78 research outputs found

    Optimization of Contemporary Telecommunications Networks: Generalized Spanning Trees and WDM Optical Networks

    Get PDF
    We present a study of two NP-hard telecommunications network design problems - the prize-collecting generalized minimum spanning tree problem (PCGMST) and the design of optical networks with wavelength division multiplexing. The first problem, the PCGMST problem, involves the design of regional backbone networks, where a set of local area networks (LANs) need to be connected by a minimum cost tree network using exactly one gateway site from each LAN. We present several polynomial time heuristics for the PCGMST problem and show that these algorithms, at best, provide only modest quality solutions. We also present two metaheuristics - a local search procedure and a genetic algorithm, and show that these procedures provide compelling high-quality results on a large set of test problems. Our study of the PCGMST problem is concluded by a presentation of two exact solution procedures that can be used to find optimal solutions in networks of moderate size. The second problem studied in this dissertation is a more complex network design problem that involves optical networks with wavelength division multiplexing (WDM). These networks provide an abundance of transmission bandwidth, but require the use of expensive equipment, which, in turn, mandates careful use of the resources available for their design. The novel aspect of WDM optical networks is that they require simultaneous design of two network layers. The first layer is the virtual topology that requires routing of logical paths over the physical layer of optical fibers. The second layer involves routing and grooming of traffic requests over the logical paths established in the virtual topology. This problem has been extensively studied in the last 10 years, but due to its notoriously hard nature, only few exact solution procedures for relaxed versions of this problem were developed so far. We propose one exact and two approximate branch-and-price algorithms for two versions of the WDM optical network design problem and present results of the computational study involving two different design objectives. Finally, we propose two classes of valid inequalities for our branch-and-price algorithms, and discuss applicability of our algorithms to different versions of the WDM optical network design problem

    Optimization in Telecommunication Networks

    Get PDF
    Network design and network synthesis have been the classical optimization problems intelecommunication for a long time. In the recent past, there have been many technologicaldevelopments such as digitization of information, optical networks, internet, and wirelessnetworks. These developments have led to a series of new optimization problems. Thismanuscript gives an overview of the developments in solving both classical and moderntelecom optimization problems.We start with a short historical overview of the technological developments. Then,the classical (still actual) network design and synthesis problems are described with anemphasis on the latest developments on modelling and solving them. Classical results suchas Menger’s disjoint paths theorem, and Ford-Fulkerson’s max-flow-min-cut theorem, butalso Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to themodels described. Finally, we describe recent optimization problems such as routing andwavelength assignment, and grooming in optical networks.operations research and management science;

    Design and provisioning of WDM networks for traffic grooming

    Get PDF
    Wavelength Division Multiplexing (WDM) is the most viable technique for utilizing the enormous amounts of bandwidth inherently available in optical fibers. However, the bandwidth offered by a single wavelength in WDM networks is on the order of tens of Gigabits per second, while most of the applications\u27 bandwidth requirements are still subwavelength. Therefore, cost-effective design and provisioning of WDM networks require that traffic from different sessions share bandwidth of a single wavelength by employing electronic multiplexing at higher layers. This is known as traffic grooming. Optical networks supporting traffic grooming are usually designed in a way such that the cost of the higher layer equipment used to support a given traffic matrix is reduced. In this thesis, we propose a number of optimal and heuristic solutions for the design and provisioning of optical networks for traffic grooming with an objective of network cost reduction. In doing so, we address several practical issues. Specifically, we address the design and provisioning of WDM networks on unidirectional and bidirectional rings for arbitrary unicast traffic grooming, and on mesh topologies for arbitrary multipoint traffic grooming. In multipoint traffic grooming, we address both multicast and many-to-one traffic grooming problems. We provide a unified frame work for optimal and approximate network dimensioning and channel provisioning for the generic multicast traffic grooming problem, as well as some variants of the problem. For many-to-one traffic grooming we propose optimal as well as heuristic solutions. Optimal formulations which are inherently non-linear are mapped to an optimal linear formulation. In the heuristic solutions, we employ different problem specific search strategies to explore the solution space. We provide a number of experimental results to show the efficacy of our proposed techniques for the traffic grooming problem in WDM networks

