235 research outputs found

    Breaking the Circuit Size Barrier for Secure Computation Under DDH

    Get PDF
    Under the Decisional Diffie-Hellman (DDH) assumption, we present a 2-out-of-2 secret sharing scheme that supports a compact evaluation of branching programs on the shares. More concretely, there is an evaluation algorithm \Eval with a single bit of output, such that if an input w{0,1}nw\in\{0,1\}^n is shared into (w0,w1)(w^0,w^1), then for any deterministic branching program PP of size SS we have that \Eval(P,w^0)\oplus \Eval(P,w^1)=P(w) except with at most δ\delta failure probability. The running time of the sharing algorithm is polynomial in nn and the security parameter λ\lambda, and that of \Eval is polynomial in S,λS,\lambda, and 1/δ1/\delta. This applies as a special case to boolean formulas of size SS or boolean circuits of depth logS\log S. We also present a public-key variant that enables homomorphic computation on inputs contributed by multiple clients. The above result implies the following DDH-based applications: - A secure 2-party computation protocol for evaluating any branching program of size SS, where the communication complexity is linear in the input size and only the running time grows with SS. - A secure 2-party computation protocol for evaluating any layered boolean circuit of size SS and mm outputs with communication complexity O(S/\log S)+m\cdot\poly(\lambda). -A 2-party {\em function secret sharing} scheme, as defined by Boyle et al. (Eurocrypt 2015), for general branching programs (with inverse polynomial error probability). - A 1-round 2-server {\em private information retrieval} scheme supporting general searches expressed by branching programs

    Separating Two-Round Secure Computation From Oblivious Transfer

    Get PDF
    We consider the question of minimizing the round complexity of protocols for secure multiparty computation (MPC) with security against an arbitrary number of semi-honest parties. Very recently, Garg and Srinivasan (Eurocrypt 2018) and Benhamouda and Lin (Eurocrypt 2018) constructed such 2-round MPC protocols from minimal assumptions. This was done by showing a round preserving reduction to the task of secure 2-party computation of the oblivious transfer functionality (OT). These constructions made a novel non-black-box use of the underlying OT protocol. The question remained whether this can be done by only making black-box use of 2-round OT. This is of theoretical and potentially also practical value as black-box use of primitives tends to lead to more efficient constructions. Our main result proves that such a black-box construction is impossible, namely that non-black-box use of OT is necessary. As a corollary, a similar separation holds when starting with any 2-party functionality other than OT. As a secondary contribution, we prove several additional results that further clarify the landscape of black-box MPC with minimal interaction. In particular, we complement the separation from 2-party functionalities by presenting a complete 4-party functionality, give evidence for the difficulty of ruling out a complete 3-party functionality and for the difficulty of ruling out black-box constructions of 3-round MPC from 2-round OT, and separate a relaxed "non-compact" variant of 2-party homomorphic secret sharing from 2-round OT

    Foundations of Homomorphic Secret Sharing

    Get PDF
    Homomorphic secret sharing (HSS) is the secret sharing analogue of homomorphic encryption. An HSS scheme supports a local evaluation of functions on shares of one or more secret inputs, such that the resulting shares of the output are short. Some applications require the stronger notion of additive HSS, where the shares of the output add up to the output over some finite Abelian group. While some strong positive results for HSS are known under specific cryptographic assumptions, many natural questions remain open. We initiate a systematic study of HSS, making the following contributions. - A definitional framework. We present a general framework for defining HSS schemes that unifies and extends several previous notions from the literature, and cast known results within this framework. - Limitations. We establish limitations on information-theoretic multi-input HSS with short output shares via a relation with communication complexity. We also show that additive HSS for non-trivial functions, even the AND of two input bits, implies non-interactive key exchange, and is therefore unlikely to be implied by public-key encryption or even oblivious transfer. - Applications. We present two types of applications of HSS. First, we construct 2-round protocols for secure multiparty computation from a simple constant-size instance of HSS. As a corollary, we obtain 2-round protocols with attractive asymptotic efficiency features under the Decision Diffie Hellman (DDH) assumption. Second, we use HSS to obtain nearly optimal worst-case to average-case reductions in P. This in turn has applications to fine-grained average-case hardness and verifiable computation

