted majority vote of the sequence

of classifiers[27]. For many classification algorithms, this simple strategy results in

dramatic improvements in performance. Some well-known boosting algorithms in-

clude AdaBoost algorithm (Schapire)[68], functional gradient descent(FGD)(Breiman)

and L2 Boosting algorithm[10].

To illustrate boosting, suppose that a binary scalar response variable C ∈ {−1, 1}

is to be predicted from a vector X and that sample data (X1, C1), . . . , (Xn, Cn) have

been acquired for the purpose of developing a prediction rule. Let µ1(X) denote the

initial classification rule, define weights wi := exp(α1I{Ci 6=µ1(Xi)})∑n
j=1 exp(α1I{Cj 6=µ1(Xj)}) for 1 ≤ i ≤ n ,

where α1 := −logit(
∑n

i=1 I{Ci 6= µ1(Xi)}/n) and I{} is an indicator function that

equals 1 when its argument is true and 0 otherwise. The sample data are then as-

signed the weights w1, . . . , wn during the development of a new prediction rule, which

we label µ2(X). Thus, µ2(X) gives greater weight to observations that were misclassi-

fied by µ1(X). The performance of µ2(X) is likewise used to define another prediction

rule µ3(X) that gives greater weight to observations that were misclassified by both

µ1(X) and µ2(X). This process continues for a specified number of iterations. At the

last iteration, observations have differing weights according to how frequently they

were misclassified by the various intermediate prediction rules, and one may define

an overall prediction rule by appropriately combining the intermediate prediction

13



rules(e.g., by factoring a majority vote).

Nonparametric methods applied in pattern recognition

How does pattern recognition relate to nonparametric regression? The basic idea is

illustrated as follows. Suppose that there exists a variable C ∈ {−1, 1} representing

some characteristic of an object. Suppose that the relationship between two other

variable X and Y is governed by Yi = µ1(x) + εi for all subjects with c = 1 and by

Yi = µ−1(x) + εi for all subjects with c = −1. If we need to classify an object as

c = 1 or c = −1, one way to do so is to estimate the mean response function relating

Y to X for that object, let this estimate be denoted µ̂. Then we compare µ̂ to µ1(x)

and µ−1(x). If C = 1 then µ(x) = µ1(x) and if C = −1 then µ(x) = µ−1(x). If

µ̂(x) is “closer” to µ1(x), then the object is classified as c = 1, otherwise the object

is classified as c = −1. However, one must define “close”. We do this in one of two

ways, as described next.

L1 method

The L1 distance between two functions f1 and f2 is defined as
∫
|f1(x)− f2(x)|dx.

Besides having been employed as a tool to estimate regression and density functions

nonparametrically[34][92][83] , L1 distance may also be applied in pattern recognition.

This idea has previously been employed by Charnigo et al (2007) for nanoparticle

characterization[15] and by Charnigo, Hall, and Srinivasan(2011) for identification of

a chemical compound[18].

The basic idea is as follows. Consider the example of using Raman spectroscopy

to diagnose breast cancer. Let v̂i(x) denote the Raman spectrum for person i to be

classified, and vN(x) and vA(x) denote known normal and abnormal Raman spec-

tra. One can classify person i as normal or abnormal based on the closeness of

v̂i(x) to each of the known Raman spectra with respect to L1 distance. Explic-
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itly, person i is classified as normal if
∫
|v̂i(x)− vN(x)|dx <

∫
|v̂i(x)− vA(x)|dx and

abnormal if
∫
|v̂i(x)− vA(x)|dx <

∫
|v̂i(x)− vN(x)|dx. Moreover, derivatives may

also be considered, so that person i is classified as normal if
∫
|v̂i′(x)− v′N(x)|dx <∫

|v̂i′(x)− v′A(x)|dx and abnormal if
∫
|v̂i′(x)− v′A(x)|dx <

∫
|v̂i′(x)− v′N(x)|dx.

Confidence band method

Confidence band from nonparametric regression can also be applied in pattern recog-

nition, although references describing the use of confidence bands in machine learning

are quite limited [38].

Confidence bands are curves enclosing a model (function) being estimated by

regression [38]. They represent the areas where the true model resides with a prob-

ability of 1 − α. Usually a value of 0.05 is used for α so that the bands enclose

the true model with a probability of 95%. There exist many approaches to compute

confidence bands, e.g. by Monte Carlo[41] or bootstrapping methods[37]. Charnigo,

Hall and Srinivasan(2013) have also developed a method to estimate simultaneous

confidence bands for both a mean response and its derivatives in nonparametric re-

gression(under review), and they also present the idea of solving a pattern recognition

problem through confidence band method[17].

To illustrate, consider again the example of using Raman spectroscopy to diagnose

breast cancer. Let v̂i(x) denote the Raman spectrum for person i to be classified,

and vN(x) and vA(x) denote known normal and abnormal Raman spectra. One can

fit confidence bands around the Raman spectrum of person i v̂i(x). Person i can be

classified as normal or abnormal based upon whether vN(x) or vA(x) is inside the

bands. Explicitly, if vN(x) is inside the bands, but vA(x) is outside, person i is clas-

sified as normal, whereas if vA(x) is inside the bands, but vN(x) is outside, person

i is classified as abnormal. While both vA(x) or vN(x) may be inside or outside at

α = 0.05, in general there will exist a choice of α at which the proportion of curve

vA(x) or vN(x) inside the bands is larger.
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1.3 Raman Spectroscopy and Cancer

Cancer

Cancer is a growing public health problem. The 2009 age adjusted invasive cancer(all

sites) incidence rate in the US is 633.1 per 100,000 and in Kentucky is as high as

696.6 per 100,000[73]. The most frequently diagnosed cancers are prostate cancer,

accounting for 31% of new cancers in men in the US, and breast cancer, accounting

for 32% of new cancers among females[39]. Lung and colorectal cancers are the third

and fourth most commonly diagnosed cancers[39].

The growing number of cancer diagnoses puts enormous pressure on health sys-

tems. According to the Medical Expenditure Panel Survey (MEPS), each year $38.4

billion of direct medical services is consumed for cancer-associated care. Another

$59.2 billion is spent on concurrent conditions affecting cancer patients. On av-

erage, a patient with cancer incurs annual expenses of $9,753 [97]. About one in

eight (12.29%) U.S. women will develop invasive breast cancer over the course of her

lifetime[77].

Previous epidemiological studies found various risk factors for cancer including

lifestyles, genetic factors and environmental factors. For example, smoking increases

the risk of developing cancer. According to the National Cancer Institute, smoking

causes 30% of all cancer deaths in the U.S. and is responsible for 87% of cases of

lung cancer [67]. Not only does smoking affect the lungs, it can cause kidney, pancre-

atic, cervical, and stomach cancers and acute myeloid leukemia[67]. Breast feeding

could protect against breast cancer [40]. Compared with parous women who never

breastfed, women who had breastfed for 25 months or more had an estimated relative

risk of 0.67 (95% CI, 0.52-0.85)[44]. An increased risk of breast cancer in women

with a family history (any relative) of breast cancer has been demonstrated with an
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estimated relative risk of RR = 1.9 (95% CI, 1.7-2.0)[59].

Raman spectroscopy

Raman spectroscopy is one of the most common vibrational spectroscopies for assess-

ing molecular motion and fingerprinting species. It is based on inelastic scattering of

a monochromatic excitation source. The routine energy range is usually from 200 -

4000 cm−1[47][19].

More specifically, Raman spectroscopy has been defined as a “coherent two-photon

process in which a molecule simultaneously absorbs an incident photon and emits a

Raman photon, accompanied by its transition from one energy level to another, giv-

ing rise to a frequency (i.e., energy) shift of the emitted photon” [32].

Raman spectra can provide detailed quantitative chemical information about a

tissue. One particular advantage is that Raman spectroscopy can be used for in vivo

measurements. Therefore it has potential to distinguish benign tissue and malignant

tissue without many biopsies[32][50]. Compared with fluorescence, Raman spectra

provide high information content, yet the signals are often weaker, which made the

analysis of Raman spectra data complex[33].

Raman spectroscopy in cancer diagnosis

Raman spectroscopy has been proposed for early cancer diagnosis by a number of

authors [81][75][32][33]. Dr Stone used Raman spectroscopy for early diagnosis of

laryngeal malignancy in 2000 [81].

Dr Haka, Dr Feld, and their collaborators applied Raman spectroscopy in breast

cancer diagnosis in 2005[32]. The Raman spectra peaks correspond to different

molecules. Whereas normal mammary spectra primarily contain peaks associated

with lipids, tumor-containing mammary glands show an increase in peaks indicating
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proteins and a decrease in those indicating lipids[56]. Their results [32] show that

the Raman spectroscopy has better specificity and sensitivity in diagnosing breast

cancer than optical tomography, and is less likely to be influenced by the patient’s

menopausal status and breasts’ density than fluorescence spectroscopy. In 2009, Dr

Haka and collaborators conducted a prospective study to diagnose normal, benign,

and malignant human breast tissues using Raman spectroscopy [33]. This analysis of

the prospectively obtained clinical data set showed Raman spectroscopy has a sensi-

tivity of 83% and specificity of 93%, a positive predictive value of 36% and a negative

predictive value of 99%.

1.4 Scope of Dissertation

To complete chapter 1, we now briefly describe our agenda for the remainder of this

dissertation document.

Chapter 2: Nonparametric regression in Raman spectroscopy

In Chapter 2, we apply nonparametric regression in Raman spectra analysis to clas-

sify normal, benign, and malignant breast tissue. Instead of requiring basis spectra of

chemical constituents for breast tissue, our study will explore both the spectra pro-

files and their derivatives(high frequency information) to differentiate different types

of breast tissue. We will employ minimum distance approach and confidence bands

approach for classification.

Chapter 3: Stacking for nonparametric regression

Motivated by the advancement of stacking in statistical learning, in Chapter 3 we

will set up modified stacking framework and propose method to combine different

classifiers together to make better prediction in nonparametric regression settings.

Unlike existing Stacking approaches assuming that inputs are known and attempting

to relate inputs to noise-corrupted or otherwise distorted outputs, our approach will

solve the inverse problem, and the object is to infer the inputs from noise-corrupted
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or otherwise distorted outputs such as in Raman spectra analysis.

Chapter 4: Boosting for nonparametric regression

In Chapter 4 we will develop a method by incorporating boosting into the nonpara-

metric regression to improve classification accuracy. Boosting uses a set of weak

learners to create a single strong learner. Different from stacking, in Boosting, exam-

ples that are incorrectly predicted by previous classifiers in the series are weighted

more heavily than examples that were correctly predicted. Our Boosting methodol-

ogy will differ from existing approaches, however, so that we can employ it to address

inverse problems such as classifying different types of breast tissue in Raman spectra

analysis.

Chapter 5: Dynamic ensemble integration for nonparametric regression

In Chapter 5 we will propose development of a novel dynamic framework based on

multiple meta-learning strategies for classification problem in nonparametric regres-

sion settings. We will present promising lines for future work and the potential

applications of this novel framework.

Chapter 6: Nonparametric regression in Raman spectroscopy, revisited

In Chapter 6, we will revisit the Raman spectroscopy data in Chapter 2, and make

improvement based on the developments of the methods from Chapter 3 and Chapter

4. We will compare the method by incorporating stacking with the method incorpo-

rating boosting in the nonparametric regression settings. Finally we will summarize

the major findings and contributions of this work as well as identify opportunities for

future research and their public health implications.
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Chapter 2 Nonparametric Regression Techniques in Pattern Recognition

2.1 Background

As a novel and rapidly developing imaging tool in cancer diagnosis, Raman spec-

troscopy has been successfully employed in the classification of normal, benign, and

malignant breast tissue, based on coefficient estimates from a linear combination

model involving basis spectra for chemical constituents of breast tissue(Haka et al,

2005)[32]. The Raman spectra peaks correspond to different Raman active biologi-

cal molecules in tissues. Whereas normal mammary spectra primarily contain peaks

associated with lipids, tumor-containing mammary glands show an increase in peaks

indicating proteins and a decrease in those indicating lipids[56]. Apart from less inva-

sive feature, Raman spectroscopy has better specificity and sensitivity in diagnosing

breast cancer than optical tomography, and is less likely to be influenced by the pa-

tient’s menopausal status and breasts’ density than fluorescence spectroscopy.

Various techniques, such as neural networks and linear regression for classification,

hierarchical cluster analysis (HCA), linear discriminant analysis (LDA) for disease

differentiation, partial least squares, a regression based technique and hybrid linear

analysis are used to analyze the Raman spectra[23]. Nonparametric regression or

semiparametric regression has advantages over parametric models when an underly-

ing parametric model cannot be identified. Motivated by study on how the derivatives

of Raman spectra might be employed to address a pattern recognition problem in an-

alytic chemistry Charnigo et al 2011[14], we further explore how derivatives of Raman

spectra can be used for diagnosing breast cancer. The data we used were similar but

not exactly the same as those considered by Haka et al (2005)[33].

We use two approaches for using Raman spectra and their derivatives in the di-

agnosis of breast cancer: one based on minimum distance, and the other based on
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confidence bands.

2.2 Previous work and definitions

Our implementations of the two approaches rely on compound estimation as described

in Chapter 1(Charnigo and Srinivasan, 2011), generalized Cp criterion as briefly de-

scribed below (Charnigo, Hall, and Srinivasan, 2011), and confidence bands(as briefly

described below)(Charnigo, Hall, and Srinivasan, 2013) procedures coded in the R

statistical software language.

Generalized Cp criterion

Charnigo, Hall, and Srinivasan(2011) have proposed a generalized Cp (GCp) criterion

which can be used when selecting tuning parameters in derivative estimation[16] in

non-parametric regression estimation settings. In general, assume that model (1.1)

from Chapter 1 holds, and ̂dq
dxq
µλ(xi) has the form

∑n
m=1 l

(q)
m;λ(x)Ym for some specified

functions l
(q)
1;λ(x), . . . , l

(q)
n;λ(x) that do not depend on Y1, . . . , Yn. Then GCp criterion is

defined as

GCp(Y, µ̂λ) :=
n∑
i=1

si(Y
(q)
i −

̂dq
dxq

µλ(xi))
2 + σ2

n∑
i=1

si

n∑
m=1

(2ci,ml
(q)
m;λ(xi)− c

2
i,m),

where s1, . . . , sn are observation weights between 0 and 1, Y stands for (Y1, . . . , Yn)T .

Y
(q)
i is called an empirical derivative and defined as

∑n
m=1 ci,mYm, where the ci,m are

some specified constants. λ denotes a vector containing the tuning parameters[16].

In essence, this GCp criterion is a residual sum of squares for the fitted derivative of

order q plus a penalty term so that GCp has expected value approximately equal to

the target
∑n

i=1( dq

dxq
µ(xi) − ̂dq

dxq
µλ(xi))

2. In this study, compound estimation is used

to construct unknown µ(x) , therefore λ contains tuning parameters for compound

estimation: βn, and nearest neighbour fraction for the pointwise estimators. Also we
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have

l
(j)
m;λ(x) =

∑
a∈In;λ

j∑
k=0

(
j

k

)
dk

dxk

J∑
p=0

ra;p;m;λ(x− a)p
dj−k

dxj−k
Wa,n;λ(x),

Suppose c̃p;a has the form
∑n

i=1 ra;p;m;λYi for a ∈ In,λ and Wa,n;λ can be defined as

exp[−βn(x−a)2]∑
c∈In,λ exp[−βn(x−c)2]

, in which βn is a nondecreasing sequence of positive real numbers.

Further we take q = 1 and choose Y
(1)
i to be a difference quotient-like approximation

to µ(1)(xi):

Y
(1)
i :=

k∑
m=1

(m2/
k∑
s=1

s2)(Yi+m − Yi−m)/(xi+m − xi−m)1(k+1)≤i≤(n−k),

where k ≈ 0.05n, and approximate σ2 by

σ̂2 :=

∑n
i=1(Yi −

∑n
m=1 l

(0)
m;λ0

(xi)Ym)2

n−
∑n

m=1 l
(0)
m;λ0

(xm)
;

where λ0 contains the most extreme tuning parameters under consideration.

Simultaneous confidence bands

We employ the approach of Charnigo, Hall and Srinivasan (2013) to construct confi-

dence bands that are simultaneous over different orders of derivatives[17]. They have

shown that under certain conditions, for all sufficiently large n,

P[ Lp(x) ≤ µ(p)(x) ≤ Up(x) ∀p ∈ {0, 1, . . . , J} and x ∈ E ] ≥ 1− αn − δn(hn), where

Lp(x) := µ̂(p)
I(x)− M̂p − zαn(1 + γ)σ̂Dp,I(x) and

Up(x) := µ̂(p)
I(x) + M̂p + zαn(1 + γ)σ̂Dp,I(x).

Above, µ(p)(x) := dp

dxp
µ(x), E ⊂ X is compact, and αn is a non-increasing sequence

in (0, 1). Also δn(hn) is a positive quantity that turns to 0 as n→∞,

µ̂(p)(x; ξ) :=
n∑
i=1

lp;i(x; ξ)Yi, Dp(x; ξ) :=

√√√√ n∑
i=1

lp;i(x; ξ)2,
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M̂p(ξ) := sup
x∈E

∣∣∣µ̂(p)
I(x; ξ)− µ̂(p)(x; ξ)

∣∣∣ ,
σ̂2 :=

1

2bn/2c

bn/2c∑
i=1

(Y2i − Y2i−1)2.

zαn is not the upper αn quantile of the standard normal distribution but rather is

a number chosen to ensure the desired confidence level and for convenience may be

replaced by its upper bound

√
−2 log

[
1−(1−αn)1/|Gn|

2(J+1)

]
. γ is set to a very small value

(such as 0.05), and Gn denotes a grid on which confidence interval are constructed

prior to linear interpolations to acquire confidence bands[17].