    Optimization of WDM Optical Networks

    Get PDF
    Optical network, with its enormous data carrying capability, has become the obvious choice for today\u27s high speed communication networks. Wavelength Division Multiplexing (WDM) technology and Traffic Grooming techniques enable us to efficiently exploit the huge bandwidth capacity of optical fibers. Wide area translucent networks use sparse placement of regenerators to overcome the physical impairments and wavelength constraints introduced by all optical (transparent) networks, and achieve a performance level close to fully switched (opaque) networks at a much lesser network cost. In this dissertation we discuss our research on several issues on the optimal design of optical networks, including optimal traffic grooming in WDM optical networks, optimal regenerator placement problem (RRP) in translucent networks, dynamic lightpath allocation and dynamic survivable lightpath allocation in translucent networks and static lightpath allocation in translucent networks. With extensive simulation experiments, we have established the effectiveness and efficiencies of our proposed algorithms

    Reformulation and Decomposition Approaches for Traffic Routing in Optical Networks

    Get PDF
    International audienceWe consider a multi-layer network design model arising from a real-life telecommunication application where traffic routingdecisions imply the installation of expensive nodal equipment. Customer requests come in the form of bandwidthreservations for a given origin destination pair. Bandwidth demands are expressed as multiples of nominal granularities. Each request must be single-path routed. Grooming several requests on the same wavelength and multiplexing wavelengths in the same optical stream allow a more efficient use of network capacity. However, each addition or withdrawal of a request from a wavelength requires optical to electrical conversion and the use of cross-connect equipment with expensive ports of high densities. The objective is to minimize the number of required ports of the cross-connect equipment. We deal with backbone optical networks, therefore with networks with a moderate number of nodes (14 to 20) but thousands of requests. Further difficulties arise from the symmetries in wavelength assignment and traffic loading. Traditional multi-commodity network flowapproaches are not suited for this problem. Instead, four alternative models relying on Dantzig-Wolfe and/or Benders' decomposition areintroduced and compared. The formulations are strengthened using symmetry breaking restrictions, variable domain reduction, zero-onediscretization of integer variables, and cutting planes. The resulting dual bounds are compared to the values of primal solutions obtained through hierarchical optimization and rounding procedures. For realistic size instances, our best approaches provide solutions with optimality gap of approximately 5% on average in around two hours of computing time

    Reformulation and Decomposition Approaches for Traffic Routing in Optical Networks

    Get PDF
    International audienceWe consider a multi-layer network design model arising from a real-life telecommunication application where traffic routingdecisions imply the installation of expensive nodal equipment. Customer requests come in the form of bandwidthreservations for a given origin destination pair. Bandwidth demands are expressed as multiples of nominal granularities. Each request must be single-path routed. Grooming several requests on the same wavelength and multiplexing wavelengths in the same optical stream allow a more efficient use of network capacity. However, each addition or withdrawal of a request from a wavelength requires optical to electrical conversion and the use of cross-connect equipment with expensive ports of high densities. The objective is to minimize the number of required ports of the cross-connect equipment. We deal with backbone optical networks, therefore with networks with a moderate number of nodes (14 to 20) but thousands of requests. Further difficulties arise from the symmetries in wavelength assignment and traffic loading. Traditional multi-commodity network flowapproaches are not suited for this problem. Instead, four alternative models relying on Dantzig-Wolfe and/or Benders' decomposition areintroduced and compared. The formulations are strengthened using symmetry breaking restrictions, variable domain reduction, zero-onediscretization of integer variables, and cutting planes. The resulting dual bounds are compared to the values of primal solutions obtained through hierarchical optimization and rounding procedures. For realistic size instances, our best approaches provide solutions with optimality gap of approximately 5% on average in around two hours of computing time

    Design and protection algorithms for path level aggregation of traffic in WDM metro optical networks

