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D. Taşa,∗, M. Gendreaub, N. Dellaerta, T. van Woensela, A.G. de Koka

aSchool of Industrial Engineering and Innovation Sciences, Eindhoven University of

Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
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Abstract

We study a vehicle routing problem with soft time windows and stochastic
travel times. In this problem, we consider stochastic travel times to obtain
routes which are both efficient and reliable. In our problem setting, soft
time windows allow early and late servicing at customers by incurring some
penalty costs. The objective is to minimize the sum of transportation costs
and service costs. Transportation costs result from three elements which
are the total distance traveled, the number of vehicles used and the total
expected overtime of the drivers. Service costs are incurred for early and
late arrivals; these correspond to time-window violations at the customers.
We apply a column generation procedure to solve this problem. The mas-
ter problem can be modeled as a classical set partitioning problem. The
pricing subproblem, for each vehicle, corresponds to an elementary shortest
path problem with resource constraints. To generate an integer solution, we
embed our column generation procedure within a branch-and-price method.
Computational results obtained by experimenting with well-known problem
instances are reported.
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1. Introduction

The Vehicle Routing Problem (VRP), sometimes referred to as capaci-
tated VRP, aims to find a set of feasible routes that start and end at the
depot to serve a set of customers. Each customer, given with a known de-
mand, is visited exactly once by one vehicle. Each route has a total demand
that cannot exceed the vehicle capacity. The objective is to minimize the
total cost, traditionally constructed by the sum of distances traveled or the
number of vehicles used or a combination of these. The interested reader
is referred to Toth and Vigo [31], and Laporte [21, 22] for comprehensive
literature surveys about the VRP. This problem is extended by considering
different customer service aspects such as starting the service at each cus-
tomer within a given time interval, called the Vehicle Routing Problem with
Time Windows (VRPTW). Time windows are called soft when they can be
violated with some penalty costs. They are called hard when violations are
not permitted, i.e., vehicles are allowed to wait with no cost if they arrive
early and they are prohibited to serve if they arrive late. For reviews on the
VRPTW the reader is referred to Bräysy and Gendreau [4, 5], Gendreau and
Tarantilis [17], and Kallehauge [20].

In the classical formulation of the VRP, all problem elements are de-
terministic. However, carrier companies have to deal with various types of
uncertainty in real-life applications. The quality of the service becomes quite
poor if uncertainties are disregarded at the planning level. To overcome the
inefficiency incurred at the operational level, stochastic variants of the VRP
have been introduced (see Gendreau et al. [16] for a review on stochastic
routing problems). Common parameters considered in these variants are
stochastic demands, stochastic customers and stochastic travel times. In
this research, we study a version of the VRP where we focus on stochastic
travel times with a known probability distribution. Using stochastic travel
times enables us to construct both reliable and efficient routes. In addition to
the cost effectiveness, we also consider customer service aspects where each
customer has a soft time window that allows early and late servicing.

For our problem, we consider the formulation introduced in Taş et al.
[29] where the authors focus on modeling aspects and on solving the prob-
lem effectively with a new solution procedure based on metaheuristics. The
study conducted in [29] extends existing models, which are generated for
stochastic routing problems, by proposing a one-stage formulation in which
the objective function copes with time-window violations and expected over-
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time, and all constraints are linear (see Ando and Taniguchi [1], Russell and
Urban [26], and Li et al. [23] for existing models). In this formulation, the
objective is to minimize the sum of transportation costs and service costs.
Transportation costs result from three elements which are the total distance
traveled, the number of vehicles used and the total expected overtime of the
drivers. Service costs are incurred for early and late arrivals; these corre-
spond to time-window violations at the customers. Various solution options
can be provided to carrier companies by generating different combinations
of two main cost components. In our study, we optimally solve this model
which provides solutions by placing importance both on efficiency and on
reliability. The interested reader is referred to Taş et al. [29] for an in-depth
discussion about the framework of the model.

To obtain the optimal solution, we apply a column generation procedure
to solve the model described above (see Lübbecke and Desrosiers [24], and
Desaulniers et al. [9] for comprehensive surveys on column generation). In
our procedure, the master problem can be modeled as a classical set parti-
tioning problem. The pricing subproblem, for each vehicle, corresponds to
an elementary shortest path problem with resource constraints. This col-
umn generation procedure is embedded within a branch-and-price method
to obtain integer solutions. The branch-and-price method is very successful
among the exact methods recently applied to the deterministic and stochastic
variants of the routing problems. Some applications can be seen in Fischetti
et al. [15], Desrochers et al. [11], Chabrier [6], Irnich and Villeneuve [19], and
Christiansen and Lysgaard [7]. To our knowledge, no research has studied ex-
act methods to solve the VRP with soft time windows and stochastic travel
times. Our paper extends the related literature by obtaining the optimal
solution to the described problem.

The paper is organized as follows. The problem and the formulation used
in this paper are introduced in Section 2. The column generation procedure
is explained in Section 3. The pricing problem with a dominance relation
newly introduced in this study is reported in Section 4. Then, we describe the
framework of branch-and-price algorithm in Section 5 and report numerical
results on Solomon’s problem instances [28] in Section 6. Finally, we present
our conclusions in Section 7.
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2. Problem Description and Formulation

Let G = (N,A) be a connected digraph where N = {0, 1, ..., n} is the set
of nodes and A is the set of arcs. In this graph, node 0 denotes the depot, and
nodes 1 to n represent customers. A distance dij, and a travel time Tij with
a known probability distribution are defined for each arc (i, j), where i 6= j.
With each customer i ∈ N \ 0, is associated a positive demand qi, a positive
service time si, and a soft time window [li, ui] where li and ui are non-negative
parameters. Soft time windows enable to serve customers outside their time
windows, which incurs some penalty costs to the company for early and late
servicing. The scheduling horizon for the problem is represented by [l0, u0]
that is the time window given for the depot. Furthermore, a homogeneous
fleet of vehicles of equal capacity (Q) is located at the depot. These vehicles,
given in set V , are not allowed to wait at customer locations in case of arriving
early; service must take place immediately.

In this paper, we focus on the mathematical formulation introduced in
Taş et al. [29]. We first summarize the notation used in this formulation in
Table 1.

Table 1: The notation used in the mathematical model

xijv : equal to 1 if vehicle v covers arc (i, j), 0 otherwise
x : vector of vehicle assignments and customer sequences in these

vehicle routes, where x = {xijv|i, j ∈ N, v ∈ V }
Djv(x) : expected delay at node j when it is served by vehicle v
Ejv(x) : expected earliness at node j when it is served by vehicle v
Ov(x) : expected overtime of the driver working on route of vehicle v
cd : penalty cost paid for one unit of delay
ce : penalty cost paid for one unit of earliness
ct : cost paid for one unit of distance
co : cost paid for one unit of overtime
cf : fixed cost paid for each vehicle used for servicing

The model, which is solved by applying exact algorithms in our paper,
can then be stated as follows:
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min
∑

v∈V

[

ρ
1

C1

(

cd
∑

j∈N

Djv(x) + ce
∑

j∈N

Ejv(x)

)

+(1− ρ)
1

C2

(

ct
∑

i∈N

∑

j∈N

dijxijv + cf
∑

j∈{N\0}

x0jv + coOv(x)

)]

(1)

subject to
∑

j∈N

∑

v∈V

xijv = 1, i ∈ N \ {0}, (2)

∑

i∈N

xikv −
∑

j∈N

xkjv = 0, k ∈ N \ {0}, v ∈ V, (3)

∑

j∈N

x0jv = 1, v ∈ V, (4)

∑

i∈N

xi0v = 1, v ∈ V, (5)

∑

i∈N\{0}

qi
∑

j∈N

xijv ≤ Q, v ∈ V, (6)

∑

i∈B

∑

j∈B

xijv ≤ |B| − 1, B ⊆ N \ {0}, v ∈ V, (7)

xijv ∈ {0, 1}, i ∈ N, j ∈ N, v ∈ V. (8)

The objective function (1) minimizes the total weighted cost which has
two main components, service costs and transportation costs. The con-
straints (2) ensure that each customer is visited exactly once. The constraints
(3) satisfy the conservation of flow at each customer for each vehicle. The
constraints (4) and (5) indicate that every vehicle route must start from the
depot and end at the depot. The constraints (6) state that each vehicle can
be loaded up to its capacity. The constraints (7) ensure the subtour elim-
ination, and (8) are the integrality constraints. Parameter ρ is needed to
obtain various combinations of the two main cost components by adjusting
their values with scaling parameters C1 and C2. The interested reader is
referred to Taş et al. [29] for the details about these parameters and their
calculations.