2.3 Methods

We now describe these two approaches in detail. For ease of exposition the first

approach is presented in Sections 1, 2, 3, 4a, and 5a below, while the second is

constituted by Sections 1, 2, 3, 4b, and 5b.

Also, we refer to the units of observation as “subjects”, although they may be

samples of tissue rather than people. To help the reader keep track of notation, we

provide a glossary in Table 2.1.
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Table 2.1: Glossary of notation

Notation Definition
x Raman shift
y(x) Unnormalized Raman spectrum
xi Value of Raman shift for ith observation
y(xi) Value of unnormalized Raman spectrum for ith observation
y∗(x) Normalized Raman spectrum

µ̂(j)(x) Estimated jth derivative of normalized Raman spectrum
c Index of possible diagnoses

µ̂
(j)
c (x) Reference curve j for diagnosis c (average estimated jth derivative of Raman spectra for diagnosis c)
u Symbol to indicate an unknown diagnosis

µ̂
(j)
u (x) Estimated jth derivative for Raman spectrum from unknown diagnosis

ζ̂
(j)
c,u L1 distance between µ̂

(j)
u (x) and µ̂

(j)
c (x)

µ̂
(j)
low,u(x) Lower confidence band of jth derivative for Raman spectrum from unknown diagnosis

µ̂
(j)
up,u(x) Upper confidence band of jth derivative for Raman spectrum from unknown diagnosis
ĉD,j Symbol to indicate inference for an unknown diagnosis based on minimum distance to reference curve j

ρ̂(j)c,u Portion of jth reference curve for diagnosis c inside confidence bands of jth derivative from unknown diagnosis

1A Indicator function, equals 1 when assertion A is true and 0 otherwise
ĉB,j Symbol to indicate inference for an unknown diagnosis based on confidence bands containing reference curve j

ρ̂(j,k)
c,u Portion of jth and kth reference curves for diagnosis c inside respective confidence bands

ĉB,j,k Symbol to indicate inference for an unknown diagnosis based on confidence bands containing reference curves j and k

The column “Definition” refers to a brief definition for each notation.
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Section 1: Normalize the Raman spectra

The data from spectra instruments are often influenced by subtle changes in settings

or conditions and hence are often contaminated by noise[61]. The point of normal-

ization is to adjust for a range of experimental conditions. Suppose that, for each

subject, we observe (xi, y(xi))
n
i=1, where xi denotes a value of the Raman shift and

y(xi) the corresponding value of the Raman spectrum for that subject. For sim-

plicity we make the (usually realistic) assumption that x1, . . . , xn are common to all

subjects (in this study, xi = 686 + 2(i − 1) for i ∈ {1, 2, ..., 548}), although this as-

sumption is not essential to the deployment of our methodology. On the other hand,

y(x1), . . . , y(xn) will vary from subject to subject, both because there are biochemi-

cal variations across different subjects and because different subjects are exposed to

various amounts of radiation. The former source of variation interests us as a means

for distinguishing subjects with cancer from subjects without cancer, but the latter

source is a nuisance that actually impedes making such distinctions. Therefore, we

normalize the Raman spectrum for each subject.

The two normalization schemes considered herein are called “RANGE” and “STDEV”.

The first scheme linearly re-scales each patient’s Raman spectrum so that the mini-

mum value is 0 and the maximum value is 1, which is represented symbolically by

y∗(x) :=
y(x)−min1≤i≤n y(xi)

max1≤i≤n y(xi)−min1≤i≤n y(xi)
.

Above, y∗(x) denotes the normalized Raman spectrum. The second scheme linearly

re-scales each patient’s Raman spectrum so that the mean value is 0 and the standard

deviation is 1, which is represented symbolically by

y∗(x) :=
y(x)− n−1

∑n
i=1 y(x)√

(n− 1)−1
∑n

i=1(y(xi)− n−1
∑n

i=1 y(xi))2
.

Because our data were already centered at 0 (mean 0) for each person, the second

scheme is also equivalent to the “SCALE” method, which represented symbolically
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by

y∗(x) :=
y(xi)√∑n
i=1(y(xi))2

.

Section 2: Estimate the derivatives of the normalized Raman spectra

Since y(x) is only acquired for x in the finite grid {x1, . . . , xn}, y∗(x) as defined in

either normalization scheme is also available only on that same finite grid. Even if we

are willing to assume that the stochastic errors associated with the observations of

y∗(x) are negligibly small (and especially if we are not willing to assume this), we must

employ a statistical smoothing method to estimate y∗(x) for x in the continuum of the

interval [x1, xn]. An naive approach such as calculating difference quotients will have

a large variance and the random noise will be considerably magnified. Furthermore

if the raw data have the spikes, these will be dominant in estimated derivatives using

naive difference quotients; statistical smoothing methods will reduce the distortions

caused by such spikes. Figure 2.1 illustrates this idea.

The statistical smoothing method that we use for this purpose is called com-

pound estimation. Pioneered and described in detail by Charnigo and Srinivasan

(2011), compound estimation has several advantages over its competitors. First, not

only is y∗(x) estimated but so are its derivatives (with respect to x). We let µ̂(j)(x)

denote the estimated jth derivative, where j can in principle be any nonnegative in-

teger; however, in practice attention is often directed to j ≤ 2. The special case

j = 0 refers to estimation of y∗(x); generic use of the symbol j will include that

special case. Second, the estimated derivatives satisfy the “self-consistency” property

that dk

dxk
µ̂(j−k)(x) = µ̂(j)(x) for any k ≤ j. Thus, self-consistency implies a sort of

interchangeability between the processes of estimation and differentiation. While this

seems like a natural requirement for any statistical smoothing method, local regres-

sion (Loader, 1999) and some other statistical smoothing methods do not possess

this property[48]; for some methods, the derivatives of the estimates may not even
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(b) 1st derivative estimate by difference quotients and CE

Figure 2.1: Estimated first derivative using difference quotients and compound estimation.
Panel a are the raw data for Raman intensity level (black dot dashed line) and estimated
mean response by compound estimation(red solid line). Panel b displays first derivative es-
timate by ordinary difference quotients method(black dot dashed line) as well as compound
estimation(red solid line).
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exist. Third, compound estimation enjoys near-optimal convergence rates (Stone,

1980; Stone, 1982)[79][80]. Stone has shown that under regularity conditions the

optimal convergence rate for a collection of estimating derivative functions that has

derivatives of order J + 1 is Op(n
(j−J−1)/(2J+3)) for j ≤ J [79]. The self-consistent

compound estimator and its derivatives achieve a nearly optimal convergence rate of

Op(n
(j−J−1))/(2J+3)+ν) for j ≤ J as shown by Charnigo and Srinivasan [18]. Roughly

speaking, this means that the error in estimating the jth derivative decreases almost

as quickly (in relation to an increasing sample size) as is theoretically possible; more

precisely, µ̂(j)(x) − µ(j)(x) = Op(n
(j−J−1)/(2J+3)+ν) for j ≤ J . Fourth, numerical

studies have demonstrated that compound estimation may recover derivatives sub-

stantially more accurately than local regression or splines (Wahba, 1990)[91], even

when the sample size is modest.

Like any other statistical smoothing method, compound estimation relies on the

selection of tuning parameters to obtain a reasonable compromise between ordinary

linear regression (i.e., drawing a straight line through the data) and interpolation

(i.e., literally connecting the dots)(Figure 2.2). Therefore, we used the generalized

Cp criterion of Charnigo, Hall, and Srinivasan (2011) to select tuning parameters for

compound estimation[16]. This criterion was specifically developed to enhance re-

covery of derivatives and, besides being theoretically justified, compared favorably to

several other criteria in simulation studies assessing the accuracy with which deriva-

tives were recovered.

Section 3: Obtain the reference curves for various diagnoses

We introduce the symbol c as an index of possible diagnoses. More specifically we

identify c = 1 with a normal diagnosis, c = 2 with cancer, c = 3 with fibroadenoma

(“FA”), and c = 4 with fibrocystic change (“FC”). Reference curve j for diagnosis c,

denoted µ̂
(j)
c (x), is defined as the average of µ̂(j)(x) over all subjects known to have

diagnosis c. In a retrospective study, such as the one for which results are presented
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Figure 2.2: Estimated mean response using interpolation, statistical smoothing, and or-
dinary linear regression. Shown are estimated mean responses for Raman intensity level
by interpolation, statistical smoothing, and ordinary linear regression methods. Statistical
smoothing method (here we use compound estimation) as shown by red solid line serves
as a reasonable compromise between interpolation method(blue dashed line) and ordinary
linear regression(black dot dashed line).

herein, all of the subjects’ diagnoses are known. However, in a prospective study

there would be one group of subjects with known diagnoses and another group of

subjects with unknown diagnoses.

Section 4a: Calculate distances from a subject’s estimated derivatives to

the reference curves Consider a specific subject for whom a diagnosis is to be

inferred from the estimated derivatives of her Raman spectrum. In a retrospective

study this can be any subject, and we temporarily “blind” ourselves as to her actual
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diagnosis. (Thus, that subject’s data are temporarily excluded from the calculation of

any reference curves.) In a prospective study this can be any subject whose diagnosis

is unknown. Let the symbol u stand in place of c for this subject, so that µ̂
(j)
u (x)

represents the estimated jth derivative of her Raman spectrum.

For c ∈ {1, 2, 3, 4} and j ∈ {0, 1, 2} we define

ζ̂
(j)
c,u :=

∫ xn

x1

∣∣∣∣µ̂(j)
u (x)− µ̂(j)

c (x)

∣∣∣∣ dx,
which is the L1 distance between the subject’s estimated jth derivative and reference

curve j for diagnosis c. Up to a multiplicative constant determined by the spacing

between successive Raman shifts, which will be irrelevant for our inferential pur-

pose since all the L1 distances ζ̂
(j)
c,u share the same multiplicative constant, which is

|xi+1 − xi|, we may approximate ζ̂
(j)
c,u by

∑n
i=1

∣∣∣∣µ̂(j)
u (xi)− µ̂(j)

c (xi)

∣∣∣∣.
Section 4b: Construct confidence bands for the derivatives of a subject’s

normalized Raman spectrum

The first paragraph in Section 4a still applies, but the second paragraph is replaced

by the following.

Using the method of Charnigo, Hall, and Srinivasan (2013), we create confidence

bands for the jth derivative of the subject’s Raman spectrum; these are denoted

µ̂
(j)
low,u(x) and µ̂

(j)
up,u(x) respectively. Confidence bands generalize the concept of a

confidence interval. While a confidence interval contains a range of values thought

to contain an unknown number, confidence bands define an area in two-dimensional

space thought to contain an unknown curve, in this case the jth derivative of the sub-

ject’s Raman spectrum. At this juncture we remind the reader that this derivative

is unknown and that µ̂
(j)
u (x) is only an estimate. Indeed, the confidence bands are

constructed below and above this estimate in much the same way that a confidence

interval equals an estimate of an unknown number minus and plus some multiple of

the standard error.

Figure 2.3 provides an illustration (with j = 0). The dashed black curves represent
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the confidence bands; the lower dashed curve is µ̂
(j)
low,u(x), and the upper dashed curve

is µ̂
(j)
up,u(x). The solid blue curve is µ̂

(j)
1 (x) (reference curve for a normal diagnosis),

while the dot dashed green curve is µ̂
(j)
2 (x) (reference curve for a cancer diagnosis).

Further explanation of Figure 2.3 appears in Section 5b below.

Section 5a: Infer a diagnosis by minimizing distance to a reference curve
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Figure 2.3: Simultaneous confidence bands for mean responses of Raman spectra. Shown
are estimated mean response reference curve for a normal diagnosis (blue solid curve),
reference curve for a cancer diagnosis(green dot-dashed curve) and a confidence bands of
subject to be diagnosed(gray dashed curve). “X” symbols identify two of the locations
where the reference curve for cancer diagnosis lies outside the confidence bands for subject
to be diagnosed. On the other hand, the reference curve for normal diagnosis lies entirely
within the confidence bands.
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Having obtained (discrete approximations to) ζ̂
(j)
c,u for c ∈ {1, 2, 3, 4}, we infer the

unknown diagnosis to be the minimizer

ĉD,j := arg min
c∈{1,2,3,4}

ζ̂
(j)
c,u.

In words, the unknown diagnosis is guessed to be the one whose jth reference curve is

closest (in the sense of L1 distance) to the subject’s estimated jth derivative as shown

by Figure 2.4. The notation ĉD,j indicates the dependence of this inference both on

the approach used (“D” for minimizing distance) and the derivative considered (“j”

for the jth derivative).

Section 5b: Infer a diagnosis by capturing a reference curve inside confi-

dence bands Consider again Figure 2.3.

The jth reference curve for a normal diagnosis (blue solid curve) lies entirely within

the confidence bands for the jth derivative of the subject’s Raman spectrum (gray

dashed curves), while the reference curve for a cancer diagnosis (green dot-dashed

curve) breaches the confidence bands in multiple locations; two such locations are

identified with “X” symbols. This suggests that a normal diagnosis is consistent with

the subject’s data, while a cancer diagnosis is not.

The situation in Figure 2.3 is rather idealized, however. FA and FC were excluded

for simplicity, but in reality we have to consider these possibilities. What if the confi-

dence bands had contained both reference curves, or if the confidence bands had been

breached by both reference curves ? One might try to remove either contingency by

adjusting the confidence level lower (e.g., from 95% to 90%) in the former instance

to obtain narrower confidence bands or higher (e.g., from 95% to 99%) in the lat-

ter instance to obtain wider confidence bands. Unfortunately, confidence bands are

more complicated than ordinary confidence intervals in that their length is influenced

not only by the confidence level but also by an additive adjustment that accounts

for their construction over a continuum such as the interval [x1, xn]. Therefore, we

instead proceed as follows.
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(b) First derivative estimate by CE

Figure 2.4: Estimated curves for mean responses and first derivatives by CE. Shown are
estimated mean responses(Panel a) and first derivatives (Panel b) for Raman intensity level
of reference curve for a normal diagnosis (black solid curve), reference curve for a cancer
diagnosis(green dot dashed curve) and a curve of subject to be diagnosed(red dashed curve).
A normal diagnosis is consistent with the subject’s data because the curve of subject is closer
to the reference curve to the normal reference curve with respect to both mean responses
and first derivatives.
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Let

ρ̂(j)
c,u := n−1

n∑
i=1

1
µ̂
(j)
low,u(xi)<µ̂

(j)
c (xi)<µ̂

(j)
up,u(xi)

,

where 1A denotes an indicator function that equals 1 when the assertion A is true

and 0 otherwise. In words, this is a discrete approximation to the fraction of the

continuum [x1, xn] over which the jth reference curve for diagnosis c falls within the

confidence bands. We can infer the unknown diagnosis to be the maximizer

ĉB,j := arg max
c∈{1,2,3,4}

ρ̂(j)
c,u.

Thus, the unknown diagnosis is guessed to be the one whose jth reference curve is

most contained in the confidence bands for the jth derivative of the subject’s Raman

spectrum. The notation ĉB,j indicates the dependence of this inference both on the

approach used (“B” for confidence bands) and the derivative considered. If there is

a “tie” (in particular, if multiple reference curves fall entirely inside the confidence

bands), then the unknown diagnosis is inferred to be that which is more prevalent

among all of the subjects with known diagnoses. Table 2.2 provides a hypothetical

example. There is a tie between diagnosis “2” and “4”, so we choose “4” due to

higher prevalence.

In addition, the confidence bands approach allows multiple derivatives to be

Table 2.2: A hypothetical example showing how to solve a “tie” problem

Diagnosis ρ̂ Prevalence

1 0.98 0.3
2 1 .2
3 0.84 0.1
4 1 .4

considered simultaneously in a way that is not possible with the minimum distance
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approach. More specifically, let

ρ̂(j,k)
c,u := n−1

n∑
i=1

1
µ̂
(j)
low,u(xi)<µ̂

(j)
c (xi)<µ̂

(j)
up,u(xi) and µ̂

(k)
low,u(xi)<µ̂

(k)
c (xi)<µ̂

(k)
up,u(xi)

.

This is a discrete approximation to the fraction of the continuum [x1, xn] over which

both the jth and kth reference curves for diagnosis c fall within the respective confidence

bands. Again, we can infer the unknown diagnosis to be the maximizer

ĉB,j,k := arg max
c∈{1,2,3,4}

ρ̂(j,k)
c,u,

and we may break a “tie” based on prevalence.

In principle this idea generalizes to any number of derivatives(i.e., consider 0, 1,

and 2 together).

2.4 Results

To illustrate and evaluate the two approaches described in the Methods section, we

applied them to Raman spectrum data originally considered by Haka et al (2005).

The data were de-identified Raman spectra from 124 ex vivo samples of human breast

tissue, which we regard as “subjects” in the language of the Methods section. Among

the 124 samples, 47 were normal, 31 were cancerous, 15 exhibited fibroadenoma

(“FA”), and 31 exhibited fibrocystic change (“FC”). The use of these data for the

present study was cleared by the University of Kentucky’s Institutional Review Board.

Table 2.3 provides the correct classification rates overall and within each diagnosis,

using both approaches. More specifically, the minimum distance approach was applied

with j = 0, j = 1, and j = 2, using both the RANGE and the STDEV normalizations.

