3,868 research outputs found

    Industrial and Tramp Ship Routing Problems: Closing the Gap for Real-Scale Instances

    Full text link
    Recent studies in maritime logistics have introduced a general ship routing problem and a benchmark suite based on real shipping segments, considering pickups and deliveries, cargo selection, ship-dependent starting locations, travel times and costs, time windows, and incompatibility constraints, among other features. Together, these characteristics pose considerable challenges for exact and heuristic methods, and some cases with as few as 18 cargoes remain unsolved. To face this challenge, we propose an exact branch-and-price (B&P) algorithm and a hybrid metaheuristic. Our exact method generates elementary routes, but exploits decremental state-space relaxation to speed up column generation, heuristic strong branching, as well as advanced preprocessing and route enumeration techniques. Our metaheuristic is a sophisticated extension of the unified hybrid genetic search. It exploits a set-partitioning phase and uses problem-tailored variation operators to efficiently handle all the problem characteristics. As shown in our experimental analyses, the B&P optimally solves 239/240 existing instances within one hour. Scalability experiments on even larger problems demonstrate that it can optimally solve problems with around 60 ships and 200 cargoes (i.e., 400 pickup and delivery services) and find optimality gaps below 1.04% on the largest cases with up to 260 cargoes. The hybrid metaheuristic outperforms all previous heuristics and produces near-optimal solutions within minutes. These results are noteworthy, since these instances are comparable in size with the largest problems routinely solved by shipping companies

    Vehicle routing with soft time windows and stochastic travel times : a column generation and branch-and-price solution approach

    Get PDF
    We study a vehicle routing problem with soft time windows and stochastic travel times. In this problem, we consider stochastic travel times to obtain routes which are both efficient and reliable. In our problem setting, soft time windows allow early and late servicing at customers by incurring some penalty costs. The objective is to minimize the sum of transportation costs and service costs. Transportation costs result from three elements which are the total distance traveled, the number of vehicles used and the total expected overtime of the drivers. Service costs are incurred for early and late arrivals; these correspond to time-window violations at the customers. We apply a column generation procedure to solve this problem. The master problem can be modeled as a classical set partitioning problem. The pricing subproblem, for each vehicle, corresponds to an elementary shortest path problem with resource constraints. To generate an integer solution, we embed our column generation procedure within a branch-and-price method. Computational results obtained by experimenting with well-known problem instances are reported

    Solving the dial-a- ride problem (DARP) using an agent based simulation approach and heuristic methods

    Get PDF
    A dissertation submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the Degree of Master of Science in Engineering, 2015The Dial-a-Ride Problem (DARP) requires a set of customers to be transported by a limited fleet of vehicles between unique origins and destinations under several service constraints, most notably, within defined time windows. The problem is considered NP-hard and has typically been solved using metaheuristics methods. An agent based simulation (ABS) model was developed, where each vehicle bids to service customers based on a weighted objective function that considers the cost to service the customer, and time quality of the service that would be achieved. The approach applied a pre-processing technique to reduce the search space given the service time window constraints. Tests of the model show significantly better customer transit and waiting times than the benchmark datasets. The ABS was able to obtain solutions for much larger problem sizes than the benchmark solutions, with this work being the first known application of ABS to the DARP

    A multi-criteria decision support system for a routing problem in waste collection

    Get PDF
    Autor proofThis work presents a decision support system for route planning of vehicles performing waste collection for recycling. We propose a prototype system that includes three modules: route optimization, waste generation prediction, and multiple-criteria decision analysis (MCDA). In this work we focus on the application of MCDA in route optimization. The structure and functioning of the DSS is also presented. We modelled the waste collection procedure as a routing problem, more specifically as a team orienteering problem with capacity constraints and time windows. To solve the route optimization problem we developed a cellular genetic algorithm. For the MCDA module, we employed three methods: SMART, ValueFn and Analytic Hierarchy Process (AHP). The decision support system was tested with real-world data from a waste management company that collects recyclables, and the capabilities of the system are discussed.FCT Fundação para a Ciência e Tecnologia, Project Scope: PEst-OE/EEI/UI0319/2

    Decision support for flexible liner shipping

    Get PDF
    We present a transportation problem representing a combination of liner and tramp shipping, where using other modes of transportation is also an option. As an example, we consider transportation of palletized frozen fish from Russia and Norway to terminals in Norway, the Netherlands, and the UK. We present a mathematical model for the planning problem associated with each tour and show that problem instances of realistic size can be solved to optimality using standard software.publishedVersio