To make the problem tractable, it is assumed that the random traversal
time spent for one unit of distance follows a suitable Gamma distribution
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with shape parameter α and scale parameter λ. This approach leads to
Gamma distributed arc traversal times where shape parameters are obtained
by scaling α with respect to the distance of the corresponding arc. Since
vehicles do not wait at customer locations, the arrival time of a vehicle at
a node along its route can be defined as the sum of travel times on arcs
covered by the vehicle until that node. The latter calculation requires an
adjustment to the time window at the visited node by taking into account the
cumulative service time. Gamma distributed arrival times are then derived
where shape parameters are obtained by scaling α with respect to the total
distance of the arcs covered. These definitions enable us to calculate expected
delay, expected earliness and expected overtime values exactly by using an
approach similar to that given in Dellaert et al. [8]. Note that expected delay
and expected earliness values, and thus the total service cost of a route are
computed with respect to the optimal starting time of that route from the
depot (see Section 4.1 for the related calculations).

3. Column Generation

The interested reader is referred to Desrosiers et al. [12] for the details
about the column generation method. In the following, we present the mas-
ter problem and the pricing subproblem of the column generation method
proposed for the model formulation explained in Section 2.

The Master Problem: The master problem, which corresponds to the
constraints (2) in the original model formulation, can be modeled as a set
partitioning problem as follows:

min
∑

p∈P

Kpyp (9)

subject to
∑

p∈P

aipyp = 1, i ∈ N \ {0}, (10)

yp ∈ {0, 1}, p ∈ P, (11)

where P is the set of all feasible vehicle routes that start from the depot and
end at the depot. Here, Kp is the total weighted cost of route p, and aip is 1
if customer i is served by route p and 0, otherwise. The decision variable yp
is 1 if route p is selected by the solution and 0, otherwise.
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The Pricing Subproblem: The pricing subproblem for each vehicle v,
which corresponds to the constraints (3)-(8) in the original model formu-
lation, is an Elementary Shortest Path Problem with Resource Constraints
(ESPPRC). Note that in our problem, we have merely the capacity of the
vehicles as the resource. Then, the subproblem for a given vehicle v can be
modeled as follows:

min Kp (12)

subject to (3)− (8), (13)

where p corresponds to the route of vehicle v and Kp is the reduced cost of
route p. The latter is calculated by:

Kp =Kp −
∑

i∈{N\0}

aipui

=ρ
1

C1

(

cd
∑

j∈N

Djv(x) + ce
∑

j∈N

Ejv(x)

)

+(1− ρ)
1

C2

(

ct
∑

i∈N

∑

j∈N

dijxijv + cf
∑

j∈{N\0}

x0jv + coOv(x)

)

−
∑

i∈{N\0}

aipui,

(14)

where ui, i ∈ {N \ 0} is the dual price associated with the constraints (10).
In column generation algorithm, we start with solving a Restricted Linear

Programming Master Problem (RLPMP) in which the constraints (11) are
relaxed and only the vehicle routes of an initial feasible solution are included.
These initial routes constitute a subset of all feasible vehicle routes in the
formulation (9) - (11). We then solve our pricing subproblem by using the
optimal dual values obtained by solving the RLPMP. If a new vehicle route
with negative reduced cost is found by the pricing subproblem, it is added
to the RLPMP and this problem is re-optimized to obtain new optimal dual
values. Otherwise, we terminate the algorithm since the optimal solution to
the linear programming relaxation of the formulation (9) - (11) is reached.
For the first step where the algorithm is initiated, we construct an initial
feasible solution by using the initialization algorithm introduced in Taş et al.
[29]. This algorithm modifies the insertion heuristic I1 given in Solomon [28]
by taking into account the expected violations of the time windows calculated
with respect to the stochastic travel times. The interested reader is referred
to [29] for the details about this initialization algorithm.
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4. Elementary Shortest Path Problem with Resource Constraints

We solve our pricing subproblem with the algorithm of Feillet et al. [13] by
applying the state space augmentation (decremental state space relaxation)
technique of Boland et al. [3], and Righini and Salani [25]. The algorithm
proposed in [13] to solve the ESPPRC is based on the label correcting reach-
ing algorithm of Desrochers [10]. In the latter algorithm, labels are used to
denote the paths on nodes. Each label on a node represents a path from
the depot to that node by specifying the cost of the path and the consump-
tion of the resources along the path. The label correcting reaching algorithm
repeatedly treats the nodes in which each new label on the treated node is
extended to each possible successor node. If the algorithm cannot generate
any new labels, then it is terminated. Feillet et al. [13] extend this classical
label correcting algorithm, which had been developed for the non-elementary
shortest path problem with resource constraints, by including node resources
to solve the ESPPRC optimally. Beasley and Christofides [2] propose the
idea of adding a binary resource for each node in the graph but they do not
conduct any computational experiments for that. Feillet et al. [13] solve the
ESPPRC on a full-dimensional state space, and thus they apply the idea of
using unreachable nodes in the labels to have an efficient algorithm. A node
is unreachable for a path if it cannot be visited by that path either because it
has already been visited or because visiting that node would violate at least
one resource constraint.

In the state space augmentation algorithm, the problem is relaxed where
multiple visits are forbidden for the nodes in a given set S ⊆ N \ {0}. If
the optimal solution of the relaxed form of the ESPPRC is elementary, then
it is also optimal for the ESPPRC. Otherwise, the state space is augmented
by adding some nodes to the set S which are selected with respect to the
optimal solution of the relaxed problem.

In our problem, a state (W 1
p , ...,W

R
p , aSp ,V

S
p ) is associated with each path

p from the depot to node i. In that state, (W 1
p , ...,W

R
p ) represents the con-

sumption of each of the R resources along the path p. aSp denotes the number

of nodes in S which are unreachable by path p. VS
p is the vector of unreach-

able nodes in S which is defined by V b
p = 1 if node b ∈ S is unreachable by

path p and 0, otherwise. We represent each path p by a label (Lp, Kp) where
Lp = (W 1

p , ...,W
R
p , aSp ,V

S
p ) and Kp is the reduced cost of path p which is cal-

culated by Equation (14) with respect to the optimal starting time of path p
from the depot (see Section 4.1 for the calculation of the optimal departure
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time). Let p and p∗ be two distinct paths from the depot to node i where
each path starts from the depot at the optimal departure time of its corre-
sponding vehicle. In addition, suppose that these two paths arrive at node i
at different times (different expected arrival times). In such a case, for the
dominance relation, the starting time of one path (path p) from the depot
is adjusted to make this path arrive at node i at the same time as the other
path (path p∗). The reduced cost of path p calculated with respect to this
adjusted starting time from the depot is denoted by Kpp∗ . The dominance
relation is then defined as follows:

Definition 4.1. If p and p∗ are two distinct paths from the depot to node i
with labels (Lp, Kp) and (Lp∗ , Kp∗), respectively, then path p dominates path
p∗ if and only if W r

p ≤ W r
p∗ for r = 1,...,R, aSp ≤ aSp∗, V

b
p ≤ V b

p∗ for all b ∈ S,

Kp ≤ Kp∗, Kpp∗ ≤ Kp∗ and (Lp, Kp) 6= (Lp∗ , Kp∗).