The confidence bands approach was applied with j = 0, j = 1, and (j, k) = (0, 1),

again using both the RANGE and the STDEV normalizations. The intersection in

Table 2.3 indicates both the reference curves for mean response and the first derivative

are considered simultaneously. The confidence bands approach was not applied with
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j = 2 because the confidence bands for 2nd derivatives would be uninformative due

to their extremely large widths.

All normal tissues (47 out of 47) were correctly classified, and most FA tissues

(between 11 and 14 out of 15) were also correctly classified. However, cancer and

FC tissues proved more difficult. The confidence bands approach with (j, k) = (0, 1)

using the STDEV normalization was most successful overall (92 out of 124) and with

cancer tissues (22 out of 31), while the minimum distance approach with j = 2 using

either normalization fared best with FC tissues (14 out of 31).

Table 2.4 displays results from an alternate analysis in which only two diagnoses

were permitted (normal and abnormal). In effect this grouped together the cancer,

FA, and FC tissues. Several approach and normalization combinations yielded an

overall correct classification rate of 114 out of 124, with 10 FC tissues misclassified

as normal.

Additional findings appear in Tables 2.5 and 2.6. The former displays results

from an alternate analysis in which only three diagnoses were permitted (normal,

cancer, and non-cancer abnormal), with the overall best performer being the minimum

distance approach with j = 2 using the RANGE normalization (94 out of 124). The

latter displays results from an alternate analysis in which the normal tissues were

set aside, with the overall best performer being the confidence bands approach with

(j, k) = (0, 1) using the STDEV normalization (54 out of 77).

2.5 Discussion

In this chapter, we have applied compound estimation(Charnigo and Srinivasan, 2011)

and simultaneous confidence bands(Charnigo, Hall and Srinivasan, 2013) in the anal-

ysis of Raman spectra to classify different types of breast tissues including normal,

fibroadenoma(FA), fibrocystic change(FC) and cancer. Different ways of classifica-

tions are used involving two normalization schemes and two strategies for choosing
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Table 2.3: Raman spectra diagnosis results for four different types of tissues

Different Methods Normal Cancer FA FC Total Correct
(out of 47) (out of 31) (out of 15) (out of 31) (out of 124)

MD1
µ0 47 16 14 6 83

(100%) (51.6%) (93.3%) (19.4%) (66.9%)
µ1 47 19 12 10 88

(100%) (61.3%) (80.0%) (32.4%) (71.0%)
µ2 47 15 13 14 89

(100%) (48.4%) (86.7%) (45.2%) (71.8%)

MD2
µ0 47 19 14 7 87

(100%) (61.3%) (93.3%) (22.6%) (70.2%)
µ1 47 19 12 8 86

(100%) (61.3%) (93.3%) (22.6%) (70.2%)
µ2 47 15 13 14 89

(100%) (48.4%) (86.7%) (45.2%) (71.8%)

Band1
µ0 47 18 13 6 84

(100%) (58.1%) (86.7%) (19.4%) (67.7%)
µ1 47 1 11 7 66

(100%) (3.2%) (73.3%) (22.6%) (53.2%)
Intersection 47 15 14 6 82

(100%) (48.4%) (93.3%) (19.4%) (66.1%)

Band2
µ0 47 21 13 9 90

(100%) (67.7%) (86.7%) (29.0%) (72.6%)
µ1 47 1 13 7 68

(100%) (3.2%) (86.7%) (22.6%) (54.8%)
Intersection 47 22 14 9 92

(100%) (71.0%) (93.3%) (29.0%) (74.2%)

We use MD and Band as abbreviations for Minimum distance method and Confidence
band method respectively. Indices 1 and 2 refer to the first and second normalization
methods respectively. Rows labeled µj indicate diagnosis based on derivatives of
order j. Entries are numbers(and percentages) of subjects correctly diagnosed.

the optimal diagnosis.

One strategy is based on the minimum L1 distance between a patient’s curve and

a reference curve, while the other is based on maximum proportion of a reference

curve falling within the confidence bands surrounding a patient’s curve. We consider

not only the mean response, but also the derivatives of the Raman intensity level. In

addition, by using compound estimation, we can achieve the self consistency property

that the derivatives of the estimator estimate the derivatives of the mean response.

Simultaneous confidence bands can achieve a specified coverage probability for more

than one derivative at a time, which provides a natural way for multiple derivatives
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Table 2.4: Raman spectra diagnosis results for normal and abnormal tissues

Normal Abnormal
Different Methods (out of 47) Cancer FA FC Total abnormal Total Correct

(out of 31) (out of 15) (out of 31) (out of 77) (out of 124)

MD1
µ0 47 31 15 21 67 114

(100%) (100%) (100%) (67.7%) (87.0%) (91.9%)
µ1 47 31 15 21 67 114

(100%) (100%) (100%) (67.7%) (87.0%) (91.9%)
µ2 47 25 15 19 59 106

(100%) (80.6%) (100%) (61.2%) (76.6%) (85.5%)

MD2
µ0 47 31 15 21 67 114

(100%) (100%) (100%) (67.7%) (87.0%) (91.9%)
µ1 47 31 15 21 67 114

(100%) (100%) (100%) (67.7%) (87.0%) (91.9%)
µ2 47 29 15 20 64 111

(100%) (93.5%) (100%) (64.5%) (83.1%) (89.5%)

Band1
µ0 47 31 15 21 67 114

(100%) (100%) (100%) (67.7%) (87.0%) (91.9%)
µ1 47 27 15 18 60 107

(100%) (87.1%) (100%) (58.1%) (77.9%) (86.3%)
Intersection 47 31 15 21 67 114

(100%) (100%) (100%) (67.7%) (87.0%) (91.9%)

Band2
µ0 47 31 15 21 67 114

(100%) (100%) (100%) (67.7%) (87.0%) (91.9%)
µ1 47 30 15 19 64 111

(100%) (100%) (100%) (61.3%) (83.1%) (89.5%)
Intersection 47 31 15 21 67 114

(100%) (100%) (100%) (67.7%) (87.0%) (91.9%)

We use MD and Band as abbreviations for Minimum distance method and Confidence
band method respectively. Indices 1 and 2 refer to the first and second normalization
methods respectively. Rows labeled µj indicate diagnosis based on derivatives of
order j. Entries are numbers(and percentages) of subjects correctly diagnosed.

to be used simultaneously in the diagnosis of breast tissue.

Different classification schemes are presented including “normal” vs “abnormal”,

“normal” vs “cancer” vs “abnormal benign”, finer classification of “abnormal” into

three types “cancer” vs “FA” vs “FC”, and finer classification into four types as Haka

et al(2005) showed in their work.

Our results indicate there is only a slight difference among the two normalization

schemes “RANGE” and “STDEV”. Under the strategy of minimum distance, using

derivatives may in some cases yield better results than employing the mean response,

while using the mean response (or using both the mean response and the first deriva-

tive simultaneously) can yield better results than using the first derivative if applying

confidence bands method. Additionally, the derivatives mostly yield better results
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Table 2.5: Raman spectra diagnosis results for normal, cancer and abnormal non cancer
tissues

Different Methods Normal Cancer FA/FC Total Correct
(out of 47) (out of 31) (out of 46) (out of 124)

MD1 µ0 47 23 6 76
(100%) (74.2%) (13.0%) (61.3%)

µ1 47 19 23 89
(100%) (61.3%) (50%) (71.8%)

µ2 47 20 27 94
(100%) (64.5%) (58.7%) (75.8%)

MD2 µ0 47 19 22 88
(100%) (61.3%) (47.8%) (71.0%)

µ1 47 19 22 88
(100%) (61.3%) (47.8%) (71.0%)

µ2 47 19 26 92
(100%) (64.5%) (56.5%) (74.2%)

Band1 µ0 47 18 11 76
(100%) (58.1%) (23.9%) (61.3%)

µ1 47 3 25 75
(100%) (9.7%) (54.3%) (60.5%)

Intersection 47 24 10 81
(100%) (77.4%) (66.7%) (65.3%)

Band2 µ0 47 13 25 85
(100%) (41.9%) (54.3%) (68.5%)

µ1 47 2 26 75
(100%) (6.5%) (56.5%) (60.5%)

Intersection 47 19 22 88
(100%) (61.3%) (54.3%) (71.0%)

We use MD and Band as abbreviations for Minimum distance method and Confidence
band method respectively. Indices 1 and 2 refer to the first and second normalization
methods respectively. Rows labeled µj indicate diagnosis based on derivatives of
order j. Entries are numbers(and percentages) of subjects correctly diagnosed.
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Table 2.6: Raman spectra diagnosis results for cancer, FA and FC tissues

Different Methods Cancer FA FC Total Correct
(out of 31) (out of 15) (out of 31) (out of 77)

MD1 µ0 16 14 16 46
(51.3%) (93.3%) (51.6%) (59.7%)

µ1 19 12 20 51
(61.3%) (80.0%) (64.5%) (66.2%)

µ2 15 13 24 52
(48.4%) (86.7%) (77.4%) (67.5%)

MD2 µ0 19 14 17 50
(61.3%) (93.3%) (54.8%) (64.9%)

µ1 19 12 18 49
(61.3%) (80.0%) (58.1%) (63.6%)

µ2 15 13 24 52
(48.4%) (86.7%) (77.4%) (67.5%)

Band1 µ0 18 13 16 47
(58.1%) (86.7%) (51.6%) (61.0%)

µ1 2 11 22 35
(6.5%) (73.3%) (71.0%) (45.5%)

Intersection 15 14 16 45
(48.4%) (93.3%) (51.6%) (58.4%)

Band2 µ0 17 13 19 49
(54.8%) (86.7%) (61.3%) (63.6%)

µ1 2 11 21 34
(6.5%) (73.3%) (67.7%) (44.2%)

Intersection 22 14 18 54
(71.0%) (93.3%) (58.1%) (70.1%)

We use MD and Band as abbreviations for Minimum distance method and Confidence
band method respectively. Indices 1 and 2 refer to the first and second normalization
methods respectively. Rows labeled µj indicate diagnosis based on derivatives of
order j. Entries are numbers(and percentages) of subjects correctly diagnosed.
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with the minimum distance approach than the confidence bands approach. However,

neither the minimum distance approach nor the confidence bands approach yielded

as high a correct classification rate as the methodology by Haka et al (2005). This

can be explained by two possible reasons.

First, the methodology by Haka et al (2005) related the Raman spectra for pa-

tients to the Raman spectra for the biochemical constituents of breast tissue, whereas

the approaches considered here did not exploit any knowledge of biochemistry. Sec-

ond, Haka et al (2005) did not normalize the patients’ Raman spectra but rather the

coefficients by which the patients’ Raman spectra were related to the biochemical

constituents of breast tissue. The RANGE and STDEV normalizations appear too

simple and may have discarded some information that may have been useful for diag-

nosis. For instance, normal patients’ Raman spectra have greater intensity/amplitude

than abnormal patients’ Raman spectra, but this information is discarded when each

patient’s Raman spectrum is constrained to lie between 0 and 1 as in the RANGE

normalization. Although the normal patients were quite readily distinguished by the

shapes of the Raman spectra, a similar principle may have applied in the comparison

of cancer patients to benign abnormal patients. In other words, benign abnormal and

cancer patients may have had spectra with similar shape but different amplitude, in

which case a RANGE normalization would erase much of the distinction.

For further research, one possible improvement could be to enhance the minimum

distance approach and the confidence bands approach by either exploiting knowledge

of biochemistry or using a more sophisticated normalization. Also we can poten-

tially improve the prediction accuracy by incorporating advanced statistical learning

approaches such as “Stacking” or “Boosting”. “Stacking” entails constructing ensem-

bles of heterogeneous classifiers to combine individual predictions and outperforms

selecting the best classifier[22], while “Boosting” uses a set of weak learners to create

a single strong learner[70]. Stacking is historically one of the first ensemble learning
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methods (combination of classifier) to improve classification accuracy[95]. It com-

bines several base classifiers by means of a “meta - classifier” and shows excellent

performance in many practical studies[46]. In Boosting, examples that are incor-

rectly predicted by previous classifiers in the series are weighted more heavily than

examples that were correctly predicted. Thus Boosting attempts to produce new

classifiers that are better able to predict examples for which the current ensemble’s

performance is poor.

However, existing approaches to Boosting and Stacking assume that inputs are

known and attempt to relate inputs to noise-corrupted or otherwise distorted out-

puts. In Raman spectroscopy and other inverse problems, the inputs themselves are

unknown and the object is to infer the inputs from noise-corrupted or otherwise dis-

torted outputs. For instances, an output could be a patient’s breast cancer diagnosis

while the corresponding output could be the patient’s Raman spectrum. Hence, our

work in succeeding chapters is not merely to apply existing approaches but to modify

them for use in inverse problems.
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Chapter 3 Stacking for Nonparametric Regression

3.1 Background

Stacked generalization, also called stacking (Wolpert, 1992), is the most well-known

meta-learning method[95]. Breiman translated it into statistical language for the or-

dinary regression setting in 1993[8]. The idea is to combine predicted classifications

from different classifiers into a new data set, and then employ a second-stage learn-

ing algorithm based on this new data set to improve the prediction of classification.

Although this process as a whole can be iterated to obtain multiple level stacking,

we will consider two levels of stacked generalization for now and describe its mathe-

matical algorithm as specified by Ting and Witten(1999)[85].

Figure 3.1 illustrates this stacking framework. It comprises two levels: level-0

(with cross-validation) and level-1. Suppose the input is a dataset L = (yn, xn),

n = 1, ..., N with N entries, each standing for an observation. In each entry, yn is

the class value while xn is a vector of the attribute values. Now we randomly di-

vide the dataset L into J partitions as L1, ..., LJ , each with almost equal length. At

level-0, in using J-partitioned cross-validation, we denote Lj as the jth partition and

L(−j) = L− Lj. They will be used as test and training sets respectively. We choose

K learning algorithms as level-0 generalizers so that the level-0 models M
(−j)
k , for

k = 1, ..., K, are produced by applying the kth algorithm on the data of L(−j). Some

examples of level 0 generalizers include linear discriminant analysis, logistic regres-

sion, decision trees, neural networks, Naive Bayesian(NB), nearest neighbor, Support

Vector Machines and so on[66].

Let zkjn denote the resulting prediction of the modelM
(−j)
k on xjn, the nth instance

in the test set Lj. The output of the level-0 process is the level-1 data (L
′
CV ) that is
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L=( yn , xn ) , n=1, ... , NInput
Divide randomly

L1 L2 L j LJ... ...

M 1

M k

M K

...

...

L(−1)

Level 0

L1
'

Level 1

L j
' LJ

'L2
'

... ...

LCV
'

=( y jn , z jn) , n=1, ... , N j ; j=1,. .. , J

M̃

Figure 3.1: Stacking framework illustrating the two levels of model training. In level 0, L1

and L(−1), defined by a random partition of input dataset L, are used as an example to
show a typical cross validation to obtain level 1 data. In level 1, z is a vector containing
the outputs from different models Mk used in level 0. M̃ is the level 1 model built from
level 1 data L

′
CV using a level 1 generalizer.
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assembled from the outputs of the above K models:

L
′

CV = (yjn, z1jn, . . . , zKjn), n = 1, . . . , Nj; j = 1, . . . , J.

From level-1 data (L
′
CV ) we use some learning algorithm, the level-1 generalizer,

to derive a model M̃ for y as a function of (z1, ..., zK), the level-1 model. Level-1

generalizer can be the same as level-0 generalizers. Several level-1 generalizers such

as NB, multi-response linear regression algorithm, meta decision trees (MDTs) have

been used[85][53]. To complete the training process, the ultimate level-0 models

Mk, k = 1, ..., K should be constructed using all data in L; these will be used to

classify any new instance that may arise.

Next, let us consider the classification process using the previous induced models

Mk, k = 1, ..., K along with M̃ . Given a new observation, models Mk produce a vector

(z1, ..., zK). The final classification result for that observation could be obtained by

using the level-1 model M̃ on the vector (z1, ..., zK).

It is recommended that using class probabilities from base classifiers rather than a

single class prediction could improve stacking performance[85]. Ensembles of diverse

base-level classifiers are known to reduce multicollinearity and yield good perfor-

mance [52]. Merz (1999) proposes SCANN (Stacking, Correspondence Analysis and

Nearest Neighbor) that combines correspondence analysis into stacking to remove cor-

relations between base-level classifiers[53]. StackingC (Seewald, 2002), a variant of

stacking, is proposed to perform well in both binary class and multi-class problem[74].

Meta-decision trees (MDTs) were first implemented into stacking by Todorovski and

Dzeroski and claimed to perform better than stacking with ordinary decision tress[86].

However, the previous work has been mainly focused on the computing implemen-

tation of stacking, and improved accuracy was only justified by reducing classification

error rate from a collection of datasets. We, too, will examine our methodology using

a collection of datasets. However, we will also provide some theoretical rationale for

our methodology.
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The rest of this Chapter will be organized as follows. In section 2, we will establish

a probabilistic framework for convex combination of nonparametric regression based

classifiers employing the minimum distance methods described in Chapter 2 with il-

lustration in Raman spectroscopy data. In section 3, we will theoretically justify the

asymptotic properties of a stacked generalizer based on exponentially weighted vote in

the two step sequential classifications. In section 4, we will perform simulations using

an artificial waveform data set acquired from the UCI Machine Learning Repository

to show the performance of stacking under different noise levels[2]. Finally, in section

5, we will summarize the major findings and discuss the implications of stacking in

classification problems.

