
Implementing Reusable Solvers: An Object-Oriented
Framework for Operations Research Algorithms

by

John Douglas Ruark

Bachelor of Arts, Harvard University (1993)

Submitted to the

Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in Operations Research

at the

Massachusetts Institute of Technology

June 1998

Copyright © Massachusetts Institute of Technology, 1998. All rights reserved.

Signature of Author

Certified by

Deartment of Electrical Engineering and Computer Science
May 20, 1998

Stephen C. Graves
Abraham J. Siegel Professor of Management

Co-director, Leaders for Manufacturing Program
Thesis Supervisor

Robert M. Freund
Seley Professor of Operations Research

Co-director, Operations Research Center

tIzL, :&HEi~ne

tC":t ---:-L ,,l7tGY

This page intentionally left blank.

Implementing Reusable Solvers: An Object-Oriented
Framework for Operations Research Algorithms

by

John Douglas Ruark

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 1998, in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Operations Research

Abstract

The expression of algorithms as mathematical constructs and the implementation of algorithms as
software are disjoint activities in operations research. Researchers develop non-robust prototypical
mplementations of cutting-edge algorithms, while programmers develop commercial-grade

implementations of mainstream, aging algorithms. There has been no middle ground, due to a lack of
suitable software tools, reusable components, and appropriate standards.

This thesis proposes such a middle ground, an object-oriented framework for implementing and
using reusable solvers, and demonstrates through several solvers and applications of those solvers
that the framework can reduce client-side development efforts and increase reusability.

Prior research on implementation has not focused on reusability as an important factor. Greater
reusability improves subsequent development times, increases productivity, and enables many to
create solutions that would not otherwise be possible. Focusing on reusability as a primary goal, this
thesis presents the requirements for a framework for building reusable solvers (algorithm
implementations) and applications in the context of solving real-world, small- to medium-sized
problems faced by applied operations researchers.

Out of these requirements, the thesis develops an object-oriented framework for implementing
solvers and the associated components that solvers use. The framework defines a set of interfaces,
objects, and associated machinery that characterize the nature of data, solvers, and client interactions
in solving applied operations research problems. The framework includes protocols for data flow,
solver interactions, introspection, progress notifications, life cycle control, and building networks of
solvers.

Several solvers and applications are examined in the context of the framework, to determine the
cost and benefit of using the framework in developing solutions. These examples include wrapping
the CPLEX Callable Library, implementing network optimization algorithms, and solving several
real-world problems.

The framework benefits three essential target audiences: analysts who build solutions, researchers
and developers who build solvers, and researchers and developers who build modeling environments.
The framework reduces development effort for end users, increases and encourages reuse of solvers,
reduces dependencies on existing modeling environments and solvers, and simplifies the creation of
integrated modeling environments.

Thesis Supervisor: Stephen C. Graves

Title: Co-director, Leaders for Manufacturing Program

This page left intentionally blank.

ACKNOWLEDGMENTS

When I embarked on this journey five years ago, I never planned on needing a fifth year. But
I also didn't expect my thesis to change in the spring of my fourth year to something
completely different. One can climb to amazing heights if only he digs a deep enough hole
from which to begin. I did a lot of digging in my fourth year. And then I struck what could
someday be gold.

Throughout the hectic life, the long hours, the anxiety, the angst, the uncertainty, the
hopelessness, the futility, to the final redemption, relief, and joy, there were constants. My
parents, Bill and Cynthia Ruark, provide eternal support, love, understanding, phone calls,
and computer questions. The monthly checks, however, have reached their conclusion. My
brother, Marcus Ruark, keeps me in line with where it's at, what's hip, and who's hot. If only
I could keep up. Penny-Penster, Sporkinator, the furbeast-has been a constant source of
amusement, purring, fur, and bushy tails. And, of course, Liz Stein, my companion, my best
friend, and my love, has seen me through these five years and will for many more.

I received help from many people at MIT. Most important is my advisor, Professor Steve
Graves, who provided support and wisdom, as well as understanding and leniency when I
began this project. Hopefully, the investment has paid off. The ORC staff, particularly Laura
Rose, Paulette Mosley, and Tom Magnanti, also with me these five years, have been utterly
reliable, and without them, of course, no one graduates from MIT with an OR degree.

Many friends have come and gone, relationships influenced by distance and time. At MIT,
my fellow classmates Arni, Beril, Brian, David, Edi, Hari, Jim, Keely, Martin, Mina, Rafael,
Rebecca, Sean, Thalia, Tim, and Yi-they took the journey with me, learned the things I
learned, and we knew each other better for it. Professors Bertsimas, Dellarocas, Freund,
Magnanti, Orlin, and Rosenfield are friends and teachers. My other friends do not claim to
understand operations research, but secretly I think they know. They include Aaron,
Amanda, Amy, Brett, Deane, Jason, Jen, Max, Melissa, Victor, and Zack. Thanks also to the
Stein family for many weekends of relaxation, excitement, and travel-capped by the two-
minute total solar eclipse in Antigua in February, 1998; what a great way to end.

This page left blank intentionally.

TABLE OF CONTENTS

A cknow ledgm ents.. ... 5

Table of Contents 7........

Table of Figures ... 1

Table of Tables .. 13

A bout the A uthor .. 14

1 Introduction .. 17

1.1 The Target A udience ... 19

1.2 O utline of Introduction 19

1.3 The Evolution of Compound Documents............................ 20

1.3.1 Method one-Pasting a picture ... 20
1.3.2 Method two-Out-of-place editing..21
1.3.3 Method three-In-place activation 22
1.3.4 The future of compound documents .. 23
1.3.5 Sum m ary 24

1.4 The Evolution of Optimization Applications 24
1.4.1 Method one-Custom solution ... 25
1.4.2 Method two-Modeling language ... 26
1.4.3 Method three-Component-based modeling environments........................ .. 27
1.4.4 The future of modeling environments ... 30

1.5 The Evolution of Application Implementation ... 31

1.5.1 The modeling environment literature..33
1.5.2 Future modeling application implementations 34
1.5.3 COM, CORBA, object models, and domain modeling..............................36

1.6 O verview of the Thesis 37

1.6.1 Requirements of a reusable solver 38
1.6.2 Features and goals of the framework 39
1.6.3 P ro o f of con cept ... 40

1.7 Overview of Related Modeling Literature ... 41

1.7.1 Structured modeling and beyond ... 41
1.7.2 M odel selection 43
1.7.3 M odel integration 45

1.8 Epilogue A49

2 Requirements ... 51

2.1 Domain Analysis: The Nature of OR Solutions.. 52

2.1.1 The components of a solution archetype 53

2.1.2 Categorization of sample solutions.. 67

2.1.3 Discussion 69

2.2 Participants in the Solution Process .. 70

2.3 Requirements of a Solver Implementation .. 72

2.3.1 Executable 73
2.3.2 Invoking from different applications and environments ... 75
2.3.3 Documentation and introspection..76
2.3.4 Progress updates 81
2.3.5 Life cycle control 84
2.3.6 Dimension and type support..85
2.3.7 Testing and validation 88
2.3.8 Computer-based training................................. 89

2.4 Requirements of Networks of Solvers .. 90
2.4.1 Integrity of data 91
2.4.2 Distribution and synchronization .. 96
2.4.3 Notifications.................... .. 98
2.4.4 Global/local control .. 99

2.5 Requirements of the Core Services .. 01

2.5.1 Registry of available solvers 103
2.5.2 Dimension and type support 104

2.6 Conclusion... 104

3 Framework ... 107

3.1 Organization of the Framework .. 107
3.1.1 General services and specifications ... 108
3.1.2 Solver services and specifications ... 109
3.1.3 Interconnection services and specifications .. 110
3.1.4 Intersecting services and specifications 111
3.1.5 Framework entities................................. 111
3.1.6 Framework interfaces 112
3.1.7 Framework reference 115

3.2 The Solver Executable 115

3.3 Solver Interfaces 11 6

3.4 Data Flow 118

3.4.1 Data structure in the framework... 120
3.4.2 Data elements 120
3.4.3 Data sources 132

8

3.5 The Primary Solver Interfaces.............................. 137

3.5.1 Solver structure .. 137
3 .5 .2 IRS o lve r 139

3.5.3 IRSolverinputs: Setting the inputs ... 140
3.5.4 IRSolverOutputs: Getting the outputs.................................140
3.5.5 I RSolverPara meters: Parameterization......................... 141

3.6 Introspection..1......41
3.6.1 SolverInfo: Paralleling the structure of the solver...................................... 142
3.6.2 SolverDescription: The capabilities of the solver................................ 162
3.6.3 Discovering capabilities through Querylnterface.................... 168

3.7 Progress Updates and Life Cycle Control.............................. 169

3.7.1 Progress notifications (push) .. 169
3.7.2 Progress queries (pull)...175
3.7.3 Solver life cycle control 177

3.8 Networking Solvers 178
3.8.1 Networks in traditional clients and global control 178
3.8.2 Moving to local control ... 80
3.8.3 Solver sites and mappings 184
3.8.4 Inbound solver sites 1... 89
3.8.5 Outbound solver sites............................ 193
3.8.6 Mappings ... 199
3.8.7 Putting it together..203
3.8.8 How this fulfills the networking requirements ... 211

3.9 Core Services .. 214
3.9.1 Solver database 215
3.9.2 Miscellany ... 216

3.10 Conclusion .. 217

4 Solvers and Applications .. 219

4.1 Solvers ... 220
4.1.1 Packaging a solver ... 220
4.1.2 RandVar module .. 223
4.1.3 RNetOpt module ... 224
4.1.4 RLPW rapper solver 226
4.1.5 U sing a solver.............................. 228

4.2 Applications ... 229
4.2.1 Monsanto...................................... .. 229
4.2.2 FlexCap .. 239
4.2.3 M/M/k queueing model in Excel.................................. 244
4.2.4 SIPModel 250
4.2.5 ALCOA 253

4.3 Conclusion...258

5 Conclusion .. 261

5.1 Benefits of the Framework... 61

5.1.1 For clients, analysts, and application developers ... 262
5.1.2 For solver developers 266
5.1.3 For modeling environment developers......................... 270

5.2 Issues...272

5.3 For Future Research .. 281

5.4 Conclusion...284

Coda .. 286

A Sample Code and Extensions .. 289

A.1 Developing the RLPWrapper Solver .. 289
A.1.1 Generating the SolverInfo 289
A.1.2 The solver skeleton 291
A. 1.3 Implementing solver inputs ... 295
A.1.4 Solving the linear program .. 298
A.1.5 Implementing the output methods 301
A.1.6 Implem enting the parameters 302

A.2 Creating a Solver That W raps M odel Knowledge................................... 308

A.3 Custom Extensions to the Framework: A Random Variable Specification 311
A.3.1 Specifying a data type........................... .. 311
A.3.2 Using a custom data type in the framework.. 313
A.3.3 A random variable specification.. 315
A.3.4 A queueing system specification 317

A.A M/M/k Queue Examples ... 319
A.4.1 VBA macros 319
A.4.2 Framework solver.. 323

Bibliography .. 325

Bibliography of Applied Solutions ... 333

Index of Authors .. 341

Index ... 343

TABLE OF FIGURES

Figure 1.1: Pasting a picture 21

Figure 1.2: O ut-of-place editing 22

Figure 1.3: In-place activation.. 23

Figure 1.4: Custom solution ... 26

Figure 1.5: M odeling language 26

Figure 1.6: Component-based modeling environments ... 28

Figure 1.7: M onolithic application architecture 31

Figure 1.8: Component-enabled application architecture 32

Figure 1.9: Future application architecture with modeling component services..................................... 34

Figure 1.10: Future component-based operating system architecture .. 35

Figure 2.1: Three subproblems hooked together to make a larger subproblem..................................... 54

Figure 2.2: Single-stage architecture.. 54

Figure 2.3: Directed acyclic graph architecture........................... 55

Figure 2.4: Architecture of P&G supply chain model solution................................. 57

Figure 2.5: Decision-based directed graph architecture 58

Figure 2.6: Architecture of SANTOS's SIPS planning solution 59

Figure 2.7: Real time directed graph architecture 60

Figure 2.8: Hierarchy of execution periodicity types 65

Figure 2.9: Sample two-stage solution demonstrating participants 71

Figure 2.10: A progress bar window...................... 83

Figure 2.11: Progress notifications through the status bar................................. 83

Figure 2.12: Traditional solver structure with decentralized dimension support................ 87

Figure 2.13: Solver structure with centralized dimension support 88

Figure 2.14: High-level solver state diagram .. 91

Figure 2.15: Event trace diagram for normal solver invocation.......................... 93

Figure 2.16: Event trace diagram of attempting to retrieve invalid outputs 94

Figure 2.17: Event trace diagram of attempting to retrieve invalid inputs ... 94

Figure 2.18: Event trace diagram of attempting to retrieve outputs too late... 95

Figure 2.19: Example of global control in a 2-solver network.......................... 100

Figure 2.20: Example of local control in a 2-solver network ... 101

Figure 2.21: A common dialog ... 101

Figure 3.1: Overview of services and specifications of the framework 108

Figure 3.2: How the VB run-time wraps controls to expose complicated interfaces 117

Figure 3.3: Relationships of data elements, dimensions, and sets........................... 121

Figure 3.4: State diagram for a data source....................................... 133

Figure 3.5: High-level class diagram of solver structure ... 138

Figure 3.6: Object diagram of knapsack solver structure 139

Figure 3.7: Class diagram of SolverInfo interfaces .. 142

Figure 3.8: Object diagram of knapsack SolverInfo structure....................... 143

Figure 3.9: Sample solution network for framework development... 178

Figure 3.10: Perspective of Solver 3 under client global control 181

Figure 3.11: Perspective of Solver 3 under local control.. 182

Figure 3.12: Sample solution network with wrapper components 182

Figure 3.13: Perspective of a Solver 3 wrapper under local control... 183

Figure 3.14: Perspective from Solver 3 under local control with wrapper............................. 184

Figure 3.15: Sample solution network with solver site components .. 186

Figure 3.16: Sample solution network with mappings and internal solver connections 187

Figure 3.17: Sample solution network with mappings, solver sites, and the client 88

Figure 3.18: Interaction diagram of outbound solver site locking mechanism.......................... 194

Figure 3.19: Iterating a solution network from the client .. 196

Figure 3.20: Adding intelligence to the outbound solver site to iterate within the network........... 197

Figure 3.21: State diagram for outbound solver site ... 198

Figure 3.22: DetermineWhoMaintainsData: Decision tree.. 202

Figure 3.23: W iring Solver 3's solver sites .. 204

Figure 3.24: Interaction diagram showing wiring of Solver 3's site.. 205

Figure 3.25: Interaction diagram when the data source maintains input data 208

Figure 3.26: Interaction diagram when mapping maintains input data................................ 209

Figure 3.27: Interaction diagram when solver maintains input data................... 210

Figure 4.1: Package diagram for original Monsanto solution ... 232

Figure 4.2: Package diagram for Monsanto solution with a special model solver............................. 233

Figure 4.3: Package diagram of Monsanto solution with entire component-based solution 237

Figure 4.4: Screenshot of FlexCap ... 240

Figure 4.5: Screenshot of spreadsheet modeling of M/M/k queue................... 245

Figure 4.6: Screenshot of goal seeking m spreadsheet modeling.. 246

Figure 4.7: Screenshot of SIPModel 2.1 user interface..250

Figure 4.8: Sample property dialog from SIPModel 2.1 .. 251

Figure 4.9: Screenshot of initial ALCOA chent application ... 255

Figure 5.1: Screenshot of modeling environment solution network .. 282

TABLE OF TABLES

Table 1.1: Matrix of component modeling benefits... 29

Table 2.1: Categorization of Edelman paper solutions... 68

Table 2.2: Example knapsack problem with dimension information 86

Table 3.1: Summary of framework entities.. 112

Table 3.2: Data element entities and interfaces..113

Table 3.3: Solver interaction entities and interfaces ... 113

Table 3.4: Progress updates and life cycle control entities and interfaces.......................... 114

Table 3.5: Introspection entities and interfaces ... 114

Table 3.6: Solver registration and selection entities and interfaces..................................... 14

Table 3.7: Networking and interconnections entities and interfaces....................... 115

Table 3.8: Bitmask values for IRSolverBaselnfo::GetFlags.. 144

Table 3.9: Bitmask values for IRSolverlnfo::GetFlags ... 145

Table 3.10: Bitmask values for IRSolverlnputlnfo::GetAssignmentFlags ... 147

Table 3.11: Bitmask values for IRSolverlnputlnfo::GetChangeFlags... 147

Table 3.12: Bitmask values for IRSolverOutputlnfo::GetChangeFlags... 148

Table 3.13: Custom attributes for SolverInfo Type Library 159

Table 3.14: Bitmask values for I RSolverDescription::GetSolutionFlags... 163

Table 3.15: Pre-defined RD ESCPRO PID s 164

Table 3.16: Parameters of IRSolverAdvise::OnSolveNotify ... 173

Table 3.17: Bitmask values for IRSolverAdvise::OnSolveNotify .. 173

Table 3.18: Action codes for IRSolverAdvise::O nSolveNotify .. 174

Table 3.19: Notification codes for IRSolverAdvise::OnSolveComplete......... 174

Table 3.20: Status codes for IRSolverStatus::GetStatus.............................. 176

Table 3.21: Creation flags for IRSolverSitelnSolverFactory::SpecifySolver 192

Table 3.22: Destruction flags for IRSolverSitelnSolverFactory::SpecifySolver 192

Table 3.23: Characterization of who maintains data in mappings 201

Table 3.24: Possible values for the MaintainPreference mapping attribute 201

Table 4.1: Network flow algorithm implementation sizes-original solvers 225

Table 4.2: Network flow algorithm implementation sizes-framework solvers................................... 225

Table 4.3: Inputs to the CPLEX wrapper solver ... 227

Table 4.4: Outputs from the CPLEX wrapper solver .. 227

Table 4.5: Summary of Monsanto implementation techniques' code sizes............................... 238

Table 4.6: Comparison of FlexCap implementations .. 243

Table 4.7: Summary of M/M/k queue implementation characteristics.. 249

Table 4.8: Summary of solvers and applications from Chapter 4... 259

ABOUT THE AUTHOR

John Ruark received a Bachelor of Arts in Mathematics at Harvard University in 1993 after

attending high school in O'Fallon, Illinois. During the summers while at MIT, he worked

with General Motors; Scudder, Stevens, and Clark; and ALCOA. Prior to his studies at MIT,
he was assistant editor of the best-selling Let's Go: USA & Canada, 1994, travel guide. At

Harvard, he was a lighting, set, and sound designer of numerous theatrical productions, and

a member of the Harvard University marching and jazz bands and the Harvard-Radcliffe

Orchestra. He lived in Dunster House.

John can be reached at ruark@post.harvard.edu.

On the eve of the fourth day, 220 runs to go with eight in hand, we sent in the night
watchman. He fulfilled his duty, lasting the night, but fell slogging, early on the fifth
day. They brought on lethal spin and buried the middle order in the first session,
sending us reeling to 162 for seven, needing 140 to win. But we still had our top
batsman at the crease, and he weathered the storm and hit a ton, digging out the
boundaries even as the pitch deteriorated, securing a two-wicket victory in the final
over off a shattering drive through the covers.

To myparents

illegitimum non carborundum

CHAPTER ONE

INTRODUCTION

In operations research there is a disparity between the creation, description, and validation of
algorithms and the practical, useful implementation and distribution of those algorithms. As
top researchers push the envelope of algorithm design and faster asymptotic run times, truly
useful, widespread implementations of algorithms stagnate, advancing haltingly and
mysteriously. Researchers develop implementations that are good-enough---good enough to
prove viability, good enough to demonstrate, and good enough to benchmark. Only
occasionally are these prototypical implementations good enough to distribute or sell. Rarely
are they easy enough to incorporate into a larger project implementation.

Why is this the case? Primarily, what is good enough for the researcher is not at all sufficient
for the software developer. In addition to viability and correctness, the developer needs ease
of integration, simplicity of interface, and separation of orthogonal functionality. Too often,
a prototypical implementation fails all three: it is a stand-alone application (hence difficult to
integrate) that requires arcane or proprietary input and output formats (hence complicated
interfaces) and that mixes file I/O operations with algorithm logic in the same processes
(hence mixing orthogonal functionality).

In many cases, these implementations are also too difficult and complicated to be used by
knowledgeable operations research modelers working on decision support projects. If a
prototypical implementation requires too much time and effort to use, it will not be. Instead,
the modeler will rely on more generic, and possibly less efficient or optimal, techniques, such
as monolithic mathematical programming solvers or spreadsheets. As computers permeate
all modeling applications, the needs of the applied operations researcher are converging to
those of the software developer: ease of integration, simplicity of interface, separation of
orthogonal functionality. An algorithm implementation that exhibits these requirements
could be easily understood and quickly incorporated into an application project.

Unfortunately, the implementation of complicated algorithms in such a manner lies in a
bleak no-man's-land. Researchers have neither the motivation nor desire to improve their
prototypical implementations because they typically do not have the software engineering
expertise or easy access to it, the rewards are unspecified at best, and it is not their area of
interest. Normal software developers do not approach such projects because they lack the
expertise to understand the algorithms and untangle the relevant strands from a messy
prototype, and again, the rewards are unclear.