A path is called efficient if its corresponding label is non-dominated. The
method applied to solve our pricing subproblem is described in Algorithm
1. In that algorithm, Πi, I, and Hij denote the list of labels on node i, the
list of nodes that will be treated and the set of labels extended from node
i to node j, respectively. Moreover, EFF (Π) is the procedure that removes
the dominated labels and keeps only the non-dominated ones in Π. In our
problem, we have only one resource constraint which is the capacity of the
vehicles (Q). Therefore, we have only W 1

p in the labels which corresponds to
the consumption of the capacity resource along the path p. In addition, w1

ij

represents the consumption of the capacity along the arc (i, j) which is equal
to the demand value at node j (qj). Formally, the extension of a label on
node i to node j is defined in Algorithm 2. In this algorithm, πp′ represents
the resulting label obtained by extending label πp from node i to node j.

Note that in Algorithm 1, the procedure EFF (Π) is applied to the list
of paths on the ending depot after all nodes are treated. At this step, the
elementary paths on the ending depot which are efficient ones with non-
negative reduced costs and dominated ones regardless of their reduced costs
are kept in an Intermediate Column Pool (ICP), which is similar to the
application of the buffer column pool proposed in Savelsbergh and Sol [27].
Instead of solving the ESPPRC immediately after re-optimizing the RLPMP,
we first search the ICP with respect to new optimal dual values. The columns
with negative reduced costs are then sent from the ICP to the RLPMP. The
ESPPRC is solved if we cannot find any such columns in the ICP. At each
iteration, we check the size of the ICP to clean it if it is needed. Cleaning
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S ← ∅
S ′ ← ∅
repeat

S ← S ∪ S ′

S ′ ← ∅
Π0 = {(0,0,0,0)}
forall the i ∈ N \ {0} do

Πi ← ∅
end

I = {0}
repeat

Choose i ∈ I
forall the (i, j) ∈ A do

Hij ← ∅
forall the πp = (W 1

p , a
S
p ,V

S
p , Kp) ∈ Πi do

if (j /∈ S) or (j ∈ S and V j
p = 0) then

if Extend(i, πp, j) 6= FALSE then
Hij ← Hij ∪ {Extend(i, πp, j)}

end

end

end

if j ∈ N \ {0} then
Πj ← EFF (Πj ∪Hij)
if Πj has changed and j /∈ I then

I ← I ∪ {j}
end

end

end

I ← I \ {i}
until I = ∅;
Π0 ← EFF (Π0)
if There is at least one elementary path on the depot with
negative reduced cost then

Send such paths to the RLPMP
else

if The minimum reduced cost is negative then
Select the customer with the highest multiplicity in the
solution with the minimum reduced cost
S ′ ← {selected customer}

end

end

until S ′ = ∅;

Algorithm 1: Algorithm with state space augmentation technique to
solve the ESPPRC
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if W 1
p + w1

ij > Q then
return FALSE

else

calculate W 1
p′ and Kp′

aSp′ ← aSp
VS

p′ ← VS
p

if j ∈ S then

aSp′ ← aSp′ + 1

V j
p′ ← 1

end

foreach b ∈ S and (j, b) ∈ A such that W 1
p′ + w1

jb > Q do

aSp′ ← aSp′ + 1

V b
p′ ← 1

end

return πp′ = (Lp′ , Kp′)
end

Algorithm 2: Extend(i, πp, j)

takes place in case the number of columns in the ICP is larger than a threshold
value. In this situation, all columns which have been kept for more than a
pre-determined number of iterations are removed from the ICP. By this way,
we efficiently search the ICP to find the columns with negative reduced costs.

In addition to the strategy described above, we apply one more accel-
erating method which is related to the pricing subproblem in our solution
procedure. At each time we extend a label to the ending depot, we deter-
mine the number of efficient elementary paths with negative reduced costs by
means of the dominance relation in the comparison of the recently extended
path with all other efficient paths on the ending depot. If this number is
larger than a threshold value, we stop the ESPPRC and then send all these
paths on the ending depot, which are efficient elementary ones with negative
reduced costs, to the RLPMP. The interested reader is referred to Feillet
et al. [13] and Feillet et al. [14] for similar implementations of this technique.

4.1. Service Cost Component

For the expected values considered in service cost component, we sum-
marize the related notation in Table 2. The equations given in this table are
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constructed with respect to the random traversal time which is Gamma dis-
tributed with shape parameter α and scale parameter λ. Recall that we have
Gamma distributed arc traversal times and Gamma distributed arrival times
by means of the definitions explained in Section 2. The interested reader is
referred to Taş et al. [29] for explanations about the definitions in detail.

Table 2: The notation used for the calculation of service cost component

Γ(α) : Gamma function, where Γ(α) =
∫∞

0
e−rrα−1dr

Γα,λ(δ) : cumulative distribution function, where δ ≥ 0 and

Γα,λ(δ) =
∫ δ

0
(e−z/λ)(z)α−1

Γ(α)λα dz

Yjv : arrival time of vehicle v at node j
Ajv : set of arcs covered by vehicle v before visiting node j
αjv : shape parameter of Yjv, where αjv = α

∑

(l,k)∈Ajv
dlk

λjv : scale parameter of Yjv, where λjv = λ
sjv : total service time spent by vehicle v for servicing until node j
u′
j : upper bound of the time window at node j shifted by sjv,

where u′
j = uj − sjv

l′j : lower bound of the time window at node j shifted by sjv,
where l′j = lj − sjv

E[Tij ] : mean of travel time on arc (i, j), where E[Tij ] = αλdij
E[Yjv] : mean of Yjv, where node j is visited immediately after node i

and E[Yjv] = E[Yiv] + E[Tij ]

The expected delay and expected earliness at node j when it is served by
vehicle v are then calculated as follows where the allocated vehicle v departs
from the depot at time 0:

Djv(x) =

{

αjvλjv(1− Γαjv+1,λjv
(u′

j))− u′
j(1− Γαjv ,λjv

(u′
j)), if uj > sjv

E[Yjv] + sjv − uj , otherwise

Ejv(x) =

{

l′jΓαjv ,λjv
(l′j)− αjvλjvΓαjv+1,λjv

(l′j), if lj > sjv
0, otherwise

As we already mentioned in Section 2, the total service cost of a path is
calculated with respect to the optimal starting time of that path from the
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depot. We calculate the optimal departure time of each allocated vehicle
from the depot with the Golden Section Search method. The Golden Section
Search technique can be applied to find the minimum (or the maximum) value
of a continuous and unimodal function. We know from the above calculations
of the expected delay and the expected earliness that the total service cost is
a continuous function. In order to be able to use the Golden Section Search
method, we need to prove that the total service cost of a path is a unimodular
function of its corresponding vehicle’s departure time from the depot. Since
a convex function is also unimodular, we introduce the convexity property of
the total service cost component in the following proposition.

