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Abstract

Binary tomography deals with the problem of reconstructing a binary image from its projections.
In particular, there is a focus on highly underdetermined reconstruction problems for which many
solutions may exist. In such cases, it is important to have a quality measure for the reconstruction
with respect to the unknown original image.

In this article, we derive a series of upper bounds that can be used to guarantee the quality
of a reconstructed binary image. The bounds limit the number of pixels that can be incorrect
in the reconstructed image with respect to the original image. We provide several versions of
these bounds, ranging from bounds on the difference between any two binary solutions of a
tomography problem to bounds on the difference between approximate solutions and the original
object. The bounds are evaluated experimentally for a range of test images, based on simulated
projection data.

Keywords: binary tomography, discrete tomography, error bounds, stability

1. Introduction

Tomography is a technique for reconstructing an image of an object from a series of pro-
jections of this object, acquired from a range of viewing angles. The projection images are
typically recorded using a scanning device, which can employ various types of beams (e.g., X-
rays, neutrons, electrons) that traverse the object, after which a detector measures the result of the
beam-object interaction. Provided that a large number of high-quality projections are available,
sampled from a full range of angles, an accurate reconstruction of the object can be computed
using a tomographic reconstruction algorithm [15, 19].

In practice, the set of angles for which projections are acquired is often limited. Due to
dose constraints, it can be desirable to record as few projections images as possible, while still
attaining sufficient image quality. Also, the angular range can be restricted by the particular
scanning setup, such as in electron tomography, where the shape of the sample holder limits the
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angular range of the projections [20]. The resulting image reconstruction problems, based on
just a small number of projections, are known as limited data problems.

For tomographic reconstruction from severely limited data, classical algorithms based on an-
alytical inversion of the Radon transform, such as the Filtered Backprojection algorithm, often
yield low quality reconstructions that are polluted by strong artefacts. In such cases, it makes
sense to exploit available prior knowledge of the unknown object. Incorporation of this knowl-
edge in the reconstruction algorithm can potentially result in a reduction of the required number
of projections, increased accuracy of the reconstruction, or an improved ability to deal with noisy
projection data. A prior that has received much attention recently concerns the sparsity of the
image, or of its gradient, which is exploited in the field of Compressed Sensing [12, 13, 23, 24].

A related, but more strict type of prior knowledge is exploited in Discrete Tomography, which
focuses on the reconstruction of images that consist of a small, discrete set of grey values [16, 17].
The actual set of grey levels is typically assumed to be known in advance. Here, we focus
specifically on the reconstruction of binary images, which consist of just two grey levels, 0
and 1. Several reconstruction algorithms have been proposed in literature for reconstructing
binary images from a small number of projections, often even less than 6 [5, 8, 17, 22]. These
algorithms do not work well for all types of binary images, yet they have demonstrated the ability
to accurately reconstruct various phantom images.

Despite the strong constraint imposed on the grey values in discrete tomography, many valid
solutions of the reconstruction problem can exist, all corresponding to the same set of projec-
tions. If the projections are obtained by performing measurements on some unknown ground
truth object, the reconstruction can then deviate substantially from the true object. As a con-
sequence, there is a need for an upper bound on the difference between binary solutions of the
reconstruction problem. As the ground truth is a solution by itself, this would also yield a bound
on the reconstruction error with respect to the ground truth.

A related problem in discrete tomography is the so-called stability problem, which deals with
the question of how the reconstruction changes if the projections are slightly perturbed. For
images represented on a discrete grid, both lower and upper bounds have been obtained for the
magnitude of such changes [1, 2, 3, 11, 28]. For the case of binary image reconstruction from just
two projections, horizontal and vertical, sharp bounds on the difference between binary images
having the same projections have been obtained by Alpers and Brunetti [2] and extended by Van
Dalen [26, 27].

In this article, we present a series of bounds which are highly general. Our bounds can be
computed for any set of projections and in different geometrical settings, for lattice images as
well as discretized continuous images. A key idea in deriving these bounds is an observation
first made by Hajdu and Tijdeman in [14], concerning the fact that all binary solutions of the
reconstruction problem must lie on a certain hypersphere, of which both the center and radius
can be computed. The center of this hypersphere, which we call the central reconstruction,
is the shortest real-valued solution of the tomography problem. This hypersphere construction
leads directly to a simple bound on the distance between any two binary solutions, based on
the triangle inequality. Stronger bounds can be derived by focusing on the distance between
binary solutions of the tomography problem and the binary image that is obtained by rounding
the central reconstruction. We derive several bounds that combine properties of the real-valued
solution with combinatorial properties that are satisfied by the binary solutions. In particular, the
fact that the sum of the pixel values in the unknown image is fully determined by the projection
data can be used to improve the error bounds for binary images.

The structure of this article is as follows. Our notation is introduced in Section 2, after which
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a general class of reconstruction problems is introduced. We then discuss two specific examples
of such problems, based on the grid model and strip model for computing the projections. In
Section 3, the central reconstruction is introduced, which plays an important role in all results
that follow. We discuss two different strategies for its computation. Section 4 contains the main
results of this paper: a series of quality bounds for binary solutions of the tomography problem. It
is divided in three parts: in Section 4.1, a general bound is derived on the difference between two
binary images having a given set of projections. Section 4.2 deals with bounds that are based on
properties of the binary images that are obtained by rounding the central reconstruction. These
bounds are subsequently refined in Section 4.3 by including the knowledge of the total number
of 1’s in any binary solution, which can be determined from the projection data.

Section 5 presents a series of simulation experiments and their results. From these results,
the practical value of the proposed bounds can be evaluated for different types of images. The
results are further discussed in Section 6. Section 7 concludes the paper.

