832 research outputs found

    Scenario trees and policy selection for multistage stochastic programming using machine learning

    Full text link
    We propose a hybrid algorithmic strategy for complex stochastic optimization problems, which combines the use of scenario trees from multistage stochastic programming with machine learning techniques for learning a policy in the form of a statistical model, in the context of constrained vector-valued decisions. Such a policy allows one to run out-of-sample simulations over a large number of independent scenarios, and obtain a signal on the quality of the approximation scheme used to solve the multistage stochastic program. We propose to apply this fast simulation technique to choose the best tree from a set of scenario trees. A solution scheme is introduced, where several scenario trees with random branching structure are solved in parallel, and where the tree from which the best policy for the true problem could be learned is ultimately retained. Numerical tests show that excellent trade-offs can be achieved between run times and solution quality

    Sample Complexity of Sample Average Approximation for Conditional Stochastic Optimization

    Full text link
    In this paper, we study a class of stochastic optimization problems, referred to as the \emph{Conditional Stochastic Optimization} (CSO), in the form of \min_{x \in \mathcal{X}} \EE_{\xi}f_\xi\Big({\EE_{\eta|\xi}[g_\eta(x,\xi)]}\Big), which finds a wide spectrum of applications including portfolio selection, reinforcement learning, robust learning, causal inference and so on. Assuming availability of samples from the distribution \PP(\xi) and samples from the conditional distribution \PP(\eta|\xi), we establish the sample complexity of the sample average approximation (SAA) for CSO, under a variety of structural assumptions, such as Lipschitz continuity, smoothness, and error bound conditions. We show that the total sample complexity improves from \cO(d/\eps^4) to \cO(d/\eps^3) when assuming smoothness of the outer function, and further to \cO(1/\eps^2) when the empirical function satisfies the quadratic growth condition. We also establish the sample complexity of a modified SAA, when ξ\xi and η\eta are independent. Several numerical experiments further support our theoretical findings. Keywords: stochastic optimization, sample average approximation, large deviations theoryComment: Typo corrected. Reference added. Revision comments handle

    The State-of-the-Art Survey on Optimization Methods for Cyber-physical Networks

    Full text link
    Cyber-Physical Systems (CPS) are increasingly complex and frequently integrated into modern societies via critical infrastructure systems, products, and services. Consequently, there is a need for reliable functionality of these complex systems under various scenarios, from physical failures due to aging, through to cyber attacks. Indeed, the development of effective strategies to restore disrupted infrastructure systems continues to be a major challenge. Hitherto, there have been an increasing number of papers evaluating cyber-physical infrastructures, yet a comprehensive review focusing on mathematical modeling and different optimization methods is still lacking. Thus, this review paper appraises the literature on optimization techniques for CPS facing disruption, to synthesize key findings on the current methods in this domain. A total of 108 relevant research papers are reviewed following an extensive assessment of all major scientific databases. The main mathematical modeling practices and optimization methods are identified for both deterministic and stochastic formulations, categorizing them based on the solution approach (exact, heuristic, meta-heuristic), objective function, and network size. We also perform keyword clustering and bibliographic coupling analyses to summarize the current research trends. Future research needs in terms of the scalability of optimization algorithms are discussed. Overall, there is a need to shift towards more scalable optimization solution algorithms, empowered by data-driven methods and machine learning, to provide reliable decision-support systems for decision-makers and practitioners

    Multistage stochastic bid model for a wind-thermal power producer

    Get PDF
    This master thesis explore different multi-stage stochastic programming models for electricity generation companies to find optimal bid functions in electric spot markets. The explored models not only capture the uncertainty of prices of different markets and financial products, but also couples together wind and thermal generation units, offering producers that combine both technologies a more suitable approach to find their best possible bidding strategy among the space of possible actions