Proposition 4.1. For all routes, the total service cost is a convex function
of the corresponding vehicle’s departure time from the depot.

Proof of Proposition 4.1. For a given vehicle v, the total service cost of its

route is equal to

(

cd
∑

j∈N Djv(x) + ce
∑

j∈N Ejv(x)

)

where cd ≥ 0 and

ce ≥ 0. For any node j ∈ N which is visited by vehicle v, the service cost
Zjv is calculated by:

Zjv = cdDjv(x) + ceEjv(x). (15)

Let y denote the departure time of vehicle v from the depot. By means of
the fact that the sum of convex functions is again convex, we need to show

that
∂2Zjv

∂y2
≥ 0 to prove that the total service cost of the route of vehicle v

∑

j∈N Zjv is a convex function of y. We distinguish between three cases:

Case 1. l′j − y ≥ 0.

Zjv is then calculated as follows:

Zjv =cdαjvλjv(1− Γαjv+1,λjv
(u′

j − y))

−cd(u
′
j − y)(1− Γαjv ,λjv

(u′
j − y))

+ce(l
′
j − y)Γαjv,λjv

(l′j − y)− ceαjvλjvΓαjv+1,λjv
(l′j − y).
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We know that,

Γα,λ(q) =
1

Γ(α)

∫ q

0

zα−1e−z/λ

λα
dz

=
1

Γ(α)

∫
q
λ

0

tα−1e−tdt

=
1

Γ(α)
γ(α,

q

λ
),

where γ(α, q
λ
) represents the lower incomplete gamma function with param-

eters α and q
λ
(α ≥ 0, q ≥ 0 and λ > 0). The first and second derivatives of

this function with respect to q are given as follows:

∂γ(α, q
λ
)

∂q
=

1

λ

( q

λ

)α−1

e−
q
λ and, (16)

∂2γ(α, q
λ
)

∂q2
=

1

λ2

( q

λ

)α−2

e−
q
λ

(

α− 1−
q

λ

)

. (17)

Then,
∂2Zjv

∂y2
is calculated as follows:

∂2Zjv

∂y2
=− cdαjvλjv

1

Γ(αjv + 1)

∂2γ(αjv + 1,
u′

j−y

λjv
)

∂y2

+cd(u
′
j − y)

1

Γ(αjv)

∂2γ(αjv,
u′

j−y

λjv
)

∂y2

−2cd
1

Γ(αjv)

∂γ(αjv,
u′

j−y

λjv
)

∂y
+ ce(l

′
j − y)

1

Γ(αjv)

∂2γ(αjv,
l′j−y

λjv
)

∂y2

−2ce
1

Γ(αjv)

∂γ(αjv,
l′j−y

λjv
)

∂y
− ceαjvλjv

1

Γ(αjv + 1)

∂2γ(αjv + 1,
l′j−y

λjv
)

∂y2
.

(18)
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By using Equations (16) and (17), Equation (18) can be written as follows:

∂2Zjv

∂y2
=− cdαjvλjv

1

Γ(αjv + 1)

1

λ2
jv

(

u′
j − y

λjv

)αjv−1

e
−

(

u′j−y

λjv

)

(

αjv −

(

u′
j − y

λjv

))

+cd(u
′
j − y)

1

Γ(αjv)

1

λ2
jv

(

u′
j − y

λjv

)αjv−2

e
−

(

u′j−y

λjv

)

(

αjv − 1−

(

u′
j − y

λjv

))

+2cd
1

Γ(αjv)

1

λjv

(

u′
j − y

λjv

)αjv−1

e
−

(

u′j−y

λjv

)

+ce(l
′
j − y)

1

Γ(αjv)

1

λ2
jv

(

l′j − y

λjv

)αjv−2

e
−

(

l′j−y

λjv

)

(

αjv − 1−

(

l′j − y

λjv

))

+2ce
1

Γ(αjv)

1

λjv

(

l′j − y

λjv

)αjv−1

e
−

(

l′j−y

λjv

)

−ceαjvλjv
1

Γ(αjv + 1)

1

λ2
jv

(

l′j − y

λjv

)αjv−1

e
−

(

l′j−y

λjv

)

(

αjv −

(

l′j − y

λjv

))

,

where Γ(αjv + 1) = αjvΓ(αjv). The above equation leads to:

∂2Zjv

∂y2
=cd

1

Γ(αjv)

(u′
j − y)αjv−1

λ
αjv

jv

e
−

(

u′j−y

λjv

)

+ ce
1

Γ(αjv)

(l′j − y)αjv−1

λ
αjv

jv

e
−

(

l′j−y

λjv

)

.

So,
∂2Zjv

∂y2
≥ 0.

Case 2. u′
j − y ≥ 0 and l′j − y ≤ 0.

Since lj ≤ sjv + y, Ejv(x) is equal to 0. Zjv and its second derivative are
then calculated as follows:

Zjv = cdαjvλjv(1−Γαjv+1,λjv
(u′

j − y))− cd(u
′
j − y)(1−Γαjv ,λjv

(u′
j − y)) and,

∂2Zjv

∂y2
= cd

1

Γ(αjv)

(u′
j − y)αjv−1

λ
αjv

jv

e
−

(

u′j−y

λjv

)

.

So,
∂2Zjv

∂y2
≥ 0.

Case 3. u′
j − y ≤ 0.
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In this case, Ejv(x) is again equal to 0 since lj ≤ sjv + y. We then
calculate Zjv and its second derivative as follows:

Zjv = cd(E[Yjv] + sjv + y − uj) and,

∂2Zjv

∂y2
= 0.

These three cases yield that for any node j ∈ N which is visited by
vehicle v, Zjv is a convex function of the departure time of v from the depot.
Therefore, we can conclude that for any vehicle v, the total service cost of
its route is a convex function of the departure time of v from the depot.

5. Branch-and-Price Method

To generate an integer solution, we embed our column generation pro-
cedure within a branch-and-price method, in which the applied strategy is
branching on arcs (see Feillet et al. [13] and Tagmouti et al. [30] for the de-
tails about this method). Since we have a homogeneous fleet of vehicles of
equal capacity, we calculate sum of flows (fij) on each arc (i, j) as follows:

fij =
∑

v∈V

xijv. (19)

We force arc (i, j) into the solution when
∑

v∈V xijv = 1, and we exclude arc
(i, j) from the solution when

∑

v∈V xijv = 0. If we have several fractional
flow variables, we choose the arc (i, j) on which the value of fij is the closest
one to the midpoint (0.5). If there are several closest variables, the first one
found is chosen.

To make the branching process computationally efficient, all distinctive
columns obtained at the root node are stored in a separate pool. Feasible
columns with respect to branching rules at a child node are then taken from
that pool and used by the column generation algorithm. At each child node,
we keep an extra column which serves all customers with a very high total
weighted cost. By this way, it is ensured that we have an initial feasible
solution at all nodes in the branch-and-price tree.

6. Numerical Results

We use Solomon’s problem instances [28] for testing our exact solution
approach based on column generation and branch-and-price algorithms. We
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focus both on problem instances with tight time windows (type 1) and on
problem instances with wide time windows (type 2). Recall that soft time
windows in our problem setting, which allow early and late servicing at cus-
tomers with some penalty costs, do not provide any resource constraint to
the ESPPRC. This structure makes our problem similar to the capacitated
VRP, and thus very sensitive to the capacity of vehicles, which is the only
resource in the pricing subproblem. We first run a number of preliminary
tests to determine the most appropriate value of the vehicle capacity, which
enables us to obtain results in a reasonable amount of time. Two sets of pre-
liminary tests are then conducted to determine the most appropriate values
of parameters used by accelerating methods.