The rewards for the operations research community are perfectly clear. In a world where
algorithms are easy to implement, quick to distribute, and simple to integrate, consultants,
modelers, and students all stand to gain immensely. Shortened development times, freedom
to choose algorithms, independence from a single vendor or modeling tool, lower costs, and
reusable codes and models are just some of the benefits. The operations research community
would gain broader exposure to the consulting and modeling community as the provider of a
multitude of useful, specialized, optimized algorithms.

The goal, then, is to create rewards for the brave souls who tread into the no-man's-land.
These rewards will be monetary and laudatory. Monetary rewards derive from generating
sufficient revenue from the sales of an algorithm implementation to offset its costs of
production. Simple economics, yes, but a powerful enough barrier to entry to keep
developers and researchers from entering the market en masse. Mostly, researchers provide
their prototypical implementations free for academic use, and often their research is funded
by outside sources. There is no revenue stream to speak of. Usually, the users get what they
pay for. The problem is generating sufficient revenues for a product. Laudatory rewards, the
satisfaction and widespread recognition of a job-well-done, are less tangible but no less
important. A large (and happy) customer base fuels these rewards. The problem is generating
that customer base.

Both of these problems could be tackled with the right killer application' for the modeling
community. Such an application would make it simple to incorporate well-implemented,
reusable algorithms and generate larger decision support applications. Most likely, this killer
app would be a graphical decision support system (DSS). There has been extensive research
on the presentation, architecture, and knowledge of a DSS, but very little research on tying a
DSS to disparate back-end algorithms. Typically, a DSS relies on a monolithic mathematical
programming solver, and the task becomes representing any model in a common language
that can map to the generic solver. This is not conducive to the successful production of
specialized algorithms.

This thesis outlines a potential standard set of interfaces and protocols that would enable any
appropriately designed DSS to communicate with any appropriately well-implemented,

1 A killer application is a "use of technology so attractive to consumers that it fuels market forces"
that "change technological advances from curiosities into moneymaking essentials" (Gates [31] p.
74). Two examples are Lotus 1-2-3 for the IBM PC and the NCSA Mosaic browser for the World-
Wide Web.

reusable algorithm. Such a standard could open the floodgates for algorithm
implementations that do not depend on monolithic optimizing engines.

The key enabling technology is component software. Components are computer programs
that encapsulate both data and operations in a single object. Well-designed components
typically are self-sustaining, have few hidden dependencies on other components, and
accomplish only as much as they need to and nothing more. Complicated tasks and
problems are usually broken into multiple components, thereby keeping the duty of each
component limited, manageable, and coherent.

1.1 THE TARGET AUDIENCE

This thesis presents an approach to developing software for algorithm implementations. So,
the primary audience of the thesis as a document is software developers. Three types of
developers are of interest: systems tools developers, who create modeling environments and
operating systems; component tools developers, who create the algorithms and related data
structures; and application developers, who integrate components into systems to create
customized solutions and applications. Operations researchers interested in the
implementation of algorithms and how algorithms can be made more reusable should also
find reading the thesis rewarding.

As applied technology, however, the results of the thesis have a different audience. This
technology is designed to specifically address problems of a small or medium size; that is,
problems of up to thousands or tens of thousands of elements. Anyone who works with
these types of problems stands to benefit from the widespread adoption of policies and
technologies that promote and enable reusable algorithms. This includes students and teachers,
who typically deal with small problems for pedagogical purposes; consultants, who often
mock-up medium problems in spreadsheets to solve strategic or tactical planning problems;
and OR practitioners working on these types of problems. To the extent that developing
algorithms (especially reusable ones) can be made easier, algorithm designers and developers can
also benefit from the technology.

1 .2 OUTLINE OF INTRODUCTION

Component software has been extremely successful in enabling compound documents,
which are documents that contain multiple media types and objects, such as a word-
processing document with charts, spreadsheets, and graphs embedded within it. Hence, an
examination of the parallels between components in compound documents and components
in modeling environments should prove enlightening. The next section summarizes the
evolution of both compound documents and modeling tasks and explores how the lessons
from one can translate to the other. The perspective here is the end-user's: how does the
user accomplish common yet important tasks, and how do components make those tasks
easier? Following that, an examination of the evolution of the implementations of

applications reveals how components are entering daily computer programming life, even
when the end-user might not be aware of any components. The proposed framework is then
inserted into the application architecture. The introduction concludes with an outline of the
remainder of the thesis.

1.3 THE EVOLUTION OF COMPOUND DOCUMENTS

Many users are familiar with the task of embedding a chart as an exhibit into a report. The
report is created inside an appropriate word-processing application. How would a user
embed a chart into the report within that application? Long ago, the user would create the
chart separately from the report; the image of the chart would be literally cut-and-paste onto
the printed page in the correct place or be appended to the report as an endnote. Of course,
modem computing technology permits user to insert the chart prior to printing the
document.

There are traditionally two eras of compound documents. The first, still prominent on some
platforms and applications, is application-centric. In the application-centric era, the application
is the fundamental unit of interaction. Documents exist within applications. To access a
spreadsheet, the spreadsheet application must be located and started. This process-start the
application, load the document-is the essence of application-centric computing. The
second era, evolving on advanced, mainstream GUI operating systems like Windows 95 and
the MacOS, is document-centric. In this era, the document is the fundamental unit of
interaction. A spreadsheet exists as part of a document, and the spreadsheet application is
started in order to load that document. To see this in action, simply right-click on a
document in the Windows 95 shell to activate a context-menu that will include options such
as "Open" and "Print."

There are three modem techniques for including a chart in a report. The first two are firmly
application-centric. For each, the user creates the chart as an entirely separate document
within the charting application, and then copies some representation of the chart, either as a

picture or some native opaque data format into the report within the word-processing
application. The third method is document-centric. The user can create the chart within the
report, accessing charting functionality as a transparent extension to the word-processor
without visibly running the chart application.

1.3.1 Method one-Pasting a picture

Integration based on a common denominatorjormat.

To embed a chart in a report requires that the charting application and the word-processor
speak the same language. In the earliest days of the MacOS and Windows, the lowest
common denominator for applications was either a text format or a picture format on the
clipboard. Transferring a chart from a charting application to a word-processor involved
preparing the chart within the charting application, placing an image of the chart on the

clipboard (copying) and then switching to the word-processor application and placing that
image into the report (pasting). In order to make changes to the chart within the report, the
old image must be deleted and replaced by a newer one from the charting application (see
Figure 1.1).

Figure 1.1: Pasting a picture

Clearly, there is significant overhead in putting the chart into the document. Activities such
as layout and sizing must be done in the charting program, and it is impossible to access or
modify the chart from the word-processing program. The document contains a static image
of the chart but no data about the contents of the chart. The word-processing application
does not even understand what a chart is; it understands only pictures. Scaling the chart
within the word-processor causes the entire image to be scaled, without recalculating the
layout of the chart; this can ruin font placement and sizing. This is a portable technique as
long as a standard "picture" format is used (one called "metafile" is provided with
Windows). The report will contain multiple files: one for the text itself, and one for each
exhibit in the report. This will add some non-trivial administrative burden for maintaining
and versioning the report.

1.3.2 Method two-Out-of-place editing

Integration based on proprietary suites andprotocols.

The previous technique relies on a standard picture format, enabling the user to paste any
picture from any application into any word-processor. Because of the absence of meaningful
state data about the chart itself, this flexibility comes at the cost of not being able to modify
the chart through the picture of the chart. More technically sophisticated word-processors,
especially those that were pieces of productivity suites in the early- to mid-90s, defined their
own proprietary chart formats that enabled those word-processors to specifically know that
a particular object was a chart as opposed to just being a picture. Armed with this
knowledge, these word-processors could activate the chart application when the user wanted
to edit the chart (see Figure 1.2).

The improvements of this technique are better perceived integration between the word-
processor and charting application, and a single file that contains both report and chart,
improving maintainability and versioning. Better integration is perceived in several ways. For
one, the action of resizing the image of the chart doesn't just scale the picture. Instead, it
sends a message to the underlying chart object that causes it to resize itself; therefore, fonts

Figure 1.2: Out-of-place editing

can be repositioned instead of simply scaled. Secondly, the word-processor knows that the
object is a chart, and thus can provide facilities for initiating the editing of the chart.

This is the "suite" way of preparing exhibits. Versions of Lotus', Novell's, and Microsoft's
office suites from the early 1990's behaved this way. The primary disadvantage is
compatibility. A vendor's word-processor can only embed full information about that same
vendor's chart; mixing two vendor's applications requires reverting to the previous
technique, pasting pictures.

1.3.3 Method three-In-place activation

Integration based on standardprotocols andframeworks.

Currently, on Windows machines almost every word-processor supports a common
technology created by Microsoft called Object Linking and Embedding (OLE) [11, 15].
OLE defines a standard for embedding one document or part of a document in another.
The embedded chart is managed by a "server" application, while the word-processor is the
"client." That is, the word-processor application asks the chart application to "serve" it in
displaying and editing the chart. Any vendor that writes an OLE-compliant chart server
application can embed a chart into any other OLE-compliant word-processing client
application. Thus, vendor lock-in is removed.

Furthermore, these standards define "in-place activation," a series of protocols and user-
interface guidelines for editing the chart object directly inside the word-processor. To the
user, this provides a "document-centric" point of view, instead of the older, application-
centric perspective. This technology is currently supported on most major platforms (OLE,
OpenDoc, andJavaBeans). See Figure 1.3.

How does this all work? Basically, each particular compound document technology defines a
specific standard of protocols and behaviors for every step of the embedding process. For
OLE, Microsoft has designed no fewer than forty separate interfaces for in-place activation,
linking, and embedding. These interfaces specify protocols for all sorts of activities, such as:
telling the chart object to draw itself; managing menu and toolbar merging when the user
edits the chart inside the word-processor; telling the word-processor to save the entire

Figure 1.3: In-place activation

document even when the user is working inside the chart; persisting the chart inside the
report document; notifying the word-processor whenever the image in the chart should be
changed; notifying each other when the user drags and drops data from one place to
another; and managing undo/repeat activities at the document-level.

In these scenarios, the word-processor is often called the "container" because it contains
embedded objects. Because a container must manage an entire document that might contain
many embedded objects, and each embedded object only communicates with one container,
developing container applications is more difficult than developing server objects. As a
result, there are significantly fewer containers than objects on the market. This is not
unreasonable, however, because typically a container is simply a blank slate onto which
objects are placed, so most of the value-added, constructive, and interactive work occurs
with the embedded objects and not the container itself.

1.3.4 The future of compound documents

In today's implementations, embeddable objects such as charts, pictures, spreadsheets,
sound clips, and videos, exist on a flat namespace. That is, there is no hierarchical
organization of these disparate objects, and to the operating system and applications these
objects are conceptually indistinguishable. They support the same interfaces, they can paint
themselves when told to, and they can save themselves to disk. Within Microsoft Word, for
instance, choosing "Insert Object" presents a complete list of all available objects that can be
embedded. There is no content management, no filter to assist the user in selecting the
appropriate object. There might be five charts available to select from, interspersed among
the various objects, but the user has to know which those five are. This is, at the core, no
better than the application-centric approach that requires the user to find the application in
order to access the document. At the other extreme, from within Word selecting "Insert
Chart" embeds Microsoft's particular chart without any choice by the user. There is no
middle ground "allow me to choose a vendor's chart and insert it" between the extreme
options "insert any generic object" and "insert the Microsoft chart."

Compound document technologies are heading towards content management, though.
Microsoft has introduced a specification called "component categories" that will enable an
object to register itself as a "chart." Then, containers that are aware of component categories
could let the user filter all objects down to just the available charts. The OpenDoc
compound document technology had a more sophisticated scheme that would have

provided for specification of default objects. By default, the same chart would be used in all
OpenDoc containers. This extends even further the document-centric tendencies, because
the container application plays a much less significant role.

Eventually the application and document will be subservient to the task at hand; call this
task-centric computing. When a user wants to compose a memo, the operating system will
know that for memos she likes to use WordPerfect with Memo Template #3 and spell-check
with Microsoft Office's spell checker. For reports she prefers Word with a customized
report template. Then, instead of running Word (application-centric) or choosing "Create
new Word document" from a context menu (document-centric), she will say, "Create a
memo." (And with speech recognition software becoming ubiquitous on many systems, that
is a literal "say.")

1.3.5 Summary

Compound document technology has been enabled by:

* Standardization. Standards enable interoperability, document abstraction, and consistent
behavior.

* Objectification. Each container and server is its own entirely self-contained entity called
an object. They are transportable, modular, reusable, and easily replaceable.

* Broad support. For most platforms, vendors willingly support the standards. Almost all
applications for Windows support the OLE standards (in most cases, this is required by
the Windows 95 Logo program); many vendors pledged to support OpenDoc for
MacOS and OS/2. Hundreds of vendors have announced their support for the
JavaBeans specification for Java components.

1.4 THE EVOLUTION OF OPTIMIZATION APPLICATIONS

Switch gears now to a seemingly entirely different task: invoking an optimizing solver within
some operational modeling software. This could be calling the CPLEX Callable Library from
within a home-grown application, or solving a network flow optimization problem with
OSL, or solving a mixed-mode distribution network with a completely homegrown
customized C subroutine. There has been an evolution of these tasks over the past decade
that closely parallels the evolution of compound documents.

The key realization is that the solver itself, the actual part of the code that takes input data,
crunches numbers, and provides output data, is a separable piece of the application. Or, at
the very least, it can be designed as such. Solvers can, therefore, be components, and with
the proper infrastructure, they can become embeddable, reusable, modular, and replaceable.

The parallel problem of placing a chart inside a report in the optimization arena is that of

providing input to, invoking, and pulling outputs from, a solver in a repeatable manner. For

instance, a scheduling system could require that the operator feed in a data set every
morning, press a button "Go!" and then analyze and act upon the output data.

The traditional solutions to building these models and systems are application-centric. The
modeler or developer begins the implementation process selecting a modeling language

application and a destination solver application. These choices constrain the development
process thereafter; as with any software development, decisions made earliest in the project
are the most costly to reverse later. The parallel of document-centric computing in modeling
might be called model-centric. The model is the driving force; modeling languages and solvers

are selected dynamically based upon which ones are appropriate for the model.

The first two methods listed below are application-centric; the third method describes the
future model-centric environment.

1.4.1 Method one-Custom solution

This is a highly traditional and pervasive technique, possibly because operations researchers
look for efficiencies within other systems and not within themselves. In this scenario, the
operator of the system is responsible for managing the data files and manually injecting the
correct data sets into the system. Upon completion, the operator must take an output file
and convert it into a more useable format.

For example, a research group at MIT developed a tactical planning application that fit
within this scenario (see Ruark [91]). The users stored all of their data in spreadsheets. When
they wanted to run the model, they had to save each data set as a separate text file, organize
all the files into one folder, and then run the application. The application itself simply read in
all these text files, created the internal LP model from the data files, invoked a commercial
solver, and wrote the outputs directly into new text files. The user then would have to
import these text files back into the spreadsheet program to create a new workbook
containing all of the outputs. Then they could begin an analysis phase. The developers
automated this process as much as possible, providing users with macros in the spreadsheet
application to save and load the text files and to create a few important graphs from the raw
data.

This method is similar to pasting a picture in that in order to make a change, the entire
process must be repeated. (Remember that when pasting a picture of a chart, changing the
chart requires that the old picture be deleted.) There is no facility to easily change a value
within the context of the application. Also, there are many files to maintain-the application
had forty-three input files and nineteen output files-which leads to versioning and
maintainability problems.

However, this solution is, in some ways, slightly worse than the picture-pasting technique,
because the users were locked into using the provided application and the provided solver

(LINDO). It's almost as if there was only one charting application in the first place, and
even then it wasn't well integrated. See Figure 1.4.

Figure 1.4: Custom solution

There is room for improvement. For example, the application could create MPS files, and
then invoke the optimization engine as a separate step. This would make the optimization
engine replaceable fairly easily; this is generalization. The application could have been more
tightly integrated with Excel, or the input and output more tightly integrated into the
application; this is specialization. However, the client is still tied into the custom application,
because modeling logic was hard-coded into the code itself. That is, the constraints are
created using procedural Pascal code; changing a constraint requires that the entire
application be recompiled from the development machine. Therefore, the client cannot
change the underlying model.

1.4.2 Method two-Modeling language

Two drawbacks of custom code, namely customized I/O and modeling code and hard-
coded modeling, are addressed by using standard modeling languages and standard database
packages. Many current modeling language drivers, like AMPL, can read and write to
standard database formats, through ODBC or SQL, and they can invoke standard solver
libraries, such as CPLEX, OSL, and MINOS. Furthermore, the developer describes the
model not with compiled code but with interpreted textual representations of the model;
modifications to the model thus happen at the point of delivery and not at the point of
development. See Figure 1.5.

Figure 1.5: Modeling language

In general, this technique imposes fewer steps upon the end-user (it's easier to automate). A
single data file (a large database) could contain all of the input and output data, easing the
versioning and maintenance process. For operational modelers, the modeling language is
typically easier to write, understand, and debug than the corresponding lower-level computer
code.

This technique is similar to that of the second technique with charts in reports. Namely,
there are separate environments-the word-processor is analogous to the modeling language

environment while the chart is analogous to the data set and select solver. To change the
data, the user must work within the database environment; to change solver parameters
requires working in the modeling or solver environment. There is certainly vendor lock-in;
using a particular modeling environment forces the modeler to use only those databases and
solvers supported by that modeling environment. Often this problem is mitigated by
standards like ODBC and MPS, but these standards are regularly not expressive enough,
especially in setting solver parameters such as maximum number of iterations. In that case,
the modeling environment must specifically know how to set those parameters.

Graphical modeling environments

A recent advancement on the textual modeling environment is the addition of graphical
interfaces for the modeling process; see, for instance, Jones [51], Ma, Murphy, and Stohr
[64], and Piela, McKelvey, and Westerberg [82]. The model itself is expressed in a graphical
notation (possibly converted to or from an underlying textual representation), which the user
can manipulate using a mouse. The primary benefit is also a potential disadvantage: the
textual representation might be hidden from the modeler. This is an advantage because it
allows the modeler to abstract the problem to a higher, graphical level while not worrying
about the underlying representation, but it also might be a disadvantage if the modeler
cannot easily access the underlying model to make sure the correct model is being generated.
Generally, the modeler will not have to know a modeling language (GAMS or AMPL) or a
solver language (CPLEX commands) to develop sophisticated models.

With these environments usually comes the added benefit of being able to manipulate
problem data from within the environment. Thus, the modeling application, solver, and
database appear as a unified environment. This is typical of integrated modeling environments.

The problems of vendor lock-in still remain, however. Graphical environments constrain the
user even more to using those solvers and databases supported by the environment.
Substituting between solvers supported by the environment might be simple, but it might be
extremely difficult to insert a foreign solver with no native support.

1.4.3 Method three-Component-based modeling environments

Modeling environments do not yet have a parallel to the existing compound document
technologies, where models, data sets, and solvers are interchangeable across different
vendor implementations.

Examining the reasons compound documents have succeeded explains why:

* Standardization. The standards that exist in the modeling community are primarily text-
based. Modeling languages and representations like MPS, SML, AMPL, and GAMS rely
on textual descriptions of a problem. The query language SQL is also textual. Outside of
ODBC for database access, there are few implementation standards. There are no
implementation standards for modeling environments. At the binary level, two different
environments and their associated solvers and data handlers cannot communicate; they
must rely on textual standards. This is equivalent to relying on simple clipboard formats
like rich-text format and pictures for inter-application communication: it might work,
but it is inefficient and insufficiently robust. Before there is true cross-environment
sharing of models, data, and solvers, there must be implementation protocol standards.

* Objectification. Conceptually, it is easy to imagine that the modeling environment is
replete with objects. The solver, the mathematical program, databases, constraints, and
variables all stand out as vague kinds of "objects." There are several papers on bringing
math modeling into the object-oriented domain; see, for instance, Lenard [62], Muhanna
[77], Lazimy [60], and Huh [45]. But there has not been a consolidated, concerted effort
to bring portable objects to implementation. Popular libraries like the CPLEX Callable
Library are still modestly difficult to use and do not exhibit sufficient behaviors that rank
as object-oriented. The CPLEX Callable Library API is a single list of over a hundred
functions in a single namespace.

* Broad support. This will be the largest challenge for the community. Vendors are
generally resistant to removing vendor lock-in, especially with their own products. Most
likely, it will take a "killer application" modeling environment that is so simple,
extensible, and powerful that it can essentially force a standard on the market. For
instance, the CPLEX API could theoretically be licensed to create a CPLEX-compatible
system that is transparently interchangeable with CPLEX at the binary level, thereby
elevating the CPLEX API to a pseudo-standard.

Modeling environment

r Database access Inputand

SSolver controls] output data

] Model I

Figure 1.6: Component-based modeling environments

What will be the shape of these solver components and the modeling environments into
which they integrate? Consider the previously stated needs: ease of integration, simplicity of
interface, and separation of orthogonal functionality. Ease of integration enables an
application developer to create a modeling environment where solvers, algorithms, data sets,

and rules can be dynamically and flexibly specified by the modeler with complete freedom.
The best-crafted, manageable, and useable components exhibit simplicity of interface; they
are easy to comprehend and use. They expose minimally sufficient functionality-enough to
do the required task but no more. The separation of orthogonal functionality makes
components more flexible. The following matrix compares these needs with the techniques.