    Get PDF
    Wavelength Division Multiplexing (WDM) promises to offer a cost effective and scalable solution to meet the emerging demands of the Internet. WDM splits the tremendous bandwidth latent in a fiber into multiple non-overlapping wavelength channels, each of which can be operated at the peak electronic rate. Commercial systems with 128 wavelengths and transmission rates of up to 40 Gbps per wavelength have been made possible using state of the art optical technologies to deal with physical impairments. Systems with higher capacities are likely to evolve in the future. The end user requirements for bandwidth, on the other hand, have been ranging from 155 Mbps to 2.5 Gbps. Dedicating a wavelength for each end user will lead to severe underutilization of WDM channels. This brings to forefront the requirement for sharing of bandwidth in a wavelength among multiple end users.;The concept of wavelength sharing among multiple clients is called grooming. Grooming can be done purely at the optical layer (optical grooming) or it can be done with support from the client layer (electronic grooming). The advantage of all optical grooming is the ease of scalability due to its transparency as opposed to electronic grooming which is constrained by electronic bottlenecks. Efforts towards enhancing optical grooming is pursued through increasing optical switching speeds. However, technologies to make optical switches with high speeds, large port counts and low insertion losses have been elusive and may continue to remain so in the near future.;Recently, there have been some research into designing new architectures and protocols focused on optical grooming without resorting to fast optical switching. Typically, this is achieved in three steps: (1) configure the circuit in the form of a path or a tree; (2) use optical devices like couplers or splitters to allow multiple transmitters and/or receivers to share the same circuit; and (3) provide an arbitration mechanism to avoid contention among end users of the circuit. This transparent sharing of the wavelength channel utilizes the network resources better than the conventional low-speed circuit switched approaches. Consequently, it becomes important to quantify the improvement in achieved performance and evaluate if the reaped benefits justify the cost of the required additional hardware and software.;The contribution of this thesis is two fold: (1) developing a new architecture called light-trails as an IP based solution for next generation WDM optical networks, and (2) designing a unified framework to model Path Level Aggregation of Traffic in metrO Optical Networks (PLATOONs). The algorithms suggested here have three features: (1) accounts for four different path level aggregation strategies---namely, point to point (for example, lightpaths), point to multi-point (for example, source based light-trails), multi-point to point (for example, destination based light-trails) and multi-point to multi-point (for example, light-trails); (2) incorporates heterogenous switching architectures; and (3) accommodates multi-rate traffic. Algorithms for network design and survivability are developed for PLATOONs in the presence of both static and dynamic traffic. Connection level dedicated/shared, segregated/mixed protection schemes are formulated for single link failures in the presence of static and dynamic traffic. A simple medium access control protocol that avoids collisions when the channel is shared by multiple clients is also proposed.;Based on extensive simulations, we conclude that, for the studied scenarios, (1) when client layer has no electronic grooming capabilities, light-trails (employing multi-point to multi-point aggregation strategy) perform several orders of magnitude better than lightpaths and (2) when client layer has full electronic grooming capabilities, source based light-trails (employing point to multi-point aggregation strategy) perform the best in wavelength limited scenarios and lightpaths perform the best in transceiver limited scenarios.;The algorithms that are developed here will be helpful in designing optical networks that deploy path level aggregation strategies. The proposed ideas will impact the design of transparent, high-speed all-optical networks.</p