According to preliminary results, we set the capacity of all vehicles to
50. Moreover, we clean the ICP in case the number of columns in that pool
is larger than 150. In this situation, all columns that have been kept for
more than 15 iterations are removed from the ICP. We stop the ESPPRC if
the number of efficient elementary paths with negative reduced costs on the
ending depot is larger than 10.

To obtain our computational results, we set ρ = 0.50, C1 = 1.00, C2

= 1.00, and (cd, ce, ct, cf , co) are equal to (1.00, 0.10, 1.00, 400, 5/6),
respectively. Coefficient of Variation (CV) of travel time spent for traversing
one unit distance is equal to 1.00, where α = 1.00 and λ = 1.00. We have
two stopping criteria for our solution procedure. The procedure terminates
in case the gap between the best Lower Bound (LB) and the best Upper
Bound (UB) is smaller than 0.005 (0.5%). In addition, we set a limit for the
total CPU time which is equal to 3 hours.

We solve each problem instance by applying Depth-First (DF) and Breadth-
First (BF) methods. In DF method, the UB of the root node corresponds to
the initial feasible solution generated at that node, leading to a starting value
for the UB. To proceed into the next level, we select the child node which has
the minimum LB value. In BF method, we solve an integer programming
over all columns obtained by column generation algorithm at the root node.
This solution is then assigned as the starting value of the UB.

In following tables, ”RootLB” and ”RootUB” represent the values of the
LB and the UB found at the root node of the tree, respectively. ”BestLB”
and ”BestUB” indicate the best LB and the best UB values obtained over
the tree, respectively. The percentage of the gap between the best LB and
the best UB, and the size of the tree in terms of the highest level reached are
also reported. We present the CPU times in seconds for only the problem
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instances in RC set with 20 and 25 customers since the algorithm stops by
means of the limit given for the gap before it reaches the time limit for some
of the instances. For all problem instances in C and R sets, the algorithm
stops due to the time limit. The results of the problem instances are not
reported in case the column generation algorithm cannot obtain the optimal
solution for the root node within the CPU limit. Additionally, we have no
result for the problem instances if the integer programming cannot be solved
at the root node within the CPU limit when we apply BF method.

Our algorithms are implemented in Visual C++, and linear programming
models in our solution approach are solved by IBM ILOG CPLEX 12.2 [18].
We run all experiments on an Intel Core Duo with 2.93 GHz and 4 GB of
RAM.
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Table 3: Results of problem instances in RC set with 20 customers

Breadth-First Method Depth-First Method
Ins. RootLB RootUB BestLB BestUB CPU Gap% Tree RootUB BestLB BestUB CPU Gap% Tree

RC101 2184.44 2196.64 2185.71 2196.64 50.1 0.50 3 2422.11 2186.59 2196.93 725.8 0.47 12
RC102 2178.20 2191.19 2179.78 2190.65 100.7 0.50 5 2412.26 2178.61 2189.38 289.6 0.49 10
RC103 2174.45 2188.98 2175.57 2186.42 68.1 0.50 4 2223.97 2175.57 2186.42 941.1 0.50 15
RC104 2173.48 2188.90 2180.47 2186.26 619.6 0.27 8 2220.13 2175.60 2186.26 2004.7 0.49 19
RC105 2179.18 2191.56 2179.87 2190.59 71.1 0.49 4 2231.68 2180.55 2191.32 1035.9 0.49 15
RC106 2175.17 2189.84 2177.42 2187.59 78.1 0.47 4 2225.12 2178.97 2187.59 1971.5 0.40 16
RC107 2172.33 2187.41 2174.97 2185.29 135.2 0.47 5 2220.75 2174.47 2184.52 1508.4 0.46 16
RC108 2172.11 2188.83 2173.95 2184.04 115.2 0.46 5 2215.73 2174.30 2184.04 818.5 0.45 18
RC201 2216.92 2218.81 2216.92 2218.81 11.0 0.09 0 2315.64 2217.82 2219.63 43.1 0.08 4
RC202 2188.57 2199.02 2188.57 2199.02 6.4 0.48 0 2274.88 2188.57 2199.02 42.8 0.48 5
RC203 2176.18 2190.30 2177.09 2187.52 143.1 0.48 6 2264.96 2177.85 2187.52 493.9 0.44 15
RC204 2175.16 2189.77 2176.06 2186.32 153.0 0.47 6 2242.22 2176.82 2186.32 426.2 0.44 15
RC205 2193.60 2201.14 2193.60 2201.14 10.5 0.34 0 2278.38 2193.86 2202.13 44.3 0.38 6
RC206 2191.51 2200.85 2191.51 2200.85 7.6 0.43 0 2271.94 2192.26 2202.62 37.9 0.47 5
RC207 2182.12 2196.91 2183.35 2193.96 47.2 0.49 3 2236.98 2183.35 2193.96 753.2 0.49 17
RC208 2171.98 2186.15 2173.82 2183.96 161.1 0.47 5 2215.05 2174.09 2183.96 1564.3 0.45 17
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Table 4: Results of problem instances in C and R sets with 20 customers