Standardization
Flexible, dynamic, unrestricted
modeling.
Focus knowledge and
concentration on task at hand.

Fine granularity of integration,
interconnections, and modeling.

Objectification
Simpler integration of
components.
Simpler implementation of
components.
Object lifetimes and
behavior tied to their
mission.

Table 1.1: Matrix of component modeling benefits

Flexible, dynamic, unrestricted modeling. Two components that support the same standards
and are easy to integrate will be indistinguishable in their appearance to a modeling
environment, permitting dynamic swapping of the components. This is plug-and-play
modeling, where one solver or query engine can be swapped for another with a simple click-
and-drag operation.

Focus knowledge and concentration on task at hand. Rather than present a massive, flat list
of all possible functionality, simple, standardized interfaces present smaller chunks in well-
organized, comprehensible groupings. Operations that act on files are completely separated
from operations that set parameters, create constraints, limit run times, etc. The developer or
modeler can learn what is necessary for the interfaces at hand, and postpone understanding
other parts of the system.

Fine granularity of integration, interconnections, and modeling. If a single component
managed both file I/O and computation, that component is useless if the inputs cannot
come from files. By creating two components, one that manages file operations and one that
manages computation, either one can be swapped with another component to increase
overall functionality. Consider a scenario where validation must be performed with random
numbers. Where one component manages both file and computation, the random numbers
must be shoehorned into whatever file format the component expects, thus adding work to
the testing stage. If that component reads data from a complex corporate database, this
could get complicated indeed. When a separate component manages the database lookup,
and the connection between the two database component and the solver component
abstract any specific implementations away, a new component could be created that
generates random numbers and feeds them to the solver component without having to
replicate the database schema.

Ease of integration

Simplicity of interface

Separation of
functionality

Furthermore, instead of hooking together entire applications by specifying which output files
from one application go to which input files to another, which requires batching, scripts, and
pipes, individual components will be hooked together at the binary, procedural level.

Simpler integration of components. When vendors create components in manageable,
encapsulated objects that can easily integrate, it becomes easier to link components. These
linkages include static relationships, such as specification of sub-problems, constraints, units,
and database locations, as well as temporal relationships, such as workflow, sequencing of
algorithms, and pre- and post-conditions. Each relationship hooks together two well-
defined, contained objects.

Simpler implementation of components. Objects with simple, minimally sufficient interfaces
are easier to develop than objects with complex interfaces. Typically, the discipline required
to implement objects well makes developing objects more difficult than developing
procedural code, but in environments where there is a natural mapping of the domain into
an object space, objects can actually make implementation simpler. Objects partition the
scope and space of the problem, allowing a developer to concentrate on a particular,
coherent piece of the puzzle while treating the remainder as a black box.

Object lifetimes and behavior tied to their mission. In high utilization, multitasking
environments with limited resources, it is important to manage those resources effectively.
At one extreme, imagine an application in limited memory space with two procedures: a file
I/O procedure and a solver procedure. The file procedure takes little time but requires much
memory for its code. The solver procedure takes more time and requires much memory for
its data structures but not its code. If both procedures have to reside in memory
concurrently, then there will be extensive disk activity as the virtual memory manager must
page file code or solver data structures in and out of physical memory. This is because the
file I/O procedure has no knowledge of when it is no longer needed, or knowledge of the
self.

If these instead were two properly implemented components, then the file component could
recognize that once it has completed its task, it could delete itself. This would free up the
limited memory, thus resulting in less paging. In an environment where the code might be
running hundreds of times simultaneously, as part of a massive parallel algorithm, this might
be desirable behavior.

1.4.4 The future of modeling environments

Currently, modeling environment user interfaces typically lag behind the user interfaces for
mainstream commercial software. As advances in interfaces trickle down to the massive
software base, modeling environments will eventually acquire the interfaces that users expect
and get from their other desktop applications.

Modeling environments will benefit from the dissemination of technologies for natural
language processing, voice recognition, artificial intelligence, and agents. These will enable a

modeler to pose problems to an environment in a very natural way. To make a cultural
comparison, eventually modelers will be able to invoke algorithms on their computers in
much the same way that characters on Star Trek do. "Computer, how long can we maintain

power at our reduced emergency levels while enabling certain subsystems?" "Computer,
please display a list of all people who are likely to default on their loans in the next ten days."
Simple questions that make many assumptions, disguise constraints, and soften criteria.

1 .5 THE EVOLUTION OF APPLICATION IMPLEMENTATION

Prior to the development of the Microsoft Component Object Model (COM) for Windows
and its use by applications developers, a Windows application relied in a monolithic manner
upon the operating system services, as illustrated below in Figure 1.7 (this is true for all
similar operating systems):

Application

Application Libraries

Operating System Services

Figure 1.7: Monolithic application architecture

This picture shows the various pieces of this architecture. Each element is presented as a box
with its function labeled inside. Where one element contains another element, the contained
element is a sub-module of, and inherits the development, use, and distribution
characteristics of, its container. For instance, application libraries are linked into an
application and distributed with the application. When one element has an arrow to another
element, there is a dependency of the vertically higher element upon the lower element; that
is, the higher element requires and utilizes pieces of the lower element. Containers are
dependent in the same way upon the elements they contain. The elements of this
architecture are:

Operating system services. Standard services provided by the operating system,
such as GUI, file management, kernel object administration, and network
support. These services are developed and distributed by the manufacturer of
the operating system.

Application libraries. Reusable codes developed for this and other applications
by the software company. Examples include linear programming solvers, high-
precision numerical routines, differential equation solvers, and special graphics
codes.

Application. The code specific to the modeling application. This is the perceived
entity that the user interacts with.

Applications with this architecture are characterized by highly specialized and possibly non-
conformant user-interfaces, proprietary file formats, particular modeling languages, and little
interaction with other applications. These characteristics are due to the absence-especially
in earlier operating systems-of sufficient operating system services such as standardized
user-interface components, structured storage capabilities, and standardized scripting.

The advent of component technology support within operating systems mitigates many of
these problems. Apart from the standard benefits of components and the "object-oriented
way," this change has brought stability and consistency in the behavior of application
subsystems. For example, Microsoft's Object Linking and Embedding (OLE) libraries
introduced structured storage as a way to manage document storage. Applications that use
structured storage acquire an additional feature set for free from the operating system, such
as easier cross-application support and file summary information in Explorer.

Applications that use these component services have an architecture like this:

Figure 1.8: Component-enabled application architecture

The new elements of this architecture are:

Component object services. Component technology services provided by the
operating system, such as component instantiation and administration, scripting,
inter-process and remote procedure calls, typing, and storage.

Application components. Reusable components developed for this and other
applications.

There are several differences between application components and application libraries.

Components can leverage the existing component object services. Components can be
upgraded or changed without recompiling the entire application, whereas a change to a
library forces the application to rebuild and therefore re-ship. When two components
perform the same function, which one to use can be chosen at run time; when two libraries
perform the same function, which one to use must be chosen at link time2.

1.5.1 The modeling environment literature

Most of the literature that describes modeling environments or potential modeling
environment implementations is based on the monolithic application architecture. As such,
these papers detail specific proposals or implementations for either application libraries or
modeling applications themselves. While many of these papers propose their own modeling
language and solver hooks to permit extending the application, the implementations are
severely limited and restricted to the proposed framework or application. It is rare to find a
proposal that provides both an extensible framework that can stand alone and also fit into
existing modeling environments.

The usual modeling environment or implementation paper develops one of these theses:

1. It proposes a modeling environment or a methodology captured within a modeling
environment, which is new and improved. The environment is extensible in a unique
manner, and anything developed for this environment will not work in other
environments. [2, 3, 35, 45, 57, 74, 75, 77, 81, 82, 84, 86]

2. It proposes a modeling language that satisfies some particular need. The modeling
language expresses a solution technique for this need, but does not satisfy other needs of
a similar scope, and it might be difficult to extend the language to account for other
needs. [4, 5, 10, 26, 32, 35, 50, 60, 77, 81, 86]

3. It offers a solution technique or pseudo-code for a particular problem. The technique
might be an algorithm, straight ugly C code, or a Unix binary, or it might be designed for
a particular modeling environment. In most cases, using it requires recompilation, re-
coding, and often re-designing; i.e., too much work that is not related to the modeling
process.

The evolution of these modeling frameworks and applications mimics that of monolithic
feature-rich applications before component technologies were available. Each vendor creates
a full-scale application with unique customization and automation features; customers are
usually locked into purchasing extensions from the same vendor to enhance the capabilities
of the application. Special filters and applets are required to convert documents from one
application to another (look at all of Word's and WordPerfect's available import filters).

2 In a sense, the components are dynamically boundwhile the libraries are statically bound.

Modeling applications exhibit this "feature" as well. Special filters are required for each
particular optimization engine, and for each database type; if the vendor does not provide a
filter for the optimizer of choice, that is reason enough not to use the product even if it has
the best modeling capabilities.

The evolution of modeling frameworks must now follow the path other applications are
taking, towards component-based architectures, leveraging smaller independent elements
that can be customized, automated, and presented in consistent, standardized ways.

1.5.2 Future modeling application implementations

Just as the operating system provides specific component technology services for
component-based applications, there will be a modeling component services system (MCSS)
that provides for component-based modeling applications. The MCSS will provide a
standard means for managing a model store, for storing and manipulating data types and
conversions, and for defining solver, data, and application interactions. It fits into the
architecture just above the operating system component services:

Figure 1.9: Future application architecture with modeling component services

The new element of this architecture is:

Modeling component services. Modeling component services provided by an
add-on library to the operating system, providing for standardized modeling
services like typing, the model store, and defining solver, data, and application
interaction. Typing encompasses the collection, classification, manipulation, and
conversion of dimensions and units of variables, such as "cost per truck" and
"feet per second squared." The model store is a database of models and solvers
available on a machine or accessible on a network.

The MCSS has these advantages over traditional proposed library frameworks:

* It will be based on future technology. Component-based operating systems and object-
based distributed network systems will be widespread within a few years. The MCSS will

leverage these systems.

* Being based on standardized operating system-provided technology, the MCSS will use

technology familiar to developers, thereby decreasing development learning curves,
times, and costs.

* For that same reason, modeling components that use the MCSS will work in other

productivity applications that use the same underlying object model, such as Microsoft
Excel, Borland Delphi, etc.

* Modeling applications that use the MCSS could work with any modeling components
that use the MCSS. So, rather than developing a component for a particular modeling
environment, a component will run in all environments. This item and the previous have
great appeal to the developer who wants the widest possible audience.

Geoffrion talks about the Structured Modeling Language as the linguafranca for modelers [32,
33], but this is at a conceptual, definitional level targeted towards the modelers themselves.
The component-based system is for the developers who actually implement the

environments. The building blocks of a component-based system will form the cornerstone
of well-engineered modeling systems. Through a component-based, standardized service
system, developers of modeling environments, model solvers, and model database systems
will be able to communicate using a common implementation language.

Future operating systems will only increase the presence of the component technologies and

the object-oriented paradigm, as shown in Figure 1.10.

Application Application Components

Modeling Component Services

Component Object Services

Operating System Services

Figure 1.10: Future component-based operating system architecture

Now, application libraries are transformed into application components because the
operating system services are accessible only through a component object services layer. The

Java Virtual Machine is an example of an existing environment with this architecture.

This thesis presents a framework that is the first step towards a future modeling component
services system.

1.5.3 COM, CORBA, object models, and domain modeling

The component object services described in the previous sections are effectively part of the
operating system. These object services, and the models and philosophies imposed by them,
are typically independent of any single application, but rather standardize the interaction,
behavior, and structure of objects that use them. While many objects models have been
proposed, the field of viable models has dwindled to two: COM and CORBA. Microsoft's
Component Object Model (COM) was originally the underlying technology of Microsoft's
Object Linking and Embedding (OLE), but is now pervasive throughout Microsoft
Windows and applications that run on Windows. The Object Management Group's
Common Object Request Broker Architecture (CORBA) is a cross-platform standard with
significant industry input and support. Both of these object models have the backing of
major industry players, significant legions of fanatical followers, market presence, and
successfully implemented cases to guarantee that they both will be prevalent object models
for years to come. Because this thesis will target the types of applications which today are
routinely implemented in Windows, the thesis uses COM as the underlying object
technology (for more information, see section 2.3.2, page 75). This choice is, effectively,
arbitrary; the important fact is that there is a standard object technology on which the
operation research modeling services are built.

COM, CORBA, and similar object models are horizontal technologies. They span all
domains while not completely solving any of them (except the most trivial or those that are
specifically within the COM or CORBA umbrella). COM and CORBA define how objects
interact, life cycle issues, notification protocols, introspection and discovery, but they do not,
for instance, even attempt to define a standard mechanism for financial transactions.
Finance, banking, medical services, business workflow, and operations research problems are
outside the scope of what the COM and CORBA specifications provide. Instead, these
object models are extensible, so that others can create their own specifications for particular
domains. For instance, Microsoft in conjunction with a number of other companies has
defined an extension to COM called OLE DB that frames a database specification within
COM. In other fields, Microsoft has created specifications for healthcare, finance, and
insurance [73]. Similarly, the OMG is overseeing the creation of vertical industry
specifications such as the Business Object Framework Facility, part of the CORBAfacilities
specifications (See Mowbray and Ruh [76]). These specializations of the object technologies
into vertical domains are intended to be used by application developers in those domains;
they will use these specifications to build portable applications that can share data and
control. In finance, for instance, two different banks' applications would exchange

transactions or a teller's terminal would communicate with the branch-office central
computer using one of these protocols.

This thesis is essentially proposing a vertical, domain-based specification for operations
research solvers and solutions, equivalent in spirit to the vertical standards that Microsoft
and the OMG are creating. It will specify new COM interfaces, objects, enumerations,
structures, etc., that apply to this domain, as well as the protocol for the behavior between
the various objects.

1.6 OVERVIEW OF THE THESIS

The thesis is relatively lengthy, compared to many operations research theses. Hence, it is
important to clarify what this thesis is not trying to do in relation to what has been discussed
above. With definition-by-negation, this not only limits the expected scope for both author
and reader but also brings into focus what the thesis will be accomplishing. This thesis will
not:

* Propose a new modeling language. A modeling language is not an implementation device
for software developers but for the modelers who use the software.

* Propose a new modeling and problem taxonomy. Instead, the thesis will propose a
minimal mechanism for registering installed solvers on a computer. The flexibility to
work with different hierarchical taxonomies on the global list of solvers will be managed
by not imposing any one taxonomy upon the system.

* Propose a new model or solver selection methodology. The problem of choosing a
model or solver to fit a particular problem is the topic of other theses. This thesis will
present a unified method to administer a solver database while not imposing any
selection technique.

* Propose a new modeling environment. The purpose of the thesis is to define an
infrastructure for the developers of environments without limiting the presentation of
that environment to the user.

This thesis should be viewed as a necessary albeit possibly unpleasant and at times boring
presentation of a component-based modeling infrastructure, targeted towards the people
who are developing, architecting, and programming modeling systems. This thesis will:

* Present a set of requirements for reusable algorithms. Namely, what are the behaviors
expected of truly useful, highly crafted, successful, reusable implementations? These
behaviors are focused solely on making implementations of algorithms better, and exist
independently of any particular platform, language, operating system, or algorithm.

* Provide a speification' of a modeling component services system and algorithm object
framework that can conceptually extend an operating system to enable diverse modeling
applications and modeling environments.

* Provide at least a reasonable subset of the associated implementation of that specification
for COM, particularly on Windows 95 and Windows NT (though the specification will
not necessarily be limited to COM or Windows, with suitable modifications). It must be
noted that the specification is the true deliverable, in that once a specification is "agreed
upon," anyone is free to develop an implementation of that specification.

* Provide a set of illustrative examples that use the specification. Any example programs,
algorithms, screen shots, etc., will serve as proper techniques for using the specification
only, and not necessarily proper ways to develop modeling environments in the whole or
to develop algorithms.

Essentially, the four sections of the thesis are (1) this introductory document with a literature
review, (2) the requirements of reusable algorithms, (3) the framework, and (4) the proof-of-
concept through implementation and examples. The last three are discussed in more detail
below.

1.6.1 Requirements of a reusable solver

There are many aspects of an algorithm implementation that concern a developer. These
range from fundamental issues such as correctness, efficiency, and robustness, to secondary,
more esoteric concerns (in the operations research community) like maintainability, security,
and reusability. While the first three are routinely studied and analyzed, the last three receive
little attention in operations research literature. Maintainability affects the ease with which
the implementation might be updated in the future, to fix bugs, upgrade performance, or add
enhancements. Security addresses both the internal security and integrity of the
implementation itself, as well as how well access to the data and process of the
implementation is protected. Reusability measures how easily the implementation can be
removed from its initial context and placed into another context.

From the perspective of operations researchers who need to employ algorithms to solve
larger problems, reusability is easily the most important of the "secondary" aspects. Hence,
the thesis will focus on examining why current implementations are insufficiently reusable in
today's computational environments, what is required and what is possible for reusable
implementations, and how to achieve more reusable implementations.

3 Commonly referred to as an API, or application programming interface, although the specification will
include elements that transcend the standard interpretation of API, which usually is limited to
functions exported by libraries and operating systems.

The requirements chapter is intended to organize, define, explain, and defend these desirable

behaviors in the context of operations research modeling implementations. This will exhibit

an unusually high attention to detail to a topic that has been insufficiently addressed by the
modeling literature.

The solution to the reusability problem has two dimensions. For one, software developers
can extend their efforts to develop individually reusable implementations; that is, software

components that by themselves satisfy as many of the requirements as possible. By selecting

popular target environments for their implementations, such as Solaris or Windows or Excel

or Mathematica, and by customizing their implementations to those environments, they can
develop implementations which can receive the widest possible reuse within that

environment. Through disciplined and careful analysis and design, they can make it relatively
painless to retarget their implementations for other environments, as well.

Another method is to remove the dependence on selecting a target environment and

introduce a layer of standards between the algorithm implementation and the environment
in which the implementation will run. This has two immediate, significant advantages: the
software developer has instant access to a wider audience, and the end user of an
implementation that follows the standards can make reasonable assumptions about the
behavior and capabilities of that implementation, thereby decreasing the user's learning curve
and application effort.

The thesis will introduce such a standard for a particular target operating system, the
Microsoft Windows family of products. Because of their ubiquity and availability within the
thesis's target audience, Windows makes an ideal choice for an implementation platform.

1.6.2 Features and goals of the framework

The object framework and library will exhibit the following primary features:

* A pattern of solver invocation and a standard interface for implementing this pattern.
Every algorithm implementation can support a standard interface for solver invocation
(the steps taken to initiate execution of an algorithm). Client applications can then follow
the invocation pattern to work with any available solvers.

* A specification for hooking many solvers together into a network of solvers that act in
concert to solve a complex problem.

* Fundamental model-base support, including registration and enumeration of available
solvers on a system or network. The library itself will include no logic about selecting an
appropriate model or solver for a particular problem, but instead will enable easy
extensibility of the model-base system to permit the addition of such intelligence.

* A mapping of the requirements of reusable algorithms into the component system.
Additional patterns and interfaces will explain how the requirements can be easily
incorporated into the model framework.

The framework and library has the following primary goals.

* Usefulness now and in the future. The system will be useful now because algorithms will
be accessible to current client applications that can speak the common underlying object
model (Microsoft's COM). The system will be useful in the future if modeling
environments are created to leverage the features targeted specifically towards operations
research modeling, such as the model-base and typing.

* Appropriateness and correlation to operations research modeling and implementation
needs. Operations researcher modelers, often in the guise of management consultants
and quantitative analysts, have particular needs. The thesis does not target those massive
operations like airlines that have huge, recurring problems such as plane scheduling and
yield management. Instead, it targets those professionals who have to cobble together
quick solutions of small- to medium-sized problems.

* Extensibility without sacrifice of capability. A common trade-off to be made: the most
extensible systems are often the least capable, while the most capable systems are the
least extensible. The goal is to fall somewhere in the middle.

* Ease of implementation and of following the standards. As future software development
packages advance the process of programming, this goal will follow naturally. In the
mean time, it is important to make implementing an algorithm a not-impossible
undertaking. While the thesis targets software developers with implementation details,
the learning curve should not be too steep.

1.6.3 Proof of concept

In order to validate the proposed framework and standards, certain issues will need to be
addressed. How much effort is required to implement algorithms within the new framework
compared to previous implementation efforts? How much easier is it for the end user to
work with implementations that follow the standards? What reusability requirements does
the framework meet, and which need further improvement?

The thesis will present several examples in order to illustrate successful applications of the
specification and requirements. These examples include:

1. An object model and sample implementations for random variables and simple queueing
systems. These implementations allow a modeler within Excel to calculate distribution
functions and moments for common distributions such as normal, exponential, Poisson,
and binomial, as well as calculate performance distributions for simple queueing systems
such as M/M/1 and M/M/k (section 4.1.2, page 223, and Appendix A.3, page 311).

2. A before and after look at a shipping application developed for clients of the Leaders for

Manufacturing (LFM) program. The "before" version incorporate both a complex
algorithm and all the user-interface code in a single application. The "after" version has

separated the solver code enabling it to be used from within any appropriate client

environment, such as Excel, modeling environments, and the customized, dedicated
user-interface that ships with the application (section 4.2.4, page 250).