This article is an extended version of the conference paper [7]. Compared to the conference
paper, several new bounds have been included in the present article, in particular (i) bounds on
the difference between any binary image, not necessarily being a solution of the reconstruction
problem, and the unknown original image, and (ii) bounds that incorporate knowledge of the
total number of 1’s in the unknown original image. Various other bounds have also been refined.
The experimental section has been extended with an example, depicting the different images and
concepts involved in the various bounds. A series of experiments on bounding the error of binary
reconstructions computed by the DART algorithm, a heuristic method that is not guaranteed to
yield an exact solution [8], but yields high quality reconstructions in practice, is also included.

2. Notation and model

Throughout the discrete tomography literature, several imaging models have been consid-
ered. In the grid model, an image is formed by assigning a value to each point in a regular grid.
In the case of binary images, each point is assigned a value of either 0 or 1. Here, we consider
square grids of the form A = {(i, j) ∈ Z2 : 1 ≤ i, j ≤ s} for s ∈ N, s ≥ 1; see Fig. 1(a). For the
grid model, we refer to the points in A as pixels. A binary image defined on A can be represented
by a map A → {0, 1}. A projection of an image f is formed by considering the set of parallel
lines through one or more grid points in a certain direction (a, b) ∈ Z2, with a ≥ 0 and (a, b)
coprime, and summing the values of the points on each line. For a line given by the equation
ax − by = t (t ∈ Z), the line projection p is defined as

p =
∑

(x,y)∈A:ax−by=t

f (x, y).

The grid model can be used to model nanocrystals, that consist of discrete atoms positioned in a
regular grid [18, 25].

In many tomography applications, a continuous representation of the object is more realistic,
as there is no intrinsic grid structure. In such cases, the unknown image is typically approximated
by an image defined on a discrete pixel grid, using square pixels. A common model for comput-
ing the projections of such a pixelized image is the strip model [19, section 7.4.1], [30]. In the
strip model, a projection is computed by considering a set of parallel strips in a given direction
and and for each strip computing the weighted sum of all the pixels which intersect that strip
with a weight equal to the intersection area of the strip and the pixel.
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(a) Grid model (b) Strip model

Figure 1: Two different projection models.

We now define some general notation. An image is represented by a vector x = (xi) ∈ Rn.
We refer to the entries of x as pixels, which correspond to unit squares in the strip model and to
points in the grid model. The derivation of our main results does not depend on the particular
projection model. Throughout this paper we assume that all images are square, consisting of c
rows and c columns, where n = c2. A binary image corresponds with a vector x̄ ∈ {0, 1}n.

For a given set of k projection directions, the projection map maps an image x to a vector p ∈
Rm of projection data, where m denotes the total number of line measurements. As the projection
map is a linear transformation, it can be represented by a matrix W = (wi j) ∈ Rm×n, called the
projection matrix. Entry wi j represents the weight of the contribution of x j to projected line i.
Note that for the grid model the projection matrix is a binary matrix, while for the strip model its
entries are real values in [0, 1]. The projection matrix W and vector p can be decomposed into k
blocks as

W =


W1

...
Wk

 , p =


p1

...
pk

 , (1)

where each block Wd (d = 1, . . . , k) represents the projection map for a single direction and each
block pd represents the corresponding projection data.

From this point on, we assume that the projection matrix has the property that
∑m

i=1 wi j = k
for all j = 1, . . . , n. This property is certainly satisfied for the grid model, as every x j is counted
with weight 1 for exactly one line in each projection direction. The property is also satisfied for
the strip projection model, as the total pixel weight for each projection angle is equal to the area
of a pixel, which is 1. For most other projection models commonly used in tomography, such as
the line model, where the weight of a pixel is determined by the length of its intersection with a
line, this property is approximately satisfied, but not always exactly.

The general reconstruction problem consists of finding a solution of the system Wx = p
for given projection data p, i.e., to find an image that has the given projections. In binary to-
mography, one seeks a binary solution of the system. For a given projection matrix W and given
projection data p, let S W(p) = {x ∈ Rn : Wx = p}, the set of all real-valued solutions correspond-
ing with the projection data, and let S̄ W(p) = S W(p) ∩ {0, 1}n, the set of binary solutions of the
system. As the main goal of incorporating prior knowledge of the binary grey levels in the recon-
struction is to reduce the number of required projections, we focus on the case where m is small
with respect to n, such that the real-valued reconstruction problem is severely underdetermined.

Despite the strong constraint that each pixel value xi must belong to the set {0, 1}, the binary
reconstruction problem often does not have a unique solution. Instead of posing the uniqueness
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problem as a yes/no question, we focus in this paper on the number of different pixels between
different binary solutions. For example, if the reconstruction problem has no unique solution, but
all pairs of solutions have at most 4 different pixels, then one can say that any such solution must
be close to the original object from which the projections have been obtained, even if the exact
set of differences cannot be determined.

For any two vectors ū, v̄ ∈ {0, 1}n, define the difference set D(ū, v̄) = {i : ūi , v̄i} and the
number of differences d(ū, v̄) = #D(ū, v̄), where the symbol # denotes the cardinality operator for
a finite set. Note that d(ū, v̄) = ‖ū − v̄‖1.

3. The central reconstruction

As the projection matrix is typically not a square matrix, and also does not have full rank, it
does not have an inverse. Recall that the Moore-Penrose pseudo inverse of an m × n matrix A is
an n × m matrix A†, which can be uniquely characterized by the two geometric conditions

A†b ⊥ N(A) and (I − AA†)b ⊥ R(A) for all b ∈ Rm,

where N(A) is the nullspace of A and R(A) is the range of A, [10, page 15].
Let x∗ = W†p. Then x∗ has the property (see Chapter 3 of [9]) that it is the real-valued

solution of minimal Euclidean norm of the system Wx = p, provided that the latter system
is solvable. We call x∗ the central reconstruction of p. The central reconstruction plays an
important role in the bounds we derive for the binary reconstruction problem. We will show in
the next section that all binary solutions of the system have equal distance to x∗, so that one can
consider the central reconstruction as lying “in the middle” of all binary solutions.