    Communication Complexity and Secure Function Evaluation

    Full text link
    We suggest two new methodologies for the design of efficient secure protocols, that differ with respect to their underlying computational models. In one methodology we utilize the communication complexity tree (or branching for f and transform it into a secure protocol. In other words, "any function f that can be computed using communication complexity c can be can be computed securely using communication complexity that is polynomial in c and a security parameter". The second methodology uses the circuit computing f, enhanced with look-up tables as its underlying computational model. It is possible to simulate any RAM machine in this model with polylogarithmic blowup. Hence it is possible to start with a computation of f on a RAM machine and transform it into a secure protocol. We show many applications of these new methodologies resulting in protocols efficient either in communication or in computation. In particular, we exemplify a protocol for the "millionaires problem", where two participants want to compare their values but reveal no other information. Our protocol is more efficient than previously known ones in either communication or computation

    Sublinear-Communication Secure Multiparty Computation does not require FHE

    Get PDF
    Secure computation enables mutually distrusting parties to jointly compute a function on their secret inputs, while revealing nothing beyond the function output. A long-running challenge is understanding the required communication complexity of such protocols---in particular, when communication can be sublinear in the circuit representation size of the desired function. Significant advances have been made affirmatively answering this question within the two-party setting, based on a variety of structures and hardness assumptions. In contrast, in the multi-party setting, only one general approach is known: using Fully Homomorphic Encryption (FHE). This remains the state of affairs even for just three parties, with two corruptions. We present a framework for achieving secure sublinear-communication (N+1)(N+1)-party computation, building from a particular form of Function Secret Sharing for only NN parties. In turn, we demonstrate implications to sublinear secure computation for various function classes in the 3-party and 5-party settings based on an assortment of assumptions not known to imply FHE

    On Improving Communication Complexity in Cryptography

    Get PDF
    Cryptography grew to be much more than "the study of secret writing". Modern cryptography is concerned with establishing properties such as privacy, integrity and authenticity in protocols for secure communication and computation. This comes at a price: Cryptographic tools usually introduce an overhead, both in terms of communication complexity (that is, number and size of messages transmitted) and computational efficiency (that is, time and memory required). As in many settings communication between the parties involved is the bottleneck, this thesis is concerned with improving communication complexity in cryptographic protocols. One direction towards this goal is scalable cryptography: In many cryptographic schemes currently deployed, the security degrades linearly with the number of instances (e.g. encrypted messages) in the system. As this number can be huge in contexts like cloud computing, the parameters of the scheme have to be chosen considerably larger - and in particular depending on the expected number of instances in the system - to maintain security guarantees. We advance the state-of-the-art regarding scalable cryptography by constructing schemes where the security guarantees are independent of the number of instances. This allows to choose smaller parameters, even when the expected number of instances is immense. - We construct the first scalable encryption scheme with security against active adversaries which has both compact public keys and ciphertexts. In particular, we significantly reduce the size of the public key to only about 3% of the key-size of the previously most efficient scalable encryption scheme. (Gay,Hofheinz, and Kohl, CRYPTO, 2017) - We present a scalable structure-preserving signature scheme which improves both in terms of public-key and signature size compared to the previously best construction to about 40% and 56% of the sizes, respectively. (Gay, Hofheinz, Kohl, and Pan, EUROCRYPT, 2018) Another important area of cryptography is secure multi-party computation, where the goal is to jointly evaluate some function while keeping each party’s input private. In traditional approaches towards secure multi-party computation either the communication complexity scales linearly in the size of the function, or the computational efficiency is poor. To overcome this issue, Boyle, Gilboa, and Ishai (CRYPTO, 2016) introduced the notion of homomorphic secret sharing. Here, inputs are shared between parties such that each party does not learn anything about the input, and such that the parties can locally evaluate functions on the shares. Homomorphic secret sharing implies secure computation where the communication complexity only depends on the size of the inputs, which is typically much smaller than the size of the function. A different approach towards efficient secure computation is to split the protocol into an input-independent preprocessing phase, where long correlated strings are generated, and a very efficient online phase. One example for a useful correlation are authenticated Beaver triples, which allow to perform efficient multiplications in the online phase such that privacy of the inputs is preserved and parties deviating the protocol can be detected. The currently most efficient protocols implementing the preprocessing phase require communication linear in the number of triples to be generated. This results typically in high communication costs, as the online phase requires at least one authenticated Beaver triple per multiplication. We advance the state-of-the art regarding efficient protocols for secure computation with low communication complexity as follows. - We construct the first homomorphic secret sharing scheme for computing arbitrary functions in NC 1 (that is, functions that are computably by circuits with logarithmic depth) which supports message spaces of arbitrary size, has only negligible correctness error, and does not require expensive multiplication on ciphertexts. (Boyle, Kohl, and Scholl, EUROCRYPT, 2019) - We introduce the notion of a pseudorandom correlation generator for general correlations. Pseudorandom correlation generators allow to locally extend short correlated seeds into long pseudorandom correlated strings. We show that pseudorandom correlation generators can replace the preprocessing phase in many protocols, leading to a preprocessing phase with sublinear communication complexity. We show connections to homomorphic secret sharing schemes and give the first instantiation of pseudorandom correlation generators for authenticated Beaver triples at reasonable computational efficiency. (Boyle, Couteau, Gilboa, Ishai, Kohl, and Scholl, CRYPTO, 2019