Breadth-First Method Depth-First Method
Inst. RootLB RootUB BestLB BestUB Gap% Tree RootUB BestLB BestUB Gap% Tree
C101 1681.27 1852.10 1696.46 1852.10 9.17 11 1925.96 1688.76 1886.41 11.70 48
C102 1665.08 1828.85 1666.06 1828.85 9.77 11 1885.19 1665.18 1843.84 10.73 63
C103 1664.75 1828.85 1666.40 1828.85 9.75 10 1870.66 1665.05 1836.54 10.30 58
C104 1664.71 1828.84 1665.74 1828.84 9.79 10 1846.33 1664.81 1832.36 10.06 67
C105 1675.17 1847.31 1682.74 1847.31 9.78 10 1902.05 1677.12 1881.33 12.18 53
C106 1679.18 1849.95 1689.69 1849.95 9.48 11 1916.44 1686.15 1878.39 11.40 45
C107 1672.46 1835.47 1676.08 1835.47 9.51 9 1882.23 1673.58 1862.11 11.26 61
C108 1666.24 1829.23 1669.32 1829.23 9.58 9 1836.62 1667.14 1836.62 10.17 53
C109 1665.51 1828.67 1667.52 1828.67 9.66 10 1832.96 1665.93 1832.96 10.03 73
C201 1781.77 1891.94 1799.48 1891.94 5.14 10 2234.47 1784.12 1922.31 7.75 41
C202 1720.95 1868.89 1727.78 1868.89 8.17 9 2151.94 1723.36 1890.14 9.68 49
C203 1701.86 1862.61 1703.45 1862.61 9.34 9 2059.85 1702.24 1885.02 10.74 61
C204 1693.88 1863.32 1694.91 1863.32 9.94 9 1865.58 1694.02 1865.58 10.13 59
C205 1753.96 1877.77 1763.46 1877.77 6.48 9 2149.62 1757.24 1966.10 11.89 51
C206 1734.51 1862.37 1741.68 1862.37 6.93 9 2086.92 1737.90 1955.14 12.50 52
C207 1717.01 1873.65 1721.28 1873.65 8.85 9 2064.22 1718.32 1884.82 9.69 58
C208 1714.84 1861.50 1717.08 1861.50 8.41 9 2029.32 1714.98 1907.96 11.25 49
R101 1319.43 1437.37 1324.36 1437.37 8.53 7 1474.19 1320.64 1474.19 11.63 65
R102 1300.74 1418.95 1305.57 1418.95 8.68 7 1459.39 1303.30 1452.40 11.44 52
R103 1292.38 1409.51 1294.59 1409.51 8.88 7 1434.82 1293.50 1434.82 10.93 55
R104 1286.63 1403.57 1291.04 1403.57 8.72 7 1429.55 1287.06 1429.55 11.07 68
R105 1303.97 1419.12 1309.47 1419.12 8.37 7 1452.84 1305.13 1452.84 11.32 56
R106 1289.52 1406.26 1295.97 1406.26 8.51 7 1437.22 1289.98 1437.22 11.41 56
R107 1287.86 1405.54 1292.52 1405.54 8.74 7 1430.65 1289.09 1408.12 9.23 53
R108 1284.77 1402.63 1288.48 1402.63 8.86 7 1428.26 1285.08 1428.26 11.14 68
R109 1291.19 1410.28 1295.96 1410.28 8.82 7 1443.29 1293.11 1443.29 11.61 54
R110 1285.22 1404.25 1288.36 1404.25 9.00 7 1440.40 1286.82 1440.40 11.93 62
R111 1286.47 1403.88 1292.00 1403.88 8.66 7 1433.58 1287.53 1425.84 10.74 55
R112 1283.48 1402.61 1285.11 1402.61 9.14 7 1427.53 1284.16 1427.53 11.16 67
R201 1367.54 1485.57 1373.25 1485.57 8.18 6 1522.29 1370.73 1522.29 11.06 71
R202 1316.23 1435.18 1318.74 1435.18 8.83 6 1470.97 1316.79 1470.97 11.71 69
R203 1304.43 1426.40 1307.88 1426.40 9.06 6 1457.82 1304.43 1457.82 11.76 62
R204 1284.61 1402.61 1287.01 1402.61 8.98 6 1425.55 1287.01 1417.64 10.15 49
R205 1334.60 1444.55 1339.86 1444.55 7.81 6 1471.69 1336.32 1471.69 10.13 70
R206 1297.19 1414.87 1301.41 1414.87 8.72 6 1445.43 1298.36 1445.43 11.33 69
R207 1293.59 1412.32 1296.14 1412.32 8.96 6 1441.51 1293.59 1441.51 11.43 74
R208 1284.40 1402.61 1288.52 1402.61 8.85 7 1425.55 1284.84 1425.55 10.95 66
R209 1289.54 1411.14 1293.54 1411.14 9.09 7 1445.48 1290.32 1445.48 12.02 65
R210 1301.79 1420.15 1305.29 1420.15 8.80 6 1451.18 1302.64 1451.18 11.40 65
R211 1283.46 1402.62 1285.26 1402.62 9.13 7 1425.57 1284.53 1425.57 10.98 73
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Table 5: Results of problem instances in RC set with 25 customers

Breadth-First Method Depth-First Method
Ins. RootLB RootUB BestLB BestUB CPU Gap% Tree RootUB BestLB BestUB CPU Gap% Tree

RC101 2663.82 2688.85 2669.81 2682.70 1524.3 0.48 8 2895.13 2664.57 2687.43 10800.0 0.86 34
RC102 2656.18 2678.14 2663.84 2676.58 1399.7 0.48 8 2885.91 2656.18 2678.37 10800.0 0.84 25
RC103 2652.06 2675.63 2658.32 2670.58 1464.8 0.46 8 2903.37 2652.06 2677.50 10800.1 0.96 29
RC104 2651.93 2675.57 2658.23 2670.48 4321.4 0.46 10 2902.25 2651.93 2670.48 10800.6 0.70 31
RC105 2657.93 2684.02 2664.00 2677.30 1594.5 0.50 8 2886.28 2657.93 2681.08 10800.0 0.87 25
RC106 2651.72 2674.03 2659.46 2673.26 10800.0 0.52 12 2913.33 2651.84 2679.39 10800.3 1.04 29
RC107 2648.38 2672.19 2655.92 2669.05 2113.2 0.49 8 2908.49 2648.42 2674.13 10800.2 0.97 36
RC108 2648.18 2670.92 2654.35 2667.37 1956.2 0.49 8 2901.36 2648.18 2677.44 10800.0 1.10 37
RC201 2708.91 2716.07 2708.91 2716.07 18.5 0.26 0 3050.71 2709.69 2721.21 142.3 0.43 8
RC202 2683.89 2689.12 2683.89 2689.12 17.0 0.19 0 2994.67 2683.89 2689.62 105.7 0.21 5
RC203 2662.52 2674.81 2662.52 2674.81 16.9 0.46 0 2929.48 2662.52 2674.46 3019.5 0.45 19
RC204 2660.69 2674.31 2660.69 2673.94 126.8 0.50 4 2929.48 2660.69 2673.72 549.1 0.49 16
RC205 2686.93 2697.12 2686.93 2697.12 22.3 0.38 0 2983.00 2686.93 2699.54 379.7 0.47 18
RC206 2684.94 2696.37 2684.94 2696.37 15.5 0.43 0 2989.09 2686.64 2693.69 121.4 0.26 8
RC207 2657.66 2683.02 2664.92 2680.39 10800.0 0.58 11 2937.62 2657.66 2683.87 10800.0 0.99 28
RC208 2648.18 2669.69 2654.06 2667.19 2047.8 0.49 8 2902.54 2648.18 2677.90 10800.2 1.12 40
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Table 6: Results of problem instances in C and R sets with 25 customers