As all bounds presented in this paper depend on x∗, accurate computation of x∗ is necessary
to compute the corresponding difference bounds. One approach to computing the central recon-
struction of a consistent system Wx = p is to use the QR decomposition of WT . We will only
sketch the computation here and refer to [4] for details. For clarity of presentation, we assume
that W has full row rank. In fact, this assumption is not satisfied for tomography, and the ex-
tended QR decomposition should be used. The QR decomposition factorizes the matrix WT into
an orthogonal matrix Q and an uppertriangular matrix R of full column rank, as

WT = Q
(
R
0

)
.

The central reconstruction is then given by x∗ = Q(RT )−1 p, which can be computed efficiently
by first solving the system RT y = p for y by back substitution, and then computing x∗ = Qy.

However, due to the size of the matrix W, calculation of the QR decomposition is usually un-
practical for large images. For the case m < n, the QR decomposition requires O(n3) operations.
Moreover, the n×n matrix Q is typically dense, requiring a vast amount of computer memory. As
an alternative, an iterative method for solving the system Wx = p, called CGLS (Conjugate Gra-
dient Least Squares), can be used [21]. The CGLS algorithm can effectively exploit the sparse
structure of the projection matrix to reduce the required computation time, and does not require
storage of large, dense matrices. Apart from numerical errors, applying CGLS to the system
Wx = p results, after convergence, in the computation of W†p, while not computing the matrix
W† explicitly (see also [29]). For all experiments in Section 5, the time required to compute the
central reconstruction varied from a few seconds up to two minutes on a standard PC, depending
on the number of projections and image size.
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4. Quality bounds for binary solutions

In all the results in the following subsections, we consider a fixed system Wx = p corre-
sponding to a binary tomography problem, and refer to the central reconstruction of this system
as x∗.

As a substantial number of bounds will be given throughout this paper, we introduce the
following notation that will be further defined in the remainder of the paper:

• The expressions a(i) (i = 1, 2, 3, 4) will represent bounds on the number of pixel differences
between any two binary solutions of the reconstruction problem.

• The expressions b(i) (i = 1, 2, 3, 4) will represent bounds on the number of pixel difference
between a certain given binary image (not necessarily a solution) and any binary solution
of the reconstruction problem.

• The expressions c(i) (i = 1, 2) will represent bounds on the number of pixel differences
between the rounded central reconstruction r̄ and any binary solution.

The bounds within each class a, b, and c represent upper bounds for the same distance measure
and can therefore be compared.

4.1. Elementary bounds based on the central reconstruction
In this subsection, a first set of bounds are derived. They follow from the fact that the Eu-

clidean distance between the central reconstruction and any binary solution of the reconstruction
problem can be determined from the projections. We start by noticing that the Euclidean norm
of any binary solution of the tomography problem is determined by the projection data:

Lemma 1. Let x̄ ∈ S̄ W(p). Then, ‖x̄‖22 =
‖p‖1

k .

Proof. By the definition of the `1-norm, ‖p‖1 =
∑m

i=1 |pi| =
∑m

i=1 pi, since pi ≥ 0 (i = 1, . . . , n).
Also,

m∑
i=1

pi =

m∑
i=1

 n∑
j=1

wi j x̄ j

 =

n∑
j=1

 m∑
i=1

wi j

 x̄ j =

n∑
j=1

kx̄ j, (2)

and therefore ‖p‖1 = k
∑n

j=1 x̄ j.
As x̄ ∈ {0, 1}n, we have ‖x̄‖22 = ‖x̄‖1 =

∑n
j=1 x̄ j =

‖p‖1
k .

The following lemma illustrates the importance of the central reconstruction, the shortest
real-valued solution in S W(p), by showing that the binary solutions are the shortest among all
integer solutions of the system.

Lemma 2. Let x̄ ∈ S̄ W(p) and y ∈ S W(p) ∩ Zn. Then ‖x̄‖2 ≤ ‖y‖2, with equality if and only if
y ∈ S̄ W(p).

Proof. Note that the statement is proved in [14], see Problem 2 and the subsequent paragraph.
However, for the convenience of the reader we give the proof here.

We have

||x̄||22 =

n∑
i=1

x̄2
i =

n∑
i=1

x̄i =

n∑
i=1

yi =
‖p‖1

k
. (3)
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Observing that
n∑

i=1

yi ≤

n∑
i=1

y2
i = ||y||22, (4)

with equality if and only if y is binary, yields the result.

Lemma 3. Let x̄ ∈ S̄ W(p). Then ‖x̄ − x∗‖2 =

√
‖p‖1

k − ‖x∗‖
2
2.

Proof. From the definition of x∗ we have (x̄ − x∗) ∈ N(W), and x∗ ⊥ (x̄ − x∗). Applying
Pythagoras’ Theorem and Lemma 1 yields

‖x̄ − x∗‖22 =
‖p‖1

k
− ‖x∗‖22. (5)

Define R =

√
‖p‖1

k − ‖x∗‖
2
2. We will use this constant throughout the remainder of this ar-

ticle, and refer to R as the central radius. According to Lemma 3, any binary solution of the
reconstruction problem is on the hypersphere centered in x∗ with radius R.

Supposing the existence of at least two different binary solutions, Lemma 3 allows us to
derive an upper bound for the number of pixel differences between those solutions.