3. Wrapping existing algorithms with objects that fit within the proposed framework. These
include some freely available network optimization codes, some of the random variable
codes from the first example, and a proposal for a linear programming object model

framework (section 4.1, page 220).

4. A description of an application with another LFM company that used a bin-packing
algorithm as a sub-problem, and how it would have benefited from a standardized
component model for the bin packing implementations (section 4.2.5, page 253).

1.7 OvERVIEW OF RELATED MODELING LITERATURE

Many of the ideas explored by the thesis have been examined or mentioned in previous

works, particularly in the areas of structured modeling, model selection, and model
integration. Blanning [6] provides a brief overview of these areas in the broader context of
model management systems, along with an extended bibliography. Geoffrion [33] presents
his view, as of 1989, of what a modeling environment should offer. Eight years later, his

grand vision of conceptual unity for an environment has not been fully realized. Yet, there
are plenty of new ideas about the modeling environment, mostly derived from the enormous
success of graphical operating systems and their object-oriented flavor. Many aspects of the
modeling environment have been prototyped but there has been no grand, especially cross-
research, implementation.

1.7.1 Structured modeling and beyond

The primary source in structured modeling is Geoffrion [32, 35]. These papers present the
structured modeling foundation: the basic framework is a hierarchical, directed acyclic graph
that represents both the semantic and the mathematical content of a model. A structured
model is a network composed of five basic types connected together by dependencies. The
types are the primitive entity (usually a non-valued a priori postulation), the compound entity (a
non-valued concept dependent on primitives), the attribute (a constant-valued property), the

function (a derived-value based on a specific rule), and the test (a specialization of the function
where the only valid results are true and false). A fully explicit structured model network has
as many elements as there are variables, constants, functions, etc.; this is the elemental structure.
By grouping similar elements together, more generalized networks are created, and herein is
the hierarchical nature of the structured modeling method. A partition of the elemental
structure groups elements into families of the same types-for example, all variables of the
same letter over all its indices--called genera; the result is the generic structure. This continues

up the hierarchy through modular structure, the structured model, and the model schema. All levels
up to the structured model represent specific instances of a model, replete with actual data.
The model schema represents instead the class of all instances whose structured models are
similar. Geoffrion presents a descriptive language, the Structured Modeling Language (SML),
that can be parsed effectively by computers and understood by trained practitioners.

The primary benefits are: (a) a single model representation can be used in different modeling
domains such as mathematical programming, simulation (with extensions to the SML to
account for stochasticity and state dynamics), forecasting, and queueing; (b) a single model
representation facilitates transmission of a model among various modeling environments,
solvers, and data stores; (c) a computer-understandable modeling language permits
computer-based manipulation of the model, so that the computer is no longer simply a text-
editor but is directing and performing semantic manipulations (for example, automated
model integration). The benefits of (a) are being realized with continuing research, as the
basic SML is expanded and other modeling needs are shoehorned. Similarly, as research
deals with model integration theory and issues (see below), (c) will come to fruition. The
outcome of (b) is much less obvious; this is a focus of this thesis, because there has been
little success in broad implementation of systems that feature SML and permit interaction
with other systems. Many prototypes have been created, but there have not been any
shipping commercial-grade applications that use SML to perform modeling life cycle tasks.

A much more recent paper by Geoffrion [37] summarizes research to date, including work
being undertaken concerning model integration, simulation via structured modeling, and the
existence of other structured modeling languages based on graph grammars and object-
oriented methods. A telling feature is that as of early 1996, the flagship implementation of an
SML-based system is still a system developed during the early 1990s (FW/SM), built on top
of a now-defunct inherently non-graphical product (Ashton-Tate's Framework IV). Jones
[49] has developed a graphical-based modeling system that is also in a prototype stage
(Networks/SM), but it seems unclear how this might be integrated with other application
environments as well.

Bhargava and Krishnan [5] discuss an example of the dramatic departure from structured
modeling provided by first-order logic (FOL) methods. They tackle the process of
converting a user-composed problem statement into a domain-specific language and then
into a mathematical model from the perspective of FOL-based model formulation
languages. This technique seems language-heavy: they introduce the language PMi to model
the domain of production problems, then break out the qualitative components of this into
another language QPM, and describe how PM* and QPM* are related to two existing (meta-)
modeling languages, LT and LI. Mapping user-stated problems into QPM and LI is
facilitated through axioms and statements in LT. An automated model management system
would generate a schema from the user's problem and then map data to that schema to
generate a problem instance. While intriguing, methods such as this are not as amenable to
implementation as the structured approach of the SML and the object-oriented approach of
the Unified Modeling Language, discussed next.

An exciting and promising development in software engineering is the Unified Modeling

Language [29, 87, 102]. Originally called the Unified Method, this notation is an object-
oriented approach to modeling any process, from enterprise processes to a telephone or car

to even a mathematical program. The UML is so vast and encompassing that justice cannot
be done here to its capabilities. The Structured Modeling Language can be mapped into the

UML fairly simply. Since the UML also adds object communication and dynamic state

information, it is a much richer environment for modeling. Furthermore, just as structured

analysis and design-the prevalent techniques of the 1980s and the momentum of which

must have fueled structured modeling--has given way to object-oriented analysis and design,
so too will structured modeling give way to object-oriented modeling. The UML has the

added benefits of becoming an industry standard [80] for software engineering process

notation and of being a language understood by many software developers and architects.

1.7.2 Model selection

Model selection is fundamentally the process of assigning a known model representation (or

creating a new one) to a user's problem, and of assigning an available solver to the selected

model representation. Increasingly it is understood that flexibility and automation are the
driving forces behind ongoing research. The user must be given flexibility in describing the

problem she wants solved and in choosing a model and solver that best fit her needs. The

modeling environment should automate the process of filtering inconsistent model
representations and incompatible solvers, it should automate the presentation of suitable
models and solvers, and it should automate the interconnections between data, model
representation, and solver.

An important aspect of model selection (and integration) is how to structure and maintain
the database of available models. This model database is usually called the modelbase to reflect
the original suppositions that model manipulation theory paralleled data manipulation
theory. At times this thesis might use modelstore to highlight the distinction that model
manipulation theory has been observed to be richer than data manipulation theory-even
though terms such as datastore, datamart, and data warehouse are now becoming common
to database implementations.

Numerous papers have proposed techniques both for the model selection process and for
the structure of the modelbase. Often the two go together because a proposed modelbase
structure will impose a selection heuristic, and vice versa.

Eck, Philippakis, and Ramirez [26] propose a solver representation language paralleling SML,
which is presumed as the modeling language, that enables automatically matching solvers to
models. The solver representation captures all genera classes that a particular solver will
manipulate, the preconditions and postconditions, if any, on those genera classes, and a list
of input/output structures that the solver uses. The proposed selection process is to provide
the end-user, who has a particular model schema in mind, with a list of all solvers in the
solver store that by virtue of the genera classes it manipulates and its preconditions, could

act upon the model schema in whole or in part. The user then selects a solver from the list

that has the desired effect and postconditions, and the solver is invoked. The solver
representation captures genera class states, which are key-value pairs. The key is an ordered
pair of a particular genera class and a property, and the value is the state of the property for
that class. So, a condition might be {(<INDEXi>,ENUMERATION), enumerated) which means
that the genera class INDEXi is enumerated. The list of properties is by definition extensible.
This approach holds much promise, because it imbues a textual language with object-
oriented characteristics and an extensible documentation mechanism.

Mili and Cioch [74] propose a documentation framework for mapping decision models to
generic problem classes. There, the emphasis is on justifying to an end-user why a particular
model is or is not suited for the user's particular problem. The documentation framework is
presented as, but not limited to, a prose-based end-user document that is delivered alongside
a modelbase. While the concept is important, not enough implementation or automation
details are provided, and this paper is dominated by another documentation paper, Mili and
Szoke [75].

Mili and Szoke [75] propose both a selection process and a modelbase structure within a
more formal documentation framework. This framework documents known problem
classes, available decision models, and accessible applications (solvers). Links among the
three groups are also stored, including the relative strengths of applicability for models to
problems and applications to models. For the user, a distinction is made between the task
required and the tools available; mappings are generated between task and tool to measure
fit. They have created a system that gathers information about a user's problem, creates a
web of relationships between the problem and known models, and examines potential
models for appropriateness. Finally, they note that their system facilitates activities beyond
model selection, including searching and browsing of models and problems.

Banerjee and Basu [2, 3] propose a knowledgebase tree of model classes. This hierarchy is
based on the concept of "frames" and "slots;" each element in the tree is a frame, and each
frame can contain any number of slots. The slots contain the properties and parameters of
the frame. Frames are variable in size and purpose; so, model types and model solvers are
stored as frames at different hierarchical levels. The intent is to assist the user in selecting a
model (solver) for a particular problem. In their methodology, there would have to be
significant up-front analysis to determine the classifications and taxonomies. Furthermore,
the proposed slot structures do not seem sufficiently formal to permit automation. Finally,
the knowledgebase limits its use realistically to the selection process only. The techniques of
both Eck, Philippakis, and Ramirez [26] and Huh [45], discussed below, are better choices
for the broader tasks of selection and integration.

Lenard [62] introduces the effectiveness of object-oriented techniques to structured
modeling. The author proposes a set of classes and protocols (communication schemes) that
capture structured modeling types and their interaction. This object hierarchy can also be
interpreted as an early proposal for a modelstore implementation.

Using SML as the model representation, Huh [45] proposes an implementation using object-
oriented constructs within an object-oriented database system (ODBMS). The components
of a structured model are stored as objects within various tables; these include a table of all

the modules, one of all the models, and a table of ports. Ports are the input and output

points for a model; primitive entities and attributes might be input ports, and functions and

tests would be output ports. A benefit of this approach is that the objects have functionality;

a model object has the Solve operation that is tailored to solve models of its type. Thus, the
database environment becomes a complete modeling environment; commands are

composed in an SQL-based language. Huh abstracts three layers of the modeling process. At

the top are model types, such as linear programming, forecasting, and max-flow. This roughly
corresponds to the modeling paradigms of Geoffrion [35]. Below a model type are model

structures, specific known problems that specialize a single model type. The ProductMix

model is a structure of the Linear Programming model type, and the PlantLocation model is
of the Integer Programming type. When actual data are attached to a structure, a model

instance is formed. The Solve operation can be invoked on an instance; Solve in turn invokes

the appropriate optimization engine for the model structure. The primary drawback of

Huh's implementation is that the mapping between solvers and model structure appears
rigid, and it is unclear how such a mapping would be extended for new solvers or models. A
goal of the paper is to shift "much of the burden of determining an appropriate and
compatible solver onto the model management system" so that the "user's possibility of
misapplication of irrelevant solvers to the model is clearly excluded." This is accomplished

by having all models expose only a Solve command. This command does take one argument
to specify which of the appropriate solvers to use, but the user is limited to the list of solvers
already specified for that model structure. However, Huh does not discuss the selection

process; perhaps through judicious model selection, the solver selection problem is
trivialized.

1.7.3 Model integration

Model integration is simply the process of making at least two models interact. They can
interact at several levels (see Geoffrion [35]), but of particular interest are how models
integrate structurally and substantively. That is, how are multiple model schemas integrated
into a single schema, and how are multiple models integrated to act on the same data?

An early paper by Geoffrion [34] proposes an integration algorithm for creating a single
schema from multiple schemas using SML. The five-step procedure is user-intensive; it is
not apparent how to automate the integration process. Given the limitations of the SML,
much of the interpretation of genera and elements is left to the user, so the user must
specifically indicate which genera can be integrated and which must be renamed. However,
the notions of integrability, reusability, and modularity are proposed as applicable to the

realm of modeling. Dolk [23] highlights some of the problems of integration, including the

problems of identifying join points for two schemas, manipulating an integrated model,
determining what processes and algorithms are suitable for an integrated model, and

mapping the data structures of an integrated model to available solvers. Geoffrion also

discusses software integration; an integrated modeling environment should support the
user's preferred interface.

A pair of papers by Dolk and Kottemann (Dolk and Kottemann [24], Kottemann and Dolk
[57]) present modeling integration from the perspective of the process: how are the activities
performed on an integrated model themselves integrated? For example, if two transportation
models of similar structure but different underlying data are to be integrated, the result might
be a transportation model with the same structure but combined data; the same solvers can
be used for the integrated model as the original models. However, if two different models
are to be integrated, suppose a transportation model with a scheduling model, then none of
the solvers for the original models might be applicable directly to the integrated model.
Instead, some hybrid solver must be generated. These two papers suggest how these hybrids
are created and how they communicate. Two particularly important forms of process
communication are direct data exchange and generative communication. The former is a
synchronous data exchange; that is, the ordering of events is important. An example is when
the outputs of one process are passed as inputs to another solver; the second solver is
blocked from operating (it must wait) until the first solver is complete. Generative
communication is an asynchronous form of communication; these are events where a
component notifies any interested components, called listeners, that some state has changed.
The listeners are free to ignore the notification or act on it. The component that provides
the notification does not wait for nor expect results from the listeners, and so continues
about its work. The authors propose a form of "demon constructs" whose purpose is to
monitor the states of various components in order to provide the notifications.

A substantial treatment of synchronous and asynchronous control, as well as resource flows
and more general control flows, is provided by Dellarocas [20, 21]. These papers characterize
the nature of component interactions in the context of coordination theory, and provide a
taxonomy of flow dependencies of which the Dolk and Kottemann assumptions are a
subset. This thesis also assumes a subset of the multitude of possibilities described in these
papers.

Ramirez, Ching, and St. Louis [86] examine the problem of separating a model from its data
(model/data independence) and from its solvers (model/solver independence). In effect,
each is entirely isolated from the other. Thus, a mapping is required to attach any data to a
model and to invoke any solver on a model-data pair. They define sufficient conditions for
model/data independence, which roughly are these. (1) Value independence: the value of any
variable or constant can change without changing the model representation. (2) Dimension
independence: the number of variables or similar dimensions can change without changing the
model representation. (3) Data structure independence: the names, locations, types, and formats
of the data sets can change without affecting the model representation. Data structure
independence is the most difficult to achieve practically; it requires that the model have
neither prior knowledge nor prior prescription of how the data are persistently stored.
Instead, only the interface to the model can be concretely specified. A similar set of
conditions exists for model/solver independence. Using a home-grown application called
the Data and Algebraic Management System (DAMS), the authors show how models, data,

and solvers are linked together through mappings. The mappings are part of a special
scripting language within DAMS that specifies how any data set will be mapped onto a
variable name in a model, and how that is mapped into an input or output for a solver.
While not directly related to model integration, independence and mappings are important
ways to facilitate flexible integration techniques. This thesis will make significant use of
independence and mappings; it is the core of flexibility in selecting different models and
making database access transparent to solvers.

The separation of models, data, and solvers into isolated, independent components is
vaguely object-oriented. With this in mind, Tung, Ramirez, and St. Louis [100] in an earlier
paper discuss integration within an object-oriented environment, notably an object-oriented
database (ODBMS). The ODBMS provides three benefits: it stores models as abstract
objects relatively effortlessly, it provides unique object identifiers to help distinguish models
from each other, and through manipulation objects it helps semantic identity, i.e., selection.
Their system presents a rather simplistic view of model integration, however, through four
types of model relationships. One model can be identical to, can be a complete subset of,
can have some intersection but not be contained in, or can be disjoint with another model.
The integration rules are statically defined based on schema integration as found in
Geoffrion [34]. As such, there is no dynamic component to model integration, no notion of
solving one model before or after another. Another interesting feature is the discussion of
semantic identity and object (model) equality. This is the problem of names: how to
determine when two models are or are not referring to the same object (data) when using the
same or different names. There are two types of naming problems: synonyms (same name,
different data) and homonyms (different names, same data). The authors claim that one
solution would be to enforce a unique name on models and genera, but that this represents
too great a burden on models of realistic size. Finally, the authors present a technique for
validating model equality by analyzing the type, value, and purpose of the underlying data
attached to a model. The methods of Bhargava, Kimbrough, and Krishnan [4] and Bradley
and Clemence [10], both discussed below, might be more effective solutions to this problem.

Muhanna [77] presents an object-oriented approach to managing the model life cycle, model
representation, and model integration. The author presents a compelling case for the object-
oriented approach. The author smartly divides a model into its public interface with the
world and its internal behavior and specification, represented as a "glass box" that has a
common exterior but can be examined inside as well. By separating these two elements
(public interface and internal behavior), the author applies the fundamental object-oriented
notions of polymorphism and protocol classes in the context of model management systems.
Polymorphism is the property of different objects supporting different functionality through
the same method. That is, sending the message "Play" to a sound clip will play the sound;
sending the message "Play" to a child will evoke entirely different behavior. A protocol class
is simply a type of object that only defines an interface without any implementation. Thus,
the protocol class "Playable" might have a public interface method called "Play." By deriving
a sound clip class from "Playable," anyone can call "Play" on the sound clip without
knowing it is a sound clip as long as it supports the "Playable" protocol. Thus the protocol
class is precisely the model trpe, and polymorphism enables the model versioning in Muhanna

[77]. The integration capabilities are as limited as those of Tung, Ramirez, and St. Louis
[100]: the outputs of one model can be the inputs to another. Again, the richness of the
Dolk and Kottemann (Dolk and Kottemann [24], Kottemann and Dolk [57], discussed
above) approaches is preferred. The notion of using a formal language such as structured
modeling to describe the atomic components and then using object-oriented constructs to
model in the large is worthwhile.

1.7.3.1 Naming and typing

Two papers address a special problem of textual modeling languages: the naming of
elements. The fundamental issues are: when do two named elements mean the same or
different conceptual elements, and when do two named elements mean the same or different
instances (data). In the first paper, Bradley and Clemence [10] present a new modeling
language that integrates features of earlier languages with a typing scheme that permits type
checking. First, each element is assigned a type comprising three elements: a concept that
represents the element's essence (apples), a quantity that is the measurable feature (weight),
and a unit that scales the quantity (tens of bushels). Second, each concept exists within a
user-specified conceptual relationships graph that describes how concepts can be aggregated.
So, if the concepts of apple and oranges can be combined into fruit, this is explicitly added
to a conceptual graph that precedes the model proper. Similarly, conversions between
quantities must be user-specified per problem (weight/volume to density). Conversions
among units (feet to inches) are supplied by the system. This system enables type
conversions, checking, and equation reductions. The overhead induced by this system
appears manageable, although it does add to the list of modeling languages.

In the second paper, Bhargava, Kimbrough, and Krishnan [4] extend the quantity and
concept elements of Bradley and Clemence [10] into a single expression called quiddity. The
quiddity measures the whole essence of a model element, such as the cost of labor in the
production of a truck. Quiddities are expressed as logical, functional relationships; they
present a calculus imposed upon the quiddity relationships that mimics the traditional
calculus used with dimensions. This paper does not introduce a new modeling language, but
extensions similar to the first paper might be appropriate. The result is that with well-defined
initial models, it is possible to use the quiddities of the elements in each model to see if there
are any name collisions and type problems when the two models are integrated.

There are several concerns with each approach. First, much of the underlying conversions of
units are provided by the system and not easily extensible. If the system does not provide
conversions from liter to gallon, then that conversion might never be possible. Second,
generally a single human language for modeling is assumed. The procedure for integrating a
model expressed using English and one using Russian is unclear. Again, the system might
have to provide mappings. Even within the English language, how is the system to know
that "car" and "automobile" are the same, or "IC" and "chip" are? Finally, neither paper
addresses the issue of mapping the model elements into model instance data. It might be
that two different names with different quiddities refer to the same data set. This might be

an error, and certainly needs to be examined by a user. This can be viewed as an enterprise-
wide modeling technique when enterprise data is shared among multiple modelers.

1.8 EPILOGUE

With the stage set, the play unfolds just so. The second act details the requirements of a
framework for implementing reusable solvers. The third presents the framework itself. The
fourth describes several solvers and applications that use the framework, to examine the
costs and benefits of the framework. The final act describes qualitatively the benefits of,
issues concerning, and future research areas for the framework, and concludes the thesis.

This page blank, intentionally left.

CHAPTER TWO

REQUIREMENTS

The first step in developing anything is to state the requirements.

Rumbaugh et al., Object-Oriented Modeling and Design [93]

Before setting out on the path of specification, it is helpful to know the destination4.
Requirements analysis distills the project goal into a specification that expresses the
necessary features, capabilities, restrictions, and expectations of the project. Requirements
are the expression of the destination, to which analysis and design determine the path.

This chapter begins to lay the foundation for requirements of solvers and solutions for
applied problems in operations research. It attempts to capture the most significant
requirements of any desirable solver. In a sense, it is a "prolegomena to any future solve 5,"
in that the requirements herein extend beyond the framework that follows and beyond the
particular technology decisions made or discussed.

Requirement specification begins, in this case, with a domain analysis, examining actual
operations research solutions and classifying them to gain insight into recurring patterns of
implementation techniques, decisions, and possibilities. A categorization of applied solutions
will allow the framework to target particularly common or receptive types of problems.
Categories that manifest repeatedly in solutions are ripe for inclusion in the framework.

4 Some might argue that the journey itself is the reason and the reward, but it is difficult to convince
customers of this.