Breadth-First Method Depth-First Method
Inst. RootLB RootUB BestLB BestUB Gap% Tree RootUB BestLB BestUB Gap% Tree
C101 2109.32 2287.61 2118.78 2287.61 7.97 9 2379.21 2110.64 2321.27 9.98 61
C102 2095.25 2259.02 2096.23 2259.02 7.77 9 2322.13 2095.47 2279.79 8.80 60
C103 2092.48 2259.02 2094.84 2259.02 7.84 7 2307.60 2092.62 2289.67 9.42 68
C104 2092.12 2259.00 2092.68 2259.00 7.95 8 2276.49 2092.23 2267.49 8.38 75
C105 2104.20 2277.47 2111.60 2277.47 7.86 9 2349.89 2107.12 2336.25 10.87 72
C106 2107.61 2284.53 2118.98 2284.53 7.81 9 2370.29 2111.96 2307.44 9.26 59
C107 2102.62 2265.64 2106.28 2265.64 7.57 9 2322.78 2103.11 2308.22 9.75 74
C108 2096.40 2259.40 2097.92 2259.40 7.70 8 2275.96 2097.30 2275.96 8.52 62
C109 2095.67 2258.83 2097.00 2258.83 7.72 8 2264.00 2096.10 2264.00 8.01 79
C201 2188.29 2345.52 2216.25 2345.52 5.83 8 2630.49 2198.92 2530.86 15.10 54
C202 2148.20 2313.69 2154.18 2313.69 7.40 8 2358.14 2151.05 2341.68 8.86 60
C203 2141.20 2306.83 2143.04 2306.83 7.64 8 2335.17 2141.20 2331.80 8.90 72
C204 2133.85 2302.21 2134.93 2302.21 7.84 8 2304.44 2134.53 2304.44 7.96 82
C205 2166.23 2325.72 2172.42 2325.72 7.06 7 2496.39 2168.52 2446.89 12.84 60
C206 2166.06 2325.61 2168.12 2325.61 7.26 7 2461.36 2166.58 2359.47 8.90 60
C207 2147.02 2313.40 2147.51 2313.40 7.72 7 2534.05 2147.02 2331.65 8.60 52
C208 2146.34 2311.06 2146.63 2311.06 7.66 7 2400.45 2146.41 2361.13 10.00 70
R101 1651.01 1701.87 1655.94 1701.87 2.77 5 1757.57 1653.74 1717.35 3.85 40
R102 1635.08 1692.01 1639.37 1692.01 3.21 6 1730.67 1637.71 1730.67 5.68 52
R103 1622.67 1681.17 1627.55 1681.17 3.29 5 1704.21 1623.44 1700.49 4.75 49
R104 1615.72 1679.70 1619.41 1679.70 3.72 5 1692.17 1618.09 1692.17 4.58 52
R105 1632.57 1689.16 1637.55 1689.16 3.15 6 1726.75 1634.68 1726.75 5.63 45
R106 1619.93 1679.19 1625.56 1679.19 3.30 6 1704.77 1620.22 1704.77 5.22 24
R107 1616.84 1669.92 1619.88 1669.92 3.09 5 1700.07 1617.57 1700.07 5.10 55
R108 1613.40 1672.33 1617.59 1672.33 3.38 5 1690.85 1614.43 1690.85 4.73 23
R109 1618.68 1680.79 1623.98 1680.79 3.50 5 1711.85 1620.22 1710.18 5.55 51
R110 1612.59 1671.69 1616.29 1671.69 3.43 6 1709.76 1613.74 1709.76 5.95 67
R111 1615.66 1673.12 1619.30 1673.12 3.32 5 1697.77 1617.13 1697.77 4.99 54
R112 1610.63 1667.80 1612.15 1667.80 3.45 5 1691.30 1612.14 1675.71 3.94 51
R201 1707.42 1752.16 1710.42 1752.16 2.44 4 1859.22 1709.06 1859.22 8.79 11
R202 1659.86 1710.55 1662.99 1710.55 2.86 4 1784.37 1661.25 1784.37 7.41 12
R203 1645.89 1688.08 1646.99 1688.08 2.49 4 1767.73 1646.23 1767.73 7.38 9
R204 1616.52 1668.16 1616.52 1668.16 3.19 4 1690.64 1616.74 1690.64 4.57 23
R205 1664.37 1723.91 1667.73 1723.91 3.37 5 1787.39 1665.56 1780.33 6.89 66
R206 1635.33 1682.97 1638.80 1682.97 2.70 4 1737.39 1635.33 1737.39 6.24 16
R207 1627.99 1674.31 1630.43 1674.31 2.69 5 1740.86 1629.74 1740.86 6.82 31
R208 1615.72 1669.98 1616.40 1669.98 3.31 5 1689.94 1615.72 1689.94 4.59 10
R209 1621.93 1679.28 1626.96 1679.28 3.22 5 1724.92 1624.22 1724.92 6.20 34
R210 1644.59 1692.09 1646.87 1692.09 2.75 5 1746.88 1645.32 1746.88 6.17 23
R211 1610.58 1670.37 1612.17 1670.37 3.61 5 1690.22 1611.30 1690.22 4.90 36

The results given in Tables 3, 4, 5, 6, 7 and 8 indicate that our solution
approach with BF method provides better results than those obtained by
DF method in terms of the gap between the best LB and the best UB.
However, solutions of six instances with 50 customers and one instance with
100 customers, which can be provided by DF method, cannot be obtained by
applying BF method due to the huge amount of CPU time or memory that it
requires to solve the integer programming at the root node. Since we do not
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Table 7: Results of problem instances in C, R and RC sets with 50 customers

Breadth-First Method Depth-First Method
Inst. RootLB RootUB BestLB BestUB Gap% Tree RootUB BestLB BestUB Gap% Tree
C101 3981.25 4162.32 3986.67 4162.32 4.41 4 4455.02 3988.35 4455.02 11.70 17
C102 3959.11 4130.22 3959.14 4130.22 4.32 4 4330.52 3959.28 4330.52 9.38 10
C103 3952.71 - - - - - 4184.55 3952.71 4184.55 5.87 7
C104 3946.34 - - - - - 4158.11 3946.55 4158.11 5.36 5
C105 3964.07 4140.22 3967.76 4140.22 4.35 5 4398.39 3965.38 4398.39 10.92 22
C106 3968.83 4150.76 3968.83 4150.76 4.58 0 4454.17 3970.02 4454.17 12.20 16
C107 3961.48 4138.15 3961.60 4138.15 4.46 4 4341.27 3961.60 4341.27 9.58 11
C108 3951.19 4125.79 3952.27 4125.79 4.39 3 4292.48 3952.08 4292.48 8.61 12
C109 3948.95 - - - - - 4266.58 3949.60 4266.58 8.03 4
C201 4066.61 4243.63 4068.51 4243.63 4.30 2 5646.81 4068.90 5646.81 38.78 7
C202 4042.69 4216.51 4042.69 4216.51 4.30 0 4926.45 4043.22 4926.45 21.84 4
C203 4033.78 4199.93 4034.06 4199.93 4.11 2 4450.83 4034.06 4450.83 10.33 1
C204 4020.06 4189.15 4020.20 4189.15 4.20 3 4205.53 4020.25 4205.53 4.61 4
C205 4051.12 4224.86 4051.58 4224.86 4.28 1 5418.65 4051.58 5418.65 33.74 1
C206 4047.85 4218.18 4047.85 4218.18 4.21 0 5147.35 4047.85 5147.35 27.16 1
C207 4044.95 4218.08 4044.95 4218.08 4.28 1 4966.97 4044.95 4966.97 22.79 2
C208 4043.60 4215.95 4043.60 4215.95 4.26 0 4971.79 4043.60 4971.79 22.95 2
R101 3537.25 3631.72 3538.19 3631.72 2.64 2 3684.90 3538.19 3684.90 4.15 5
R102 3503.53 3598.90 3503.53 3598.90 2.72 0 3645.16 3503.88 3645.16 4.03 2
R103 3483.89 3582.74 3483.89 3582.74 2.84 0 3621.07 3484.99 3621.07 3.90 4
R104 3457.50 3554.97 3457.50 3554.97 2.82 0 3634.73 3457.66 3634.73 5.12 2
R105 3504.74 3602.90 3506.25 3602.90 2.76 2 3681.83 3506.25 3681.83 5.01 4
R106 3482.40 3582.84 3482.40 3582.84 2.88 0 3633.09 3484.02 3633.09 4.28 3
R107 3468.94 - - - - - 3630.53 3470.19 3630.53 4.62 2
R108 3454.54 3552.22 3454.54 3552.22 2.83 0 3606.13 3454.63 3606.13 4.39 1
R109 3470.55 3570.60 3470.55 3570.60 2.88 0 3617.90 3471.18 3617.90 4.23 4
R110 3459.96 3557.78 3460.44 3557.78 2.81 1 3582.07 3460.94 3582.07 3.50 2
R111 3460.12 3558.61 3460.12 3558.61 2.85 0 3620.53 3460.74 3620.53 4.62 2
R112 3452.71 3549.79 3452.71 3549.79 2.81 1 3568.58 3452.74 3568.58 3.36 2
R201 3603.79 3677.91 3603.79 3677.91 2.06 1 3929.10 3603.79 3929.10 9.03 1
R202 3531.58 3621.23 3531.58 3621.23 2.54 0 3815.31 3531.58 3815.31 8.03 1
R204 3453.92 3561.69 3453.92 3561.69 3.12 0 3597.85 3453.92 3597.85 4.17 1
R205 3540.22 3624.99 3540.22 3624.99 2.39 0 3768.11 3540.22 3768.11 6.44 1
R206 3498.43 3597.08 3498.43 3597.08 2.82 0 3710.59 3498.43 3710.59 6.06 1
R207 3470.66 3577.27 3470.66 3577.27 3.07 0 3661.64 3470.70 3661.64 5.50 1
R208 3453.88 3553.29 3453.88 3553.29 2.88 0 3586.21 3453.88 3586.21 3.83 1
R209 3495.34 - - - - - 3632.68 3495.34 3632.68 3.93 2
R210 3489.15 - - - - - 3690.16 3489.15 3690.16 5.76 1
R211 3452.69 3548.81 3452.69 3548.81 2.78 0 3574.57 3452.69 3574.57 3.53 1
RC101 4747.43 4878.24 4749.49 4878.24 2.71 6 4952.00 4748.08 4952.00 4.29 112
RC102 4734.82 4868.81 4735.32 4868.81 2.82 6 4936.10 4734.86 4936.10 4.25 57
RC103 4727.63 4858.33 4728.60 4858.33 2.74 5 4911.10 4727.67 4911.10 3.88 39
RC104 4724.19 4855.98 4725.11 4855.98 2.77 5 4941.93 4724.19 4941.93 4.61 26
RC105 4735.41 4867.22 4736.33 4867.22 2.76 5 4956.55 4736.06 4956.55 4.66 47
RC106 4727.51 4858.99 4728.59 4858.99 2.76 5 4954.15 4728.16 4954.15 4.78 32
RC107 4721.59 4853.52 4723.14 4853.52 2.76 5 4948.95 4723.13 4948.95 4.78 21
RC108 4720.13 4852.08 4721.21 4852.08 2.77 5 4908.66 4721.06 4908.66 3.97 19
RC201 4842.82 4964.44 4846.72 4964.44 2.43 4 5271.42 4843.23 5271.42 8.84 16
RC202 4763.64 4894.51 4763.92 4894.51 2.74 4 5071.99 4763.64 5071.99 6.47 16
RC203 4737.49 4870.78 4738.49 4870.78 2.79 5 4951.02 4737.49 4951.02 4.51 24
RC204 4724.75 4857.19 4725.37 4857.19 2.79 5 4965.04 4725.16 4965.04 5.08 22
RC205 4788.26 4913.72 4789.21 4913.72 2.60 4 5094.98 4789.30 5094.98 6.38 13
RC206 4770.63 4893.91 4771.75 4893.91 2.56 5 5099.22 4771.34 5099.22 6.87 24
RC207 4741.09 4867.96 4742.00 4867.96 2.66 5 5017.94 4741.09 5017.94 5.84 17
RC208 4720.13 4852.08 4721.21 4852.08 2.77 5 4935.06 4721.06 4935.06 4.53 24
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Table 8: Results of problem instances in C sets with 100 customers