Theorem 4. Let x̄, ȳ ∈ S̄ W(p) and put a(1) = 4R2. Then d(x̄, ȳ) ≤ a(1).

Proof. According to Lemma 3, we have ‖x̄ − x∗‖2 = ‖ȳ − x∗‖2 = R. Therefore,

‖x̄ − ȳ‖2 ≤ ‖x̄ − x∗‖2 + ‖ȳ − x∗‖2 = 2R.

As x̄ and ȳ are binary, we have d(x̄, ȳ) = ‖x̄ − ȳ‖1 = ‖x̄ − ȳ‖22.

Using the triangle inequality, a simple bound can also be given for the distance between any
binary image and a solution of the reconstruction problem, as follows:

Corollary 5. Let v̄ ∈ {0, 1}n be a given binary image and put b(1) = (R + ‖v̄ − x∗‖2)2. Then for
any binary image x̄ ∈ S̄ W(p), we have d(x̄, v̄) ≤ b(1).

4.2. Bounds based on rounding the central reconstruction

The fact that all elements of S̄ W(p) have equal distance to the central reconstruction x∗, com-
bined with the facts that binary solutions are the shortest solutions among all integer solutions
(Lemma 2) and that x∗ is the shortest real-valued solution, suggests that binary solutions can
often be found near x∗. It is therefore natural to consider the image that is obtained by round-
ing each entry of x∗ to the nearest binary value. In this section, we will derive several bounds
based on the number of differences between a binary solution of the reconstruction problem and
a binary image obtained by rounding x∗.

For α ∈ R, let bin(α) = min(|α|, |1−α|). Put T =

√∑n
i=1 bin2(x∗i ), i.e., the Euclidean distance

from x∗ to the nearest binary vector. We will use this constant throughout this paper and refer to
T as the central rounding distance.
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Corollary 6. If R < T, then S̄ W(p) = ∅.
If R = T, then all solutions in S̄ W(p) can be obtained by rounding the values in x∗ to the

nearest binary values, and variations are only possible for the entries i where x∗i = 1
2 .

Let T = {v̄ ∈ {0, 1}n : ‖v̄ − x∗‖2 = T } and let r̄ ∈ T , i.e., r̄ is among the binary vectors that
are nearest to x∗ in the Euclidean sense.

If R > T and R − T is small, it is possible to say that a fraction of the rounded values are
correct, i.e., to provide an upper bound on the number of pixel differences between any solution
in S̄ W(p) and r̄. In most cases we can not say which rounded values are correct.

Lemma 7. Let r̄ ∈ T and let v̄ ∈ {0, 1}n be any binary vector.
Then ‖v̄ − x∗‖22 = T 2 +

∑
i∈D(v̄,r̄) |2x∗i − 1|.

Proof. We have the following identities:

‖v̄ − x∗‖22 = ‖v̄ − r̄ + r̄ − x∗‖22
= ‖r̄ − x∗‖22 + 2〈r̄ − x∗, v̄ − r̄〉 + 〈v̄ − r̄, v̄ − r̄〉
= T 2 + 2〈r̄ − v̄, x∗〉 + ‖v̄‖22 − ‖r̄‖

2
2

= T 2 + 2
n∑

i=1

(r̄i − v̄i)x∗i +

n∑
i=1

v̄i −

n∑
i=1

r̄i

= T 2 +

n∑
i=1

(r̄i − v̄i)(2x∗i − 1)

= T 2 +
∑

i∈D(v̄,r̄)

|2x∗i − 1|.

Lemma 7 can be interpreted as follows: consider the set of entries where r̄ and v̄ are different.
If we transform r̄ into v̄ by performing a sequence of single-entry changes (either from 0 to 1, or
from 1 to 0), each time an entry i of r̄ is changed the squared Euclidean distance from the current
vector to x∗ increases by si = |2x∗i − 1|.

Let π be a permutation of {1, . . . , n} such that sπ(1) ≤ sπ(2) ≤ . . . ≤ sπ(n), which can be obtained
by sorting the entries si in increasing order.

Corollary 8. Let r̄ ∈ T and let v̄ ∈ {0, 1}n be any binary vector. Then ‖v̄− x∗‖22 ≥ T 2 +
∑`

i=1 sπ(i),
where ` = d(r̄, v̄).

Proof. According to Lemma 7 we have

‖v̄ − x∗‖22 = T 2 +
∑

i∈D(r̄,v̄)

si ≥ T 2 +
∑̀
i=1

sπ(i).

As the Euclidean distance from x∗ to any x̄ ∈ S̄ W(p) is R, a bound can now be derived on the
maximal number of pixels in r̄ that must be changed to move from r̄ to x̄.
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Theorem 9. Let r̄ ∈ T , x̄ ∈ S̄ W(p). Put

c(1) = max

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ R2 − T 2

 .
Then d(x̄, r̄) ≤ c(1).

Proof. As x̄ ∈ S̄ W(p), we have ‖x̄ − x∗‖22 = R2. Applying Lemma 7, we find that

R2 − T 2 =
∑

i∈D(x̄,r̄)

si ≥

d(x̄,r̄)∑
i=1

sπ(i),

which implies that d(x̄, r̄) ≤ c(1).

The proof of Theorem 9 can be interpreted as follows: consider the set of entries where r̄
and x̄ are different. If we transform r̄ into x̄ by performing a sequence of single-entry changes
(either from 0 to 1, or from 1 to 0), each time an entry i of r̄ is changed the squared Euclidean
distance from the current vector to x∗ increases by si = |2x∗i − 1|. As all binary solutions of the
reconstruction problem are on a hypersphere centered in x∗ with radius R, we know that once we
have crossed the boundary of this hypersphere, a binary solution can no longer be obtained by
changing the values of additional entries that have not yet been changed. An upper bound on the
number of differences between r̄ and x̄ can be obtained by counting the number of steps required
to cross the hypersphere, each time choosing a pixel which results in the minimal increase of the
distance to x∗. The following two Corollaries follow directly from Theorem 9:

Corollary 10. Let r̄ ∈ T , x̄, ȳ ∈ S̄ W(p) and let a(2) = 2c(1) with c(1) defined as in Theorem 9.
Then d(x̄, ȳ) ≤ a(2).