    Algebraic Restriction Codes and Their Applications

    Get PDF
    Consider the following problem: You have a device that is supposed to compute a linear combination of its inputs, which are taken from some finite field. However, the device may be faulty and compute arbitrary functions of its inputs. Is it possible to encode the inputs in such a way that only linear functions can be evaluated over the encodings? I.e., learning an arbitrary function of the encodings will not reveal more information about the inputs than a linear combination. In this work, we introduce the notion of algebraic restriction codes (AR codes), which constrain adversaries who might compute any function to computing a linear function. Our main result is an information-theoretic construction AR codes that restrict any class of function with a bounded number of output bits to linear functions. Our construction relies on a seed which is not provided to the adversary. While interesting and natural on its own, we show an application of this notion in cryptography. In particular, we show that AR codes lead to the first construction of rate-1 oblivious transfer with statistical sender security from the Decisional Diffie-Hellman assumption, and the first-ever construction that makes black-box use of cryptography. Previously, such protocols were known only from the LWE assumption, using non-black-box cryptographic techniques. We expect our new notion of AR codes to find further applications, e.g., in the context of non-malleability, in the future

    Sublinear Secure Computation from New Assumptions

    Get PDF
    Secure computation enables mutually distrusting parties to jointly compute a function on their secret inputs, while revealing nothing beyond the function output. A long-running challenge is understanding the required communication complexity of such protocols---in particular, when communication can be sublinear in the circuit representation size of the desired function. For certain functions, such as Private Information Retrieval (PIR), this question extends to even sublinearity in the input size. We develop new techniques expanding the set of computational assumptions for sublinear communication in both settings: 1) [Circuit size] We present sublinear-communication protocols for secure evaluation of general layered circuits, given any 2-round rate-1 batch oblivious transfer (OT) protocol with a particular ``decomposability\u27\u27 property. In particular, this condition can be shown to hold for the recent batch OT protocols of (Brakerski et al. Eurocrypt 2022), in turn yielding a new sublinear secure computation feasibility result: from Quadratic Residuosity (QR) together with polynomial-noise-rate Learning Parity with Noise (LPN). Our approach constitutes a departure from existing paths toward sublinear secure computation, all based on fully homomorphic encryption or homomorphic secret sharing. 2) [Input size.] We construct single-server PIR based on the Computational Diffie-Hellman (CDH) assumption, with polylogarithmic communication in the database input size nn. Previous constructions from CDH required communication Ω(n)\Omega(n). In hindsight, our construction comprises of a relatively simple combination of existing tools from the literature

    Aggregate Pseudorandom Functions and Connections to Learning

    Get PDF
    In the first part of this work, we introduce a new type of pseudo-random function for which ``aggregate queries\u27\u27 over exponential-sized sets can be efficiently answered. We show how to use algebraic properties of underlying classical pseudo random functions, to construct such ``aggregate pseudo-random functions\u27\u27 for a number of classes of aggregation queries under cryptographic hardness assumptions. For example, one aggregate query we achieve is the product of all function values accepted by a polynomial-sized read-once boolean formula. On the flip side, we show that certain aggregate queries are impossible to support. Aggregate pseudo-random functions fall within the framework of the work of Goldreich, Goldwasser, and Nussboim on the ``Implementation of Huge Random Objects,\u27\u27 providing truthful implementations of pseudo-random functions for which aggregate queries can be answered. In the second part of this work, we show how various extensions of pseudo-random functions considered recently in the cryptographic literature, yield impossibility results for various extensions of machine learning models, continuing a line of investigation originated by Valiant and Kearns in the 1980s. The extended pseudo-random functions we address include constrained pseudo random functions, aggregatable pseudo random functions, and pseudo random functions secure under related-key attacks
    corecore