    Groupage et protection du trafic dynamique dans les réseaux WDM

    Full text link
    Avec les nouvelles technologies des rĂ©seaux optiques, une quantitĂ© de donnĂ©es de plus en plus grande peut ĂȘtre transportĂ©e par une seule longueur d'onde. Cette quantitĂ© peut atteindre jusqu’à 40 gigabits par seconde (Gbps). Les flots de donnĂ©es individuels quant Ă  eux demandent beaucoup moins de bande passante. Le groupage de trafic est une technique qui permet l'utilisation efficace de la bande passante offerte par une longueur d'onde. Elle consiste Ă  assembler plusieurs flots de donnĂ©es de bas dĂ©bit en une seule entitĂ© de donnĂ©es qui peut ĂȘtre transportĂ© sur une longueur d'onde. La technique demultiplexage en longueurs d'onde (Wavelength Division Multiplexing WDM) permet de transporter plusieurs longueurs d'onde sur une mĂȘme fibre. L'utilisation des deux techniques : WDM et groupage de trafic, permet de transporter une quantitĂ© de donnĂ©es de l'ordre de terabits par seconde (Tbps) sur une mĂȘme fibre optique. La protection du trafic dans les rĂ©seaux optiques devient alors une opĂ©ration trĂšs vitale pour ces rĂ©seaux, puisqu'une seule panne peut perturber des milliers d'utilisateurs et engendre des pertes importantes jusqu'Ă  plusieurs millions de dollars Ă  l'opĂ©rateur et aux utilisateurs du rĂ©seau. La technique de protection consiste Ă  rĂ©server une capacitĂ© supplĂ©mentaire pour acheminer le trafic en cas de panne dans le rĂ©seau. Cette thĂšse porte sur l'Ă©tude des techniques de groupage et de protection du trafic en utilisant les p-cycles dans les rĂ©seaux optiques dans un contexte de trafic dynamique. La majoritĂ© des travaux existants considĂšre un trafic statique oĂč l'Ă©tat du rĂ©seau ainsi que le trafic sont donnĂ©s au dĂ©but et ne changent pas. En plus, la majoritĂ© de ces travaux utilise des heuristiques ou des mĂ©thodes ayant de la difficultĂ© Ă  rĂ©soudre des instances de grande taille. Dans le contexte de trafic dynamique, deux difficultĂ©s majeures s'ajoutent aux problĂšmes Ă©tudiĂ©s, Ă  cause du changement continuel du trafic dans le rĂ©seau. La premiĂšre est due au fait que la solution proposĂ©e Ă  la pĂ©riode prĂ©cĂ©dente, mĂȘme si elle est optimisĂ©e, n'est plus nĂ©cessairement optimisĂ©e ou optimale pour la pĂ©riode courante, une nouvelle optimisation de la solution au problĂšme est alors nĂ©cessaire. La deuxiĂšme difficultĂ© est due au fait que la rĂ©solution du problĂšme pour une pĂ©riode donnĂ©e est diffĂ©rente de sa rĂ©solution pour la pĂ©riode initiale Ă  cause des connexions en cours dans le rĂ©seau qui ne doivent pas ĂȘtre trop dĂ©rangĂ©es Ă  chaque pĂ©riode de temps. L'Ă©tude faite sur la technique de groupage de trafic dans un contexte de trafic dynamique consiste Ă  proposer diffĂ©rents scĂ©narios pour composer avec ce type de trafic, avec comme objectif la maximisation de la bande passante des connexions acceptĂ©es Ă  chaque pĂ©riode de temps. Des formulations mathĂ©matiques des diffĂ©rents scĂ©narios considĂ©rĂ©s pour le problĂšme de groupage sont proposĂ©es. Les travaux que nous avons rĂ©alisĂ©s sur le problĂšme de la protection considĂšrent deux types de p-cycles, ceux protĂ©geant les liens (p-cycles de base) et les FIPP p-cycles (p-cycles protĂ©geant les chemins). Ces travaux ont consistĂ© d’abord en la proposition de diffĂ©rents scĂ©narios pour gĂ©rer les p-cycles de protection dans un contexte de trafic dynamique. Ensuite, une Ă©tude sur la stabilitĂ© des p-cycles dans un contexte de trafic dynamique a Ă©tĂ© faite. Des formulations de diffĂ©rents scĂ©narios ont Ă©tĂ© proposĂ©es et les mĂ©thodes de rĂ©solution utilisĂ©es permettent d’aborder des problĂšmes de plus grande taille que ceux prĂ©sentĂ©s dans la littĂ©rature. Nous nous appuyons sur la mĂ©thode de gĂ©nĂ©ration de colonnes pour Ă©numĂ©rer implicitement les cycles les plus prometteurs. Dans l'Ă©tude des p-cycles protĂ©geant les chemins ou FIPP p-cycles, nous avons proposĂ© des formulations pour le problĂšme maĂźtre et le problĂšme auxiliaire. Nous avons utilisĂ© une mĂ©thode de dĂ©composition hiĂ©rarchique du problĂšme qui nous permet d'obtenir de meilleurs rĂ©sultats dans un temps raisonnable. Comme pour les p-cycles de base, nous avons Ă©tudiĂ© la stabilitĂ© des FIPP p-cycles dans un contexte de trafic dynamique. Les travaux montrent que dĂ©pendamment du critĂšre d'optimisation, les p-cycles de base (protĂ©geant les liens) et les FIPP p-cycles (protĂ©geant les chemins) peuvent ĂȘtre trĂšs stables.With new technologies in optical networking, an increasing quantity of data can be carried by a single wavelength. This amount of data can reach up to 40 gigabits per second (Gbps). Meanwhile, the individual data flows require much less bandwidth. The traffic grooming is a technique that allows the efficient use of the bandwidth offered by a wavelength. It consists of assembling several low-speed data streams into a single data entity that can be carried on a wavelength. The wavelength division multiplexing (WDM) technique allows carrying multiple wavelengths on a single fiber. The use of the two techniques,WDMand traffic grooming, allows carrying a quantity of data in the order of terabits per second (Tbps) over a single optical fiber. Thus, the traffic protection in optical networks becomes an operation very vital for these networks, since a single failure can disrupt thousands of users and may result in several millions of dollars of lost revenue to the operator and the network users. The survivability techniques involve reserving additional capacity to carry traffic in case of a failure in the network. This thesis concerns the study of the techniques of grooming and protection of traffic using p-cycles in optical networks in a context of dynamic traffic. Most existing work considers a static traffic where the network status and the traffic are given at the beginning and do not change. In addition, most of these works concerns heuristic algorithms or methods suffering from critical lack of scalability. In the context of dynamic traffic, two major difficulties are added to the studied problems, because of the continuous change in network traffic. The first is due to the fact that the solution proposed in the previous period, even if optimal, does not necessarily remain optimal in the current period. Thus, a re-optimization of the solution to the problem is required. The second difficulty is due to the fact that the solution of the problem for a given period is different from its solution for the initial period because of the ongoing connections in the network that should not be too disturbed at each time period. The study done on the traffic grooming technique in the context of dynamic traffic consists of proposing different scenarios for dealing with this type of traffic, with the objective of maximizing the bandwidth of the new granted connections at each time period. Mathematical formulations of the different considered scenarios for the grooming problem are proposed. The work we have done on the problem of protection considers two types of p-cycles, those protecting links and FIPP p-cycles (p-cycle protecting paths). This work consisted primarily on the proposition of different scenarios for managing protection p-cycles in a context of dynamic traffic. Then, a study on the stability of cycles in the context of dynamic traffic was done. Formulations of different scenarios have been proposed and the proposed solution methods allow the approach of larger problem instances than those reported in the literature. We rely on the method of column generation to implicitly enumerate promising cycles. In the study of path protecting p-cycles or FIPP p-cycles, we proposed mathematical formulations for the master and the pricing problems. We used a hierarchical decomposition of the problem which allows us to obtain better results in a reasonable time. As for the basic p-cycles, we studied the stability of FIPP p-cycles in the context of dynamic traffic. The work shows that depending on the optimization criterion, the basic p-cycles (protecting the links) and FIPP p-cycles (protecting paths) can be very stable