    Integrated machine learning and optimization approaches

    Get PDF
    This dissertation focuses on the integration of machine learning and optimization. Specifically, novel machine learning-based frameworks are proposed to help solve a broad range of well-known operations research problems to reduce the solution times. The first study presents a bidirectional Long Short-Term Memory framework to learn optimal solutions to sequential decision-making problems. Computational results show that the framework significantly reduces the solution time of benchmark capacitated lot-sizing problems without much loss in feasibility and optimality. Also, models trained using shorter planning horizons can successfully predict the optimal solution of the instances with longer planning horizons. For the hardest data set, the predictions at the 25% level reduce the solution time of 70 CPU hours to less than 2 CPU minutes with an optimality gap of 0.8% and without infeasibility. In the second study, an extendable prediction-optimization framework is presented for multi-stage decision-making problems to address the key issues of sequential dependence, infeasibility, and generalization. Specifically, an attention-based encoder-decoder neural network architecture is integrated with an infeasibility-elimination and generalization framework to learn high-quality feasible solutions. The proposed framework is demonstrated to tackle the two well-known dynamic NP-Hard optimization problems: multi-item capacitated lot-sizing and multi-dimensional knapsack. The results show that models trained on shorter and smaller-dimension instances can be successfully used to predict longer and larger-dimension problems with the presented item-wise expansion algorithm. The solution time can be reduced by three orders of magnitude with an average optimality gap below 0.1%. The proposed framework can be advantageous for solving dynamic mixed-integer programming problems that need to be solved instantly and repetitively. In the third study, a deep reinforcement learning-based framework is presented for solving scenario-based two-stage stochastic programming problems, which are computationally challenging to solve. A general two-stage deep reinforcement learning framework is proposed where two learning agents sequentially learn to solve each stage of a general two-stage stochastic multi-dimensional knapsack problem. The results show that solution time can be reduced significantly with a relatively small gap. Additionally, decision-making agents can be trained with a few scenarios and solve problems with a large number of scenarios. In the fourth study, a learning-based prediction-optimization framework is proposed for solving scenario-based multi-stage stochastic programs. The issue of non-anticipativity is addressed with a novel neural network architecture that is based on a neural machine translation system. Furthermore, training the models on deterministic problems is suggested instead of solving hard and time-consuming stochastic programs. In this framework, the level of variables used for the solution is iteratively reduced to eliminate infeasibility, and a heuristic based on a linear relaxation is performed to reduce the solution time. An improved item-wise expansion strategy is introduced to generalize the algorithm to tackle instances with different sizes. The results are presented in solving stochastic multi-item capacitated lot-sizing and stochastic multi-stage multi-dimensional knapsack problems. The results show that the solution time can be reduced by a factor of 599 with an optimality gap of only 0.08%. Moreover, results demonstrate that the models can be used to predict similarly structured stochastic programming problems with a varying number of periods, items, and scenarios. The frameworks presented in this dissertation can be utilized to achieve high-quality and fast solutions to repeatedly-solved problems in various industrial and business settings, such as production and inventory management, capacity planning, scheduling, airline logistics, dynamic pricing, and emergency management

    The Voice of Optimization

    Full text link
    We introduce the idea that using optimal classification trees (OCTs) and optimal classification trees with-hyperplanes (OCT-Hs), interpretable machine learning algorithms developed by Bertsimas and Dunn [2017, 2018], we are able to obtain insight on the strategy behind the optimal solution in continuous and mixed-integer convex optimization problem as a function of key parameters that affect the problem. In this way, optimization is not a black box anymore. Instead, we redefine optimization as a multiclass classification problem where the predictor gives insights on the logic behind the optimal solution. In other words, OCTs and OCT-Hs give optimization a voice. We show on several realistic examples that the accuracy behind our method is in the 90%-100% range, while even when the predictions are not correct, the degree of suboptimality or infeasibility is very low. We compare optimal strategy predictions of OCTs and OCT-Hs and feedforward neural networks (NNs) and conclude that the performance of OCT-Hs and NNs is comparable. OCTs are somewhat weaker but often competitive. Therefore, our approach provides a novel insightful understanding of optimal strategies to solve a broad class of continuous and mixed-integer optimization problems

    PARL: A Unified Framework for Policy Alignment in Reinforcement Learning

    Full text link
    We present a novel unified bilevel optimization-based framework, \textsf{PARL}, formulated to address the recently highlighted critical issue of policy alignment in reinforcement learning using utility or preference-based feedback. We identify a major gap within current algorithmic designs for solving policy alignment due to a lack of precise characterization of the dependence of the alignment objective on the data generated by policy trajectories. This shortfall contributes to the sub-optimal performance observed in contemporary algorithms. Our framework addressed these concerns by explicitly parameterizing the distribution of the upper alignment objective (reward design) by the lower optimal variable (optimal policy for the designed reward). Interestingly, from an optimization perspective, our formulation leads to a new class of stochastic bilevel problems where the stochasticity at the upper objective depends upon the lower-level variable. To demonstrate the efficacy of our formulation in resolving alignment issues in RL, we devised an algorithm named \textsf{A-PARL} to solve PARL problem, establishing sample complexity bounds of order O(1/T)\mathcal{O}(1/T). Our empirical results substantiate that the proposed \textsf{PARL} can address the alignment concerns in RL by showing significant improvements (up to 63\% in terms of required samples) for policy alignment in large-scale environments of the Deepmind control suite and Meta world tasks

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more
    corecore