10 research outputs found

    Operating System Support for Redundant Multithreading

    Get PDF
    Failing hardware is a fact and trends in microprocessor design indicate that the fraction of hardware suffering from permanent and transient faults will continue to increase in future chip generations. Researchers proposed various solutions to this issue with different downsides: Specialized hardware components make hardware more expensive in production and consume additional energy at runtime. Fault-tolerant algorithms and libraries enforce specific programming models on the developer. Compiler-based fault tolerance requires the source code for all applications to be available for recompilation. In this thesis I present ASTEROID, an operating system architecture that integrates applications with different reliability needs. ASTEROID is built on top of the L4/Fiasco.OC microkernel and extends the system with Romain, an operating system service that transparently replicates user applications. Romain supports single- and multi-threaded applications without requiring access to the application's source code. Romain replicates applications and their resources completely and thereby does not rely on hardware extensions, such as ECC-protected memory. In my thesis I describe how to efficiently implement replication as a form of redundant multithreading in software. I develop mechanisms to manage replica resources and to make multi-threaded programs behave deterministically for replication. I furthermore present an approach to handle applications that use shared-memory channels with other programs. My evaluation shows that Romain provides 100% error detection and more than 99.6% error correction for single-bit flips in memory and general-purpose registers. At the same time, Romain's execution time overhead is below 14% for single-threaded applications running in triple-modular redundant mode. The last part of my thesis acknowledges that software-implemented fault tolerance methods often rely on the correct functioning of a certain set of hardware and software components, the Reliable Computing Base (RCB). I introduce the concept of the RCB and discuss what constitutes the RCB of the ASTEROID system and other fault tolerance mechanisms. Thereafter I show three case studies that evaluate approaches to protecting RCB components and thereby aim to achieve a software stack that is fully protected against hardware errors

    The design and application of an extensible operating system

    Get PDF
    Tanenbaum, A.S. [Promotor

    Source level debugging of dynamically translated programs

    Get PDF
    The capability to debug a program at the source level is useful and often indispensable. Debuggers usesophisticated techniques to provide a source view of a program, even though what is executing on the hard-ware is machine code. Debugging techniques evolve with significant changes in programming languagesand execution environments. Recently, software dynamic translation (SDT) has emerged as a new execu-tion mechanism. SDT inserts a run-time software layer between the program and the host machine, provid-ing flexibility in execution and program monitoring. Increasingly popular technologies that use thismechanism include dynamic optimization, dynamic instrumentation, security checking, binary translation,and host machine virtualization. However, the run-time program modifications in a SDT environment posesignificant challenges to a source level debugger. Currently debugging techniques do not exist for softwaredynamic translators. This thesis is the first to provide techniques for source level debugging of dynamically translatedprograms. The thesis proposes a novel debugging framework, called Tdb, that addresses the difficult chal-lenge of maintaining and providing source level information for programs whose binary code changes asthe program executes. The proposed framework has a number of important features. First, it does notrequire or induce changes in the program being debugged. In other words, programs are debugged is theirdeployment environment. Second, the framework is portable and can be applied to virtually any SDT sys-tem. The framework requires minimal changes to an SDT implementation, usually just a few lines of code.Third, the framework can be integrated with existing debuggers, such as Gdb, and does not require changesto these debuggers. This improves usability and adoption, eliminating the learning curve associated with anew debugging environment. Finally, the proposed techniques are efficient. The runtime overhead of thedebugged programs is low and comparable to that of existing debuggers. Tdb's techniques have been implemented for three different dynamic translators, on two differenthardware platforms. The experimental results demonstrate that source level debugging of dynamicallytranslated programs is feasible, and our implemented systems are portable, usable, and efficient