3.2 Probability framework for convex combination of base classifiers

In this section, we establish a probability framework for convex combination of base

classifiers with the aim to investigate whether combination of base classifiers would

perform better than a single classifier alone. Convex combination is a linear com-

bination which requires the coefficients to sum to 1, and that these coefficients are

non-negative. In a simple case when there are two classifiers, convex combination

h(x) has the form h(x) = λh1(x) + (1 − λ)h2(x), while 1 ≥ λ ≥ 0, h1(x), h2(x) are

two classifiers to be combined.

Recall we have generated a group of classifiers employing minimum distance ap-

proach in Chapter 2 defined as the minimizer

arg min
c∈{1,2,3,4}

n∑
i=1

∣∣∣∣µ̂(j)
u (xi)− µ̂(j)

c (xi)

∣∣∣∣
for c ∈ {1, 2, 3, 4} and j ∈ {0, 1, 2} based on L1 distance.

This is similar to the minimizer based on L2 distance:

arg min
c∈{1,2,3,4}

n∑
i=1

{µ̂(j)
u (xi)− µ̂(j)

c (xi)}2
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for c ∈ {1, 2, 3, 4} and j ∈ {0, 1, 2}.

Since the estimators from compound estimation are linear in the observed re-

sponses, we could write µ̂
(j)
u (xi) in the form µ̂

(j)
u (x) := L(j)(x)Y , where Y denotes

the observed spectrum for a sample of unknown diagnoses u. Suppose the reference

curves are known, and that the Raman intensity level Yi given the Raman spectrum

truly belongs to c denoted as Yi|c follows Yi|c := µc(xi) + εi with εi ∼ N(0, σ2) for

c ∈ {1, 2, 3, 4}, the classifier that whether a breast sample tissue being classified as

invasive carcinoma (for example: c = 4) based on minimum L2 distance approach

from compound estimation for mean response or derivative can be defined as

hj(Y ) = 1∀s∈{1,2,3}:∑ 2(L(j)Y )i(µsi−µ4i)<
∑

(µ2si−µ24i),

which represents the classifier from compound estimation for mean response or first

derivative respectively when j = 0 or j = 1.

Therefore, given a Raman spectrum truly belongs to cancer c = 4, we have
(2(µ1 − µ4)TL(j)

(2(µ2 − µ4)TL(j)

(2(µ3 − µ4)TL(j)

Y ∼

N




2(µ1 − µ4)TL(j)

2(µ2 − µ4)TL(j)

2(µ3 − µ4)TL(j)

µ4, 4σ
2


(µ1 − µ4)TL(j)

(µ2 − µ4)TL(j)

(µ3 − µ4)TL(j)




(µ1 − µ4)TL(j)

(µ2 − µ4)TL(j)

(µ3 − µ4)TL(j)


T

for j ∈ {0, 1}.

Suppose we have two classifiers, such as indicator functions h0(Y ) and h1(Y )

defined above based on minimum L2 distance approach from mean response and its

derivative. There are two scenarios for convex combination of the two classifiers.

One obvious way is to define h(Y ) = αh0(Y )+(1−α)h1(Y ). In this case, we have
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the following conclusions:

P (h(Y ) = 0|c) = P (h0(Y ) = 0 ∩ h1(Y ) = 0|c)

P (h(Y ) = α|c) = P (h0(Y ) = 1 ∩ h1(Y ) = 0|c)

P (h(Y ) = 1− α|c) = P (h0(Y ) = 0 ∩ h1(Y ) = 1|c)

P (h(Y ) = 1|c) = P (h0(Y ) = 1 ∩ h1(Y ) = 1|c),

for c ∈ {1, 2, 3, 4}.

Under assumption of Yi|c := µc(xi) + εi with εi ∼ N(0, σ2) for c ∈ {1, 2, 3, 4}, the

probability P (h(Y ) = j|c) for j ∈ {0, α, 1− α, 1} is a function of σ2, and can be cal-

culated by way of multinomial distribution. Table 3.1 shows probability calculations

under different σ2 given the Raman spectrum truly belongs to c.

When σ2 is very small, for instance, σ2 = 0.0001, there is no difference for the

two classifiers for all pathologies to be classified into; indeed, all classifications are

correct. However, as expected, the probability of correct classification by both classi-

fiers will become lower as σ2 increases (such as increasing from 0.01 to 0.1). Also, the

impacts of σ2 on the probabilities are different when classifying different pathologies.

For example, it might be easier to make correct classifications for both classifiers

when classifying normal than fibroadenoma if σ2 = 0.01 (P (h(Y ) = 1|c) = 1 for

normal(c=1), and P (h(Y ) = 1|c) = 0.684 for fibroadenoma(c=3)). Moreover, we can

infer from P (h(Y ) = α|c) and P (h(Y ) = 1− α|c) that if σ2 = 0.1, the classifier from

compound estimation for mean response curve is more likely to make correct classifi-

cation than the classifier from compound estimation for first derivative. However, an

obvious difficulty with the preceding scheme is what decision to make if h0(Y ) and

h1(Y ) disagree. The results suggest we may defer to h0(Y ), but then we do not really

take into account h1(Y ).

This motivates consideration of a second scenario in which the indicator conditions
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Table 3.1: Probability calculation for P (h(Y ) = j|c) under different σ2

P (h(Y ) = j|c) σ2 j = 0 j = α j = 1− α j = 1

c=1(N)

0.0001 0 0 0 1
0.001 0 0 0 1
0.01 0 0 0 1
0.1 0 0.022 0 0.978

c=2(FC)

0.0001 0 0 0 1
0.001 0 0 0 1
0.01 0 0 0 1
0.1 0.012 0.175 0.015 0.798

c=3(FA)

0.0001 0 0 0 1
0.001 0 0.065 0 0.935
0.01 0 0.316 0 0.684
0.1 0.036 0.431 0.012 0.521

c=4(C)

0.0001 0 0 0 1
0.001 0 0 0 1
0.01 0 0.097 0 0.903
0.1 0.036 0.352 0.029 0.583

Entries are probabilities of P (h(Y ) = j|c) for j ∈ {0, α, 1− α, 1} and c ∈ {1, 2, 3, 4}.
j represents the value of convex combination h(Y ) of two classifiers h0(Y ) and h1(Y ).
If j = 0, both the two classifiers make mistake, while both classifier are correct if
j = 1. When j = α, only the classifier h0(Y ) is correct, while if j = 1 − α, only
h1(Y ) is correct. c denotes the true pathology type, with 1, 2, 3, 4 represent normal,
fibrocystic change, fibroadenoma, and invasive carcinoma, respectively .

are convexly combined rather than the indicators themselves:

h(Y ) = 1∀s∈{1,2,3}:α∑
2(L(0)Y )i(µsi−µ4i)+(1−α)

∑
2(L(1)Y )i(µsi−µ4i)<

∑
(µ2si−µ24i).

Here, we can choose weight α to maximize P (h(Y ) = 1|c), and this will not (in gen-

eral) be equivalent to using h0(Y ).

Figure 3.2 illustrates this idea. It is shown that, for invasive carcinoma, maxi-

mization of the probability of making a correct prediction could be achieved when the

weight 1− α falls between 0 and 1, more specifically when 1− α ≈ 0.25(σ2 = 0.01).

However, for normal tissue, choosing α = 0 appears best. Overall, it is most likely

to make correct classification for normal among all pathology types. The pattern of

likelihood of correct classifications for different pathology types differs for different

49



0.0 0.2 0.4 0.6

0
.4

0
.5

0
.6

0
.7

0
.8

σ2 = 0.1

1 − α

C
o

rr
e

ct
 C

la
ss

ifi
ca

tio
n

 R
a

te Normal
FC
FA
Cancer

0.0 0.2 0.4 0.6

0
.7

0
0

.8
0

0
.9

0
1

.0
0 σ2 = 0.01

1 − α

C
o

rr
e

ct
 C

la
ss

ifi
ca

tio
n

 R
a

te

Normal
FC
FA
Cancer

Figure 3.2: Correct classification probability by convex combination h(Y ) vs weight 1− α
in the 2nd scenario

σ2. For example, fibroadenoma is least likely to be correctly classified by h(Y ) if

σ2 = 0.1, while it is not this case if σ2 = 0.01. Also, as σ2 decreases from 0.1 to 0.01,

the correct classification probability by convex combination of indicator conditions

increases for all pathology types.

To sum up, in the second scenario for defining h(Y ) considered above, we can

conclude that combination of base classifiers could perform better than a single

classifier alone for most pathological types using Raman spectra data. And the

weight for h0(Y ) should generally be chosen larger than that for h1(Y ) assuming

that Yi|c := µc(xi) + εi with εi ∼ N(0, σ2) for c ∈ {1, 2, 3, 4}.

However, there are some limitations for these convex combinations. First of all,

the probability of correct classification depends on σ2. Since σ2 is an unknown pa-

rameter, it is difficult to estimate the probability in practice, and this makes the

choice of optimal weight more difficult. Further, the assumption of homoscedasticity
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for σ2 may not be true in real situations. This may be part of the reason why the

classifier based on compound estimation for first derivative generates better results

than mean response shown in Chapter 2, while under homoscedasticity assumption,

the probability of making correct classification from mean response h0(Y ) is generally

higher than from first derivative h1(Y ), and should be weighted more than h1(Y ) in

the second scenario. In addition, the preceding assumes independent errors and ad-

ditive normally distributed errors which may not be realistic. Finally, the true µc(x)

was unknown and estimated by the average of the curves for each pathology type,

which might contain some error. Therefore we will explore a more flexible method for

stacking of base classifiers in section 3.3, in that strong assumptions on the nature of

the data are not required.

3.3 Performance for ensemble classifiers

Freund, Mansour and Schapire (2004) proposed a weighted average vote of base clas-

sifiers for binary classification learning which can be applied to any type of base

classifiers[25]. Specifically, suppose the predicted outcome C ∈ {+1,−1}, and let H

be a fixed class of hypotheses (also called base classifiers), mappings from Y to C. In

this weighted average algorithm, each base classifier is weighted exponentially with

respect to its training error. The weight is defined as whi := exp(−ηε̂hi), where ε̂hi is

the training error of base classifier hi; η = ln(8|H|)m1/2−θ, in which |H| is the number

of base classifiers, m is the size of training data, and 0 < θ < 1
2
. Let

l̂η(Y ) =
1

η
ln

(∑
h,h(Y )=+1w(h)∑
h,h(Y )=−1w(h)

)
,

the weighted average prediction is defined to be sign(l̂η(Y )) if |l̂η(Y )| > ∆.

Moreover, the authors have claimed that overfitting could be avoided by allowing

the algorithm to abstain from predicting some instances with output “no prediction”,

which occurs when |l̂η(Y )| ≤ ∆. Through the authors’ theoretical justification, the
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probability that this classifier makes an error when it does not abstain is at most

2ε+ Õ(1/
√
m), where ε is the smallest classification error among the base classifiers,

and Õ indicates an approximation that neglects tuning parameter θ and an additional

reliability parameter δ. Further, the probability that the classification rule will output

“no prediction” is upper bounded by 5ε + Õ(ln(|H|)/
√
m). Note that 2ε and 5ε are

worst case scenarios; correct classification is often better than for any base classifier.

Now we are establishing theoretical results showing a justification of sequentially

applying such a weighted average algorithm; suppose there are four categories and

we perform classification in 2 steps.

Let C denote different categories to be classified into, and C ∈ {1, 2, 3, 4}. In the

first step classification, we combine {1, 2} as one group denoted as +1, and the rest

{3, 4} as the other group denoted as −1. Let g1 denote the first step classification,

so we have g1 ∈ {+1,−1}.

In the second step classification, we separate class 1 from class 2 in the first group,

and separate class 3 from class 4 in the second group, respectively, based on results

from first step classification. Let g2(+1) denote the second step prediction separating

class 1 denoted as +1 from class 2 denoted as −1, so we have g2(+1) ∈ {+1,−1}. In

the same way, let g2(−1) denote the second step prediction separating class 3 denoted

as +1 from class 4 denoted as −1, so we have g2(−1) ∈ {+1,−1}.

Figure 3.3 shows an illustration of multiclass prediction matching {g1, g2g1} to C

for a four class problem.

Notations and definition of the algorithm

Let D be a fixed but unknown distribution over (Y, C) pairs. Suppose H is a fixed

class of hypotheses mapping from Y to {g1, g2g1}, corresponding to C. Each hypoth-

esis h comprises two stage estimators {h1(Y ), h2(h1)(Y )}. We denote the true error
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Figure 3.3: Two stage multiclass prediction for a four class problem

of a hypothesis h in the first and second stage classification by ε(h1) and ε(h2(k)),

respectively. Then we have

ε(h1) := Pr
(Y,C)∼D

[h1(Y ) 6= g1]

and

ε(h2(k)) := Pr
(Y,C)∼D

[h2(h1)(Y ) 6= g2|h1(Y ) = g1 = k]

for k ∈ {+1,−1}. Suppose ζ(h) is the probability of a hypothesis h classifying as +1

given a correct classification in the first tep: ζ(h) := Pr(Y,C)∼D[h1 = g1 = +1|h1 = g1],

the total error of a hypothesis is

ε(h) = ε(h1) + (1− ε(h1))ζ(h)ε(h2(+1))

+ (1− ε(h1))(1− ζ(h))ε(h2(−1)).

Let m be the sample size, and |H| be number of base classifiers. The estimated

errors for ε(h1) and ε(h2(k)) are defined by

ε̂(h1) =
1

m

m∑
i=1

1{h1(Yi)6=gi1}

and

ε̂(h2(k)) =

∑m
i=1 1{h2(Yi) 6=gi2gi1∩hi1=gi1=k}∑m

i=1 1{hi1=gi1=k}
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for k ∈ {+1,−1}.

For each hypothesis h, there are three weights defined as

w1(h) := exp(−η1ε̂(h1))

w2(+1)(h) := exp(−η2(+1)ε̂(h2(+1)))

w2(−1)(h) := exp(−η2(−1)ε̂(h2(−1)))

The prediction on a new instance is based on a combination of two stage estimators

{l̂1(Y ), l̂2sign(l̂1(Y ))(Y )}, where

l̂1(Y ) =
1

η1

ln

(∑
h,h1(Y )=+1w1(h)∑
h,h1(Y )=−1w1(h)

)
.

and

l̂2sign(l̂1(Y ))(Y ) =
1

η2sign(l̂1(Y ))

ln

(∑
h,h2sign(l̂1(Y ))(Y )=+1w2sign(l̂1(Y ))(h)∑
h,h2sign(l̂1(Y ))(Y )=−1w2sign(l̂1(Y ))(h)

)
.

The true log ratios l1(Y ) and l2sign(l1(Y ))(Y ) are defined to be replacing ε̂ with

ε. Suppose ∆1 and ∆2sign(l̂1(Y )) are the abstention thresholds in the first and second

stage estimations. The final prediction is defined to be

p̂(Y ) =


{sign(l̂1(Y )), sign(l̂2sign(l̂1(Y ))(Y ))}, if |l̂1(Y )| > ∆1 and |l̂2sign(l̂1(Y ))(Y )| > ∆2sign(l̂1(Y )),

{sign(l̂1(Y )), 0}, if |l̂1(Y )| > ∆1 and |l̂2sign(l̂1(Y ))(Y )| ≤ ∆2sign(l̂1(Y )),

0, otherwise.

Analysis of the algorithm

We will first show how to choose the thresholds: ∆1, ∆2(+1), and ∆2(−1) by presenting

the theorems that differences between the estimated log ratios and the true log ratios

are small.

Recall Theorem 1 and Theorem 2 by Freund and colleagues:

“ Theorem 1: For any distribution D, any instance x, any λ, η > 0 and any s ∈

{−1,+1},

Pr
S∼Dm

[s(l(x)− l̂(x)) ≥ 2λ+
η

8m
] ≤ 2e−2λ2m, ”
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While Theorem 1 holds for any fixed instance, Theorem 2 holds with respect to a

randomly chosen instance.

“ Theorem 2: For any δ > 0 and η > 0, if we set

∆ = 2

√
ln(
√

2/δ)

m
+

η

8m
,

then we have

Pr
(x,y)∼D

[s(l(x)− l̂(x)) ≥ ∆] ≤ δ

with probability at least 1− δ. ”

Now we state analogues of Theorem 2 for our sequential stacked classifier.

Theorem 3.3.1. If we set ∆1 = 2

√
ln(
√

2/δ1)
m

+ η1
8m

for any δ1 > 0, η1 > 0, then with

probability at least 1− δ1,

Pr
(Y,C)∼D

[|l1(Y )− l̂1(Y )| ≥ ∆1] ≤ δ1.

Proof. We apply Theorem 2 of Freund and colleagues with the sample distribution

(x, y) ∼ D replaced by (Y,C) ∼ D, the function l, l̂ set equal to l1 and l̂1 respectively,

η set to η1, ∆ set to ∆1 and δ set to δ1.