Breadth-First Method Depth-First Method
Inst. RootLB RootUB BestLB BestUB Gap% Tree RootUB BestLB BestUB Gap% Tree
C101 8549.79 8747.36 8549.79 8747.36 2.31 0 9403.58 8549.79 9403.58 9.99 0
C105 8512.86 - - - - - 9263.38 8512.86 9263.38 8.82 1

have such an obstacle in DF method, we solve the problem instances with
100 customers where the limit for the total CPU time is set to 8 hours. The
related results that show how far we can go with regard to the level of the
branch-and-price tree are provided in Table 9. In these results, the highest
level reached in the tree is relatively small due to the size of the problem
instances. The effect of this situation is seen in the UB which cannot be
improved within the time limit.

Table 9: Results of problem instances in C, R and RC sets with 100 customers obtained
by DF method with 8 hour CPU limit

Inst. RootLB RootUB BestLB BestUB Gap% Tree
C101 8549.79 9403.58 8550.86 9403.58 9.97 7
C102 8494.70 9104.29 8494.70 9104.29 7.18 2
C103 8472.20 8878.68 8472.20 8878.68 4.80 2
C105 8512.86 9263.38 8514.10 9263.38 8.80 8
C106 8498.13 9217.98 8501.87 9217.98 8.42 2
C107 8497.82 9140.80 8499.49 9140.80 7.55 2
C108 8481.48 9036.47 8481.48 9036.47 6.54 1
C109 8472.73 8883.03 8472.73 8883.03 4.84 1
C201 8559.23 10480.70 8559.23 10480.70 22.45 1
R109 6830.88 7104.53 6830.88 7104.53 4.01 0
RC101 8380.00 8790.81 8380.00 8790.81 4.90 0
RC102 8346.21 8545.24 8346.21 8545.24 2.38 0
RC103 8325.13 8503.30 8325.13 8503.30 2.14 0
RC106 8329.07 8536.55 8329.07 8536.55 2.49 0
RC107 8311.85 8491.95 8311.85 8491.95 2.17 0

The average gap values between the best LB and the best UB for the sets
with 20, 25, 50 and 100 customers provided by BF and DF methods, where
the CPU limit is equal to 3 hours, are presented in Table 10. Table 11 shows
the results of the sets with 100 customers where the applied strategy is DF
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method and the CPU limit is equal to 8 hours.

Table 10: Average results of problem instances in C, R and RC sets with 20, 25, 50 and
100 customers obtained by BF and DF methods with 3 hour CPU limit

Set Method Ave. Gap% Set Method Ave. Gap%
C1-20 BF 9.61 C1-20 DF 10.87
C2-20 BF 7.91 C2-20 DF 10.45
R1-20 BF 8.74 R1-20 DF 11.14
R2-20 BF 8.77 R2-20 DF 11.18
RC1-20 BF 0.46 RC1-20 DF 0.47
RC2-20 BF 0.40 RC2-20 DF 0.40
C1-25 BF 7.80 C1-25 DF 9.22
C2-25 BF 7.30 C2-25 DF 10.15
R1-25 BF 3.30 R1-25 DF 5.00
R2-25 BF 2.97 R2-25 DF 6.36
RC1-25 BF 0.49 RC1-25 DF 0.92
RC2-25 BF 0.41 RC2-25 DF 0.55
C1-50 BF 4.42 C1-50 DF 9.07
C2-50 BF 4.24 C2-50 DF 22.78
R1-50 BF 2.80 R1-50 DF 4.27
R2-50 BF 2.71 R2-50 DF 5.63
RC1-50 BF 2.76 RC1-50 DF 4.40
RC2-50 BF 2.67 RC2-50 DF 6.07
C1-100 BF 2.31 C1-100 DF 9.40

Table 11: Average results of problem instances in C, R and RC sets with 100 customers
obtained by DF method with 8 hour CPU limit

Set Method Ave. Gap% Set Method Ave. Gap%
C1-100 DF 7.26 C2-100 DF 22.45
R1-100 DF 4.01 RC1-100 DF 2.82
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7. Conclusion

In this paper, we consider a vehicle routing problem with soft time win-
dows and stochastic travel times. For this problem, we propose an exact so-
lution approach based on column generation algorithm and branch-and-price
method. To solve the pricing subproblem in column generation procedure,
we extend an existing elementary shortest path algorithm with resource con-
straints by introducing a new dominance relation and by applying a state
space augmentation technique. Moreover, two separate methods are imple-
mented for searching in the branch-and-price tree. Our numerical study is
performed on well-known problem instances. The results indicate that our
solution approach can effectively be used to solve the model, in which the aim
is to construct both reliable and efficient routes, for medium- and large-sized
problem instances. Even though our pricing subproblem is really complex
due to the stochasticity, we have an effective column generation algorithm.
Finally, future research will focus on time-dependent and stochastic formu-
lations, that we have not studied in this paper.
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