5 Borrowed shamelessly from Kant's Prolegomena to Any Future Metaphysics.

Domain analysis will show that identifying individual subproblems as separate, modular

components simplifies implementations. This modularization leads to a classification of the

various participants in an applied solution. These participants include the user or program
that acts on behalf of the user, the problem data the user wishes to manipulate, the solvers
the user employs for the manipulation, and the various flows of data and control that

actually link the user, solvers, and data. This classification will be essential to developing a
proper object model framework for solutions.

A given solution might rely on numerous, independent algorithms and solvers interacting to
solve a larger problem. Nevertheless, many problems can be solved by a single algorithm.
Standardizing these entities and developing requirements for a solver as a stand-alone
component is half the journey. Requirements for a solver implementation will detail
expectations of a solver, so that it is widely applicable, easily reusable, and effective. For
solutions that rely on many solvers, the interconnections between solvers is an important
specification. Requirements for a network of solvers describe the primary concerns and
needs when two or more solvers work together on a single problem.

Some desirable features are independent of any one implementation. For instance, no one
solver should be responsible for converting dimensions. Dimension conversion is
orthogonal to the optimization of a linear program; no linear programming code should also
embody dimension conversion code. Instead, dimension support should be centralized. Such
features are requirements of a core, operating-system level, service. Just as the management
of file systems is part of an operating system, management of global activities such as
dimension support should effectively be part of the operating system.

2.1 DOMAIN ANALYSIS: THE NATURE OF OR SOLUTIONS

Most applied operations research modeling solutions fall within a small set of solution
archetypes. A sampling of applied solutions presented in the INFORMS journal Intefaces
provides an adequate representation of the solution archetypes. The Franz Edelman finalist
papers, printed in the first issue of each volume of Interfaces, are particularly worthwhile.
Finalist papers represent "outstanding accomplishments in the practice of our profession"
with "verifiable results that had a major umpact on a client organization" and a "commitment
to practice excellence" (Finkelberg and Graves [27]). Along with two implementation
projects in which the author participated, the seventy Edelman papers published in Interfaces
between 1987 and 1997 form the sample set for the domain analysis. All of these projects are
cited in the Bibliography of Applied Solutions (see page 333). Projects are identified by a
related word in all capital letters. For instance, the project AAASAS references the American
Airlines Arrival Slot Allocation System project.

To the extent that the proposed framework can capture the mechanisms of an archetype, it
will be suitable for easing the implementation of solutions within that archetype. Hence, it is
important to characterize these archetypes, to identify the requirements and desirable
features of the framework.

2.1.1 The components of a solution archetype

There are three relevant dimensions that partition solutions. These are the solution architecture,
the execution periodiciy, and the solution reuse. Solution architecture characterizes the structure

of the solution-how different solvers connect to each other, and how they react to their

environment to solve the problem. Execution periodicity captures how often the solution is

used-is it run for strategic planning, frequent scheduling, or real-time response? Solution

reuse indicates the proven flexibility and adaptability of a system to be applied in different

environments-that is, whether the solution is custom and embedded to serve a single role

in its existence, or whether it is used in different companies or to solve different problems

with little effort.

2.1.1.1 Solution architecture

Solution architecture captures the interaction between modeling components in a solution.

The architecture express the flow of data (inputs, outputs, and parameters) and control in a

network of processors or subproblems6. Simple problems will have solutions with

correspondingly simple architectures. Solutions that are more complex might exhibit

branching flows of data, parallel paths of execution, and reentrant information flows, and

they might broadcast control signals to other systems.

There are four types of solution architectures: single-stage, directed acyclic graph, decision-

based directed graph, and real-time directed graph. These are distinguished by the

organization of the related subproblems and the behavior of the interconnectivity between
them.

What is a subproblem?

An important question is, what is a subproblem? For the domain analysis, a subproblem is a

contained, complete, independently consistent problem, which might or might not be

embedded in a larger solution implementation. A subproblem represents the atomic level of

being and control in the solution architecture. It takes inputs and transforms them into
outputs, perhaps according to some parameterization. A client of a subproblem has no
control over the internal implementation of a subproblem. An example of a subproblem is a

simplex-algorithm linear programming solver. It takes inputs and generates outputs, and can

be controlled through a parameterization that includes the maximum number of pivots and

the number of pivots at a single basic feasible solution that will be tolerated before
degeneracy is declared.

Subproblems are an abstraction of functionality, interface, and implementation, much as

classes are in object-oriented design. As shown in Figure 2.1, a collection of interacting

6 The term subproblem is used instead of component because a component will be a well-defined entity
within the modeling framework.

Figure 2.1: Three subproblems hooked together to make a larger subproblem

subproblems can be viewed, if desired, as another subproblem, with its own interface and
implementation; the level of abstraction is not bounded. A subproblem could range from
calculating the mean waiting time for an M/M/m/k queue or solving a network min-cost
flow problem to solving ODEs or optimizing a non-linear program.

A primary goal of this thesis is to standardize the communication, interconnection, and
control of subproblems; all algorithm implementations should be expressible and useable as
subproblems that can be embedded in larger, customized networks of subproblems and
solutions.

2.1.1.1 .a Single-stage architecture

This simplest solution architecture consists of a single processing step. An implementation
gathers inputs, transforms the inputs, and generates outputs (see Figure 2.2).

Inputs - ProcessA - Outputs

Figure 2.2: Single-stage architecture

The canonical example of a single-stage solution is a generic linear programming solver, such
as the LINDO or CPLEX software packages. The expressive power of linear programming
or mixed integer programming formulations is sufficient to model many real-world
problems, and commercial solvers have significant performance capabilities to optimize or
approximately solve these problems to satisfaction. But the single-stage architecture even
encompasses simple problems such as "calculate mean queue length" or "solve set of
simultaneous equations" to the extent that these problems are final results by themselves.

The processing of a single-stage system can be arbitrarily complex; the feature that
distinguishes a single-stage system with a complex processing step from a networked system

with complex interactions of simple processing steps is the amount of control the modeler
has over the interconnections within the steps. For example, the CPLEX integer solver is
very complex, with branch and bound or cut capabilities that can be enhanced with callbacks

(calls from CPLEX into the client code during optimization). Used without modification, the
CPLEX integer solver represents a single-stage system, even though within itself it might
solve multiple subproblems. It is single stage because the client has control over the internal
implementation of the CPLEX solver only through parameterization of the algorithm.
However, with the addition of external code and logic in the client, such as routines to
generate cuts or solve relaxations, the CPLEX solver becomes a subproblem within a larger,
networked system that is no longer single-stage. (The clients of the resulting system might
still consider the entire system single-stage if they have only parameterized control over the
algorithm, as the modeler does with CPLEX.)

The single-stage system is probably the most prevalent solution architecture. Almost any
simple modeling in spreadsheet packages constitutes a single-stage solution. Examples of
particular interest include using the built-in spreadsheet solver to solve network flow
problems, solving queueing formulas in spreadsheet form, and performing what-if analyses.
The nearly universal presence and availability of spreadsheet packages, as well as the
preference and familiarity many users have with spreadsheets, mandates that any relevant
framework that addresses the single-stage architecture must work within a spreadsheet
environment.

For examples of single-stage solutions, see AT&TCLS, TEXACO, and MONSANTO.

2.1.1.1.b Directed acyclic graph architecture

More complex solutions can usually be expressed as a collection of independent, simpler
subproblems whose outputs and inputs are chained together. The collection of subproblems
and the collection of links from the output of one subproblem to the input of another form
the nodes and arcs of a solution network. When all of the arcs in a solution's network
represent only the flow of data (as opposed to the flow of control or real-time events, see
sections below), and when there are no cycles present as a result of the arcs, then the
solution has a directed acyclicgraph architecture (see Figure 2.3).

Figure 2.3: Directed acyclic graph architecture

Each step in the network is a subproblem of arbitrary complexity. One could be a simple
computation (such as a database query) while another could be a complex optimization
algorithm. On their own, the subproblems might be sufficient in some circumstances to
work as single-stage architectures; it is their dependencies on other subproblems that
engender the network structure.

The boundaries between subproblems are also arbitrary. Different subproblems could be
entirely different applications, such as CPLEX and Excel. They could be a single application
used in different configurations, such as using CPLEX to solve a transportation problem
and then using it again to solve an assignment problem. Different subproblems could also be
separate modules or subroutines within a single application, such as a spreadsheet's financial
functions, its database capabilities, and its solver.

The restriction that the interconnections between subproblems represent only flows of data
and not flows of control or other information is crucial to simplifying the analysis of directed
acyclic graphs. When the interconnections are all data flows, the algorithm for the entire
solution is trivial: simply execute each subproblem in its order in the topological ordering of
the network of subproblems, storing its outputs as necessary for input into subproblems that
have yet to be executed. The absence of control flows, which might specify that some
subproblems should be skipped or repeated, guarantees that the execution path through the
solution is the same every time. This deterministic execution can perhaps be leveraged in
simplifying the design and implementation of a framework to address these solution
architectures.

The directed acyclic graph is the essential structure of much integrated modeling research;
see Geoffrion [35] and Muhanna [77]. The chief advantage of acyclic graphs is that a
topological ordering of the network provides a simple sequence of subproblems that ensures
that each subproblem is not executed before its required inputs have been determined by
previous subproblems. Compared to networks with cycles, acyclic networks are relatively
easy to analyze, and it becomes much simpler to add multiprocessing or distributed
processing to the solution when the precise dependencies and orderings of the steps is
known.

Example. The solution used to restructure Procter & Gamble's supply chain (P&G) provides
an excellent example of a directed acyclic graph architecture. The problem P&G examines is
product sourcing-choosing the best location for making and distributing each product.
Their strategy is to decompose the supply chain model into two phases. In the first phase,
they solve a distribution-location problem (a 0-1 integer program) to place distribution
centers and assign distribution centers to customers. Because of the heuristic nature of
decomposing this problem into two phases, the optimal distribution locations in the first
phase might lead to choices in the second phase that yield a result that is not globally
optimal. One technique to overcome this problem might be iteration between the two
phases (which would create a network with a cycle; see the decision-based directed graph
architecture, below). The technique the authors use is to generate many good solutions in the
first phase, in order to give the second phase more opportunities to find good solutions. So,
in the first phase they also determine a fixed number of near-optimal solutions; a near-

optimal solution is another assignment of distribution centers to customers that performs
almost as well as the optimal assignment.

Given the locations of the distribution centers, the second phase solves a separate
transportation problem for each product. This transportation problem for a given product
assigns flow of that product from a plant either to a distribution center or directly to a
customer. For a given product, the number of transportation problems is the number of
solutions generated by the first phase. The best result obtained over those problems is used
as the result for that product. Each product remains independent of the other products.

The solution architecture for this problem is shown in Figure 2.4. The graph clearly shows
that each separate Phase 2 step is independent of the other Phase 2 steps. Hence, each of
these steps can be processed on separate processors (or separate computers) once the first
phase is complete. In this case, decomposition leads trivially to potentials for
multiprocessing.

Figure 2.4: Architecture of P&G supply chain model solution

For more examples of solutions with a directed acyclic graph architecture, see EPRI

(particularly Figure 3), SPAIN, GM, and SANFRAN (particularly Figure 2).

2.1.1.1.c Decision-based directed graph architecture

Often, a solution will require some iteration and branching decisions at the level of the
subproblems. For example, branch and bound algorithms might use any of a number of
relaxations as subproblems for the bounding step; there is an intrinsic repetition of branch
and bound that eventually ends due to some predefined termination criteria. While it might
be possible to model the entire algorithm as single-stage architecture, this sacrifices the
opportunity to insert different relaxations into the subproblem mix. Because of its repetition,

hence its cyclical nature, a directed acyclic graph is also insufficient to model this large
solution.

The third architecture, the decision-based directed graph, addresses this concern by extending the
directed acyclic graph architecture in two ways. First, there can be cycles of data flow.

Second, there can be subproblems whose output flows represent either-or results, i.e., flows

of control and data instead of just flows of data. Essentially, these subproblems are decision
nodes in the graph, from which control of the network travels along one of the outgoing

arcs (see Figure 2.5).

sion
nch

- - - Outputs

Figure 2.5: Decision-based directed graph architecture

While the primary analytical challenge of directed cycles is verifying convergence and
eventual or timely termination, directed cycles of data and control flow introduce a variety of
architectural and implementation challenges in general systems. These include control timing
and synchronization, and data sharing, availability, and synchronization. For example, in
Figure 2.5, the execution of Process A and C must be serialized (control synchronization) so
that Process C is never working with invalid outputs from Process A (data synchronization).
In single-processor systems (or single-threaded code), these problems are usually resolved by
the inherent single process nature of the system (or code). But, in general unrestricted
environments more care must be taken with directed cyclic graphs than with directed acyclic
graphs to ensure the integrity of the data.

Focusing on models as communicating processes, Kottemann and Dolk [57] address directly
the problems of data availability and synchronization. They propose a global workflow
manager (a message router) that controls the various subproblems in an integrated model.
Each subproblem must be designed to receive appropriate control messages and generate
appropriate control events. They also propose a class of daemons (demons) that activate
when conditions about data or execution flow are met. In theory, the daemons enable
completely indeterminate, real-time processing (see the next architecture), although they do
not discuss implementation problems specific to real-time reactions.

7 "A program that is not invoked explicitly, but lies dormant waiting for some condition(s) to occur.
The idea is that the perpetrator of the condition need not be aware that a daemon is lurking [88]."

Example. An optimization tool used by SANTOS, Ltd., a publicly owned mineral

exploration and production company in Australia (SANTOS), provides an example of a

decision-based directed graph. SANTOS developed an application called SIPS to assist in

the scheduling of oil well and refinery operations for a number of companies working in
central Australia. SIPS determines investment (capacity planning) decisions and reservoir
production schedules to maximize net present value of the system over a twenty-five year
planning horizon. The tool implements the Wolfe-Dantzig generalized programming
method, which breaks the program into a master problem and a series of subproblems. The

system alternates between solving the master problem and then solving the series of
subproblems, terminating when an optimal solution for the master problem is found. Hence,
each time the master problem is solved, the system decides whether to continue or
terminate. If the system elects to continue, it cycles back through the subproblems and into
the master problem again as shown in Figure 2.6.

Trunkline optimization (2)
Solve network flow for trunkline expansions

Field Development & Simple Reservoir
Custom algorithm to compute feasible schedules

Trunkline optimization (1)
Solve network flow for trunkline expansions

I i _ A d,, l. r , l ,,

SConvergence? Solve LP to compute better time schedules

Outputs

Figure 2.6: Architecture of SANTOS's SIPS planning solution

For other examples of decision-based directed graph architectures, see IBMOPT, AAASAS,
GTE, and SADIA.

I

2.1.1.1 .d Real-time directed graph architecture

The architectures explored so far are, essentially, batch processes. Control starts at the
Inputs and proceeds, with possibly different flow paths depending on the inputs and
decisions, until data flow onto the Outputs. These architectures cannot respond to real-time
changes to data8 . Hence, they are not always suitable for online optimization and operational
planning problems that require the algorithm to adapt to changes in live data. For example, a
system that interactively schedules a job shop in real time might tie into a shop floor control
package that provides instantaneous updates of piece-flow through the shop. When a piece
leaves one workstation and is placed in an inventory bin, the shop floor control system
signals an event to the optimization engine, which can then adapt its view of the world to
account for this piece-flow.

The fourth solution architecture, the real-time directed graph, extends the decision-based
directed graph architecture with the addition of real-time, exogenous signals (see Figure 2.7).
An example of such a signal might be a call to 911 for emergency assistance; the 911
operators must dispatch and possibly re-route medical and police teams to various sites
based on these random calls.

sion
nch

- - - Outputs

Figure 2.7: Real time directed graph architecture

Subproblems within these architectures can be designed to respond to these events, allowing
them to leverage the additional information provided by a real-time system. These
subproblems can also be used in architectures without real-time events; responding to events
is an additional feature but not a requirement.

Real-time architectures require the most careful design and forethought towards
implementation. The presence of exogenous, possibly random and varying events raises
issues of synchronization, queueing, and reliability that are more complex than in the

8 They can be designed to respond to simple interactive control events such as "pause" or "cancel."

previous architectures. In architectures without these events, a global entity acting as a

controller can manage the entire system with complete certainty; in a sense, the space of

activities is known deterministically. This is not possible in a real-time system.

Typically, real-time architectures are useful only in circumstances where decisions must also

be made in real time. For a strategic planning system, there is no need to respond to real-

time events; instead, these events are aggregated or queued in a database prior to running the

system. This aggregation removes any system dependencies on real-time events.

Example. Part of the traffic control system developed for the Hanshin Expressway in Japan

exhibits real-time structures (HANSHIN). With the goal of maximizing the total traffic

flowing into an expressway network, the system limits the flow of cars onto the expressway

at each entrance ramp to relieve congestion. The system comprises two phases. In the first

phase, representing normal operations, a linear program is solved every five minutes with the

latest traffic data to determine the flow-rate of traffic onto the expressway. When traffic

volumes and fluctuations remain within a control range, the LP solution is used to control

traffic. When volume or fluctuations are out of range, a special subsystem overrides the LP

solution and actually closes entrance ramps using predetermined rules; these rules are

computed off-line with analyses and simulations. In the second phase, representing extreme

operating conditions such as accidents, another subsystem will actually force vehicles on the

expressway to exit, relieving congestion around the trouble spots. As is typical of such real-

time systems, the actual "operation research" component of this system is small relative to

the database and information technology infrastructure.

Examples of other real-time architectures include AAYIELD, IBMLMS, and HARRIS.

2.1.1.2 Execution periodicity

Besides the architecture of a solution, another component is its execution periodicdy. Execution

periodicity captures how frequently the solution executes; or, to put it another way, it

specifies at what level of the decision process for a company the solution participates.
Nahmias [79] calls this the "time horizon" and partitions the horizon into three ranges: long-

term or strategic, medium-range or tactical, and short-term or operational. Solutions are

classified into three similar groups, as strategic, tactical, or operational solutions. Some

implementations might be used at multiple levels, perhaps in a different mode or

configuration.

2.1.1.2.a Strategic solutions

Strategic solutions are systems that solve long-term or long-horizon problems. Examples

include capital asset allocation, facility location, and network design. A solution might be

executed many times for a single problem (as in what-if scenario analyses), so even though

the problem is long-term, the solution might still need to exhibit responsive run times.

Solutions of this nature also encompass problems that only need to be solved once; these are
one-shot solutions. An excellent example is resolution of the web of debt following the crash of
Kuwait's al-Manakh stock market in August of 1982 (KUWAIT). This crash resulted in $94
billion (U.S.) of debt between traders; most traders owed and were owed money. The
"entanglement" of debt among the traders was so severe that courts could not resolve the
problem case by case. A team of researches applied LP models to determine the optimal pay-
off amounts to maximize the total payback of debt. Barring any future crashes, this problem
is clearly solved only once, although the LP itself was solved many times during validation
and sensitivity analysis.

There are typically two approaches to implementing these solutions. One follows the
philosophy "because we will only use the solution one time, or rarely, let's use off-the-shelf
algorithms, and concentrate on data collection and prioritizing the goals and constraints
instead of run time." With this philosophy, the implementation team might model their
strategic problem in a spreadsheet package or use commercially available, standard
optimization packages. The option of investing significant modeling resources to design a
customized algorithm for the problem might not be cost-effective if the solution is used only
once a year. The MONSANTO and SANDF projects, which used a standard LP solver and
spreadsheet package, are examples of this approach. This approach also encompasses most
strategic analyses that management consultants perform: spreadsheet-based models that
leverage standard database protocols.

The other approach is to develop a highly-customized solution, under the belief that "this
solution addresses such crucial strategic issues and will be employed and scrutinized by high-
level managers that a custom solution is warranted." Furthermore, this custom solution, if
designed appropriately, might then be sold to other companies or departments within a
company. In the NYNEX project, for instance, custom algorithms were created to solve all
but one of the many subproblems.

For both of these approaches, a capability to reuse existing solvers easily can greatly reduce
development time of a strategic solution. For the off-the-shelf technique, reusable solvers
are another item to add to the toolkit. Rather than model an interesting problem using a
spreadsheet's monolithic solver, a preexisting solver for that problem could be used with
little additional effort. For the custom-solution technique, an existing solver might be
embedded within a larger framework.

Strategic solution implementations typically have fairly loose requirements on their
components, relative to other solutions. Usually, components do not need to respond to
real-time events. They might not need to have a bounded run time, and thus can run to full
completion. However, given that the developers of the solution might have limited
resources, the reusability must be greater; developers will not have time to learn arcane
command-line syntax or file formats or APIs.

2.1.1 .2.b Tactical solutions

Tactical solutions solve mid-term problems, at the planning or scheduling levels. Examples
include monthly distribution schedules, energy planning, fleet scheduling, and maintenance
planning. These solutions are usually run on a fixed time schedule (such as once a month),
but this is not a strict requirement.

Most tactical solutions fall into one of two categories. The first includesproduction-environment
schedulers. These systems run on a regular basis to generate schedules or assist a regular
decision-making process. They normally have automated data inputs and outputs and
intimate knowledge of their environment. Solutions generated by these systems might be
directly implementable. That is, the data outputs might directly feed shop-floor control
systems, for instance.

The second category includes informal schedulers. These systems are used primarily for what-if
analyses to indirectly assist a decision-making process. Data input might be manual (such as
entering values into a spreadsheet), and solutions generated by these systems must be
reformulated into plans. They might provide approximate solutions, or solutions to relaxed
problems that do not address all of the constraints in the environment. Consequently, the
(human) scheduler uses these systems for guidance, not for actual schedule generation.