Theorem 3.3.2. Let m2(+1) =
∑m

i=1 1{sign(l̂i1(Y ))=+1} and m2(−1) =
∑m

i=1 1{sign(l̂i1(Y ))=−1},

then we have the following statements for any δ2(+1) = δ2(−1) = δ2 > 0:

i. If we set ∆2(+1) = 2
√

ln(
√

2/δ2)
m2(+1)

+
η2(+1)

8m2(+1)
for any η2(+1) > 0, then with probability at

least 1− (δ1 + δ2),

Pr
(Y,C)∼D

[|l2(+1)(Y )− l̂2(+1)(Y )| ≥ ∆2(+1)

⋂
|l1(Y )− l̂1(Y )| ≥ ∆1] ≤ δ1δ2;

ii. Likewise, if we set ∆2(−1) = 2
√

ln(
√

2/δ2)
m2(−1)

+
η2(−1)

8m2(−1)
for any η2(−1) > 0, then with

probability at least 1− (δ1 + δ2),

Pr
(Y,C)∼D

[|l2(−1)(Y )− l̂2(−1)(Y )| ≥ ∆2(−1)

⋂
|l1(Y )− l̂1(Y )| ≥ ∆1] ≤ δ1δ2.
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Proof. From Theorem 3.3.1, let ∆1 = 2

√
ln(
√

2/δ1)
m

+ η1
8m

for any δ1 > 0, η1 > 0,

Pr[ Pr
(Y,C)∼D

[|l1(Y )− l̂1(Y )| ≥ ∆1] ≤ δ1] ≥ 1− δ1. (3.1)

Similarly, in the second step classification, we have

Pr[ Pr
(Y,C)∼D

[|l2(+1)(Y )− l̂2(+1)(Y )| ≥ ∆2(+1)] ≤ δ2] ≥ 1− δ2. (3.2)

Let A denote |l1(Y )− l̂1(Y )| ≥ ∆1, and B denote |l2(+1)(Y )− l̂2(+1)(Y )| ≥ ∆2(+1),

3.1 and 3.2 can be rewritten as

Pr[ Pr
(Y,C)∼D

[A] ≤ δ1] ≥ 1− δ1 (3.3)

and

Pr[ Pr
(Y,C)∼D

[B] ≤ δ2] ≥ 1− δ2. (3.4)

Combining 3.3 and 3.4, we have

Pr[ Pr
(Y,C)∼D

[A ∩B] ≤ δ1δ2] ≥ 1− (δ1 + δ2), (3.5)

which is equivalent to that with probability at least 1− (δ1 + δ2),

Pr
(Y,C)∼D

[|l2(+1)(Y )− l̂2(+1)(Y )| ≥ ∆2(+1)

⋂
|l1(Y )− l̂1(Y )| ≥ ∆1] ≤ δ1δ2.

So far we prove the claim for i. The proof for ii is almost identical.

Then we begin to show the performance of sequential stacked classifier by recalling

Theorem 4 of Freund and colleagues: “Let H be a finite hypothesis class and let ε

be the error of the best hypothesis in H with respect to the distribution D over the

examples, that is, ε = min{ε(h) : h ∈ H}. Let η > 0 and ∆ ≥ 0 be such that

∆η ≤ 1/2. Then for any γ ≥ ln(8|H|)/η,

Pr
(x,y)∼D

[yl(x) ≤ 0] ≤ 2(1 + 2|H|e−ηγ)(ε+ γ)

and

Pr
(x,y)∼D

[yl(x) ≤ 2∆] ≤ (1 + e2∆η)(1 + 2|H|e−ηγ)(ε+ γ)

≤ 4(1 + 2|H|e−ηγ)(ε+ γ).”
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With this context, we now state an analogue for our sequential stacked classifier.

Theorem 3.3.3. Let ε be the error of the best hypothesis in H. Suppose the best

hypothesis h∗ meets the conditions below:

1. ε = min{ε(h) : h ∈ H} = ε(h∗);

2. ε1 = min{ε(h1) : h ∈ H} = ε(h∗1);

3. ε2(+1) = min{ε(h2(+1)) : h ∈ H} = ε(h∗2(+1)), where

ε(h2(+1)) := Pr
(Y,C)∼D

[h2(+1)(Y ) 6= g2|h1(Y ) = g1 = +1];

4. ε2(−1) = min{ε(h2(−1)) : h ∈ H} = ε(h∗2(−1)), where

ε(h2(−1)) := Pr
(Y,C)∼D

[h2(−1)(Y ) 6= g2|h1(Y ) = g1 = −1].

Pr
(Y,C)∼D

[χ] be the probability of total classification error, defined as

Pr
(Y,C)∼D

[χ] = Pr
(Y,C)∼D

[g1l1(Y ) ≤ 0 ∪ g2(g1)l2(g1)(Y ) ≤ 0].

Let η1, η2(+1), η2(−1) > 0 and ∆1,∆2(+1),∆2(−1) ≥ 0 be such that ∆1η1 ≤ 1/2,

∆2(+1)η2(+1) ≤ 1/2, ∆2(−1)η2(−1) ≤ 1/2. Then for any γ ≥ ln(8|H|)/min{η1, η2(+1),

η2(−1)},

Pr
(Y,C)∼D

[χ] ≤ 2(1 + 2|H|e−η1γ)(ε1 + γ)

+ 2 max{(1 + 2|H|e−η2(+1)γ)(ε2(+1) + γ), (1 + 2|H|e−η2(−1)γ)(ε2(−1) + γ)}.

Proof. Define the probability of error in the first step classification as Pr
(Y,C)∼D

[χ1] :=

Pr
(Y,C)∼D

(g1l1(Y ) ≤ 0). Since γ ≥ ln(8|H|)/min{η1, η2(+1), η2(−1)}, then γ satisfies

γ ≥ ln(8|H|)/η1, γ ≥ ln(8|H|)/η2(+1), γ ≥ ln(8|H|)/η2(−1). Let Pr
(Y,C)∼D

(χ2(+1)),

Pr
(Y,C)∼D

(χ2(−1)) be the conditional probabilities of error in the second step classifi-

cation given correctly classified in the first step as +1 and −1 respectively:

Pr
(Y,C)∼D

(χ2(+1)) := Pr
(Y,C)∼D

(g2(+1)l2(+1)(Y ) ≤ 0 | sign(l1(Y )) = g1 = +1);
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Pr
(Y,C)∼D

(χ2(−1)) := Pr
(Y,C)∼D

(g2(−1)l2(−1)(Y ) ≤ 0 | sign(l1(Y )) = g1 = −1).

By using Theorem 4 from Freund and colleagues, we have

Pr
(Y,C)∼D

[χ1] ≤ 2(1 + 2|H|e−η1γ)(ε1 + γ),

Pr
(Y,C)∼D

[χ2(+1)] ≤ 2(1 + 2|H|e−η2(+1)γ)(ε2(+1) + γ),

Pr
(Y,C)∼D

[χ2(−1)] ≤ 2(1 + 2|H|e−η2(−1)γ)(ε2(−1) + γ).

Let ζ be the probability of classifying as +1 given a correct classification in the

first step, 0 < ζ < 1, then we have

Pr
(Y,C)∼D

[χ] = Pr
(Y,C)∼D

[χ1] + (1− Pr
(Y,C)∼D

[χ1])ζ Pr
(Y,C)∼D

[χ2(+1)]

+ (1− Pr
(Y,C)∼D

[χ1])(1− ζ) Pr
(Y,C)∼D

[χ2(−1)]

≤ 2(1 + 2|H|e−η1γ)(ε1 + γ)

+ (1− Pr
(Y,C)∼D

[χ1])max{ Pr
(Y,C)∼D

[χ2(+1)], Pr
(Y,C)∼D

[χ2(−1)]}

≤ 2(1 + 2|H|e−η1γ)(ε1 + γ)

+ 2 max{(1 + 2|H|e−η2(+1)γ)(ε2(+1) + γ), (1 + 2|H|e−η2(−1)γ)(ε2(−1) + γ)}.

3.4 Simulations on waveform data

Description of waveform data

We use waveform database (version 2) from UCI machine learning repository for

simulations. This dataset, first described by Breiman et al[9], has three classes of

waves, each of which is based on random convex combination of two of three base

waveforms with noise added to all of the attributes. In the waveform dataset version

1, there are 21 attributes corresponding to positions on a horizontal axis such as in
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Figure 3.4, while in the version 2 waveform dataset, there are 40 attributes, with the

latter added 19 attributes all noise with mean 0 and variance 1. More specifically,

suppose b1, b2, b3 are three base waveform data shown in Figure 3.4, the waveform

data of three classes w1, w2, w3 are generated according to the equations below:

w1(x) = αb1(x) + (1− α)b2(x) + ε(x);

w2(x) = αb1(x) + (1− α)b3(x) + ε(x);

w3(x) = αb2(x) + (1− α)b3(x) + ε(x);

where x = 1, . . . , 40, α is a uniform random number between 0 and 1, ε(x) are nor-

mally distributed with mean 0 and variance 1.

Figure 3.5 shows the first example of waveform data in each class. In our simula-

tion study, we considered data with different noise levels, σ ∈ {1, 1.5}, generated by

the same seed 12345 using the C code by David Aha in 1988.

This waveform dataset has 5000 observations. By using different proportions

of data for training, we also evaluated the performance of stacking with respect to

different size of training data.

Base classifiers

Now we will briefly describe how to generate the base classifiers. Since there are

a total of three waveform classes, in the first step classification, we will group the

first and second class together, and separate them from the third class. Then in the

second step classification, we classify the first class from the second class. Each base

classifier is based on this grouping strategy.

By using compound estimation, we are able to obtain smoothed curves for mean

response and first derivative of both base waveforms and different types of waveform

data. In compound estimation, there are a total of 10 centering points (2 + 4 ∗n, n ∈
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Figure 3.4: Base waveforms

{0, . . . , 9}), in which the local polynomials of degree three were estimated. 0.6 and

0.18 were selected as convolution parameter and nearest neighbor fraction, respec-

tively. Then we use least square estimation with nonnegative constraints to estimate

convex combination coefficients of a generic waveform in terms of the types in Figure

3.5 based on raw data, compound estimation for mean response and its derivative

of base waveform data. Finally, logistic regression, classification tree, and support

vector machine were implemented for level 0 classification based on coefficients from

previous step.

60



0 10 20 30 40

−
2

4

Waveform type 1

x

y

0 10 20 30 40

−
2

4

Waveform type 2

x

y

0 10 20 30 40

−
2

4

Waveform type 3

x

y

Figure 3.5: Waveform data in three classes

Stacking results

Two step sequential classification described in Section 3.3 was used in our simulation

study. The results are shown in Table 3.2 and Table 3.3 under the noise levels σ = 1

and σ = 1.5. The first step separates the first and second types of waveform from

the third type of waveform, while the second step separates the first from the second

type of waveform data.

The data were randomly divided into three equal parts, and we used one third,
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two thirds for training respectively in order to investigate the impact of different

proportions of training data on the results. The base classification testing errors were

used to define ε̂(h) quantities for stacking. As expected, with larger training data,

the testing error decreases for most level 0 classifiers. It is also shown that stacking

performs better than or at least the same as the best base classifiers.

Table 3.2: Testing errors in waveform data simulation study (σ = 1)

Different Methods First step Second step
Training(1/3) Training (2/3) Training(1/3) Training (2/3)

Logistic Raw data 0.128 0.125 0.093 0.095
regression µ0 0.128 0.127 0.100 0.096

µ1 0.182 0.175 0.121 0.119
Classification Raw data 0.104 0.093 0.096 0.096
tree µ0 0.101 0.100 0.094 0.094

µ1 0.142 0.125 0.115 0.118
SVM Raw data 0.097 0.086 0.091 0.088

µ0 0.097 0.088 0.091 0.088
µ1 0.128 0.112 0.101 0.106

Stacking 0.095 0.085 0.087 0.086

Table 3.3: Testing errors in waveform data simulation study (σ = 1.5)

Different Methods First step Second step
Training(1/3) Training (2/3) Training(1/3) Training (2/3)

Logistic Raw data 0.163 0.163 0.149 0.136
regression µ0 0.164 0.167 0.150 0.152

µ1 0.234 0.219 0.202 0.180
Classification Raw data 0.143 0.144 0.148 0.133
tree µ0 0.143 0.136 0.143 0.137

µ1 0.178 0.167 0.161 0.168
SVM Raw data 0.144 0.137 0.141 0.143

µ0 0.138 0.132 0.144 0.133
µ1 0.181 0.160 0.156 0.155

Stacking 0.137 0.130 0.141 0.127

Compared with Table 3.2, Table 3.3 demonstrates that the testing errors of base

classifiers and stacking increase with greater noise level σ = 1.5. Classification based
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on compound estimation for derivatives does not perform as well as raw data and

compound estimation for mean response if using the same classification technique.

Also, among the base classification methods, Support Vector Machine (SVM) gener-

ally produces less testing errors than logistic regression and classification tree method,

particularly when using compound estimation for mean response.

3.5 Discussion

In this simulation study, the base waveform data are employed for classification in all

base classifiers, which is one reason that these base classifiers perform better than in

the previous paper [85]. More specifically, our base classifiers perform better than the

best base classifier Naive Bayesian (NB) in the previous paper [85]. Derivative can

amplify the fine structure of the data over a short range of values. As such, derivative

estimation might be helpful if there is high frequency information to be captured in

the functional data for classification, such as in Raman spectroscopy data. However,

in our simulation study, there is no high frequency information in the waveform data

and classifiers based on derivative will only amplify the noise. In addition, waveforms

have points of non-differentiability. Therefore the classifiers based on derivative have

greater error rate than based on mean response estimation and raw data. Support

Vector Machine (SVM) constructs a hyperplane that maximizes the margin (i.e.,

distance between the hyperplane and data) while allowing for misclassified training

data and can perform well in testing data. By employing the weighting function on

the testing errors of base classifiers, stacking performs at least the same as the best

base classifier in this simulation study, therefore it has great potential to be applied

in real data sets, such as Raman spectroscopy data.
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Chapter 4 Boosting for Nonparametric Regression

4.1 Background

Boosting is an advanced machine learning approach based on the idea of updating

weak learner to a single strong learner through differential sampling [70]. Specifically,

suppose we have a base weak and simple learner, which is slightly better than random

guessing on the training data. In the training step, through many rounds of different

sampling, many new classifiers will be generated based on the weak learner. At the

same time, much more attention will be focused on those “hard examples”, which are

difficult to correctly classify. Then these generated hypotheses are combined so as to

achieve higher prediction accuracy. Many research papers on boosting have focused

on theoretical studies as well as its applications such as optical character recognition

(OCR) [72][21].

The AdaBoost algorithm, proposed by Freund and Schapire in 1995 [26], has nice

theoretically justified properties including “driving the generalization errors down

close to 0” and “resistance to overfitting”[71], and it has been widely used in many

pattern recognition fields such as face detection [90][69]. The AdaBoost algorithm

for a binary outcome ∈ {−1, 1} can be briefly described as follows:

i. Initialize equal weight on each example in the training dataset D1(i) = 1/m for

i ∈ {1, . . . ,m}.

ii. Do a loop: for each round t = 1, . . . , T ,

a. Select the hypothesis ht minimizing the weighted error: εt = PrDt [ht(xi) 6= yi];

b. Choose weight for hypothesis ht: αt = 1/2(ln(1−εt
εt

));

c. Update the weight for each example: Dt+1(i) = Dt(i)exp(−αtyiht(x))
Zt

, where Zt is

chosen so that Dt+1 will be a distribution.

iii. Combine these hypotheses: f(x) = sign(
∑T

t=1 αtht(x)).
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One caveat about AdaBoost algorithm is its poor performance on the noisy data,

which leads to development of other boosting algorithm as “BrownBoost” algorithm,

having greater tolerance to noise. There are also some other variants of AdaBoost

algorithm including “LogitBoost”, “GentleBoost” and “Boosting for multiclass out-

comes” [71].

There are two general requirements for a learning algorithm: i. it fits the data well;

ii. it is simple[71]. The simplicity can be measured by Vapnik-Chervonenkis (VC)-

dimension[89]. When VC dimension is finite, the probability of difference between

generalization error and training error (the latter regarded as random) approaches to

zero will be high. However, on the other hand, when VC-dimension is infinite, the

bound for difference between generalization error and training error is of order O(1).

The theoretical bound on the training error of Adaboost by Freund and Schapire

is given as follows[26][71]:

“Theorem 1. Given the notations of AdaBoost algorithm above, let γt := 1
2
− εt, and

let D1 be an arbitrary initial distribution over the training set. Then the weighted

training error of the combined classifier H with respect to D1 is bounded as

Pri∼D1 [H(xi) 6= yi] ≤
T∏
t=1

√
1− 4γ2

t ≤ exp(−2
T∑
t=1

γ2
t ).”

This theorem implies under the weak learner assumption (i.e. γt ≥ k > 0), the

training error drops exponentially fast as a function of the number of rounds T . γt

is the “edge” measuring how much better is the error rate of the t-th weak classifier

ht than random guessing rate of 1/2. AdaBoost is called “adaptive boosting” in that

it does not need a prior knowledge of γt, but rather adjusts to the error εt from each

round as it becomes available.

Schapire et al. also provided the margin explanations for Boosting’s effectiveness

and bounded the generalization error by Theorem 2 for finite base classifier space and

Theorem 3 for infinite base classifier space[72].

“Theorem 2. Let D be a distribution over X × {−1, 1}, and let S be a sample of m
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examples chosen independently at random according to D. Assume that the base-

classifier space H is finite, and let δ > 0. Then with probability at least 1 − δ over

the random choice of the training set S, every weighted average function f satisfies

the following bound for all θ > 0:

PrD[yf(x) ≤ 0] ≤ PrS[yf(x) ≤ θ] +O

(
1√
m

(
logm log |H|

θ2
+ log(1/δ)

)1/2
)
.”

“Theorem 3. Let D be a distribution over X × {−1, 1}, and let S be a sample of m

examples chosen independently at random according to D. Suppose that the base-

classifier space H has VC-dimension d, and let δ > 0. Assume that m ≥ d ≥ 1. Then

with probability at least 1 − δ over the random choice of the training set S, every

weighted average function f satisfies the following bound for all θ > 0:

PrD[yf(x) ≤ 0] ≤ PrS[yf(x) ≤ θ] +O

(
1√
m

(
d log2(m/d)

θ2
+ log(1/δ)

)1/2
)
.”