    A Tabu Search algorithm for the vehicle routing problem with discrete split deliveries and pickups

    Get PDF
    The Vehicle Routing Problem with Discrete Split Deliveries and Pickups is a variant of the Vehicle Routing Problem with Split Deliveries and Pickups, in which customers’ demands are discrete in terms of batches (or orders). It exists in the practice of logistics distribution and consists of designing a least cost set of routes to serve a given set of customers while respecting constraints on the vehicles’ capacities. In this paper, its features are analyzed. A mathematical model and Tabu Search algorithm with specially designed batch combination and item creation operation are proposed. The batch combination operation is designed to avoid unnecessary travel costs, while the item creation operation effectively speeds up the search and enhances the algorithmic search ability. Computational results are provided and compared with other methods in the literature, which indicate that in most cases the proposed algorithm can find better solutions than those in the literature

    Human-Machine Collaborative Optimization via Apprenticeship Scheduling

    Full text link
    Coordinating agents to complete a set of tasks with intercoupled temporal and resource constraints is computationally challenging, yet human domain experts can solve these difficult scheduling problems using paradigms learned through years of apprenticeship. A process for manually codifying this domain knowledge within a computational framework is necessary to scale beyond the ``single-expert, single-trainee" apprenticeship model. However, human domain experts often have difficulty describing their decision-making processes, causing the codification of this knowledge to become laborious. We propose a new approach for capturing domain-expert heuristics through a pairwise ranking formulation. Our approach is model-free and does not require enumerating or iterating through a large state space. We empirically demonstrate that this approach accurately learns multifaceted heuristics on a synthetic data set incorporating job-shop scheduling and vehicle routing problems, as well as on two real-world data sets consisting of demonstrations of experts solving a weapon-to-target assignment problem and a hospital resource allocation problem. We also demonstrate that policies learned from human scheduling demonstration via apprenticeship learning can substantially improve the efficiency of a branch-and-bound search for an optimal schedule. We employ this human-machine collaborative optimization technique on a variant of the weapon-to-target assignment problem. We demonstrate that this technique generates solutions substantially superior to those produced by human domain experts at a rate up to 9.5 times faster than an optimization approach and can be applied to optimally solve problems twice as complex as those solved by a human demonstrator.Comment: Portions of this paper were published in the Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) in 2016 and in the Proceedings of Robotics: Science and Systems (RSS) in 2016. The paper consists of 50 pages with 11 figures and 4 table

    Topics in logistics

    Get PDF

    Methodologies for Solving Integrated Transportation and Scheduling Problems

    Get PDF
    This research proposes novel solution techniques to optimize two real-world problems in the area of scheduling and transportation. We first consider a model for optimizing the operations of dredges. In this problem, scheduling and assignment decisions are integrated across a finite planning horizon. Additional constraints and problem elements explicitly considered include, but are not limited, to environmental work window restrictions, budget limitations, dredge operation rates and schedule-dependent dredge availability. Our approach makes use of Constraint Programming (CP) to obtain quality and robust solutions within an amount of time small enough to be useful to practitioners. The expanded feature set of the methodology presented makes our solution tool the most comprehensive and flexible decision-making framework for dredge scheduling in existence. The second transportation and logistics problem considered in this dissertation considers a unified variation of the Vehicle Routing Problem (VRP). This work offers a powerful yet flexible tool to model and solve real-world problems, each with their specifications, constraints, and requirements. We review existing VRP problems from the literature and propose new VRP variants that differ from the existing ones by the consideration of hours of service regulation on the active and drive hours of drivers in a single or multiple shifts. Real-world instances of these problems consist of thousands of customer locations and hundreds of vehicles. To ensure the quality of the solutions, we compare the performance of our approach with CPLEX on several benchmark instances from the literature. Finally, the third chapter of this work focuses on a comprehensive analysis of the methodology presented in Chapter 4. Specifically, sensitivity analysis regarding the parameters driving the performance of the heuristics is performed. Also, we propose a Genetic Algorithm (GA) to solve the VRP variants in Chapter 3 and provide a computational study of its performance against CPLEX and the approaches in Chapter 3
    corecore