17 research outputs found

    Bounds on monotone switching networks for directed connectivity

    Full text link
    We separate monotone analogues of L and NL by proving that any monotone switching network solving directed connectivity on nn vertices must have size at least n(Ω(lg(n)))n^(\Omega(\lg(n))).Comment: 49 pages, 12 figure

    Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

    Get PDF
    We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph G can be reversibly pebbled in time t and space s if and only if there is a Nullstellensatz refutation of the pebbling formula over G in size t+1 and degree s (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system

    The parameterized space complexity of model-checking bounded variable first-order logic

    Get PDF
    The parameterized model-checking problem for a class of first-order sentences (queries) asks to decide whether a given sentence from the class holds true in a given relational structure (database); the parameter is the length of the sentence. We study the parameterized space complexity of the model-checking problem for queries with a bounded number of variables. For each bound on the quantifier alternation rank the problem becomes complete for the corresponding level of what we call the tree hierarchy, a hierarchy of parameterized complexity classes defined via space bounded alternating machines between parameterized logarithmic space and fixed-parameter tractable time. We observe that a parameterized logarithmic space model-checker for existential bounded variable queries would allow to improve Savitch's classical simulation of nondeterministic logarithmic space in deterministic space O(log2n)O(\log^2n). Further, we define a highly space efficient model-checker for queries with a bounded number of variables and bounded quantifier alternation rank. We study its optimality under the assumption that Savitch's Theorem is optimal

    Lower Bounds for DeMorgan Circuits of Bounded Negation Width

    Get PDF
    We consider Boolean circuits over {or, and, neg} with negations applied only to input variables. To measure the "amount of negation" in such circuits, we introduce the concept of their "negation width". In particular, a circuit computing a monotone Boolean function f(x_1,...,x_n) has negation width w if no nonzero term produced (purely syntactically) by the circuit contains more than w distinct negated variables. Circuits of negation width w=0 are equivalent to monotone Boolean circuits, while those of negation width w=n have no restrictions. Our motivation is that already circuits of moderate negation width w=n^{epsilon} for an arbitrarily small constant epsilon>0 can be even exponentially stronger than monotone circuits. We show that the size of any circuit of negation width w computing f is roughly at least the minimum size of a monotone circuit computing f divided by K=min{w^m,m^w}, where m is the maximum length of a prime implicant of f. We also show that the depth of any circuit of negation width w computing f is roughly at least the minimum depth of a monotone circuit computing f minus log K. Finally, we show that formulas of bounded negation width can be balanced to achieve a logarithmic (in their size) depth without increasing their negation width

    Formulas vs. Circuits for Small Distance Connectivity

    Full text link
    We give the first super-polynomial separation in the power of bounded-depth boolean formulas vs. circuits. Specifically, we consider the problem Distance k(n)k(n) Connectivity, which asks whether two specified nodes in a graph of size nn are connected by a path of length at most k(n)k(n). This problem is solvable (by the recursive doubling technique) on {\bf circuits} of depth O(logk)O(\log k) and size O(kn3)O(kn^3). In contrast, we show that solving this problem on {\bf formulas} of depth logn/(loglogn)O(1)\log n/(\log\log n)^{O(1)} requires size nΩ(logk)n^{\Omega(\log k)} for all k(n)loglognk(n) \leq \log\log n. As corollaries: (i) It follows that polynomial-size circuits for Distance k(n)k(n) Connectivity require depth Ω(logk)\Omega(\log k) for all k(n)loglognk(n) \leq \log\log n. This matches the upper bound from recursive doubling and improves a previous Ω(loglogk)\Omega(\log\log k) lower bound of Beame, Pitassi and Impagliazzo [BIP98]. (ii) We get a tight lower bound of sΩ(d)s^{\Omega(d)} on the size required to simulate size-ss depth-dd circuits by depth-dd formulas for all s(n)=nO(1)s(n) = n^{O(1)} and d(n)logloglognd(n) \leq \log\log\log n. No lower bound better than sΩ(1)s^{\Omega(1)} was previously known for any d(n)O(1)d(n) \nleq O(1). Our proof technique is centered on a new notion of pathset complexity, which roughly speaking measures the minimum cost of constructing a set of (partial) paths in a universe of size nn via the operations of union and relational join, subject to certain density constraints. Half of our proof shows that bounded-depth formulas solving Distance k(n)k(n) Connectivity imply upper bounds on pathset complexity. The other half is a combinatorial lower bound on pathset complexity

    Nullstellensatz Size-Degree Trade-offs from Reversible Pebbling

    Full text link
    We establish an exactly tight relation between reversible pebblings of graphs and Nullstellensatz refutations of pebbling formulas, showing that a graph GG can be reversibly pebbled in time tt and space ss if and only if there is a Nullstellensatz refutation of the pebbling formula over GG in size t+1t+1 and degree ss (independently of the field in which the Nullstellensatz refutation is made). We use this correspondence to prove a number of strong size-degree trade-offs for Nullstellensatz, which to the best of our knowledge are the first such results for this proof system

    Average case lower bounds for monotone switching networks.

    Get PDF
    Abstract-An approximate computation of a Boolean function by a circuit or switching network is a computation in which the function is computed correctly on the majority of the inputs (rather than on all inputs). Besides being interesting in their own right, lower bounds for approximate computation have proved useful in many subareas of complexity theory, such as cryptography and derandomization. Lower bounds for approximate computation are also known as correlation bounds or average case hardness. In this paper, we obtain the first average case monotone depth lower bounds for a function in monotone P. We tolerate errors that are asymptotically the best possible for monotone circuits. Specifically, we prove average case exponential lower bounds on the size of monotone switching networks for the GEN function. As a corollary, we separate the monotone NC hierarchy in the case of errors -a result which was previously only known for exact computations. Our proof extends and simplifies the Fourier analytic technique due to Potechin [21], and further developed by Chan and Potechi
    corecore