Theorem 2 and Theorem 3 imply the generalization error bound depends on the

entire distribution of margins of training examples (as measured by θ), number of

training examples (m), and “complexity” of weak classifiers (d). Previous research

showed evidence that improving the margin distribution instead of the minimum mar-

gin could produce better ensembles [63] [76]. However, designing an algorithm with

each observation’s margin as large or larger than that produced by AdaBoost did not

result in better performance than AdaBoost, suggesting the large margin distribution

theory appears to be insufficient for explaining the performance of ensemble methods

[49].

4.2 Modified AdaBoost

We have modified AdaBoost algorithm by adding a scaling factor c in the weight

function for each example in the training data: Dt+1(i) = Dt(i) exp(−cαtyiht(x))
Zt

, where
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0 ≤ c ≤ 1, and Zt is chosen so that Dt+1 will be a distribution. The scaling factor

c can measure the degree of boosting; when c = 1, it turns out to be AdaBoost. In

this section, we examine the condition under which c < 1 suffices to ensure that the

training error tends to 0.

Analysis of Modified AdaBoost Algorithm

Theorem 4.2.1 states the bounds for training error of the modified AdaBoost algo-

rithm. We follow the basic approach of [26], let D1(i) (1 ≤ i ≤ m) denote the initial

weight for each example in the training data and εt be the weighted error for each

round: εt = PrDt [ht(xi) 6= yi]; also define the weight adjustment factor for hypothesis

ht: αt = 1/2(ln(1−εt
εt

)). The weight function for each example in the training data is

updated in each round by: Dt+1(i) = Dt(i) exp(−cαtyiht(x))
Zt

, where 0 ≤ c ≤ 1, and Zt is

chosen so that Dt+1 will be a distribution.

Theorem 4.2.1. Let γt := 1
2
− εt, and let D1 be an arbitrary initial distribution over

the training set. Then the weighted training error of the combined classifier H with

respect to D1 is bounded as

Pri∼D1 [H(xi) 6= yi] ≤
T∏
t=1

21−c(1− 4γ2
t )
c/2 ≤ 2(1−c)T exp(−2c

T∑
t=1

γ2
t ).

Proof. Let

F (x) :=
T∑
t=1

αtht(x).

According to the definition ofDt+1 in terms ofDt in the modified AdaBoost algorithm,

DT+1(i) = D1(i)× e−cyiα1h1(xi)

Z1

× . . .× e−cyiαT hT (xi)

ZT

=
D1(i) exp(−cyi

∑T
t=1 αtht(xi))∏T

t=1 Zt

=
D1(i) exp(−cyiF (xi))∏T

t=1 Zt
. (4.1)
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Zt is the normalization factor, and can be calculated as

Zt =
m∑
i=1

Dt(i)e
−cαtyiht(xi)

=
∑

i:yi=ht(xi)

Dt(i)e
−cαt +

∑
i:yi 6=ht(xi)

Dt(i)e
cαt

= e−cαt(1− εt) + ecαtεt

= e−cαt(
1

2
+ γt) + ecαt(

1

2
− γt) (4.2)

= (
1

2
− γt)c/2(

1

2
+ γt)

c/2((
1

2
+ γt)

1−c + (
1

2
− γt)1−c) (4.3)

≤ 2(
1

2
− γt)c/2(

1

2
+ γt)

c/2

= 21−c(1− 4γ2
t )
c/2. (4.4)

Equation (4.2) uses γt := 1
2
− εt, and equation (4.3) follows from our choice of αt =

1/2(ln(1−εt
εt

)). Then the training error is

Pr
i∼D1

[H(xi) 6= yi] =
m∑
i=1

D1(i)1{H(xi) 6= yi}

≤
m∑
i=1

D1(i)exp(−cyiF (xi))

=
m∑
i=1

DT+1(i)
T∏
t=1

Zt (4.5)

=
T∏
t=1

Zt (4.6)

≤
T∏
t=1

21−c(1− 4γ2
t )
c/2 (4.7)

≤ 2(1−c)T exp(−2c
T∑
t=1

γ2
t ). (4.8)

Equation (4.5) uses equation (4.1). Substituting equation (4.4) into equation (4.6)

gives the first bound of the theorem (4.7). For the second bound (4.8), we apply the

approximation 1 + x ≤ ex.

Corollary 4.2.1. Assume R := lim
T→∞

∑
γ2t
T

exists and is positive. Then c > log 2
log 2+2R

ensures Pri∼D1 [H(xi) 6= yi]→ 0 as T →∞.
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Proof.

Pr
i∼D1

[H(xi) 6= yi] ≤ 2(1−c)T exp(−2c
T∑
t=1

γ2
t )

= exp((1− c)T log 2− 2c
T∑
t=1

γ2
t ).

Given R := lim
T→∞

∑
γ2t
T

and c > log 2
log 2+2R

, lim
T→∞

exp((1− c)T log 2− 2cRT ) = 0.

4.3 Simulations on waveform data

We use the same waveform dataset (version 2) as in Chapter 3 from UCI machine

learning repository for simulations. In this waveform dataset (version 2), there are

three types of waveforms including a total of 5000 observations and 40 attributes for

each observation as described in detail in Chapter 3. Since boosting can improve a

weak classifier into a strong classifier, we investigate the improvement of minimum

distance approach based on compound estimation by boosting under the noise level

σ = 1. Compound estimation is used to obtain smoothed curves for mean response

and first derivative of all base waveforms and different types of waveform data (see

Chapter 3).

Figure 4.1 presents 10 of the three types of original waveform data, while Figure

4.2 shows the smoothed waveform data by compound estimation of mean response

curves. Notably, the distortion caused by presence of spikes in the original data is

largely reduced by compound estimation. For boosting, we will only focus on the

minimum distance approach based on smoothed mean response curves, because the

smoothed first derivatives and second derivatives can not distinguish the three types

of waveforms (Figure 4.3 and Figure 4.4) due to the noise level (σ = 1) and non-

differentiability of the original waveform data. Now we will describe our boosting

approach and investigate the performance of boosting under different proportions of

data randomly allocated to training (2/3 vs 1/3) as well as different scaling factors c
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Figure 4.1: Three types of original waveform data
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Figure 4.2: Three types of smoothed mean response waveform curves
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discussed in Section 4.2.

0 10 20 30 40

−4
0

4

waveform type 1

x

y

0 10 20 30 40

−4
0

4

waveform type 2

x

y

0 10 20 30 40

−4
0

4

waveform type 3

x

y

Figure 4.3: Three types of smoothed first derivatives of waveform data
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Figure 4.4: Three types of smoothed second derivatives of waveform data

Boosting based on minimum distance approach

Two step sequential classification was used in our simulation study. The first step

separates the first and the second type from the third type of waveform, while the
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second step separates the first type from the second type of waveform data.

At the first step, initially in the first round of boosting (t = 1 means without

boosting), a combined mean response reference curve for waveform type 1 and type

2 is defined as µ̂d(x) over all smoothed waveform data in the training set known to

be type 1 or 2, and similarly, a mean response reference curve for waveform type 3

is defined to be µ̂d(x) over all smoothed waveform data in the training set known

to be type 3 (d = 1 with type 1 or 2, and d = −1 with type 3). In the same way,

two reference curves will be defined as µ̂d(x) from the smoothed training waveform

data separating waveform type 1 from type 2 at the second step (d = 1 with type

1, and d = −1 with type 2). Then the reference curves are updated by weighted

average of µ̂(x) known to be type d with the weight equal to the sampling weight in

each round of boosting. Specifically, the weight on each observation was initialized to

be equal, and then updated in each round according to Dt+1(i) = Dt(i)exp(−cαtyiht(x))
Zt

,

where Zt is chosen so that Dt+1 will be a distribution, αt = 1/2(ln(1−εt
εt

)), and εt is

the weighted classification error of the training data defined as εt = PrDt [ht(xi) 6= yi].

The reference curves updated from the training data during each round t will then be

used to define the classification algorithm ht(x) in order to classify the testing data.

In addition, we investigate different scaling factors c ∈ {0.25, 0.5, 0.75, 0.85, 0.95, 1}.

Number of rounds T is chosen to be 15, thus a consistency pattern for the overall

classification error is reached. Finally, the prediction for the testing data will be a

weighted combination of h1(x), h2(x), . . . , hT (x) defined as sign(
∑T

t=1 αtht(x)).

Table 4.1 and Table 4.2 present the misclassification error rates from the testing

data for these two steps when training proportion is 2/3. Table 4.3 and Table 4.4

report the results when training proportion is 1/3. There are improvements for overall

correct classification rates from boosting at both steps.

At the first step, without boosting (T = 1) the overall testing classification error

is a little bit higher when using 1/3 training data than that using 2/3 training data
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Table 4.1: Classification testing error in boosting for the first step with 2/3 training data

Number of rounds T = 1 T = 15
Scaling factor c=0.25 c=0.5 c=0.75 c=0.85 c=0.95 c=1
Type 1 or Type 2
Type 3
Overall

0.2263
0.0404
0.1627

0.1825
0.0281
0.1297

0.1825
0.0298
0.1303

0.1861
0.0263
0.1314

0.1797
0.0263
0.1273

0.1734
0.0316
0.1248

0.1615
0.0509
0.1236

Table 4.2: Classification testing error in boosting for the second step with 2/3 training data

Scaling factor c=0.25 c=0.5 c=0.75
Number of rounds T = 1 T = 15 T = 1 T = 15 T = 1 T = 15
Type 1
Type 2
Overall

0.3441
0.0000
0.1551

0.0990
0.0976
0.0982

0.3366
0.0000
0.1551

0.0702
0.1263
0.1004

0.3407
0.0000
0.1558

0.0931
0.1116
0.1031

Scaling factor c=0.85 c=0.95 c=1
Number of rounds T = 1 T = 15 T = 1 T = 15 T = 1 T = 15
Type 1
Type 2
Overall

0.3278
0.0000
0.1546

0.0637
0.1326
0.1001

0.3181
0.0000
0.1534

0.1167
0.0810
0.0982

0.3035
0.0000
0.1513

0.1397
0.0499
0.0947

Table 4.3: Classification testing error in boosting for the first step with 1/3 training data

Number of rounds T = 1 T = 15
Scaling factor c=0.25 c=0.5 c=0.75 c=0.85 c=0.95 c=1
Type 1 or Type 2
Type 3
Overall

0.2344
0.0263
0.1632

0.1920
0.0298
0.1365

0.1870
0.0289
0.1329

0.1956
0.0237
0.1368

0.1847
0.0219
0.1290

0.1810
0.0316
0.1299

0.1491
0.0491
0.1149

Table 4.4: Classification testing error in boosting for the second step with 1/3 training data

Scaling factor c=0.25 c=0.5 c=0.75
Number of rounds T = 1 T = 15 T = 1 T = 15 T = 1 T = 15
Type 1
Type 2
Overall

0.3855
0.0031
0.1755

0.1139
0.0832
0.0971

0.3742
0.0031
0.1744

0.0863
0.1104
0.0993

0.3798
0.0031
0.1763

0.0912
0.1133
0.1032

Scaling factor c=0.85 c=0.95 c=1
Number of rounds T = 1 T = 15 T = 1 T = 15 T = 1 T = 15
Type 1
Type 2
Overall

0.3641
0.0032
0.1740

0.1052
0.0945
0.0996

0.3532
0.0032
0.1732

0.0906
0.1255
0.1086

0.3565
0.0030
0.1667

0.1007
0.1108
0.1061
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when separating waveform Type 1 or Type 2 from Type 3. Boosting (T = 15) drives

the overall testing errors down and improves classification accuracy. Generally, the

improvement effect from “boosting” is more noticeable when training proportion is

2/3 than that using 1/3 training data except for the case “c=1”. Moreover, the overall

testing error is different when choosing different scaling factors “c”. Specifically, the

overall testing error is relatively larger when c = 0.75, and gets smaller as c = 1. The

testing error is not an approximately linear nor a quadratic function of c, suggesting

that c may play a complex role in the overall testing error from boosting.

At the second step, the testing errors without boosting are calculated from the

testing data that are correctly classified from boosting in the first step corresponding

to the same “c”. Considering the results from step 1, the classification errors are

different without boosting for the step 2. It can be seen that the classification error

for type 1 is much greater than that for type 2. Boosting also gives better overall

accuracy when separating type 1 from type 2. Again, the different overall classification

errors regarding to various values of “c” can be observed at the second step. It is

interesting that boosting improves the classification error most noticeably when c =

0.25: from 0.1551 to 0.0982 with 2/3 training data, and from 0.1755 to 0.0971 with

1/3 training data.

4.4 Discussion

In this Chapter, we have described a generalization of AdaBoost by introducing a scal-

ing factor “c”, so that AdaBoost is a special case of this modified AdaBoost algorithm

(c = 1). In addition, we have explored this generalization of AdaBoost sequentially

in our simulation study. The theoretical bound on the training error obtained by this

modified AdaBoost algorithm shows that given c is large enough, the training error

drops exponentially fast as a function of the number of rounds in boosting under

the weak learning assumption. The simulation study on the waveform data gave an
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example on how boosting would improve minimum distance approach by assigning

different weights for the training data to obtain the “reference curves”. In addition,

from the simulations, we have also seen the effect of boosting varies with respect to

different choices of scaling factor in our modified AdaBoost algorithm. Simulation

experiments done by combining the second and third type of waveform data together

in the first step were considerably not successful (results not shown here). The reason

is obvious: by taking an average of the smoothed curves of all of the second and the

third types of waveform data, the reference curve for these two types of waveform

data would be similar to that for the first type, thus it is difficult to use minimum

distance approach for classification of the first type from the second and third types

of waveform data in the first step. On the other hand, this problem does not exist if

combining the first type and second type of waveform together as one group in the

first step as we presented above.
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Chapter 5 Dynamic Ensemble Integration for Nonparametric Regression

5.1 Background

Ensemble learning typically include three phases: classifier generation, selection, in-

tegration. The goal in the generation phase is to obtain a set of classifiers. These

classifiers can be generated by different algorithms (e.g. classification tree[9] and

support vector machine[20]) or based on differential sampling of the objects (e.g.

bagging[7] and boosting[70]). The purpose in the selection phase is to prune the

classifiers in the ensemble to increase diversity among the classifiers and classification

accuracy, as well as reduce computational complexity. In the integration phase, the

selected classifiers will be combined together. There are many strategies for combina-

tion, such as majority voting and bagging. In Chapter 3, we have discussed stacking:

combining the classifiers by assigning the weights to the predicted classifiers based

on their performance.

In Chapter 5, we will have a brief review on ensemble selection, and call for a

dynamic ensemble integration scheme to consist of stacking and boosting together

with the aim to further improve the accuracy of prediction.

5.2 Ensemble selection

In this section, we will review general ensemble selection framework and then discuss

recent advances in dynamic ensemble selection.

Ensemble selection, also called ensemble pruning, is a process to select a sub-

set of the classifiers from the pool of classifiers obtained in the generation phase.

The various ensemble selection methods can be classified into the following cate-

gories: Search-based, Clustering-based, Ranking-based and other [87]. Drawing some
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inspiration from feature selection, the Search-based approaches search for a subset

of classifiers by adding or removing classifiers from the candidate subset including

forward subset selection, backward subset selection or a combination of both. The

clustering-based methods consist of a partitioning step prior to selection step. In

the partitioning step, a cluster algorithm is used to discover groups of classifiers that

make similar predictions. For example, Giacinto et al. defined a distance metric

between two classifiers as the probability that the classifiers don’t make coincident

errors, and assign classifiers that make few coincident errors to different clusters [30].

Lazarevic and Obradovic used a k-means clustering algorithm to guide the cluster-

ing process [45]. By selecting the subset of classifiers from each cluster, we could

increase the diversity among the classifiers and thus improve classification accuracy.

The Ranking-based selection orders the classifiers based on an evaluation measure

such as accuracy given in Partridge and Yates [58].

Regarding to the evaluation measures, it is important to consider both of those

that are based on performance and those on diversity to guide the search process

and/or to establish the stopping criterion. Because different metrics are appropriate

in different learning settings, Caruana et al. experimented with several performance

metrics, including accuracy, root-mean-squared-error, mean cross-entropy, lift, pre-

cision/recall break-even point, precision/recall F-score, average precision and ROC

area [13]. Traditional diversity measures including diversity measures disagreement,

double fault, Kohavi-Wolpert variance, inter-rater agreement, generalized diversity

and difficulty were used for greedy ensemble selection in [82]. Concurrency, margin

distance minimization, Complementariness and Focused Selection Diversity are four

diversity measures designed specifically for greedy ensemble selection[57].

Most of previous researches have focused on static ensemble selection: selecting a

subset of base classifiers and combining them together for all test samples. However,

for different test samples the subsets of different base classifiers may have different
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performance, thus a dynamic ensemble selection scheme may be appealing. Ko et

al. proposed four dynamic ensemble selection schemes based on K-nearest-oracles

(KNORA) to select different subsets of base classifiers for different test samples [43].

The idea is that, for any test data point, it first selects nearest K neighbors in the

validation set, figures out which classifiers correctly classify those neighbors in the

validation set and uses them as the ensemble for classifying that test sample. Their

results suggest that the proposed schemes perform better than the static selection

method when using the majority voting rule for combining classifiers.

5.3 Static ensemble integration scheme

Before proposing the dynamic ensemble integration scheme (DEIS), we will first in-

troduce the static ensemble integration scheme for three reasons. First, our dynamic

ensemble integration scheme is built upon the static ensemble integration scheme.