    Differentiated quality-of-recovery and quality-of-protection in survivable WDM mesh networks

    Get PDF
    In the modern telecommunication business, there is a need to provide different Quality-of-Recovery (QoR) and Quality-of-Protection (QoP) classes in order to accommodate as many customers as possible, and to optimize the protection capacity cost. Prevalent protection methods to provide specific QoS related to protection are based on pre-defined shape protection structures (topologies), e.g., p -cycles and p -trees. Although some of these protection patterns are known to provide a good trade-off among the different protection parameters, their shapes can limit their deployment in some specific network conditions, e.g., a constrained link spare capacity budget and traffic distribution. In this thesis, we propose to re-think the design process of protection schemes in survivable WDM networks by adopting a hew design approach where the shapes of the protection structures are decided based on the targeted QoR and QoP guarantees, and not the reverse. We focus on the degree of pre-configuration of the protection topologies, and use fully and partially pre-cross connected p -structures, and dynamically cross connected p -structures. In QoR differentiation, we develop different approaches for pre-configuring the protection capacity in order to strike different balances between the protection cost and the availability requirements in the network; while in the QoP differentiation, we focus on the shaping of the protection structures to provide different grades of protection including single and dual-link failure protection. The new research directions proposed and developed in this thesis are intended to help network operators to effectively support different Quality-of-Recovery and Quality-of-Protection classes. All new ideas have been translated into mathematical models for which we propose practical and efficient design methods in order to optimize the inherent cost to the different designs of protection schemes. Furthermore, we establish a quantitative relation between the degree of pre-configuration of the protection structures and their costs in terms of protection capacity. Our most significant contributions are the design and development of Pre-Configured Protection Structure (p-structure) and Pre-Configured Protection Extended-Tree (p -etree) based schemes. Thanks to the column generation modeling and solution approaches, we propose a new design approach of protection schemes where we deploy just enough protection to provide different quality of recovery and protection classe

