291 research outputs found

    Topology Inspired Problems for Cellular Automata, and a Counterexample in Topology

    Full text link
    We consider two relatively natural topologizations of the set of all cellular automata on a fixed alphabet. The first turns out to be rather pathological, in that the countable space becomes neither first-countable nor sequential. Also, reversible automata form a closed set, while surjective ones are dense. The second topology, which is induced by a metric, is studied in more detail. Continuity of composition (under certain restrictions) and inversion, as well as closedness of the set of surjective automata, are proved, and some counterexamples are given. We then generalize this space, in the sense that every shift-invariant measure on the configuration space induces a pseudometric on cellular automata, and study the properties of these spaces. We also characterize the pseudometric spaces using the Besicovitch distance, and show a connection to the first (pathological) space.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    Bulking II: Classifications of Cellular Automata

    Get PDF
    This paper is the second part of a series of two papers dealing with bulking: a way to define quasi-order on cellular automata by comparing space-time diagrams up to rescaling. In the present paper, we introduce three notions of simulation between cellular automata and study the quasi-order structures induced by these simulation relations on the whole set of cellular automata. Various aspects of these quasi-orders are considered (induced equivalence relations, maximum elements, induced orders, etc) providing several formal tools allowing to classify cellular automata

    μ\mu-Limit Sets of Cellular Automata from a Computational Complexity Perspective

    Get PDF
    This paper concerns μ\mu-limit sets of cellular automata: sets of configurations made of words whose probability to appear does not vanish with time, starting from an initial μ\mu-random configuration. More precisely, we investigate the computational complexity of these sets and of related decision problems. Main results: first, μ\mu-limit sets can have a Σ_30\Sigma\_3^0-hard language, second, they can contain only α\alpha-complex configurations, third, any non-trivial property concerning them is at least Π_30\Pi\_3^0-hard. We prove complexity upper bounds, study restrictions of these questions to particular classes of CA, and different types of (non-)convergence of the measure of a word during the evolution.Comment: 41 page

    Expressing the entropy of lattice systems as sums of conditional entropies

    Full text link
    Whether a system is to be considered complex or not depends on how one searches for correlations. We propose a general scheme for calculation of entropies in lattice systems that has high flexibility in how correlations are successively taken into account. Compared to the traditional approach for estimating the entropy density, in which successive approximations builds on step-wise extensions of blocks of symbols, we show that one can take larger steps when collecting the statistics necessary to calculate the entropy density of the system. In one dimension this means that, instead of a single sweep over the system in which states are read sequentially, one take several sweeps with larger steps so that eventually the whole lattice is covered. This means that the information in correlations is captured in a different way, and in some situations this will lead to a considerably much faster convergence of the entropy density estimate as a function of the size of the configurations used in the estimate. The formalism is exemplified with both an example of a free energy minimisation scheme for the two-dimensional Ising model, and an example of increasingly complex spatial correlations generated by the time evolution of elementary cellular automaton rule 60
    corecore