Corollary 11. Let r̄ ∈ T and let v̄ ∈ {0, 1}n be a given binary image and let b(2) = c(1) + d(r̄, v̄)
with c(1) defined as in Theorem 9. Then d(x̄, v̄) ≤ b(2).

In fact, the bound from Corollary 10 can be sharpened by noting that we can assume that
the sets D(r̄, x̄) and D(r̄, ȳ) are disjoint, as entries that occur in both sets do not contribute to the
number of differences between x̄ and ȳ. This observation leads to the following Theorem:

Theorem 12. Let r̄ ∈ T , x̄, ȳ ∈ S̄ W(p). Put

a(3) = max

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ 2(R2 − T 2)

 .
Then d(x̄, ȳ) ≤ a(3).

Proof. Define x̂ by x̂i = r̄i if x̄i = ȳi, and x̂i = x̄i otherwise. Define ŷ analogously. Then
d(x̂, ŷ) = d(x̄, ȳ), ‖x̂− x∗‖22 ≤ R2, and ‖ŷ− y∗‖22 ≤ R2. Hence, 2R2 ≥ ‖x̂− x∗‖22 + ‖ŷ− y∗‖22 = 2T 2 +∑

i∈D(r̄,x̂) si +
∑

i∈D(r̄,ŷ) si.As D(r̄, x̂) and D(r̄, ŷ) are disjoint, we have 2R2−2T 2 ≥
∑d(r̄,x̂)+d(r̄,ŷ)

i=1 sπ(i).
This implies that d(x̄, ȳ) = d(x̂, ŷ) ≤ d(r̄, x̂) + d(r̄, ŷ) ≤ a(3).

A similar bound can be derived for the case where a particular binary image v̄, not neces-
sarily a solution of the tomography problem, is given. For this, we transform v̄ into r̄ and then
we perform a sequence of single-entry changes in r̄ with the exclusion of the pixels that differ
between v̄ and r̄ because they have already been counted as wrong pixels of v̄.
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Theorem 13. Let r̄ ∈ T and let v̄ ∈ {0, 1}n be a given binary image. Consider the sequence
(φ(1), φ(2), . . . , φ(ñ)) defined by removing all numbers i for which v̄i , r̄i from the sequence
(π(1), . . . , π(n)). Put

U = max

0 ≤ ` ≤ ñ :
∑̀
i=1

sφ(i) ≤ R2 − T 2


and let b(3) = U + d(r̄, v̄). Then for any binary image x̄ ∈ S̄ W(p), we have d(x̄, v̄) ≤ b(3).

Proof. Define x̂ by x̂i = r̄i if x̄i = v̄i, and x̂i = x̄i otherwise. Similarly, define v̂ by v̂i = r̄i if
x̄i = v̄i, and v̂i = v̄i otherwise. Then d(x̂, v̂) = d(x̄, v̄), d(v̂, r̄) ≤ d(v̄, r̄), and ‖x̂ − x∗‖22 ≤ R2.
Hence, R2 ≥ ‖x̂ − x∗‖22 = T 2 +

∑
i∈D(r̄,x̂) si. As D(r̄, x̂) and D(r̄, v̄) are disjoint, we have R2 − T 2 ≥∑d(r̄,x̂)

i=1 sφ(i). This implies that d(x̄, v̄) = d(x̂, v̂) ≤ d(x̂, r̄) + d(r̄, v̂) ≤ U + d(r̄, v̄).

4.3. Bounds involving the number of ones in binary solutions
The fact that the `1-norm ‖x̄‖1 of any binary solution is determined by the projection data,

can possibly be exploited to tighten the bounds on the number of differences between any binary
solution of the reconstruction problem and the rounded central reconstruction. As the number of
ones in both x̄ ∈ S̄ W(p) and r̄ ∈ T can be computed, the number of elements in D(r̄, x̄) for which
r̄ is 0 directly determines the number of elements in this set for which r̄ is 1.

For any two vectors ū, v̄ ∈ {0, 1}n, define D0(ū, v̄) = {i : ūi = 0 ∧ v̄i = 1} and D1(ū, v̄) = {i :
ūi = 1 ∧ v̄i = 0}. We also define d0(ū, v̄) = #D0(ū, v̄) and d1(ū, v̄) = #D1(ū, v̄).

If ‖x̄‖1 = ‖r̄‖1, we have d0(r̄, x̄) = d1(r̄, x̄) = d(r̄, x̄)/2. In other words, in order to transform
r̄ into x̄, the number of pixels of r̄ assigned to 0 that must be changed to 1 is equal to the number
of pixels of r̄ assigned to 1 that must be changed to 0. In general, when ‖x̄‖1 = ‖r̄‖1 is not
necessarily true, let t = ‖x̄‖1 − ‖r̄‖1. Hence, d0(r̄, x̄) = d1(r̄, x̄) + t, which gives d0(r̄, x̄) − t/2 =

d1(r̄, x̄) + t/2 = d(r̄, x̄)/2. Therefore, d0(r̄, x̄) = d(r̄, x̄)/2 + t/2 and d1(r̄, x̄) = d(r̄, x̄)/2 − t/2.