Second, although the idea of dynamic ensemble integration is appealing, static en-

semble integration may be less computationally intensive and time consuming than

dynamic ensemble integration. Thirdly, DEIS may not always have better prediction

accuracy than the static ensemble integration.

Our static ensemble integration calls for a combination of boosting, ensemble se-

lection, and stacking. Specifically, it includes the following steps. The first four steps

entail training data to develop the final prediction algorithm, while the last step uses

the final algorithm to make predictions on the test data set.

Step 1: Generation of base classifiers

In nonparametric regression settings, the base classifiers could be based on the

smoothed data or smoothed derivatives from nonparametric regression methods in

addition to raw data which may contain noise and spikes. Further, given various

dimension reduction techniques such as using linear combinations of basis functions,

principal component analysis, the important features or patterns from the raw data
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or smoothed data can be captured. Finally, based on the outputs from different

dimension reduction techniques, different classification algorithms including classifi-

cation tree, logistic regression, neural network and support vector machines can be

applied. In addition to dimension reduction, we have also proposed two approaches

called “minimum distance approach” and “confidence bands approach” in Chapter

2 to be used for pattern recognition problems in non-parametric regression settings.

Hence, a lot of base classifiers will be generated with different training errors.

Step 2: Boosting to improve/upgrade weak classifiers

For those “weak” classifiers, we could upgrade them using boosting through differ-

ential sampling as discussed in Chapter 4. For instance, minimum distance approach

could be improved by boosting with classification prediction accuracy increasing from

0.163 to 0.124 from the simulation study on the waveform data. However, this step is

not limited to those weak classifiers. Some good base classifiers can also be improved

by boosting.

Step 3: Ensemble selection

Figure 5.1 gives the static ensemble selection and integration scheme. In this

static ensemble selection, only one set of base classifiers is selected for all testing

data. There are many ensemble selection procedures as discussed in section 5.2.

Here, we will describe two common approaches: search-based compound ensemble

selection and clustering based ensemble selection [30].

The search-based compound ensemble selection is essentially a mixture of forward

step and backward step selection. It starts by randomly selecting a predefined num-

ber of K classifiers. At each iteration, one forward step and one backward step are

applied. The forward step selects one classifier from the pool of base classifiers which

improves the accuracy of the ensemble the most and results in K + 1 models in the

ensemble. Then the backward step selects the K classifiers among the K + 1 models

with highest accuracy. This process stops when the same set of ensemble is selected
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Figure 5.1: Static ensemble selection scheme

again after one iteration.

The clustering based ensemble selection consists of two phases: partitioning and

selection. It first partitions the base classifiers according to the probability of mak-

ing coincidence errors among two classifiers in order to choose diverse classifiers

for the pruned ensemble [30]. Let C be the collection of N base classifiers: C =

{c1, c2, c3, . . . , cN}, and let Ci be a subset or cluster, so that C is made up of the

union of M subsets: C =
⋃i=M
i=1 Ci for 1 ≤ M ≤ N , where Ci and Cj are mutually

exclusive if i 6= j,. The probability of making coincident errors for two classifiers is

defined by a compound error probability: Pr(ci fails, cj fails). The compound error

probabilities between any two classifiers within the same cluster should be higher

than that of two classifiers belonging to different clusters. Hierarchical agglomerative

clustering (HAC) algorithm is implemented to identify the subsets [30]. In addition,

the distance between two classifiers is defined as 1 -Pr(ci fails, cj fails). In the se-

lection phase, one representative classifier exhibiting the maximum average distance

80



from all other clusters is chosen from each cluster to create the pruned ensemble.

For each clustering result, the performance of the pruned ensemble on a validation

set will be evaluated using stacking as the combination method. The final pruned

ensemble is the one that achieves the highest classification accuracy.

Step 4: Stacking for combination of the selected ensemble

As discussed in Chapter 3, stacking can be used to combine a group of classifiers.

In addition to classifier combination, stacking is used to guide ensemble selection in

step 3. The selected ensemble is one that achieves the highest classification accuracy

through validation set from stacking.

Step 5: Prediction and classification

In static ensemble integration, the final combined algorithm for the selected en-

semble will be used to classify the testing data or predict a new instance.

5.4 Dynamic ensemble integration scheme

Different from static ensemble integration, dynamic ensemble integration will not al-

ways select the same ensemble for different testing data. Given a new instance, it

chooses the predictors that are expected to make the best combined prediction. Fig-

ure 5.2 shows this dynamic ensemble selection scheme. Now we will describe the six

steps in the dynamic ensemble integration scheme.

Step 1: Find similar data for testing data

Dynamic ensemble integration starts with the testing data to find similar data

from the training set. Figure 5.3 illustrates this step: different training data might be

selected for different test data. The test data could be either one observation (such

as one patient’s data) or a group of samples (such as patients’ registry data in one

place). The standard method for obtaining similar data is the well-known k-nearest

neighbors with the Euclidean distance [96]. This method weighs equally all the input

variables. Some authors used attribute weighted metrics to find similar data [65] [88].
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Figure 5.2: Dynamic ensemble selection scheme

Figure 5.3: Selection of similar data from training set for testing data
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It would be compelling to define the similarity measures in nonparametric regression

settings.

Step 2: Generation of base classifiers

Step 3: Boosting to improve/upgrade weak classifiers

Step 4: Ensemble selection

Step 5: Stacking for combination of the selected ensemble

The above Step 2 to Step 5 are similar to that in static ensemble integration except

they are based on the selected data from step 1 rather than all the training data. In

this dynamic ensemble integration scheme, the step 4 and 5 are also dynamic in that

different testing data may have different subsets of the ensemble used for prediction,

and the weights assigned to the classifiers in the ensemble when using stacking for

classifier combination may be different as well.

Step 6: Prediction and classification

This prediction step is straightforward as in static ensemble integration. For a

given input value, we will obtain the prediction for each classifier in the selected

ensemble, and then combine the results using stacking to obtain the ensemble pre-

diction.

Our proposed ensemble scheme can be implemented in sequential classifications

when there are more than two classes in the output. The idea is similar to that has

been investigated in Chapter 3 and Chapter 4. As for future work, evaluation on

the performance of dynamic ensemble selection versus static ensemble selection in

nonparametric settings could be explored.

5.5 Discussion

In this Chapter, we propose development of a novel framework that fuses the en-

semble techniques of boosting, stacking, and dynamic integration for classification

problems in nonparametric regression settings. The main advantage of ensemble
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methods is their well known accuracy and robustness [52]. However, they typically

require large training data [12]. Future work needs to be carried out regarding the

training sample size as well as the amount of similar data needed to be selected in

the dynamic ensemble integration. Also, there is lack of comparative studies on the

performance of ensemble selection procedures such as search-based ensemble selec-

tion and cluster-based ensemble selection. It would be interesting to explore which

procedure could provide better prediction accuracy in static and dynamic ensemble

integration schemes.

For future application of ensemble integration, especially dynamic ensemble inte-

gration, this ensemble-learning framework could be of practical importance in medical

applications in personalized medicine [54], personalized treatment optimization [4],

and many cost-effective applications relevant to e-healthcare and web-enabled diag-

nostics. For example, Electroencephalography (EEG) data analysis can be used for

detecting abnormalities in order to diagnose epilepsy [98] or sleep disorders [11]. Sim-

ilar to Raman spectroscopy data, EEG data can also be analyzed in the same way

using stacking, boosting and ensemble integration schemes for classification problem

in nonparametric regression settings. If the dynamic ensemble integration method-

ology is proved to be successful in the application of EEG to detect abnormality,

this can facilitate remote medical screening or diagnosis through inexpensive medical

devices carried out by patients, and thus perhaps improve the health care of patients

with chronic diseases such as epilepsy, and sleep disorders.

84



Chapter 6 Nonparametric Regression in Raman Spectroscopy, Revisited

6.1 Background

Raman spectroscopy is a spectroscopy technique that can measure the vibrational

modes of molecules[60]. It can be done in two ways, ex vivo or in vivo. For ex vivo,

the sample tissue only requiring about 1 cubic millimeter sampled tissue volume can

be obtained from needle biopsies and Raman spectra data are measured in labora-

tory setting. For in vivo, the development of deep sub-surface Raman techniques (sub

spatially offset Raman spectroscopy (SORS)) provides new opportunities offering a

promising way of non-invasive characterization of biological tissues[51]. In either way,

Raman spectroscopy can be less invasive than surgical biopsy. Also, it can provide

timely information on several different molecules to infer chemical or morphological

composition of biological tissue. Thus, Raman spectroscopy has the potential to re-

duce repeated needle biopsies in clinical cancer diagnosis and a patient’s anxiety.

The schematic of the clinical Raman system mainly includes five parts (Figure

6.1): light from an 830-nm diode laser, sample, Raman probe’s excitation fiber,

wavelength separation device, and detector electronics such as CCD detector. In one

previous study in 2005, Raman spectroscopy has been successfully employed in the

classification of breast pathologies involving basis spectra for chemical constituents

of breast tissue and resulted in high sensitivity (94%) and specificity (96%)[32]. And

when the same classification algorithm developed in 2005 was applied in a prospective

study in 2009, they obtained sensitivity of 83% and specificity of 93%[33].

In this Chapter, we will revisit the Raman spectroscopy data from Chapter 2,

and in sections 6.2 and 6.3 make improvements based on the developments of the

methods from Chapter 3 to Chapter 4. We will evaluate the performances of these

developments incorporating different ensemble learning methods in a nonparametric
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Figure 6.1: (a) Schematic diagram of the clinical Raman spectroscopy system; (b) Photo
of the Raman endoscopic system in clinic; (c) Photo of the fiber-optic Raman endoscopic
probe. Adapted from “Raman Endoscopy for Objective Diagnosis of Early Cancer in the
Gastrointestinal System,” by Bergholt MS, et al, 2013, J Gastroint Dig Syst, S1(008)[5].

regression setting. Finally in section 6.4 we will summarize the major findings and

contributions of this work as well as identify opportunities for future research and

their public health implications.

6.2 Combination of Nonparametric Regression Based Classifiers for Breast

Tissue Diagnosis from Raman Spectra

In Chapter 2, we have generated different base classifiers based on compound estima-

tion of a mean response function and its derivative, and the simultaneous confidence

bands method in conjunction with compound estimation. In this section, we apply
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an innovative stacking-type method proposed in Chapter 3 to combine different non-

parametric regression based classifiers that rely on basis spectra and/or derivatives of

basis spectra with the aim to improve the sensitivity and specificity for breast tissue

diagnosis.

The Raman spectra data for the present study are essentially the same as in the

previous study in 2005. There are four pathological types including 31 spectra for

infiltrating carcinoma, 31 spectra for fibrocystic change, 15 spectra for fibroadenoma,

and 47 spectra for normal. Also, a total of 9 basis morphological Raman spectra were

used to establish the Raman spectroscopy model including calcium oxalate, calcium

hydroxyapatite, cholesterol-like, water, beta-carotene, fat, collagen, cell nucleus, and

cell cytoplasm.

Generating base classifiers

Now we introduce the steps for generating base classifiers.

Data processing As we did in Chapter 2, we first performed normalization on the

raw spectra data so that each spectrum has minimum value of 0 and maximum value

of 1 applying the formula

y∗(x) :=
y(x)−min1≤i≤n y(xi)

max1≤i≤n y(xi)−min1≤i≤n y(xi)
.

where y∗(x) denotes the normalized Raman spectrum, xi denotes a value of the Raman

shift and y(xi) is the corresponding value of the Raman spectrum for that observa-

tion.

Smoothing data Then the compound estimation approach developed by Charnigo

and Srinivasan [18] was used to smooth the Raman spectra curves and obtain esti-

mation for mean response and their derivatives. First of all, like most nonparametric

regression methods, it can be used to smooth the raw data which contain noise and

oscillatory parts. Secondly, this approach allows us not only to use the information
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of spectra but also their derivatives which may contain high frequency information

while enjoying self-consistency. Thirdly, it can enable us to generate a couple of base

classifiers for stacking. In this study, we used generalized Cp criterion proposed by

Charnigo et al to select tuning parameters[16], so that the derivatives will be well

estimated.

Raman spectroscopy model In order to establish the Raman spectroscopy model,

first of all, for each spectrum to be classified, linear regression with nonnegative con-

straints was used to obtain fitted coefficients using 9 basis spectra. Intuitively the

fitted coefficients can be viewed as the proportion of contribution of each basis spec-

trum. Secondly, the 8 fitted coefficients excluding water were normalized so that

they sum to 1. Finally we performed two step sequential classifications using binary

logistic regression or classification tree based on the fitted coefficients. Specifically,

N and FC were initially separated from FA and C based on fitted coefficients for

collagen and fat. Further, fibrocystic change and normal tissue were separated us-

ing fitted coefficients for collagen and fat again, while cancer and fibroadenoma were

separated based only on fat using logistic regression. The decision threshold was

chosen to maximize the correct classification rate on the training data in each logistic

regression. Although Haka et al(2005) did not do so, we have replaced raw data by

smoothed data from compound estimation (including estimated derivatives). Table

6.1 is a summary of 6 base classifiers which will be combined later.

The first classifier is what Haka et al did in the previous paper in 2005. They

only selected fitted coefficients for fat and collagen to enter into a logistic regression

model. The second and third classifiers are based on compound estimation to smooth

the mean response curves and first derivatives, respectively. Also we used backward

elimination to select the model (i.e., choose basis spectrum coefficients) when applying

logistic regression. The fourth and fifth classifiers are variants of the first and second

classifiers respectively, except that we used classification trees to perform prediction
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Table 6.1: Review of base classifiers

Id Base classifier Detail
1 Haka’s method Fitted Coefficients(Fat and Collagen); logistic

regression
2 Compound estimation for

mean response
Other combination of fit coefficients in logistic
regression(backward)

3 Compound estimation for
first derivative

logistic regression(backward)

4 Variant of Haka’s method Fit coefficients decision tree
5 Variant of (2) Fit coefficients decision tree
6 Compound estimation for

first derivative
Fit coefficients decision tree

All procedures use two step classification: first separate N/FC from C/FA, then separate N

from FC, and C from FA, respectively.

instead of logistic regression. And the sixth classifier is based on compound estimation

for first derivative using classification tree.

Stacked generalization

We perform two sequential stacking procedures discussed in Chapter 3 to combine

the base classifiers generated above. First of all, the input L dataset is randomly

divided into J parts, level 0 is cross validated prediction using K different algorithms,

in our case, we performed five fold cross validation using 6 base classifiers so that J=5

and K = 6. In level 1, we combine the K base classifiers based on the output from

level 0 to achieve better prediction. We have used exponentially weighted average

vote proposed by Freund et al in 2004. The idea is similar to majority vote, except

that each base classifier is weighted exponentially with respect to its training error.

The weight is defined as an exponential function of η and the training error ε̂hi as

follows[25]:

whi := exp(−ηε̂hi),
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where ε̂hi is the training error of base classifier hi; η = ln(8|H|)m1/2−θ, in which |H|

is the number of base classifiers, m is the size of training data, and 0 < θ < 1
2
. In our

study, θ was chosen to be 0.1 so as to obtain the least classification error. Suppose

we have binary outcome, the final weighted average prediction is defined to be the

outcome maximizing summation of weights of the base classifiers. Symbolically, let

l̂η(Y ) =
1

η
ln

(∑
h,h(Y )=+1w(h)∑
h,h(Y )=−1w(h)

)
,

the weighted average prediction is defined to be sign(l̂η(Y )). Although not present

in this section, an abstention feature is available as we have discussed in Chapter 3.

The abstention feature can be interpreted as “no prediction”, and it helps to identify

the locations of potential overfitting and allow special actions on these cases. Some-

times sequential classification can perform better than direct classification. This is

especially the case when the first step classification can yield better prediction, ei-

ther because certain errors are forgiven at the first step (e.g. Normal called FC, or

vice versa) or because errors incurred at the second step are less serious if the first

step proceeded successfully (e.g. FA called cancer, or vice versa). Both of these

considerations reflect that some categories may be inherently closer than others. An-

other advantage of sequential classification is that different classifiers can be applied

in sequential steps and the stacking itself can be changed (e.g. variation of tuning

parameters). However, if the observation is misclassified in the first step, it will cer-

tainly not be correctly classified in the second step, so it will not be entered into the

cross validation in the second step classification either. Rather, we will use all other

correctly classified observations from the first step classification for training in the

second step.

Results and conclusions

Table 6.2 shows the performance of stacking compared with base classifiers.
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Table 6.2: Correctly classification rate of base classifiers and stacking

Classification M1 M2 M3 M4 M5 M6 Stacking

Step 1
(N FC vs C FA)

71
45

72
45

70
45

69
43

69
42

69
44

73/78
45/46

Step 2
(N vs FC)

45
22

45
23

46
22

42
24

46
23

45
23

46/47
23/26

Step 2
(C vs FA)

11
28

11
26

9
26

12
25

14
24

8
24

11/15
28/30

θ = 0.1

In step 1, M2 is the best base model among the base models, In step 2 when

separating N from FC, classifier number 5 is the best base model, while when sepa-

rating cancer from FA, the first classifier performs the best among all base classifiers.

Comparing stacking with base classifiers, stacking performs either better than the

best base model as shown in the first step or equal to the best model as shown in the

second step.

In conclusion, stacking yields at least the same quality of results as the best

base classifier in the two step sequential classifications, which is all the more impres-

sive because the best base classifier varies from situation to situation. Thus, overall

generalization error is smaller when using stacking. Also, in our Raman spectra clas-

sification, we use five fold cross validation which enables us to make better assessment

of predictive ability from the training data.