    Neuromorphic nanophotonic systems for artificial intelligence

    Get PDF
    Over the last decade, we have witnessed an astonishing pace of development in the field of artificial intelligence (AI), followed by proliferation of AI algorithms into virtually every domain of our society. While modern AI models boast impressive performance, they also require massive amounts of energy and resources for operation. This is further fuelling the research into AI-specific, optimised computing hardware. At the same time, the remarkable energy efficiency of the brain brings an interesting question: Can we further borrow from the working principles of biological intelligence to realise a more efficient artificial intelligence? This can be considered as the main research question in the field of neuromorphic engineering. Thanks to the developments in AI and recent advancements in the field of photonics and photonic integration, research into light-powered implementations of neuromorphic hardware has recently experienced a significant uptick of interest. In such hardware, the aim is to seize some of the highly desirable properties of photonics not just for communication, but also to perform computation. Neurons in the brain frequently process information (compute) and communicate using action potentials, which are brief voltage spikes that encode information in the temporal domain. Similar dynamical behaviour can be elicited in some photonic devices, at speeds multiple orders of magnitude higher. Such devices with the capability of neuron-like spiking are of significant research interest for the field of neuromorphic photonics. Two distinct types of such excitable, spiking systems operating with optical signals are studied and investigated in this thesis. First, a vertical cavity surface emitting laser (VCSEL) can be operated under a specific set of conditions to realise a high-speed, all-optical excitable photonic neuron that operates at standard telecom wavelengths. The photonic VCSEL-neuron was dynamically characterised and various information encoding mechanisms were studied in this device. In particular, a spiking rate-coding regime of operation was experimentally demonstrated, and its viability for performing spiking domain conversion of digital images was explored. Furthermore, for the first time, a joint architecture utilising a VCSEL-neuron coupled to a photonic integrated circuit (PIC) silicon microring weight bank was experimentally demonstrated in two different functional layouts. Second, an optoelectronic (O/E/O) circuit based upon a resonant tunnelling diode (RTD) was introduced. Two different types of RTD devices were studied experimentally: a higher output power, ”-scale RTD that was RF coupled to an active photodetector and a VCSEL (this layout is referred to as a PRL node); and a simplified, photosensitive RTD with nanoscale injector that was RF coupled to a VCSEL (referred to as a nanopRL node). Hallmark excitable behaviours were studied in both devices, including excitability thresholding and refractory periods. Furthermore, a more exotic resonate and-fire dynamical behaviour was also reported in the nano-pRL device. Finally, a modular numerical model of the RTD was introduced, and various information processing methods were demonstrated using both a single RTD spiking node, as well as a perceptron-type spiking neural network with physical models of optoelectronic RTD nodes serving as artificial spiking neurons.Over the last decade, we have witnessed an astonishing pace of development in the field of artificial intelligence (AI), followed by proliferation of AI algorithms into virtually every domain of our society. While modern AI models boast impressive performance, they also require massive amounts of energy and resources for operation. This is further fuelling the research into AI-specific, optimised computing hardware. At the same time, the remarkable energy efficiency of the brain brings an interesting question: Can we further borrow from the working principles of biological intelligence to realise a more efficient artificial intelligence? This can be considered as the main research question in the field of neuromorphic engineering. Thanks to the developments in AI and recent advancements in the field of photonics and photonic integration, research into light-powered implementations of neuromorphic hardware has recently experienced a significant uptick of interest. In such hardware, the aim is to seize some of the highly desirable properties of photonics not just for communication, but also to perform computation. Neurons in the brain frequently process information (compute) and communicate using action potentials, which are brief voltage spikes that encode information in the temporal domain. Similar dynamical behaviour can be elicited in some photonic devices, at speeds multiple orders of magnitude higher. Such devices with the capability of neuron-like spiking are of significant research interest for the field of neuromorphic photonics. Two distinct types of such excitable, spiking systems operating with optical signals are studied and investigated in this thesis. First, a vertical cavity surface emitting laser (VCSEL) can be operated under a specific set of conditions to realise a high-speed, all-optical excitable photonic neuron that operates at standard telecom wavelengths. The photonic VCSEL-neuron was dynamically characterised and various information encoding mechanisms were studied in this device. In particular, a spiking rate-coding regime of operation was experimentally demonstrated, and its viability for performing spiking domain conversion of digital images was explored. Furthermore, for the first time, a joint architecture utilising a VCSEL-neuron coupled to a photonic integrated circuit (PIC) silicon microring weight bank was experimentally demonstrated in two different functional layouts. Second, an optoelectronic (O/E/O) circuit based upon a resonant tunnelling diode (RTD) was introduced. Two different types of RTD devices were studied experimentally: a higher output power, ”-scale RTD that was RF coupled to an active photodetector and a VCSEL (this layout is referred to as a PRL node); and a simplified, photosensitive RTD with nanoscale injector that was RF coupled to a VCSEL (referred to as a nanopRL node). Hallmark excitable behaviours were studied in both devices, including excitability thresholding and refractory periods. Furthermore, a more exotic resonate and-fire dynamical behaviour was also reported in the nano-pRL device. Finally, a modular numerical model of the RTD was introduced, and various information processing methods were demonstrated using both a single RTD spiking node, as well as a perceptron-type spiking neural network with physical models of optoelectronic RTD nodes serving as artificial spiking neurons
    • 

    corecore