Theorem 14. Let r̄ ∈ T . Put t = ‖x̄‖1−‖r̄‖1. Construct the sequence (π0(1), π0(2), . . . , π0(n0)) by
removing all numbers i for which r̄i = 1 from the sequence (π(1), . . . , π(n)). Similarly, construct
the sequence (π1(1), π1(2), . . . , π1(n1)) by removing all numbers i for which r̄i = 0 from the
sequence (π(1), . . . , π(n)). Let

c(2) = max

` : ` + t is even and
min((`+t)/2,n0)∑

i=1

sπ0(i) +

min((`−t)/2,n1)∑
i=1

sπ1(i) ≤ R2 − T 2

 .
Then for any binary image x̄ ∈ S̄ W(p), we have d(r̄, x̄) ≤ c(2).

Proof. Let x̄ ∈ S̄ W(p). Put ˜̀ = d(r̄, x̄). Then

R2 − T 2 =
∑

i∈D(r̄,x̄)

si =
∑

i∈D0(r̄,x̄)

si +
∑

i∈D1(r̄,x̄)

si ≥

( ˜̀+t)/2∑
i=1

sπ0(i) +

( ˜̀−t)/2∑
i=1

sπ1(i)

with ( ˜̀ + t)/2 ≤ n0 and ( ˜̀ − t)/2 ≤ n1, which implies that ˜̀ = d(r̄, x̄) ≤ c(2).

Corollary 15. Let c(2) be as defined in Theorem 14 and define a(4) = 2c(2). Then for any pair
of binary images x̄, ȳ ∈ S̄ W(p), we have d(x̄, ȳ) ≤ a(4).

Corollary 16. Let v̄ ∈ {0, 1}n be a given binary image and let b(4) = c(2) + d(r̄, v̄) with c(2) as
defined in Theorem 14. Then for any binary image x̄ ∈ S̄ W(p), we have d(v̄, x̄) ≤ b(4).
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5. Experiments and results

A series of experiments have been performed to investigate the practical value of the bounds
given in the several theorems and corollaries presented, for a range of images. The experiments
are all based on simulated projection data obtained by computing the projections of the test
images (so-called phantoms) in Fig. 2:

(a) Phantom 1 (b) Phantom 2 (c) Phantom 3 (d) Phantom 4

Figure 2: Original phantom images used for the experiments.

Phantom 1 represents a very simple, convex shaped object.

Phantom 2 represents an object with a more complex boundary. Also, the object is not convex
and the boundary is fairly complex.

Phantom 3 represents a cross-section of a cylinder head in a combustion engine. It contains
many holes and, as will become apparent from the results, it is more difficult to reconstruct
accurately.

Phantom 4 was constructed from a micro-CT image of a rat bone, acquired with a SkyScan
1072 cone-beam micro-CT scanner.

All phantom images have a size of 512×512 pixels. To perform images with varying image
size (smaller than 512×512), the phantoms have been downscaled to obtain binary images of the
appropriate sizes.

In each experiment, the central reconstruction x∗ was first computed using the CGLS algo-
rithm. For some of the bounds, it is necessary to compute the rounded central reconstruction r̄
which was performed by rounding x∗ to the nearest binary vector, choosing r̄i = 1 if x∗i = 1

2 .
Based on x∗ and r̄, the various upper bounds described in Sections 4.1–4.3 were computed.

When presenting the results, we express the bounds on the pixel differences between two
images as a fraction of the total number of image pixels. This allows for more straightforward
interpretation of the results than using the absolute number of pixel differences. To aid in the
identification of the bounds, Tables 1–3 provide a summary of all bounds and their respective
theorems/corollaries.

All graphs presented in the following subsections use a logarithmic scale for the error bounds.
In some cases, the bound may become very small, or even 0, resulting in a point on the graph
that cannot be plotted. These points are simply removed from the plot, causing the graph to be
disconnected.

The remainder of this section is structured as follows. First, the concepts of central recon-
struction, central radius, and rounded central reconstruction are illustrated for a concrete example

11



d(x̄, ȳ) Result Mathematical expression

a(1) Theorem 4 4R2

a(2) Corollary 10 2 max
{

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ R2 − T 2
}

a(3) Theorem 12 max
{

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ 2(R2 − T 2)
}

a(4) Corollary 15 2 max
{
` : ` + s is even and

(`+s)/2∑
i=1

sπ0(i) +
(`−s)/2∑

i=1
sπ1(i) ≤ R2 − T 2

}
Table 1: List of symbolic expressions used for the bounds on the number of pixel differences between binary solutions,
their respective theorems/corollaries and mathematical expressions.

d(v̄, x̄) Result Mathematical expression

b(1) Corollary 5 (R + ‖v̄ − x∗‖2)2

b(2) Corollary 11 max
{

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ R2 − T 2
}

+ d(r̄, v̄)

b(3) Theorem 13 max
{

0 ≤ ` ≤ n :
∑̀
i=1

sφ(i) ≤ R2 − T 2
}

+ d(r̄, v̄)

b(4) Corollary 16 max
{
` : ` + s is even and

(`+s)/2∑
i=1

sπ0(i) +
(`−s)/2∑

i=1
sπ1(i) ≤ R2 − T 2

}
+ d(r̄, v̄)

Table 2: List of symbolic expressions used for the bounds on the number of pixel differences between a given v̄ ∈ {0, 1}n
and any binary solution, their respective theorems/corollaries and mathematical expressions.

d(r̄, x̄) Result Mathematical expression

c(1) Theorem 9 max
{

0 ≤ ` ≤ n :
∑̀
i=1

sπ(i) ≤ R2 − T 2
}

c(2) Theorem 14 max
{
` : ` + s is even and

(`+s)/2∑
i=1

sπ0(i) +
(`−s)/2∑

i=1
sπ1(i) ≤ R2 − T 2

}
Table 3: List of symbolic expressions used for the bounds on the number of pixel differences between r̄ and any binary
solution, their respective theorems/corollaries and mathematical expressions.