6.3 Boosting of Nonparametric Regression Based Classifiers for Breast

Tissue Diagnosis from Raman Spectra

In this section, we are going to apply boosting algorithm described in Chapter 4 to

the Raman spectroscopy data in nonparametric regression settings. Different from

stacking which combines a set of different classifiers into an ensemble classifier, in

boosting, the performance of one classifier can be improved through weighting: exam-

ples/instances incorrectly predicted by previous classifiers in the series are weighted
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more heavily than examples that were correctly predicted. We will first revisit the

classifier employing minimum distance approach based on compound estimation for

the first derivative in Chapter 2 due to its relatively good performance.

Boosting of minimum distance approach

Sequential classification has been shown to perform better than direct classification

in the four breast pathological types of Raman spectra data. For instance, when

using the base classifier of minimum distance approach on the smoothed derivative

estimation from compound estimation, the sequential classification has an overall cor-

rect classification rate of 103/124 versus 88/124 for the direct classification into four

types. Thus, we will also apply sequential boosting to improve the performance of

minimum distance approach.

Data normalization and smoothing steps are the same as described in section

6.2. Recall that in Chapter 2, in order to apply the minimum distance approach,

a reference curve j of derivative j for diagnosis c, denoted µ̂
(j)
c (x), is defined as the

average of µ̂(j)(x) over all subjects known to have diagnosis c, where c = 1 with a

normal diagnosis, c = 2 with cancer, c = 3 with fibroadenoma (“FA”), and c = 4

with fibrocystic change (“FC”), and µ̂(j)(x) denote the estimated jth derivative. For

boosting, as mentioned above, we will focus on the first derivative estimation (j = 1)

when employing minimum distance approach. There are two ways to implement the

sequential classification in the first step with regard to the reference curves. First,

we can define two combined reference curves for N/FC and FA/C respectively, while

each reference curve is defined as the average of µ̂
(j)
d (x) over all subjects known to

have diagnosis d, where d = 1 with normal or fibrocystic change (“FC”), and d = 2

with fibroadenoma (“FA”) or cancer. Another way is to use four reference curves as
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we defined in Chapter 2, and output the predicted classification as N/FC if normal

reference curve or FC reference curve is closest to the estimated first derivative to be

classified or FA/C otherwise based on L1 distance between the subject’s estimated

jth derivative and reference curve j for diagnosis d. We will explore both approaches

and discuss the performance of boosting for each approach. For brevity, we will call

the first approach “Two reference curves” and the latter one “Four reference curves”.

Two reference curves

We adapt the AdaBoost algorithm described in Chapter 4 with modifications in the

sequential classification process using minimum distance approach.

First, the reference curve defined as µ̂
(j)
d (x) is updated by weighted average of

µ̂(j)(x) known to have diagnosis d with the weight equal to the sampling weight in

each round of boosting. Specifically, the weight on each observation was initialized to

be equal, and then updated in each round according to Dt+1(i) = Dt(i)exp(−cαtyiht(x))
Zt

,

where Zt is chosen so that Dt+1 will be a distribution, αt = 1/2(ln(1−εt
εt

)), and εt is

the weighted classification error of the leave one out cross validation data defined as

εt = PrDt [ht(xi) 6= yi].

Second, we introduce a scaling factor c in Dt+1(i) = Dt(i)exp(−cαtyiht(x))
Zt

with 0 ≤

c ≤ 1 and explore the effect of this scaling factor on the performance of boosting

as shown in Figure 6.2 to 6.4 for total classification error, classification error for

N/FC, and classification error for FA/C in the first step, respectively. This scaling

factor c could control the degree of boosting: the larger c is, the higher the degree of

boosting (c = 0 representing no boosting at all, and c = 1 representing AdaBoost).

We have found out the total classification error of boosting with scaling factor 0.75 is

better than with other scaling factors. This finding suggests that there may exist an

optimal boosting scaling factor leading to the best performance of boosting. Also, at
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the beginning of boosting (when number of rounds = 1), the classification error for

N/FC is relatively higher than the classification error for FA/C (figure 6.3 and 6.4).

Number of rounds T is another important parameter in AdaBoost. As number of

2 4 6 8 10 12 14

0.
05

0.
10

0.
15

Number of rounds

To
ta

l c
la

ss
ific

at
io

n 
er

ro
r

c = 0.25
c = 0.5
c = 0.75
c = 0.85
c = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 6.2: Total classification error against number of rounds with respect to scaling
factor c in the first step. The blue line represents the scaling factor c = 0.25; the green line
represents the scaling factor c = 0.5; the orange line represents the scaling factor c = 0.75;
the pink line represents the scaling factor c = 0.85; the red line represents the scaling factor
c = 1.

rounds in boosting increases, the classification error for N/FC goes down, while the

classification error for FA/C generally goes up. In practice, we usually stop iterations

of boosting long after a consistency pattern for the overall classification error of

training data is reached. Figure 6.2 shows early stopping at rounds 4 through 6

may result in poorer performance of boosting than the starting point when c = 0.5.

Additionally, for all nonzero c considered, there is a trade off between classification

error of boosting for N/FC and the classification error for FA/C sometimes appearing

as soon as in the first step, although the total classification error of boosting decreases

as long as c 6= 0.

Table 6.3 shows the boosting performance via number of misclassifications at the

two steps with regard to different scaling factor c. The second step of boosting
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Figure 6.3: Classification error of N/FC against number of rounds with respect to scaling
factor c in the first step. The blue line represents the scaling factor c = 0.25; the green line
represents the scaling factor c = 0.5; the orange line represents the scaling factor c = 0.75;
the pink line represents the scaling factor c = 0.85; the red line represents the scaling factor
c = 1.
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Figure 6.4: Classification error of FA/C against number of rounds with respect to scaling
factor c in the first step. The blue line represents the scaling factor c = 0.25; the green line
represents the scaling factor c = 0.5; the orange line represents the scaling factor c = 0.75;
the pink line represents the scaling factor c = 0.85; the red line represents the scaling factor
c = 1.
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separates N and FC, as well as C and FA respectively. As shown in table 6.3, the

second step is based on the results from the first step using c = 0.75. When c = 0.75

in the first step, not only could we achieve better overall prediction in the first step

than the other choices of c, but also obtain a satisfactory classification for FA/C.

The results also indicate that when the sample size becomes small in the second step,

there is not much improvement for classification using boosting.

Table 6.3: Number of misclassifications in boosting based on Two reference curves

Step Number of rounds T = 15 No
Scaling factor c=0.25 c=0.5 c=0.75 c=0.85 c=1 boosting

Step 1 N/FC
C/FA
Overall

13
5
18

13
3
16

4
5
9

7
4
11

2
9
11

19/78
2/46
21/124

Step 2
(N vs FC)

N
FC
N/FC

0
8
8

0
7
7

0
7
7

0
7
7

0
10
10

0/47
10/27
10/74

Step 2
(FA vs C)

FA
C
FA/C

3
5
8

3
5
8

3
5
8

3
5
8

3
5
8

3/15
5/26
8/41

Four reference curves

Boosting using four reference curves in the first step is similar to the approach using

two reference curves described above except for the updated weights used to calcu-

late the four reference curves in the first step. The reference curve defined as µ̂
(j)
c (x)

is updated by weighted average of µ̂(j)(x) known to have diagnosis c in each round

of boosting with the weight a function of the weighted classification error from the

previous round for the first step “equivalence class” to which c belongs, denoted

k. Symbolically, in the Four reference curves approach, let Dtk denote the round

t weight used to calculate both reference curves in equivalence class k; the weights

are initialized to be equal. Then Dtk will be updated in each round according to

Dt+1,k(i) = Dtk(i)exp(−cαtkyihtk(xi))
Ztk

, where Ztk is chosen so that Dt+1,k will be a distri-

bution, αtk = 1/2(ln(1−εtk
εtk

)), and εtk = PrDtk [htk(xi) 6= yi|yi = k] for k = 1 denoting

“N/FC” and k = −1 denoting “FA/C”.
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Without boosting, compared with Two reference curves approach, the Four refer-

ence curves approach has less total misclassifications (17/124 vs. 24/124) for the first

step. Table 6.4 shows the number of misclassifications in boosting based on four ref-

erence curves approach. Number of rounds T is chosen to be 15, thus a consistency

pattern for the overall classification error is reached. In the first step, the overall

number of misclassifications (10/124) is smaller when the scaling factor c was chosen

to be 0.5 than the other choices for c. This result is comparable to that using two

reference curves approach when c = 0.75 (9/124). For the second step, the classifi-

Table 6.4: Number of misclassifications in boosting based on Four reference curves

Step Number of rounds T = 15 No
Scaling factor c=0.25 c=0.5 c=0.75 c=0.85 c=1 boosting

Step 1 N
FC
FA
C
N/FC
FA/C
Overall

0
4
1
6
4
7
11

0
5
1
4
5
5
10

0
8
2
5
8
7
15

0
5
2
5
5
7
12

0
7
2
6
7
8
15

0/47
11/31
0/15
6/31
11/78
6/46
17/124

Step 2
(N vs FC)

N
FC
N/FC

0
8
8

0
7
7

0
7
7

0
7
7

0
10
10

0/47
10/26
10/73

Step 2
(FA vs C)

FA
C
FA/C

2
4
6

2
4
6

2
4
6

2
4
6

2
4
6

2/14
4/27
6/41

cation is based on the results from the first step using c = 0.5. And the number of

misclassifications is comparable to that using two reference curves approach. Again,

there is no improvement from the boosting when separating “FA” from “C”.

Figure 6.5 to Figure 6.7 show the total classification error, classification error

for N/FC, and classification error for FA/C in the first step against the number of

rounds under different scaling factors for the Four reference curves approach. At

the beginning without boosting, figure 6.5 shows the total classification error is less

than that using Two reference approach. As number of rounds increases, the total

misclassification errors of boosting go down, and stabilized for c = 0.85 and c = 0.75.
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Yet, the total classification error goes up from round 14 to 15 when using c = 0.25

and c = 1. The “optimal scaling factors” are different from that in the Two reference

curves approach. Specifically, c = 0.5 if using Four reference curves, while c = 0.75 if

using Two reference curve.
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Figure 6.5: Total classification error against number of rounds with respect to scaling factor
c in the first step using Four reference curves approach. The blue line represents the scaling
factor c = 0.25; the green line represents the scaling factor c = 0.5; the orange line represents
the scaling factor c = 0.75; the pink line represents the scaling factor c = 0.85; the red line
represents the scaling factor c = 1.

Discussion

To summarize, boosting drives down the classification errors in both Two Reference

curves (from 21/124 to 9/124) and Four Reference curves (from 17/124 to 10/124)

approaches in the first step for classification of Raman spectroscopy data. It sug-

gests that boosting could turn a weak learner into a relatively strong learner through

weighted sampling and combination of classifiers from each round. Yet, boosting does

not improve the classification rate significantly in Step Two for this particular data

set. One reason is that during the second step, the sample size gets smaller. The other
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Figure 6.6: Classification error of N/FC against number of rounds with respect to scaling
factor c in the first step using Four reference curves approach. The blue line represents the
scaling factor c = 0.25; the green line represents the scaling factor c = 0.5; the orange line
represents the scaling factor c = 0.75; the pink line represents the scaling factor c = 0.85;
the red line represents the scaling factor c = 1.
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Figure 6.7: Classification error of FA/C against number of rounds with respect to scaling
factor c in the first step using Four reference curves approach. The blue line represents the
scaling factor c = 0.25; the green line represents the scaling factor c = 0.5; the orange line
represents the scaling factor c = 0.75; the pink line represents the scaling factor c = 0.85;
the red line represents the scaling factor c = 1.
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reason may be inherent closeness of “N” and “FC”, “FA” and “C” makes the second

step classifications more difficult, and thus Boosting’s effectiveness in improvement

of classification accuracy is minimal. Another important finding by modification of

AdaBoost is that adding a scaling factor in AdaBoost could potentially improve the

classification rate in this real data application. Finally, we have defined weights that

can be updated in each round of boosting in order to calculate the “reference curves”

and generate different classifiers in different rounds of boosting.

6.4 Conclusions

In this dissertation, we developed a novel hybridization of nonparametric smoothing,

dimension reduction, and statistical learning techniques with application to Raman

Spectroscopy data for breast cancer diagnosis.

This dissertation work is primarily motivated by the practical application of us-

ing a Raman spectrum derived from human breast tissue to classify the tissue as

normal, cancerous, or abnormal but benign. From an epidemiologic perspective, if

such a diagnostic procedure proves to be sufficiently sensitive and specific, then Ra-

man spectroscopy (which is non-invasive) may provide a useful intermediary between

mammography and surgical biopsy. For example, if a mammogram is inconclusive

but Raman spectroscopy clearly suggests that no cancer is present, then an unneces-

sary surgical biopsy may be avoided. Given the immense numbers of mammograms

that are performed, Raman spectroscopy may thus provide a mechanism to more

effectively cope with the large numbers of false positives that occur.

The motivation for our methodology is that, besides spectra profiles, their deriva-

tives may be useful for classifying different types of breast pathologies because they

reveal high frequency features of signals. Also, by appealing to ideas from machine

learning, diagnoses can be improved and conflicts between different diagnostic meth-

ods can be settled.

100



In Chapter 2, we applied compound estimation to smooth the existing spectrum

data in order to remove or lessen stochastic noise and acquire smooth objects for

differentiation. Compound estimation is a very recent innovation, whose hallmark is

the self-consistency property: the derivatives of the estimated mean response func-

tion estimate the derivatives of the mean response function (Charnigo and Srinivasan,

2011)[18]. This interchange of differentiation with estimation means that logical con-

flicts are avoided, such as an estimated local maximum of a mean response function

occurring where the estimated first derivative is nonzero. Importantly, not all smooth-

ing techniques possess the self-consistency property.

Later in Chapter 6, we represented both the compound-estimated Raman spectra

profiles and their derivatives as linear combinations of compound-estimated basis Ra-

man spectra and their derivatives, respectively. Although in principle coefficients from

these two linear regressions should be the same, coefficient estimates will be slightly

different from each other and those of Haka et al. (2005) because of smoothing and

whether high-amplitude or high-frequency features are emphasized, per considera-

tion of the spectra or their derivatives respectively. Moreover, coefficient estimates

obtained from these two linear regressions may ultimately lead to improved classifi-

cation.

Stacking is a process to combine multiple classifiers together to make better pre-

dictions. For example, we may have one classifier based on the approach proposed by

Haka et al using the raw data (2005), and the other two classifiers based on smoothed

Raman spectrum data from compound estimation, and the derivatives of smoothed

Raman spectrum data. The conflicts from different classifier predictions could be

reconciled by assigning them weights based on their performance. The idea, roughly

speaking, is that one classifier which makes a mistake can be overridden by the other

two classifiers. However, the number of classifiers is not limited to three in stacking.

We set up a sequential classification framework for multiple class prediction (repre-
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senting four types of breast tissue) and provided a theoretical rationale for two stage

sequential classification.

Boosting is a process to improve an individual classifier by iteratively reweighting

observations based on where the mistakes were made in the previous step. We im-

plemented it sequentially in two steps and justified a family of reweighting schemes,

of which the standard AdaBoost algorithm is a special case in Chapter 4. We also

proposed an ensemble integration scheme to consist of stacking and boosting together

in Chapter 5.

Methodology developed in this dissertation exhibited some success in improv-

ing accuracy of prediction in both numerical simulation and practical application

to actual Raman Spectroscopy data for diagnosing breast cancer. For example, by

combining classifiers using stacking, the prediction of classification is better than or

at least the same as the best individual classifier (the overall correct classification

rate 87.1% vs 85.4%, and sensitivity is 90.3% vs 90.3%). Also, there are improve-

ments from boosting in simulation studies based on minimum distance approach. The

overall classification errors in the first step decrease from 0.1627 to 0.1236 with 2/3

training data, and from 0.1632 to 0.1149 with 1/3 training data, while in the second

step they presented more remarkable improvements: from 0.1551 to 0.0982 with 2/3

training data, and from 0.1755 to 0.0971 with 1/3 training data.

6.5 Future research work and applications

Dynamic ensemble integration scheme has the potential to further improve classi-

fication accuracy in Raman spectra data analysis if data set is large enough. An

immediate future work is needed to define similarity metrics between observations in

order to implement dynamic ensemble integration scheme in nonparametric regres-

sion settings.

The methodology developed in this dissertation has numerous potential applica-
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tions, especially to functional data considered as observations varying over a contin-

uum (e.g. spectrometric curves, brain scans (fMRI), or protein and gene expression

profiles). Other scenarios in which an estimated mean response function may in-

dicate how to classify or characterize some person or object may also be examined

using some variant of the methodology in this dissertation. For example, glucose

tolerance tests or lipoprotein kinetics typically entail acquiring a set of data points

from each subject corresponding to time and serum concentration or specific activity,

and one may imagine that there is some interest in classifying such a subject with

respect to his/her present condition (which is perhaps already known), then with

regard to a prognosis for his/her future status. Similar to Raman spectroscopy data,

Electroencephalography (EEG) data can also be analyzed in the same way to detect

abnormality among those patients with chronic diseases such as epilepsy, and sleep

disorders.

It is desirable to use functional data as predictors to guide clinical decision mak-

ing and personalized treatment. For example, functional data as a predictor (such

as gene expression profiles of patients with leukemia or brain scans of patients with

schizophrenia) can be used to predict a categorical outcome (such as different types

of diagnosis) or a continuous outcome (such as survival time or time to recurrence).

Following the idea of dynamic ensemble integration in Chapter 5, we could refine the

training data for prediction on a particular observation in order to achieve better

prediction and guide personalized clinic decision making.
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