Production-environment schedulers rely on significant information accessibility, normally
through a corporate information technology infrastructure. These systems have direct access
to company databases, via batch reports or dynamic queries. The operations research
component can be a large part of the solution, consuming most of the processing resources
(CPU time) and development time. Texaco's OMEGA blending software (TEXACO) is an
example of production-environment scheduling. Implemented at all of their domestic
locations, OMEGA ties into the plant databases to provide substantial decision support.
OMEGA permits extensive what-if analyses in generating a schedule, which can then be
turned over to the operators.

Informal schedulers have less restrictive data requirements. Users might enter data by hand,
or manually query the company's databases. They might save outputs directly in a
spreadsheet, rather than uploading them back into large databases. The typical outputs of
these systems are monthly reports, tables, and charts. The operations research contribution
is the most important piece of these systems.

Production-environment schedulers are often complex software applications, developed by a
company's IT group. Reusable components can reduce development times of these
applications, but the modelers need to acquire sufficient input in the development of these
systems. Informal schedulers can also be complex software applications, but usually are
spreadsheet models, often created by the modeler or planner. Reusable solvers enable the
modeler to enhance the planning, reduce development times, and use customized solvers
instead of monolithic solvers.

2.1.1.2.c Operational solutions

Operational solutions solve short-term and real-time problems. These systems might run
overnight, instantaneously, or even continuously. They manage the day-to-day and moment-
to-moment operations of automated activities, such as yield management, job shop
scheduling, traffic control, and emergency dispatch.

There are three types of operational solutions:

* Batch solutions are overnight batch jobs or daily planning cycles that schedule the next day
(or time period) or analyze the previous one. The KODAK scheduling solution is an
example of a planning cycle that occurs three to six times a week.

* Responsive solutions run many times during the day at the request of operators; these
include yield management systems that must respond quickly to a request for resources.
AAYIELD and NATIONAL, both reservation systems, are responsive solutions.

* Live solutions run continuously and respond to events in the environment; these include
emergency dispatching system, control of traffic systems. The HANSHIN expressway
control solution is live; it monitors the conditions of an expressway and can react quickly
to detrimental effects.

Operational solutions are typically highly automated. They can even be operator-
independent, especially batch or live solutions. These systems must be intimately tied into
corporate data systems and have fast turn-around times on requests for information. Speed
is critical in responsive and live solutions. Hence, they must be designed with greater care
than a spreadsheet model used for less frequent tactical solutions.

From an implementation standpoint, the operations research contribution is a smaller
proportion of these systems. The optimization provided by operations research methods
might be the driving force behind a solution, but often the challenges of providing real-time
data access, suitable user interfaces, and sufficiently powerful, concurrent systems
overwhelm the development effort of the operations research components.

It is much more difficult to create good, reusable components for this class of problems; the
real-time requirements and run-time requirements are much more stringent than for other
solutions. These systems typically have custom algorithms and decision support code.
Therefore, the value of non-monolithic, reusable solvers in this area might be limited.

2.1.1.2.d Conclusion

A summary of the types of execution periodicity appears in Figure 2.8. Each box in the

figure is a category of solutions, grouped by execution periodicity and sub-classification or
sub-functionality within that periodicity. Links in the figure represent "is-a" relationships

(generalizations), where the category at the tail of the link "is a" type of the category at the

Figure 2.8: Hierarchy of execution periodicity types

head of the link. So, a batch solution is an operational solution, is a solution. These types are

not mutually exclusive; some solutions are so complex as to span several categories.

Furthermore, some solutions might exist outside this classification.

It appears that reusable components are best targeted towards strategic and tactical

solutions, especially those that use spreadsheet packages. Reusable components are suited

for such interactive environments. They can enable modelers to solve problems with special

algorithms rather than the monolithic spreadsheet solvers. And they can reduce development
time by alleviating the need for the modeler to map a specific problem into a generic solver.

Reusable solvers also have a place in custom-built solutions, where they can reduce
development time by providing an encapsulated, standardized method to solve small and

known subproblems.

Currently, real-time markets are not so appropriate for focus, given (a) the small part

operations research models often play in real-time systems, and (b) the need for highly
specified, custom solutions to satisfy the special needs of real-time solutions. Hence, the

returns on effort in this area will be more difficult to realize.

2.1.1.3 Solution reuse

Solution reuse expresses whether a particular solution is implemented once or multiple

times. As explored below, there are different implications for the design of an

implementation depending on whether the entire solution will be reused.

2.1.1.3.a Single use solutions

Many solutions are designed and implemented to solve a single problem. These problems
can range from strategic one-shot scenarios to real-time data-intensive scheduling systems.
They can be simple models that are used once and then discarded, or highly complex,
embedded systems that run a factory.

There are several reasons solutions are limited to a single use:

* The problem is often complex or unusual enough to warrant a custom solution that
cannot be applied somewhere else. The fix of the Kuwaiti stock market crash
(KUWAIT) is an example of an unusual problem. The search for the SS CentralAmerica
(METRON) is another9.

* Data requirements might be tremendously complex, making it difficult to extract the
solution from its environment. The Hanshin expressway (HANSHIN) and fleet
assignment at Delta (DELTA) are two examples of problems with massive or highly-
specialized data requirements.

* Proprietary technologies might make it impossible for the solution to be used again.
National Car Rental (NATIONAL) developed a yield management system that could
theoretically, be applied at other rental agencies, but it gives National a competitive
advantage over companies that lack a sophisticated yield management system.

* The system might have been designed without the proper measure to enable more than
one use, so that it cannot be used again.

Single use solutions can be somewhat lax in their data requirements. Customized "hacks"
can be applied if necessary to save time and money in development. Of course, removing the
hack at a future time in order to use the solution to solve another problem might destroy any
initial gains-hacks rarely are a better alternative to good design from the beginning.

2.1.1.3.b Multiple use solutions

Other solutions are designed and implemented to solve many problems. These often yield
generic software applications that are easily transportable. Multiple use solutions are typically
created for strategic and scheduling solutions; because of the complex requirements of
operational solutions, deploying one to solve multiple problems is difficult.

9 This solution was presented in the Edelman paper as a technique that could be applied in the
future, although no other solutions were given; the technique was later turned into a generic software
solution at Metron.

There are several justifications for creating a multiple use solution:

* The problem might recur frequently enough within a company to warrant the extra

development effort to create a standardized package. This is true of General Motor's

PLANETS package (PLANETS), Texaco's OMEGA product (TEXACO), and the

SONET toolkit (SONET).

* The company, especially if it is a consulting firm, might be able to sell the package to

other companies in the same market. PONTIS and EPRI are examples of software
created for specific markets.

* The per-use cost of a standardized solution is dramatically less after the first use.

Therefore, the deployment costs are decreased; this provides an incentive-or at least,
removes a barrier-to try the solution in other areas.

Multiple use solutions must be designed with more care than single use solutions. They must

be more flexible, accept a wider variety of data input, and have more robust user interfaces.

2.1.2 Categorization of sample solutions

Table 2.1 on page 68 categorizes sixty-three of the seventy Edelman papers for the eleven

years from 1987 through 1997. The other seven papers (ABB, EGYPT, GRI, MARRIOTT,
NEWHAVEN, NHFIRE, and SAINSBURYS) either described applications that did not
have significant computational components or summarized the impact of management
science and operations research efforts at a company without providing sufficient details for

classification. The matrix also includes two non-Edelman projects of personal interest to the
author, namely MONSANTO and SIPMODEL, and to which the author contributed
significantly.

Down the side of the matrix are the solution architecture types: single-stage, directed acyclic
graph, decision-based directed graph, and real-time directed graph. Across the top of the
matrix are the execution periodicity types: strategic, tactical, and operational solutions. At the

juncture of an architecture and an execution periodicity are two cells. The upper cell lists the
solutions that are single use; the lower cell lists those that are multiple use. The solution
reuse was determined solely from information provided in the Edelman paper itself.

These categorizations are open to interpretation. In some cases, articles presented
insufficient detail to ascertain the precise nature of an implementation. In other cases, a
solution might be used at different planning levels; the essential contribution or
implementation from a paper is what has been classified. Some systems, such as IBMLMS
and SONET, are so comprehensive that they span several execution periodicity categories.

Single use
Strategic solution Tactical solution Operational solution

Multiple use

ENGLAND (one-shot) DRG
KUWAIT (one-shot) HOMART
METRON (one-shot) TATA
MONSANTO

TINKERAFB
SANDF (one-shot) YASUDA
VILPAC

Single-stage AT&T
BELLCORE

BELLCOREPDSS
DIGITAL GECAPITAL
PLANETS

NYC
SYNTEX

SO
USARMY

TEXACO
USPOSTAL

CAROLINA
DELTA
HASTUS KEYCORP
LLBEAN KODAK

NYNEX LTVSTEEL LTVSTEEL
NATIONAL MOBIL
SANFRAN REYNOLDS

Static, directed SHUTTLE
acyclic graph SPAIN

AT&TCAPS
BETHLEHEM
CHINACHINA EPRI NAVANLINES
EPR PONTIS PRUDENTIAL
GM
P&G
SIPMODEL

CITGO AAASAS
CITGO DESERTSTORM

CITGO
SADIA MOSLS

SADIA
Decision-based SADIA
directed graph GTE IBMLMS

IBMLMS
SANTOS AACREW

SONET
SONET

YELLOW
YELLOW

AAYIELD
HANSHIN

Real-time HARRIS
directed graph ISRAEL

IBMLMS

Table 2.1: Categorization of Edelman paper solutions

2.1.3 Discussion

The population of Table 2.1 exhibits a diagonal tendency; solutions are generally grouped
from the top-left down and across to the bottom-right. This matches a reasonable mental
model of applied solutions. As a solution's execution periodicity decreases (that is, its
frequency of execution increases), solutions should become more complex, architecturally.
The complications of working with real-time or non-aggregated data demand more

sophisticated environments. Similarly, as the execution periodicity increases towards strategic
solutions, more complex architectures become less suitable. There is no need to implement a
system that supports real-time interruptions when the time horizon of the solution is on the
order of months or years.

Forty-nine of the sixty-five categorized projects fall entirely within the three non-real-time
architectures and the two longer-term execution periodicities. Of the remaining sixteen, parts
of four are within the described region. Therefore, the region encompassing everything but
real-time architectures and operational solutions-half of the table-accounts for more than
three-quarters of the solutions. Of the fifty-three projects that have total or partial solutions
in this region, forty-three have single-stage or static directed acyclic graph architectures.
Thus, these two architectures and non-operational execution periodicities account for two-
thirds of the solutions.

As an aside, it is important to note that Edelman papers typically represent significant efforts
of development, applied operations research, and implementation. The more common,
mundane tasks that this thesis targets are presumably simpler in their architectures, solution
reuse, and periodicity. Hence, it is safe to say that the percentages identified above are likely
lower bounds of the true proportions for the applied solutions this thesis targets.

The relationship between classification and implementation. How, then, does a solution's
classification in the table affect implementation complexity, decisions, and contributions?
Generally, more architecturally complex solutions require more complex implementations.
Interestingly, as solutions become more complex, the implementation requirements of the
operations research components form a smaller proportion of the total project. As systems
must manage larger data sets, react to real-time events, or have sophisticated user interfaces,
the operations research solvers are a smaller, albeit crucial, piece of the whole.

Given the high proportion of solutions in the upper-left of Table 2.1 and the larger role of
operations research components in those solutions, this thesis will target specifically
solutions with single-stage, static directed acyclic graph, and decision-based directed graph
architectures with strategic or tactical execution periodicities. This will generate a maximum
benefit for a minimal effort. This does not diminish the importance of real-time
architectures or real-time execution periodicities. Instead, it indicates that this thesis
represents a first step rather than the entire journey towards a solution that encompasses all
solution archetypes.

2.2 PARTICIPANTS IN THE SOLUTION PROCESS

This section categorizes the various entities that participate in a solution implementation.
This is a rough cut first step of object-oriented analysis, building on the results of the
domain analysis. Despite the infinite variety and complexity of the space of all solutions,
there are a relatively few broad groups of participants. These six that follow are the primary
elements of most solutions.

Actors. The primary agents of change, actors are active objects". The users and any
programs acting on behalf of the user are actors. These objects change and set data, initiate
or terminate execution, and acquire results. Activities generated by actors are randomly
occurring; for example, the user could stop a solution at any time. Actors can exhibit
spontaneous changes in behavior, without being operated on by another object. Programs
that drive the solution process, either through macros or graphical displays, and whether or
not the user is present, are actors from the viewpoint of the solution. That is, the solvers are
indifferent to whether the activities were generated by the user or a program.

Problem data. Problem data are the specific data that form the inputs and outputs of a given
instance of solution execution. These are the tables, matrices, vectors, sets, dimensions,
costs, flows, etc., that are passed around among actors, data stores, and solvers (see the next
two items). Problem data travel between entities on data flows (see below).

Stores. Stores are the persistent repositories of problem knowledge. There are two types of
stores: data and model. Data stores manage collections of problem data. A single data store
might contain the inputs and results of many solution executions, hence many sets of
problem data. During the course of execution, a data store serves as an intermediate buffer
to separate two entities. If two solvers are on different computers, run at different times of
day, or understand different formats, for instance, then an intermediate data store removes
any dependencies between the solvers. The upstream solver inserts its results into a data
store, and the downstream solver queries its inputs out of the data store.

A model store is a data store whose data are model knowledge. For example, the expression
of a math program, whether in AMPL or the Structured Modeling Language, is itself data,
and is persisted in a model store. A familiar example of model stores is the spreadsheet. The
location of cells and placement of functions and their references form a model, and the
spreadsheet cell contents are the model store of that model.

Solvers. Solvers transform problem data. Any component that manipulates or transforms
data is conceptually a solver. These are the primary focus of this thesis; data stores, model
stores, and flows are well-researched and understood, but their interaction with solvers is
less well defined. Examples of solvers include the traditional massive commercial systems
CPLEX and OSL, smaller components such as a bin-packing engine or inventory calculator,

10 According to Booch [7, p. 91], an active object is autonomous, encompassing its own thread of
control and serving as the root of control.

and even domain-unrelated applications such as photo editors, search engines, and task
schedulers.

Data flows. Data flows are resource flows that transport data. Resource flows are essentially
the transfer of some shared resource between two objects. The resource can be anything
used by the objects. In the case of data flows, the resource is typically a portion of the
problem data or a piece of the model for a given solution execution. Resource flows in the
framework will be explained and explored in the next chapter.

Control flows. Controls flows are another type of resource flow prevalent in applied
solutions. Where data flows transport problem data or models, control flows transfer control
of the system to another object. Calling a subroutine is an example of a control flow.
Because of the variety of different environments, operating systems, and programming
languages employed by solvers, the mechanisms for control flow are an important part of
any solution.

A primary challenge of the framework is to standardize the interaction protocols among
these participants. Current data store standards (SQL and ODBC) are sufficient for the
framework's needs. Resource flows encompass a wide range of interactions, but the
framework only needs to draw from a select few subsets of flow research. With the solver,
much remains to be done.

Example: Two-stage directed acyclic graph solution

Consider the problem of loading rectangular pieces into flat processing beds, where each
load of pieces requires a certain processing time, and the total available time is limited to a
day. One possible approximation algorithm is to first develop a candidate list of possible
loads from all of the available inventory, and then to select the best twenty-four hours of
loads.

This is a simple, two-stage directed acyclic graph architecture (see Figure 2.9).

Actor

Control flows

I Client I

Solvers Binpack Knapsack

Data flows I

Data stores

Figure 2.9: Sample two-stage solution demonstrating participants

1. First, a two-dimensional bin-packing is performed over a collection of pieces, generating
a candidate list of possible loads. Pieces are partitioned by their thickness, so that pieces
of different thickness cannot be mixed in the same load.

2. Second, from the collection of all available loads, a knapsack algorithm selects the best
twenty-four hours of loads, where the value of a load is determined by the utilization of
the bed space for that load, and its processing time is proportional to the thickness of
pieces in that load.

The participants for this solution, as implemented, were:

* Actors: Microsoft Excel and a custom C++ client application.

* Data stores: A single Microsoft Access database with different tables.

* Solvers: Custom C++ bin-packing algorithms and a custom COM knapsack optimization
component. The bin-packing algorithms were driven from the C++ client application,
whereas the knapsack algorithm was driven by macros in Excel.

* Data flows: SQL query in C++ to retrieve data for bin-packing algorithms, and Microsoft

Query for data needs in Excel.

* Controlflows: Generic function calls in C++ for the bin-packing algorithms, and Visual
Basic for Applications and COM in Excel for the knapsack algorithm.

2.3 REQUIREMENTS OF A SOLVER IMPLEMENTATION

This section describes the requirements and desirable features for any particular solver
implementation. These are presented from the perspective of the solver as a stand-alone
entity, applicable for single-stage solution architectures. Later sections present requirements
for solvers that can be deployed in graph architectures.

The requirements of a solver implementation are as follows:

* Executable. The solver is an executable application; that is, it is object code that can be
directly run by the user.

* Invokingfrom different applications and environments. The solver can be invoked from different
applications and environments, such as programming languages and business
productivity applications like spreadsheets.

* Documentation and introspection. The solver provides dynamic documentation and the ability
to query its capabilities and intentions programmatically.

* Progress updates. The solver can update its client on its progress during execution.

* Life cycle control. The client can terminate or pause the solver gracefully during execution.

* Dimension and type support. The solver supports dimension and type manipulations.

* Testing and validation. The solver can easily be embedded within a testing and validation
framework.

* Computer-based training. The solver is easy to use as an educational tool.

These are each discussed in detail in the following sections.

2.3.1 Executable

A solver or algorithm can exist in many forms. At one extreme, a recipe is an algorithm that

provides no implementation or assistance. Instructions for combining hot water, crushed
leaves, and oil of bergamot are an algorithm for creating a steaming flavored beverage. In

operations research, a recipe of instructions might specify an algorithm for solving a

transportation problem using the simplex method, including where and how to pivot. These
"solvers" require extensive interaction with the client, be it a thirsty person or a quantitative
analyst. The client must understand the algorithm and make it so.

At the other extreme, an automated, futuristic machine called a replicator exposes an

algorithm for transforming molecular matter into any form. This machine requires no
interaction with the client other than the specification of the object to create, such as "Tea,
Earl Grey, hot." Literally more down to Earth, a software application might expose an
algorithm for solving the transportation problem with only minimal input from the client,
who must specify the suppliers, customers, demands, supplies, links, and the various costs.
These "solvers" are self-contained, automated devices that embed algorithms and expose

their functionality without requiring their clients to know how they work, or, just as
important, how they were built.

In fact, often this latter issue, knowledge of how a solver is constructed, deters users of
many solver implementations. Why should a quantitative analyst or applied operations
researcher understand the command-line parameters and syntax of the MAKE utility and the
Gnu C++ compiler? Yet far too often, they are asked to do just that in order to use an
algorithm. The algorithm is provided as source code that builds reliably on a single system:
the author's. For any other system, the user will likely have to recompile, possibly adjust the

build settings, specify libraries for the target machine and operating system, and even rewrite

portions of the code that depend on platform-specific functionality.

Understanding the development environment of the solver should not be a prerequisite of

using that solver. Hence, the developer of the solver should provide the solver in a form that

does not require this understanding.

For the majority of computer systems and operating systems, this means that a solver should
be an executable file. An executable file is a file created from one or more source files and
translated into machine code that can be run ("executed") by the operating system. The
nature, structure, and format of an executable file (also called just an executable) depend on
the target machine and operating system. For instance, for the Microsoft Windows family of
operating systems, executables are either applications (EXEs) or dynamic-link libraries
(DLLs). For a Java Virtual Machine, any class file is an executable".

The chief problem with executables is, of course, machine and operating system
dependence. An application created for Intel processors with 32-bit Windows might not run
on 16-bit Windows, will not run on a MIPS processor running Windows, and will not run on
a PowerPC processor running MacOS (precluding emulation). There are two ways to tackle
this problem. The first is to release multiple versions of the executable; this is prevalent with
UNIX applications, where every version of every vendor's UNIX seems to require its own
executable to run successfully1 2. The second is to minimize the operating system and
processor differences by using a virtual machine such as that provided by Java.

In any case, the goal is to place the burden of implementation on the developer of the solver
(a single entity) rather than on the users of the solvers (hopefully, many entities). Providing
an executable instead of--or, better yet, along with--a bunch of source code can greatly
reduce the burden on the users.

Customization and parameterization. An interesting side effect of this requirement is the
change in how a user customizes or parameterizes an algorithm. Customizations might
include changing control logic or the underlying data types used for calculations;
parameterizations might include setting the maximum number of iterations or convergence
tolerances. With the source code, a user has complete control over the entire algorithm,
assuming he or she can comprehend both the algorithm logic and the expression of that
logic in a programming language". Thus, theoretically any customization or parameterization
is possible with enough tweaking and fiddling.

With only an executable, the user is limited to those customizations and parameterizations
exposed by the executable through initialization files, command-line options, and user-
interface interactions. The advantage of this approach is that the user does not have to
understand the programming language or even the algorithm logic entirely to parameterize
an algorithm. The downside is that customization might be difficult if not impossible. For

11 With Microsoft's Java Virtual Machine, any Java class file is also a Windows executable, because
that JVM exposes Java classes as COM objects.

