1,747 research outputs found

    Boundary length of reconstructions in discrete tomography

    Full text link
    We consider possible reconstructions of a binary image of which the row and column sums are given. For any reconstruction we can define the length of the boundary of the image. In this paper we prove a new lower bound on the length of this boundary. In contrast to simple bounds that have been derived previously, in this new lower bound the information of both row and column sums is combined

    Regularized Newton Methods for X-ray Phase Contrast and General Imaging Problems

    Full text link
    Like many other advanced imaging methods, x-ray phase contrast imaging and tomography require mathematical inversion of the observed data to obtain real-space information. While an accurate forward model describing the generally nonlinear image formation from a given object to the observations is often available, explicit inversion formulas are typically not known. Moreover, the measured data might be insufficient for stable image reconstruction, in which case it has to be complemented by suitable a priori information. In this work, regularized Newton methods are presented as a general framework for the solution of such ill-posed nonlinear imaging problems. For a proof of principle, the approach is applied to x-ray phase contrast imaging in the near-field propagation regime. Simultaneous recovery of the phase- and amplitude from a single near-field diffraction pattern without homogeneity constraints is demonstrated for the first time. The presented methods further permit all-at-once phase contrast tomography, i.e. simultaneous phase retrieval and tomographic inversion. We demonstrate the potential of this approach by three-dimensional imaging of a colloidal crystal at 95 nm isotropic resolution.Comment: (C)2016 Optical Society of America. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modifications of the content of this paper are prohibite

    Non-convex image reconstruction via Expectation Propagation

    Get PDF
    Tomographic image reconstruction can be mapped to a problem of finding solutions to a large system of linear equations which maximize a function that includes \textit{a priori} knowledge regarding features of typical images such as smoothness or sharpness. This maximization can be performed with standard local optimization tools when the function is concave, but it is generally intractable for realistic priors, which are non-concave. We introduce a new method to reconstruct images obtained from Radon projections by using Expectation Propagation, which allows us to reframe the problem from an Bayesian inference perspective. We show, by means of extensive simulations, that, compared to state-of-the-art algorithms for this task, Expectation Propagation paired with very simple but non log-concave priors, is often able to reconstruct images up to a smaller error while using a lower amount of information per pixel. We provide estimates for the critical rate of information per pixel above which recovery is error-free by means of simulations on ensembles of phantom and real images.Comment: 12 pages, 6 figure

    Demonstration of Robust Quantum Gate Tomography via Randomized Benchmarking

    Full text link
    Typical quantum gate tomography protocols struggle with a self-consistency problem: the gate operation cannot be reconstructed without knowledge of the initial state and final measurement, but such knowledge cannot be obtained without well-characterized gates. A recently proposed technique, known as randomized benchmarking tomography (RBT), sidesteps this self-consistency problem by designing experiments to be insensitive to preparation and measurement imperfections. We implement this proposal in a superconducting qubit system, using a number of experimental improvements including implementing each of the elements of the Clifford group in single `atomic' pulses and custom control hardware to enable large overhead protocols. We show a robust reconstruction of several single-qubit quantum gates, including a unitary outside the Clifford group. We demonstrate that RBT yields physical gate reconstructions that are consistent with fidelities obtained by randomized benchmarking

    A parametric level-set method for partially discrete tomography

    Get PDF
    This paper introduces a parametric level-set method for tomographic reconstruction of partially discrete images. Such images consist of a continuously varying background and an anomaly with a constant (known) grey-value. We represent the geometry of the anomaly using a level-set function, which we represent using radial basis functions. We pose the reconstruction problem as a bi-level optimization problem in terms of the background and coefficients for the level-set function. To constrain the background reconstruction we impose smoothness through Tikhonov regularization. The bi-level optimization problem is solved in an alternating fashion; in each iteration we first reconstruct the background and consequently update the level-set function. We test our method on numerical phantoms and show that we can successfully reconstruct the geometry of the anomaly, even from limited data. On these phantoms, our method outperforms Total Variation reconstruction, DART and P-DART.Comment: Paper submitted to 20th International Conference on Discrete Geometry for Computer Imager

    Bounds for discrete tomography solutions

    Full text link
    We consider the reconstruction of a function on a finite subset of Z2\mathbb{Z}^2 if the line sums in certain directions are prescribed. The real solutions form a linear manifold, its integer solutions a grid. First we provide an explicit expression for the projection vector from the origin onto the linear solution manifold in the case of only row and column sums of a finite subset of Z2\mathbf{Z}^2. Next we present a method to estimate the maximal distance between two binary solutions. Subsequently we deduce an upper bound for the distance from any given real solution to the nearest integer solution. This enables us to estimate the stability of solutions. Finally we generalize the first mentioned result to the torus case and to the continuous case

    A Hybrid Segmentation and D-bar Method for Electrical Impedance Tomography

    Get PDF
    The Regularized D-bar method for Electrical Impedance Tomography provides a rigorous mathematical approach for solving the full nonlinear inverse problem directly, i.e. without iterations. It is based on a low-pass filtering in the (nonlinear) frequency domain. However, the resulting D-bar reconstructions are inherently smoothed leading to a loss of edge distinction. In this paper, a novel approach that combines the rigor of the D-bar approach with the edge-preserving nature of Total Variation regularization is presented. The method also includes a data-driven contrast adjustment technique guided by the key functions (CGO solutions) of the D-bar method. The new TV-Enhanced D-bar Method produces reconstructions with sharper edges and improved contrast while still solving the full nonlinear problem. This is achieved by using the TV-induced edges to increase the truncation radius of the scattering data in the nonlinear frequency domain thereby increasing the radius of the low pass filter. The algorithm is tested on numerically simulated noisy EIT data and demonstrates significant improvements in edge preservation and contrast which can be highly valuable for absolute EIT imaging
    corecore