in Section 5.1. Next, experimental results for the grid model and the strip model are presented
in Sections 5.2 and 5.3, respectively. In Section 5.4, we consider a scenario where a binary re-
construction has been computed by a certain reconstruction algorithm, and we are interested in
bounding the error with respect to the phantom for this particular reconstruction.
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5.1. Concepts and interpretation
Fig. 3(a) shows the central reconstruction x∗ of size 512×512, based on k = 4 projections

of the binary image x̄ corresponding to Phantom 2. The projection matrix W was formed using
the grid model for the directions {(0, 1), (1, 0), (1, 1), (1,−1)}. The central reconstruction was
computed using the CGLS algorithm, as explained in Section 3. The difference between the
phantom image and the central reconstruction is shown in Fig. 3(b), where the grey levels are
scaled between −1 (black) and 1 (white). Note that this difference vector x̄−x∗ is in the nullspace
of W, as x̄ and x∗ are both solutions of the system Wx = p. Therefore, the difference image can
be considered as a switching component in the sense that it can be added to any other image
without changing the projections in the four chosen directions.

The central radius R corresponds to the Euclidean norm of the difference vector x̄−x∗, which
is around 31.3152 in this case. Fig. 3(c) shows the rounded central reconstruction r̄, which is
formed by rounding each pixel of x∗ to the nearest binary value. The central rounding distance
T corresponds to the Euclidean norm of the difference r̄ − x∗, which is around 25.5704 in this
case. Note that r̄ is usually not a solution of the system Wx = p. The difference between the
phantom x̄ and the image r̄ is shown in Fig. 3(d). This difference image is a three-valued image,
with pixel values from the set {−1, 0, 1}. The bounds from Section 4.2 and onwards are based on
bounding the norm of this difference image.

Similar images for the case of k = 16 projections are shown in Fig. 3e-h, based on the direc-
tion set {(1, 0), (0, 1), (1, 1), (1,−1), (1, 2), (1,−2), (2, 1), (2,−1), (1, 3), (1,−3), (2, 3), (2,−3), (3, 1),
(3,−1), (3, 2), (3,−2)}. It can be clearly observed that, as the number of projections increases, the
central reconstruction and the rounded central reconstruction both become better approximations
of the phantom image. For the case of 16 projections, the difference between x̄ and r̄ is already
surprisingly small, even though the system Wx = p is highly underdetermined.

(a) k = 4 : x∗ (b) k = 4 : x̄ − x∗ (c) k = 4 : r̄ (d) k = 4 : x̄ − r̄

(e) k = 16 : x∗ (f) k = 16 : x̄ − x∗ (g) k = 16 : r̄ (h) k = 16 : x̄ − r̄

Figure 3: Illustration of various images that are related to the bounds.
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5.2. Error bounds for the grid model

In the grid model, a projection direction is represented by a pair of integers (a, b) ∈ Z2,
such that gcd(a, b) = 1 and a ≥ 0. Let A be the set of all such pairs. For any positive in-
teger c, put Ac := {(a, b) ∈ A : max(a, |b|) = c} and order the elements of Ac, firstly by
increasing value of a, secondly by increasing value of |b|, and thirdly by decreasing value of
b. For example, A3 = {(1, 3), (1,−3), (2, 3), (2,−3), (3, 1), (3,−1), (3, 2), (3,−2)}. For any pos-
itive integer c, the ordered set Dc is formed by concatenating A1, . . . ,Ac; for example, D3 =

{(0, 1), (1, 0), (1, 1), (1,−1), (1, 2), (1,−2), (2, 1), (2,−1), (1, 3), (1,−3), (2, 3), (2,−3), (3, 1), (3,−1),
(3, 2), (3,−2)}. To perform an experiment with k projection angles, the first k directions were se-
lected from the set D20. This means that when the number of direction is increased, the old set
of directions is always included in the new set of directions.

Experiments have been performed based on the three phantom images, scaled to sizes of
32×32, 128×128 and 512×512 respectively, varying the number of projection directions. The
maximum number of projection directions for each image size is of 16, 64 and 200, respectively.

The first set of results are shown in Fig. 6, where bounds on the distance between any two
binary solutions of the reconstruction problem, bounds on the number of differences between r̄
and the phantom image x̄, and the exact error Ec between r̄ and the phantom image x̄ are jointly
plotted. The bounds a and c were obtained by computing the minimum of all bounds in Tables 1
and 3 for each test case, i.e., a = min{a(1), a(2), a(3), a(4)} and c = min{c(1), c(2), c(3), c(4)}. In
Fig. 7, the individual bounds a(1)–a(4) are shown for the same experiments.

5.3. Error bounds for the strip model

The experiments for the strip model have been performed using projection angles selected to
coincide with the projection directions specified for the grid model. The projection angles were
selected in this way to make the two models comparable. Projections have been computed based
on sets of parallel strips, each strip having a width that equals the pixel size.

Experiments have been performed based on the four phantom images, scaled to sizes of
32×32, 128×128 and 512×512 respectively, varying the number of projection directions. The
maximum number of projection directions for each image size is of 16, 64 and 200, respectively.

For the sake of compactness, we include the results for Phantoms 1 and 4. We did not observe
strong deviations in the general behaviour of the bounds for the two other phantoms.

The first set of results are shown in Fig. 8, where bounds on the distance between any two
binary solutions of the reconstruction problem, bounds on the number of differences between r̄
and the phantom image x̄, and the exact error Ec between r̄ and the phantom image x̄ are jointly
plotted. The bounds a and c were obtained by computing the minimum of all bounds in Tables 1
and 3 for each test case, i.e., a = min{a(1), a(2), a(3), a(4)} and c = min{c(1), c(2), c(3), c(4)}. In
Fig. 9, the individual bounds a(1)–a(4) are shown for the same experiments.