12 This is the author's experience with the various UNIX workstations on MIT's Athena systems.

13 User-friendly solvers might provide all parameterization constants in a separate source file. This
would make it possible to change a parameter in one place and have it reflected throughout the
algorithm, thus mitigating the need to understand the algorithm logic just to parameterize it.

instance, if the implementation uses 32-bit integers and the user wants to use 64-bit integers,
there might be no recourse except to use a different solver. If the user had the source code,
at least there is a chance she could rebuild the executable using the preferred integer type.

For the majority of users, the trade-offs in having only the executable versus only the source

code give the advantage to having only the executable. These users are the untapped market

of quantitative analysts, students, and modelers who do not know the software development
process but who do want to use more sophisticated algorithms than they currently use.

When source code is important. In some circumstances, it is useful or even necessary to

have access to the source code of a solver. When the client of a solver is written in the same
programming language or environment as the solver, the solver could be integrated directly

in the final application. If there are strict, real-time size or run-time requirements, then it

might be necessary to be able to tweak the source code to satisfy these special constraints.

Some algorithms can be written as parameterized classes in specific programming languages

(such as templates in C++). These classes greatly increase the reusability of the algorithm by
making it easy to parameterize the solver at compile-time instead of run-time. Again, for
someone who spends their days in a single programming environment, having the source
code might be preferable to having the executable code.

Developers of solvers must weigh the benefits to their clients against the drawbacks for
themselves of disclosing all of their implementation details. When an algorithm's logic is

proprietary, it might not be possible to release the source code. When it provides
competitive advantage, it might not be desirable to do so. Also, disclosing implementation
details reduces the encapsulation of the solver. If clients develop their solutions based on
known but undocumented implementation details that are not part of the public interface to
the solver, then the author of the solver might have difficulty changing that undocumented
behavior 4.

2.3.2 Invoking from different applications and environments

An improvement upon making the solver an executable application is to make the solver
available to a variety of different applications and solution environments. Just as source code
can lock a user into a particular programming language, implementation decisions can lock a
user into a particular solution environment. For example, several useful tools in Microsoft
Excel exist as Excel Add-ins. As such, they can only be accessed from Excel itself. Perhaps
for Microsoft this type of vendor lock-in is good, but it is not beneficial for the use 5 .

14 Many parts of Microsoft Windows 95 exhibit this behavior. Microsoft specifically had to code
behavior that might not be particularly desirable, but is at least consistent with older versions of
Windows applications. For example, see Pietrek [83] for a discussion of the Win16Mutex.

15 In fairness to Microsoft, in Office 95 and Office 97 they have developed applications that expose
most of their functionality to other applications. Developers can now customize Office within their

The solver developer is typically interested in reaching as wide a market of potential users as
possible. For small- to medium-sized solutions, several development environments are
prevalent, and targeting these few environments captures a large segment of the potential
market. Many solutions are developed in high-level programming languages such as C++,
Ada, and increasingly, Java. Primarily visual tools, like Microsoft Visual Basic, Borland
Delphi, and Sybase PowerBuilder, are also common, especially in business-oriented
departments where analytical skills dominate programming skills. Even common business
applications such as Excel, Microsoft Access, and Lotus 1-2-3 are host to numerous
quantitative solutions.

How is the solver developer to target all of these environments?

Fortunately, as operating systems evolve into the next millenium, they are acquiring more
competent component services. Most applications have transformed from using their own
proprietary interconnection schemes to accepting the de facto component capabilities of the
underlying operating system. Regardless of their dogmatism in the COM/CORBA holy
wars, most companies developing for Windows embed support for COM in their
applications, because COM is the underlying component technology in Windows and is
supported by more applications. Pro-CORBA shops often support both, which is perhaps
the best solution going into the future.

All of the environments and applications named above support COM (ava through
Microsoft's Java Virtual Machine only). Given the prevalence of Windows systems in the
small- to medium-sized solutions targeted by this thesis, COM is an ideal framework to
support and build upon for the solver framework. Solvers built on COM are almost
immediately available to Excel, Visual Basic, and Visual Studio, three of the most common
development packages on the market.

2.3.3 Documentation and introspection

Documentation, especially printed documentation, for commercial, shrink-wrap software is
in a deplorable state. Because of higher production and logistics costs and the opportunity
for related book sales, vendors are minimizing printed documentation in favor of "online"
help (extra CD space has zero marginal cost) and large, expensive, and separately available
reference guides 6. Significant software titles currently ship with heavy-stock installation
quick-guides and registration cards to be returned to the vendor. Presuming simpler
installations, even the former would disappear.

own applications and develop vertical, domain-specific applications that leverage the power of
Office, which includes Excel.

16 Witness the publishing divisions of Microsoft, Sun, and Oracle-Microsoft Press, SunSoft Press,
and Oracle Press, respectively-which in earlier years might have been the bulk of these companies'
documentation groups.

Documentation for solvers is deplorable as well, but for opposite reasons. Almost every
existing solver relies only on printed documentation or readme files. These are often either
incomprehensibly organized and written, or too sparse and general to help. A solver's
documentation generally fits one of two types: RTFM or UTSL.

RTFM. Large or commercial solvers in the past have utilized the "Read the f***ing manual"
approach of assisting users by forcing them to consult massive reference books. For
instance, the CPLEX manual is 384 pages [17], while the OSL manual weighs in with 823
[47]. RTFM works in descriptive, expository, and tutorial situations, where the linear
progression of a book coincides with the user's linear thought processes. These manuals
work less well in reference form, where items are organized by topic, usually alphabetically,
forcing the user to know where to look to find the desired topic. (This is the conundrum of
using a dictionary to look up the spelling of a word.) Indices can help marginally, but books,
naturally, are incapable of exhaustive word searches.

A rather simple and effective solution is to include an online, searchable version of a manual
with the software. Microsoft's Developer Network Library (MSDN Library) is an enormous
archive of articles, manuals, books, and samples of Windows programming and applications
that is entirely searchable. While much of the MSDN Library is available in magazine articles
or books, the presence of everything at the developer's fingertips online is invaluable. Ideally,
commercial programs would include both printed and online versions of their
documentation.

UTSL. Medium-sized or smaller, non-commercial, and free-ware solvers frequently employ
the "Use the source, Luke" documentation strategy. As their entire official documentation,
these solvers come with a very small readme file instructing the unsuspecting user to glean all
relevant functions and parameters from the source code itself, which, at least, is included
with the solver distribution. Of course, technically the source code is sufficient to learn
everything about a solver. Nevertheless, time and budget constraints or domain inexperience
limit a user's ability to effectively transform source code into meaningful documentation.
These solvers can range from annoying and aggravating to entirely unusable.

One solution for the UTSL problem, besides perfectly clean, legible code, is to use an
automatic documentation system, such as the javadoc utility that ships with the Java SDK.
Applications such as javadoc parse specially tagged source code files and generate
documentation from comments in the source code. With proper discipline, the source code
can be entirely self-documenting.

To what extent, then, can the framework supplement and support the documentation
process for future solvers? The next sections explore the uses for documentation in the
context of solvers.

2.3.3.1 Documentation for selecting a solver

One of the first questions a modeler might ask of a solver is, "Is the solver suitable for my
problem?" This question has two parts: whether the underlying algorithm is appropriate for
the problem, and whether the specific implementation of that algorithm in the solver is
appropriate for the needs of the modeler. Generally, the solver cannot be suitable if the
implemented algorithm is not. If the algorithm is appropriate but its implementation is not,
the modeler will need to find or develop another implementation of that same algorithm.

Suitability of the algorithm. After a very quick filter of determining whether a solver will
even run on the modeler's system, the modeler will turn to assessing whether the underlying
algorithm implemented by the solver can manipulate or solve the desired problem.
Independent of any computer and implementation details, the algorithm must be able to
solve the problem, or there must exist some simple transformation of the problem that the
algorithm can solve. Satisfying this requirement means that the algorithm has a collection of
inputs, outputs, and indices, with perhaps domain requirements over those collections, that
match (or are a superset of) the requirements of the problem. For example, the knapsack
problem has one index set, three inputs, and one output. The index is the set of possible
items to place in the sack. The inputs are a scalar for the capacity of the sack, a vector over
the index set for the value of each item, and a vector over the index set for the weight of
each item. The output is an integer vector over the index set of the count of each loaded
item. All values are non-negative. This algorithm can solve a problem that has only integral
outputs, although there is no restriction on the input values.

There has been much research in the area of mapping problems to mathematical models [2,
3, 5, 26, 40, 45, 60, 74, 75, 81, 84, and 100]. This thesis presumes that the model is known,
and the algorithm and solver remain to be selected. Integrating model selection into the
framework is an extension of solver selection within the framework, with a different
knowledge system.

Algorithm suitability also captures some expectations about inputs and outputs. For
instance, whether the algorithm requires integral values or returns only integral values might
be an important factor in some situations. Some network flow algorithms can guarantee run
time bounds only with specific restrictions on input values, such as requiring integral or
rational numbers. Other algorithms might output only integral values or ordinal relations

(sorted lists).

For optimization algorithms, the type of solution generated is important. In mission-critical
applications, the modeler might require that algorithms return feasible solutions only. It is
important to be able to filter algorithms on whether they might generate infeasible solutions.
Furthermore, it might be worthwhile to compare algorithms depending on whether they
generate optimal or only near-optimal solutions.

Another important issue is run time. Various metrics of run time behavior can be measured
of most algorithms. These metrics include expected and worst case run times, expected and
worst case number of iterations, or perhaps expected gaps from optimality. For N'P-

complete problems, the modeler might be more satisfied with a quick approximation
algorithm rather than a slow exact one.

Finally, the modeler might take some interest in the mechanics of the algorithm itself. This
presumes access to the presentation of the algorithm, through a bibliographic citation, web
site, white paper, or associated help file. Details in these documents might prove persuasive
in algorithm selection.

Suitability of the solver. Assuming the algorithm is suitable, the modeler then assesses a
specific implementation of that algorithm in the form of an executable solver. Aside from
the concern of whether the solver implements the algorithm correctly, there are a number of
factors to consider when selecting a solver. Most important is to verify that the solver
satisfies the same requirements as the algorithm itself. That is, if the algorithm can
manipulate non-integral values, then the implementation of that algorithm should support
non-integral values. Assuming this-or, realizing that in the end the modeler works with an
implementation of an algorithm and not the algorithm abstractly-it is sufficient to check
that the solver supports the desired features, such as optimal or approximate solutions,
feasible or infeasible solutions, etc., to account for the algorithm as well.

Beyond this, many implementation details arise that are mostly independent of the particular
algorithm. The answers to these questions reflect the design decisions made during the
development of the software. For instance, does the solver run as a background process?
That is, can the user execute the solver and then actually work on other tasks on the same
system, or will the solver consume most of the system resources? Can the solver run
remotely, on a dedicated workstation? Can the solver be interrupted during processing,
either to cancel or pause the algorithm? Once paused, can the solver save its internal states
to storage, and subsequently load the states from storage, so that the solver can resume later?
Does the solver maintain internal states in between runs, to optimize small perturbations and
what-if analyses?

If the modeler is interested in the mechanics of the solver, then resources such as the source
code (for free or public domain solvers), citations, white papers and technical reports, and
web pages should be easily accessible.

Conclusion. Documentation for selecting a solver could be summarized in a list of features.
Each item in the list is an ordered pair, where the first element is a key name (such as
"citation" or "number of inputs") and the second element is the value for the key (such

"Operations Research 41:3" or "2"). When automated, this list becomes part of a system-wide
datastore of available solvers. The modeler can then search over this list to filter all solvers
down to a set of solvers that satisfy desirable conditions. For instance, the modeler could
query for all solvers that solve a shortest-path problem with negative arc lengths. It is

important to standardize the method for adding to, iterating over, and removing from the
datastore, or else the datastore becomes a marginal, customized, and non-extensible hard-
coded knowledgebase.

2.3.3.2 Documentation for using the solver

After selecting a solver, the modeler will ask, "How do I use it?" That is, what are the
protocols, subroutines, data structures, languages, and commands that the solver
understands and expects? The types of documentation that contain the answer to this
question are as diverse as the answers themselves. They include reference guides, tutorials,
examples, step-by-step instructions, online help, web pages, readme files, comments in the
source code, and the source code itself.

Regardless of its format, the documentation must contain the details for these activities:

* Creating and initializing the solver. This includes loading the solver's program code as
well as preparing its initial data structures.

* Loading a problem into the solver.

* Setting solver parameters, such as tolerance levels and solution techniques.

* Executing the solver's algorithm on the loaded problem.

* Retrieving the output or solution, as well as associated execution statistics, from the
solver.

* Destroying the solver. This involves unloading the problem, destroying any allocated
memory, and potentially unloading the program code from memory (much of which
might normally happen automatically).

Depending on the implementation of the solver, several of these procedures might be
merged into a single step. For instance, non-interactive executable solvers might take all of
the input information (problem data and parameters) as command line options and dump all
of the outputs to the terminal window. These solvers have a single step: invoke the name of
the solver with the name of the problem data file, and pipe the output to another file. Other
solvers might be able to operate in interactive and non-interactive modes.

Reducing complexity and differentiation. In a user's ideal world, every solver works the
same. Only the name of the solver, input data, and output data change from solver to solver,
problem to problem. This way, the user has to learn a single mechanism for solving a
problem, and this knowledge then applies to all solvers and problems. Human nature prefers
this redundancy and familiarity.

The same principle applies to documentation. Even if the procedures for using two solvers
are different, there is no reason the instructions for these procedures should not have the
same structure. This way, at least, the user will know where to find the instructions.

If a solver follows an existing protocol such as the framework proposed in this thesis, for the
documentation it is sufficient to state it does follow the protocol.

2.3.3.3 Introspection and automating the documentation

Even if the documentation for selecting and using a solver is superbly crafted, it is still

currently just RTFM documentation. The final step is to automate the discovery process by
embedding into the solver itself the ability to access solver capabilities, limitations, and
protocols. That is, a client can ask the solver itself for its citation, worst case runtimes,
feasibility of solutions, etc. This is a programmatic ability-a client can be instructed to use
only solvers that generate feasible solutions, and the client can then query each solver to
verify whether it generates any infeasible solutions.

This capability, for the client to programmatically access documentation inside the solver, is

called intro.pection. The name is adopted from the introspection services in the JavaBeans

component architecture [97]. The framework will include a specification for introspection,
by which the solver can embed its documentation (or links to its documentation) within

itself, and by which clients can access this documentation.

2.3.4 Progress updates

One of the most unsettling aspects of Boston's MBTA public transit system, the "T," is the
uncertainty of the waiting time for a train. Walking onto an empty platform, a commuter has

no idea when the next train will arrive. It could be two minutes or ten. She can only make a
guess based on her past experience of waiting times under similar conditions. On some
occasions, the arriving train might, with no other advance notice than a blast of its horn or a
flash of its lights, speed right through the station, ignoring the hapless commuter
completely--expectation established, resolution denied.

Many solvers provide no better guidance than the T. Once told to solve something, they
tackle it with the single-minded focus of a cat stalking a bird, and utterly fail to tell the client
(or the doomed bird) how much longer the wait will be. If the solver is not well-behaved, it
can tie up the operating system, consuming CPU utilization and making it difficult to use the
computer for other activities. The system might even appear to hang. How long should the
user wait?

There is a simple solution to this problem. In this regard, the London commute easily tops
the Boston commute. In Underground tube stations in London, every platform has a digital
display of the expected arrival times for the next two or three trains, along with their
destinations. While not entirely accurate in their predictions, the timings are close enough
that when the sign reads ten minutes, it is a safe bet that the next train will not arrive in two.

Even when the train takes longer than its given forecast, the psychological effect of having a

forecast at all eases commuters. This is analogous to the floor indicator lights above elevator

doorways in a skyscraper-people waiting for an elevator can estimate (or gamble) which

doorway will open first and when it will do so"7.

Similarly, a solver should be able to notify its client of its progress. This could transpire in a

number of ways. Two common measures are percentage complete and estimated time remaining.

Percentage complete captures what fraction of the processing has occurred. Typically this

requires knowing precisely how much processing is required in the first place; this is not

always possible. Estimated time remaining is a forecast of how much longer processing will

continue, as a measure of wall-clock time (not task or CPU time). As an estimate, there is

some fudging room for this forecast.

Percentage complete is useful when a process requires a known number of steps that can be

reliably counted. An example is matrix multiplication. Every product and summation bring

the solver one step closer to completion with certainty. Note that both being able to count

steps and knowing the number of steps are necessary for calculating percentage complete.

With the simplex method for solving linear programs, the iterations can be counted, but the
total number of iterations is not necessarily known until the algorithm terminates.

The simplex method provides a good example for estimating completion. Assuming a

minimization problem, during the simplex algorithm the current best cost is non-increasing,
and the best lower bound on the cost is non-decreasing. Hence, the amount that the cost can

decrease is itself non-increasing, and typically decreases some positive amount with each

iteration. Therefore, some measure that takes into account the size of the gap between

current best and lower bound can serve as the metric for the user. For instance, given the

remaining gap, the (moving) average time per iteration, and the (moving) average decrease in

the gap per iteration, an estimated time remaining might be simply:

EstTimeLeft = AvgTimePerlteration * (Gap / AvgGapPerlteration)

Client control. A progress notification capability should also allow the user to cancel the

processing. At an Underground platform, if the posted waiting time is unacceptably long, a

commuter can just walk away and find another means of transportation. Similarly, if an

algorithm seemingly stalls or just is taking too long, the client should be able to cancel the

execution and receive control of the system again. Additionally, it might be useful to allow

the client to pause the solver execution, and then to resume it later from the same point.

Ideally, the solver could save all of its internal states about where it is in the algorithm.

17 Extending the analogy even further: Elevator waiting areas often have mirrors, because research

suggests that perceived waiting time is less when people have something to do, like preening, while

waiting (Larson [59]). While waiting for subways, commuters can read poster and billboard ads for

local attractions and movies. In software, modem installation applications display splash screens

periodically during the installation process to give the anxious yet waiting user something to look at
while files are copied. Perhaps solvers should display similar messages, such as, "Our barrier
optimization uses the most modem techniques available to solve your problems."

This way, for instance, a client could schedule a solver to run only when the workstation is

unattended, such as overnight. If the solver requires 24 hours, then it could run 8 hours a

day over three days, with the exact same results and total CPU time as if it ran for 24 hours

consecutively.

Presentation to the user. One way to present the progress notifications
through some simple GUI controls. One such control is the progress bar:

to the end user is

Figure 2.10: A progress bar window

Upon receiving a percentage complete notification from the solver, the client updates the

progress bar to reflect the solver's current state. The progress bar might also have an

associated set of cancel, pause, and resume buttons for interactive control of solver

execution. Often, the progress bar represents modal activity-the application is suspended
and cannot be otherwise used until the execution is complete. This makes progress bars
useful for quick algorithms; typically those less than a few minutes.

Another way to present solver progress is through some indication on an application's status
bar:

Figure 2.11: Progress notifications through the status bar

In this case, the progress notification is subtler. By clicking on the notification, a menu

appears allowing the user to cancel, pause, or resume processing. This way of presenting

progress notifications is modeless-the user can interact with the application while the solver

is running (as long as the two can inter-operate without disturbing each other's data). So, for

instance, the user could start one solver while preparing data or analyzing charts for another.

Modeless presentations to the user are suitable for longer-running solvers, from a few

seconds to a few hours.

A third technique, suitable for the longest-running solvers, is to have another application,
separate from the solver application, that could dynamically (and asynchronously) query the

solver for its current progress. This introduces new functionality to the progress notification

mechanism, but permits interactions where the solver runs in the background without any

user interface component, and the user runs a command-line application to query the

solver's state. An example interaction might look like this:

%mysolver & ' runs the mysolver solver in the background
%myprogress ' runs the notification application for mysolver

myprogress: mysolver has 6h, 28m remaining.
%myprogress -cancel ' cancels the mysolver solver

myprogress: mysolver canceled.

2.3.5 Life cycle control

In the event that a solver will require more time than anticipated or desired by the user,
terminating that solver should be a graceful action. Too frequently, users resort to killing

processes the hard way, such as using "Ctrl-Alt-Delete" on PCs or "Ctrl-Command-Reset"

on Macs. If the solver had acquired locks on system-wide resources, then this process

homicide can have detrimental effects on the rest of the system. Any files opened by the

solver might be left dangling, resulting in lost clusters on the system's drives. At the worst, it

can lead to performance degradation and eventual system failure. If the solver is running on

a network server, it might even be impossible to kill the process, because the user might

need, but does not have access to, the machine itself.

A solver, especially one that might require long execution times, should provide a graceful

means for terminating its execution. If a solver and client both support the progress

notifications described in the previous section, then the client could terminate the solver as

part of the notification procedure. This makes graceful termination a relatively easy feature

to implement on top of progress notifications.

If the solver or client does not support progress notifications, then another, likely

asynchronous messaging system might be required in order for the client to send a
"terminate" message to the solver at any time.

Beyond termination, a solver should also provide for "pause" and "resume" capabilities, so

that a client could pause processing at a system, in order, perhaps, to use the resources of the

system for other activities. The solver should then be able to resume where it left off before.