    Bridging the gap between dataplanes and commodity operating systems

    Get PDF
    The conventional wisdom is that aggressive networking requirements, such as high packet rates for small messages and microsecond-scale tail latency, are best addressed outside the kernel, in a user-level networking stack. In particular, dataplanes borrow design elements from network middleboxes to run tasks to completion in tight loops. In its basic form, the dataplane design leverages sweeping simplifications such as the elimination of any resource management and any task scheduling to improve throughput and lower latency. As a result, dataplanes perform best when the request rate is predictable (since there is no resource management) and the service time of each task has a low execution time and a low dispersion. On the other hand, they exhibit poor energy proportionality and workload consolidation, and suffer from head-of-line blocking. This thesis proposes the introduction of resource management to dataplanes. Current dataplanes decrease latency by constantly polling for incoming network packets. This approach trades energy usage for latency. We argue that it is possible to introduce a control plane, which manages the resources in the most optimal way in terms of power usage without affecting the performance of the dataplane. Additionally, this thesis proposes the introduction of scheduling to dataplanes. Current designs operate in a strict FIFO and run-to-completion manner. This method is effective only when the incoming request requires a minimal amount of processing in the order of a few microseconds. When the processing time of requests is (a) longer or (b) follows a distribution with higher dispersion, the transient load imbalances and head-of-line blocking deteriorate the performance of the dataplane. We claim that it is possible to introduce a scheduler to dataplanes, which routes requests to the appropriate core and effectively reduce the tail latency of the system while at the same time support a wider range of workloads

    Fault-tolerant dynamic parallel schedules

    Get PDF
    Dynamic Parallel Schedules (DPS) is a high-level framework for developing parallel applications on distributed memory computers such as clusters of PCs. DPS applications are defined by using directed acyclic flow graphs composed of user-defined operations. These operations derive from basic concepts provided by the framework: split, merge, leaf and stream operations. Whereas a simple parallel application can be expressed with a split-leaf-merge sequence of operations, flow graphs of arbitrary complexity can be created. DPS provides run-time support for dynamically mapping flow graph operations onto the nodes of a cluster. The flow graph based application description used in DPS allows the framework to offer many additional features, most of these transparently to the application developer. In order to maximize performance, DPS applications benefit from automatic overlapping of computations and communications and from implicit pipelining. The framework provides simple primitives for flow control and load balancing. Applications can integrate flow graph parts provided by other applications as parallel components. Since the mapping of DPS applications to processing nodes can be dynamically changed at runtime, DPS provides a basis for developing malleable applications. The DPS framework provides a complete fault tolerance mechanism based on the dynamic mapping capabilities, ensuring continued execution of parallel applications even in the presence of multiple node failures. DPS is provided as an open-source, cross-platform C++ library allowing DPS applications and services to run on heterogeneous clusters

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Implementing reusable solvers : an object-oriented framework for operations research algorithms

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 1998.Includes bibliographical references (p. 325-338) and indexes.by John Douglas Ruark.Ph.D

    Microkernel mechanisms for improving the trustworthiness of commodity hardware

    Full text link
    The thesis presents microkernel-based software-implemented mechanisms for improving the trustworthiness of computer systems based on commercial off-the-shelf (COTS) hardware that can malfunction when the hardware is impacted by transient hardware faults. The hardware anomalies, if undetected, can cause data corruptions, system crashes, and security vulnerabilities, significantly undermining system dependability. Specifically, we adopt the single event upset (SEU) fault model and address transient CPU or memory faults. We take advantage of the functional correctness and isolation guarantee provided by the formally verified seL4 microkernel and hardware redundancy provided by multicore processors, design the redundant co-execution (RCoE) architecture that replicates a whole software system (including the microkernel) onto different CPU cores, and implement two variants, loosely-coupled redundant co-execution (LC-RCoE) and closely-coupled redundant co-execution (CC-RCoE), for the ARM and x86 architectures. RCoE treats each replica of the software system as a state machine and ensures that the replicas start from the same initial state, observe consistent inputs, perform equivalent state transitions, and thus produce consistent outputs during error-free executions. Compared with other software-based error detection approaches, the distinguishing feature of RCoE is that the microkernel and device drivers are also included in redundant co-execution, significantly extending the sphere of replication (SoR). Based on RCoE, we introduce two kernel mechanisms, fingerprint validation and kernel barrier timeout, detecting fault-induced execution divergences between the replicated systems, with the flexibility of tuning the error detection latency and coverage. The kernel error-masking mechanisms built on RCoE enable downgrading from triple modular redundancy (TMR) to dual modular redundancy (DMR) without service interruption. We run synthetic benchmarks and system benchmarks to evaluate the performance overhead of the approach, observe that the overhead varies based on the characteristics of workloads and the variants (LC-RCoE or CC-RCoE), and conclude that the approach is applicable for real-world applications. The effectiveness of the error detection mechanisms is assessed by conducting fault injection campaigns on real hardware, and the results demonstrate compelling improvement

    Eight Biennial Report : April 2005 – March 2007

    No full text
    corecore