5.4. Error bounds for a particular reconstruction

So far, the experiments were focused on bounding the difference between any two binary
solutions, or the difference between r̄ and any binary solution. In practice, it can also be im-
portant to know bounds on the difference between any binary solution and a particular binary
image, computed by a certain reconstruction algorithm. As the problem of computing a binary
solution of the reconstruction problem is usually very hard, we will not assume that such a binary
reconstruction is an exact solution to the reconstruction problem.
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Several algorithms have been proposed in the literature for reconstructing binary images
from their projections, see, e.g., [5, 8, 17, 22]. As an example, we focus here on the Discrete
Algebraic Reconstruction Technique (DART), which has recently been proposed as a promising
reconstruction algorithm for discrete tomography [6, 8]. The binary reconstruction computed by
DART is not guaranteed to be an exact solution of the tomography problem.

(a) k = 4 (b) k = 6 (c) k = 8 (d) k = 10

Figure 4: DART reconstructions of Phantom 3 from 4,6,8 and 10 projections.

DART reconstructions have been computed for Phantoms 1, 2 and 3, using the strip model
with projection angles equally distributed between 0 and 180 degrees. As an illustration of the
reconstruction results, Fig. 4 shows reconstructions of Phantom 3 for an increasing number of
projections.

The bounds b(1), . . . , b(4) were computed, which bound the fraction of different pixels be-
tween the DART reconstruction and the original phantom. The results are shown in Fig. 5. The
figure also contains graphs for the actual fraction of pixel differences Eb between the DART
reconstruction v̄ and the phantom.
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Figure 5: Error bounds for DART reconstruction of the three phantoms (size 512 × 512) as function the number of
projection angles. Note that the graphs for b(2), b(3), and b(4) have strong overlap and can hardly be distinguished.

It can be observed that the true number of pixel differences between the DART reconstruc-
tions and the corresponding phantom images is much lower than the bounds. For the bounds
b(2), b(3) and b(4), this can be understood from the fact that the construction of the bounds in-
volves using the triangle inequality to go from v̄ to x̄ through r̄. For a small number of projection
images, the rounded central reconstruction r̄ is much further away from the phantom than the
DART reconstruction. Still, meaningful guaranteed error estimates can be obtained from these
bounds. For example, for Phantom 2, the graph shows that if just 10 projections are available,
a guarantee can be given that no more than 10% of the pixels in the DART reconstruction are
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wrong with respect to the unknown phantom image.

6. Discussion of the results

Despite the facts that the four phantoms have strong differences in shape and morphology, and
that the grid and strip models are quite different, the results shown in Figs. 6–9 are surprisingly
consistent throughout all experiments. Most of the bounds become smaller as the number of
projection directions is increased but monotonicity is not a property of all the bounds presented
in Section 4.

From the difference between the bounds presented in Section 4.1 and the bounds based on the
rounded central reconstruction, we see that in most cases the phantom x̄ is substantially closer to
r̄ than to x∗.

In Figs. 6 and 8, it can be observed that the true fraction of pixel differences between the
phantom image x̄ and the rounded central reconstruction r̄, denoted by Ec, is often approximated
quite well by the bound c, in particular for the grid model. This indicates that with respect to r̄,
the bounds presented in this article can be quite sharp.

In Fig. 8(a), parts of the graphs for the bounds a and c, for more than 6 projections, are
missing. In fact, in this case all of them are zero, such that they cannot be displayed in the
logarithmic scale. This illustrates that our theorems for bounding the distance between any two
binary solutions can be used to prove uniqueness of a binary solution, even when the correspond-
ing real-valued system of equations is underdetermined.

In most of the experiments, the graphs for a(2) and a(4) are almost indistinguishable and the
bound a(3) is smaller than a(4) but it can happen, as in Fig. 9(a), that this is not the case. In
Fig. 9(a) the bound a(4) proves uniqueness from 6 projection directions or more while the bound
a(3) does not for 12, 14 and 16 projections. Although a(3) is the sharpest bound in most of the
experiments, this is not true in general and all bounds should be used to obtain the best result.
The bounds a(2), a(3) and a(4) use similar principles and their computation can be performed
simultaneously.

7. Outlook and conclusions

In this article, we have presented a range of general bounds on the accuracy of reconstruc-
tions in binary tomography, with respect to the unknown original object. The bounds can be
computed within reasonable time and give guarantees on the number of pixels that can be dif-
ferent between any two binary solutions of the tomography problem, on the difference between
an image obtained by rounding the central reconstruction and any binary solution, and on the
difference between any binary image and any binary solution. The experimental results show
that by using these bounds, one can prove that the number of differences between binary recon-
structions must be very small, even when the corresponding real-valued system of equations is
severely underdetermined. In order to make these bound practically useful, our results will have
to be extended to deal with noisy projection data, which we will incorporate in future research.
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(a) Phantom 1, 32×32
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(b) Phantom 1, 128×128
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Figure 6: Grid model: computed bounds as a function of the number of projection directions.
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(k) Phantom 4, 128×128
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(l) Phantom 4, 512×512

Figure 7: Grid model: computed bounds as a function of the number of projection directions. Note that the graphs for
a(2) and a(4) have strong overlap and can hardly be distinguished.
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(f) Phantom 4, 512×512

Figure 8: Strip model: computed bounds as a function of the number of projection directions for Phantoms 1 and 4.
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Figure 9: Strip model: computed bounds as a function of the number of projection directions for Phantoms 1 and 4. Note
that the graphs for a(2) and a(4) have strong overlap and can hardly be distinguished.
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