Altogether, these capabilities fall under the umbrella of life cycle control.

2.3.6 Dimension and type support

Dilbert: 'T'm so lucky to be datingyou, Liz. You're at least an eight."

Liz: 'You're a ten."

Pause...

Dilbert. '"Are we using the same scale?"

LAZ. 'Ten is the number of seconds it would take to replace you."

Scott Adams, The Dilbert Future

Clearly, it is important to use the same or consistent scale, type, and units when comparing
or manipulating quantities. Scale, dimensions, and units refer to the quantitative, measurable
properties of a number. Example scales are kilo and nano. Dimensions include length, area,
weight, time, and cost. Units range from inches and feet to apples and cars. Type refers to

the qualitative aspect of a number. Given two different numbers, "cost of production of a

car" and "cost of shipping a car," production and shipping are the type of cost being

measured. Bhargava, Kimbrough, and Krishnan [4] combine units and type into a single
measure, quiddity.

Five times three equals fifteen if the numbers have no further meaning. Nevertheless, if five

is the number of apples and three is the number of oranges, it makes little sense to multiply
these quantities together. Instead of generating an answer of fifteen, an ideal system would

report an error. Practically, in the absence of dimension and type information, systems do

not fail when manipulating numbers. This is one of the most insidious software errors there
is-data corruption. The software proceeds as normal, even reporting successful completion
of its analysis. There is no way for the user to know that the data have been utterly corrupted
and are not valid. System crashes and program crashes (caused, perhaps, by invalid pointers)
are easily detected because they manifest obvious visual displays, such as the infamous
Windows NT "Blue Screen of Death 8." The user cannot help but notice that the system
has failed. Data corruption, on the other hand, is nearly invisible, and hence should be
especially warded.

Not everything is apples and oranges. In large-scale environments, especially those that
leverage corporate databases or datamarts, the dimensions and types of input and output
data are just as important as their quantities. Modelers rely on dimensions and types to verify
the dimensional consistency and correctness of their models. There are algebraic laws for
dimensions that identify valid manipulations and equivalencies [4]. Two of the consistency
laws are that quantities may be added or subtracted only if their dimensions are equivalent,
and that an equation is balanced if the dimensions of its left and right sides are equivalent.

18 A complete operating system crash resulting in a dump of debugging information onto the screen
in white text on a blue background. The only recourse is to reboot the system.

Modelers also rely on dimension information to convert quantities to equivalent dimensions.
For companies with distributed, international databases, it might be necessary to convert all
monetary values to a single currency, based on current exchanges rates. It might also be
necessary to convert values from metric units in the International System (SI) to U.S.
customary units (i.e., from meters to feet, kilograms to pounds). These conversions are often
handled as part of the data-preparation and post-processing phases of an implementation.
That is, the modeler assumes away all dimensional problems as "implementation details" and
treats related values, such as all costs, equivalently (i.e., dimensionless). Not only does this
not mitigate the problem (from a holistic viewpoint), but also it removes any opportunity for
dimensional verification of the model.

At the price of such a lost opportunity, the modeler must have a good reason for assuming
pre-converted quantities. There are several. Existing solvers generally have little or no
support for input data with associated dimensional information. Adding dimensional support
to custom solvers is non-trivial. Coding conversion tables by hand is lengthy, error-prone,
and tedious. As far as most modelers are concerned, it is better just to do without.

The following sections detail features of solvers that can ease the modeler's burdens by
incorporating dimensional information.

Awareness of dimensions. Solvers, particularly large-scale or industrial-strength solvers,
should at least be aware of data with attached associated dimensional information. Namely,
these solvers should be able to accept as input data that contain both numerical values and
qualitative dimensional information. They should also be able to provide as output both
numerical values and qualitative dimensional information. The output dimensions will likely
be some transformation of the input dimensions.

At the client's request, the solver should verify the consistency of the input data's
dimensional information. Just as the solver might check each input value for simple
constraints, such as non-negativity and integrality, the solver can check that each constraint
is dimensionally balanced based on the various dimensions attached to each input.

For example, consider the knapsack problem with inputs shown in Table 2.2. The constraint
in the knapsack problem specifies that the sum of the per-element product of the Weight
and the Count vectors must be less than the Capacity. An element of the Weight vector
times an element of the Count vector yields pounds, so the sum of the per-element product
is also pounds. Capacity is hours. Because there is no valid transformation between pounds
and hours, the input data are invalid.

Input Value Dimensions
Capacity 24 hours
Value [5 20 3 16] dollars
Weight [3 2 4 6] pounds (lb.)
Count decision vector none

Table 2.2: Example knapsack problem with dimension information

Some of the literature (e.g. Bradley and Clemence [10]) propose folding this dimensional

verification into the description of the model itself. In this manner, the client application is

responsible for validating dimensions before loading data into the solver. This might have

the deficiency of imposing a restrictive dimensional structure upon the modeler.

While it is important to include dimensional information whenever possible in the solver's
documentation, it is equally valuable to allow the solver to verify the dimensional
information itself, once it has received the input data. Once the solver has all of the input

data, it can perform any numerical, feasibility, and dimensional verifications it needs in order
to begin processing. Because the dimension conversion process is naturally a run-time
procedure (at some point input data must be converted into the correct dimensions), it
might be most efficient to perform dimensional verification at the time of conversion.

Manipulation of dimensions. Dimensions are a universal trait. They are not specific to any

one solver or problem. Every data set has them, and every solver must manipulate them.

Ideally, the expertise for converting and manipulating dimensions would exist in a single

place. In current solvers that support dimensions, this is not the case. Most commercial
solvers that support dimensions have their own internal databases of conversion factors, and

they have their own procedures for adding new dimensions to those databases. To introduce
a new dimension to a user's system, the user must add the dimension separately to each

product. These current systems look like this (Figure 2.12):

Use

Solver A Solver B

Dimension Code Dimension Code

Dimension DB Dimension DB

Figure 2.12: Traditional solver structure with decentralized dimension support

Forcing solvers to manipulate dimensions directly adds a significant burden to the solver
developer. Just as solvers are encapsulated in components, dimension manipulation and
conversion can be abstracted and encapsulated into components. In fact, components that
manipulate dimensions are, in their own way, solvers.

Thus, instead of solvers relying on their own internal dimension databases or on a known
system database of dimensions, solvers use other solvers for manipulating and converting

dimensions. Therefore, a single solver for transforming dimensional information is sufficient

to service all solvers. This solver is called a dimension manoulator. By adding a new dimension

to this dimension manipulator, every solver is effectively updated with the new dimension.

This is shown in Figure 2.13.

Solver C

Dimension Code

Dimension DB

Solver A Solver B

Dimension Solver

Dimension Code

Dimension DB

Solver C

Figure 2.13: Solver structure with centralized dimension support

A better solution would be to provide mappings from different dimensions into different
dimension manipulators. Thus, it is not necessary for a single manipulator to handle every
dimension in the universe. Instead, manipulators could be optimized for certain types of
transformations or dimensional standards.

Conclusion. The ability to handle data with associated dimensional information is important,
but not necessary for small, simple solvers. As such, dimension and typing support is a
desirable feature, but not a requirement, of solvers.

2.3.7 Testing and validation

Testing and validation is a crucial element of algorithm design and development. There are
several reasons to test and validate a solver:

1. To validate that the algorithm as designed is correct. This is usually secondary evidence
alongside a proof of correctness, but in some scenarios correctness through
implementation is necessary.

2. To ensure that the implementation of the algorithm is correct. Although the designer of
the algorithm might have got it right, the software developer might have introduced bugs
into the solver.

3. To verify that the implementation satisfies any size and time restrictions specified during
the requirements analysis. These requirements are especially prevalent in mission critical
or real-time environments.

4. To compare the run time or closeness of optimality of the implementation to other

implemented algorithms for the same problems.

The first and last reasons are primarily the algorithm designer's concerns, while the second

and third reasons are primarily the developer's concerns. The first three are traditional

software development quality and testing problems. Every project has algorithms of some

sort that must be designed and implemented correctly. Usually these algorithms have

associated time or space requirements. Peculiar to algorithm development research, however,
is the need to compare an implemented algorithm with numerous other algorithms.

For many algorithm designers, this comparison process is the bane of their research

existence, a necessary evil in demonstrating that their new algorithms are worthwhile and

effective. First, the researcher must implement the new algorithm'9 . Second, the researcher

must acquire (or implement) a collection of other implemented algorithms with which to

compare the new one. Third, because of differences in how each implementation expects to

handle inputs and outputs, mappings must be created from a default input and output data

format to each implementation's requirements. Fourth, appropriate input data must be

generated or acquired. These are frequently randomly generated or obtained from online

problem databases. Fifth, the tests must each be run and timed. Finally, results are

compared.

Looking at the third step above, it is apparent that the testing environment encompasses the

primary problems this thesis is attempting to address, namely that solvers with different

input and output data formats require different mappings to make them interchangeable.

Hence, testing and validation should be easily captured by the resulting framework.

2.3.8 Computer-based training

A significant segment of users not captured by the domain analysis of applied solutions

includes students and teachers. Although they might not work on massive implementations

or large-scale problems, they do use the same tools found in many larger applied solutions.

These tools include spreadsheets, high-level programming languages, and commercial solvers

(academic versions).

Educational environments typically have looser requirements on the implementations of
solvers. There is greater tolerance for poorer performance, lower numerical precision,
smaller problem size constraints, lack of security, and inability to multi-process. The goal of

the exercise is not the solution but the means to the solution; the goal of the solver is to
illuminate the means while providing a solution.

Unfortunately, along with the greater tolerance for less well-developed solvers, students and

teachers usually have to work with solvers that are difficult to use. This should not be the

19 One of the great uses of graduate student labor.

case. On the contrary, because solvers are used as short-term, one-shot exercises, they
should be as easy to use as possible. Teachers should not spend their time programming the
glue to make solvers work on their problems, and students should not spend their time
trying to figure out how to manipulate and program solvers themselves. Hence, to the extent
that the framework increases reusability of solvers, it is ideally suited to educational
environments.

Educational environments do have the distinction, however, of being particularly concerned
with the execution of the solver as an end in itself. Consider the simplex method. In
industry, the simplex method might be just a phrase that describes how one solver works
and another does not. In education, the simplex method is a dissected process, a learning
tool, and an endless source of qualifying examination questions. An industrial strength
application might only worry about the current iteration number and what the estimated run
time is for a simplex method solver. A student will need to know much more information at
each iteration, such as the pivot point, the reduced costs, and the basis.

A solver can be specifically designed as an educational tool, if it can provide the right
information at the right times during execution. A simplex method solver might provide
more than just a progress notification at each iteration; it might allow the client to query all
of the internal data structures. The client might then display these results interactively to the
user as the simplex method pivots from basis to basis towards the optimal solution.

Another example is a network flow algorithm that uses residual networks. With a properly
designed solver, the client could query the residual network, or changes to it, at each
iteration. These changes could be displayed graphically in a picture of the residual network.

The mechanism for providing this educational information can be standardized as computer-
based training (CBT) hooks. These hooks are generalizations of the progress notification
capability, and provide more generic interaction between client and solver. The basic idea is
that the solver notifies the client when certain events occur (such as, when an iteration ends
or when a pivot begins). The framework should support and encourage CBT hooks. As will
be seen in section 2.4.3, page 98, CBT hooks are a specialization of notifications.

2.4 REQUIREMENTS OF NETWORKS OF SOLVERS

Requirements for a stand-alone solver, as presented in the previous section, apply to all
solvers. Solvers might work together in networks, each interacting to share data and results.
However, to do so, solvers must be designed with this capability in mind. This section
describes the requirements of a solver implementation that exists in a network of solvers.
Requirements of networks of solvers apply to solvers designed to be incorporated into more
complex solutions.

The requirements include:

* Integrity of data. The network maintains the integrity of input and output data, ensuring
that no agent accesses invalid data.

* Distribution and synchronization. The network can exist across machines, processes, and
time. Individual solvers can operate synchronously or asynchronously.

* Notfications. The network supports a variety of notifications of interesting events.

* Global/local control. The network supports either a global controller or autonomous
control at each solver.

Each of the following sections discusses these in more detail.

2.4.1 Integrity of data

Imagine that in a network of solvers, each solver is its own autonomous agent. Each solver
waits for its inputs to be set, executes when instructed to (or when all inputs have been set),
and makes outputs available when it is finished.

A simplified, informal state diagram for a single solver appears in Figure 2.14. There are
three top-level states, determined by whether the input data to the solver or the output data

Figure 2.14: High-level solver state diagram

O-C

from the solver or both are valid or invalid. Input data are valid if all of the inputs for a

single problem instance have been received by the solver. Output data are valid if the solver

has completed its processing and no input data relating to the output data have been

changed.

After creation, the solver begins in the no data valid state. No input data have been set, and no

output data are available. Specifically, the solver is in the waiting for input sub-state. At this
point, the solver has just been initialized and is idle. Once the client sets some of the inputs,
the solver shifts to the received some inputs sub-state. Still, no data are valid, as defined above,
because some inputs have been set, but not all. As the client sets the last input data in the
solver, the solver transitions to the inputs valid state. Here, input data are valid but output
data are not. The solver waits in the inputs received sub-state, ready to solve its problem.

When the client invokes the Solve command, the solver moves to the solving sub-state while
the algorithm runs. While solving, the output data will be generated, and upon completion,
the solver will transition to the inputs and outputs valid state. As long as the solver has outputs
available, the client can retrieve output data from the solver.

At this point, either the solver can be destroyed (not shown), or a new problem instance can
be fed into the solver. In the latter case, the client begins by setting some new inputs on the
solver. This induces a transformation in the solver back to the no data valid state, because (a)
some input data refer to one problem instance while other input data refer to another
instance, and (b) the output data are no longer associated with the input data. The cycle
continues until the solver is destroyed. Note that there is no outputs valid state (i.e., inputs
invalid), because the outputs are only valid if the inputs are.

Other solvers, clients, or the user exercise the functionality of this solver during its lifetime.
All of these clients might set inputs, retrieve inputs, retrieve outputs, and tell the solver to
execute. The essence of data integrity is to guarantee that a client performs any of these
actions only when it is valid to do so. For example, a client should not retrieve outputs if the
solver is not in the inputs and outputs valid state.

For instance, suppose there are two clients, Client A and Client B, of a single solver, Solver.
Client A is the primary client, providing the input data to the Solver as well as the command
to solve. Client B is simply interested in retrieving the results once the Solver is finished
processing. A normal sequence of activity is shown in the event trace diagram in Figure 2.15.

The steps in this event trace diagram are:

1. Client A sets all inputs in the Solver. The Solver transitions from the waiting for input sub-
state to the inputs received sub-state.

2. Client A instructs the Solver to solve its problem. The Solver transitions to the solving
sub-state.

A: Client :Solver B: Client

1. SetAlllnputs

2. Solve

3. Solved

6. GetOutputs

4. Solved

5. Getlnputs

7. GetOutputs

Figure 2.15: Event trace diagram for normal solver invocation

3. Upon completion, the Solver notifies both clients that it has solved the problem. The

Solver moves to the inputs and outputs valid state. In this step, the solver notifies Client A.

4. In this step, the solver notifies Client B. The ordering of steps (3) and (4) is irrelevant.

5. Client B retrieves the input data of the problem from the solver. This is valid because the
inputs are still valid.

6. Client A retrieves the output data from the solver.

7. Client B retrieves the output data from the solver. This step and the previous step are
valid because the outputs of the solver are valid (because the solver is in the inputs and
outputs valid state).

Note that steps (5) through (7) could come in any order, as long as the inputs are valid for
step (5) and the outputs are valid for steps (6) and (7).

The following three scenarios demonstrate loss of data integrity. In each scenario, a client
interacts with the solver in a manner that is invalid with the solver's state.

Scenario 1. In the first scenario, Client B attempts to retrieve the outputs before the solver
has completed solving the problem. This event trace diagram appears in Figure 2.16.

1. As before, Client A sets all inputs into the Solver.

2. Then, Client A instructs the Solver to solve the problem.

3. At this point, the Solver is in the solving sub-state, which is inside the inputs valid state.

Client B attempts to retrieve the outputs of the solver, but because the outputs are not

yet valid, this should result in an error.

I . I

: Solver B: Client

SetAllInputs

2. Solve

4. Solved

Error calling
GetOutputs here.

/

3. GetOutputs

5. Solved

Figure 2.16: Event trace diagram of attempting to retrieve invalid outputs

4. Not until the Solver sends completion notifications to Client A and Client B are the
output data valid. Step (4) is the notification to Client A.

5. Finally, the Solver sends the completion notification to Client B. Now, Client B could
retrieve outputs from the solver. Again, the ordering of steps (4) and (5) is arbitrary.

The result is that Client B attempts to obtain output data before the solver has finished
generating the output data.

Scenario 2. This time, Client B is trying to retrieve the input data, which it did not have
access to apriori. Client B attempts to get the inputs at the same time the Client A is passing
them into the solver. This event trace diagram appears in Figure 2.17.

A: Client Solver

ts

B: Client

I
IIIII

. SetSomelnpul

2. Getlnputs

3. SetRestOflnputs

Inputs are not
yet available.

Figure 2.17: Event trace diagram of attempting to retrieve invalid inputs

1. This scenario begins with a twist. Instead of passing all of the inputs to the Solver at
once, Client A passes only some of the inputs. This causes the Solver to transition only
to the received some inputs sub-state, instead of the inputs received sub-state in the previous
scenarios.

m

SA: Client

i

~I I
I

No

NO

1

2. Client B then attempts to retrieve the inputs to the problem. Because the solver is still in
the no data valid state, no inputs are available, and this is an error.

3. Client A completes passing all of the input data to the Solver, at which time the Solver
transitions to the inputs received sub-state. Client B could at this time acquire the inputs.

To conclude, Client B has attempted to retrieve the input data before Client A has
completed setting all of the input data in the solver.

Scenario 3. The first two scenarios present cases where Client B jumps the gun, trying to
retrieve data before they have been generated. The final scenario presents a case where
Client B is too late; the data have already been generated and then invalidated as Client A
prepares a second problem instance. The event trace diagram for this scenario appears in
Figure 2.18.

A: Client : Solver B: Client

1. SetAllinputs

2. Solve

3. Solved

5. SetSomelnputs

!i S 4. Solved6. GetOutputs

Inputs and outputs are
no longer synchronized.

Figure 2.18: Event trace diagram of attempting to retrieve outputs too late

1. The first four steps are the same as normal interaction. Client A begins by setting the
input data for the Solver.

2. Then, Client A instructs the Solver to solve.

3. The Solver notifies Client A that it has completed solving the problem.

4. The Solver notifies Client B that it has completed solving the problem. The ordering of
steps (3) and (4) is arbitrary. The Solver is in the inputs and outputs valid state.

5. Now, Client A begins a new problem by setting some of the problem data. The forces
the Solver to transition to the received some inputs sub-state, in which no data are valid. In

essence, the Solver has cleared the previous problem from its memory and is working on
building a new problem.

6. Finally, Client B attempts to retrieve the output data. At this point, the output data are
no longer valid, and the request must fail.

The problem here is that the Solver and Client A are unaware that Client B wants to retrieve
the output data. Ideally, as soon as Client B receives the notification of solver completion, it
can tell the Solver to lock its problem data, thus forbidding Client A from setting new input
data. Then, Client B can retrieve the output data when it is ready, and then unlock the
problem data, allowing Client A to begin a new problem. This transfers the error from Client
B's attempt to retrieve the output data back to Client A's attempt to set new input data.

Conclusion. Data integrity must include the capability for a client to manage the lifetime of a
solver's data sets, by providing locks on that data. As long as the data is locked, the solver
cannot transition into a state that would invalidate or change the locked data. Furthermore,
data integrity must ensure that clients do not access data when the data is not available.

2.4.2 Distribution and synchronization

Late on Monday night, June 16, 1997, an aging, 90MHz Intel Pentium-based personal
computer cracked a message encrypted with a 56-bit key using the United States Data
Encryption Standard (DES) [19]. This key length is the maximum allowable for software
exported from the United States, and its breaking emphasized the corporate need for longer,
more secure keys. The algorithm employed by the crackers? Enumeration. Of the
approximately 72 quadrillion possible keys, 18 quadrillion were attempted before one yielded
the encoded message, "Strong cryptography makes the world a safer place."

One 90MHz system processing a possible key every clock tick (clearly a liberal upper bound
on processing rates) would require almost six years to analyze 18 quadrillion keys, yet this
code was cracked in under six months. How? In a massive, centrally-concerted effort,
thousands of people with similar off-the-shelf personal computers participated in testing
possible keys. From a web site, volunteers could download software and a range of keys to
try. Software at the web site managed the list of keys that had been attempted. Software on
each client machine would iterate through a selected range of keys, trying each one against
the encrypted message. The volunteers could run the client software at any time, such as
overnight or as screensavers when they were not using their computers. This algorithm of
enumeration exhibited both distribution and asynchronization.

Distribution. Distribution of activity enables a massive problem to be tackled by everyday,
common machines. This code could not have been cracked by any single machine in five
months. The scope of this problem required a coordinated effort among many machines.

There are a number of reasons to distribute a solution architecture across multiple
computers. Sometimes, the various applications required to solve a problem exist only on

separate computers. There might be performance advantages to run subproblems in parallel.

Some data preparation and manipulation might be most effectively located near the database

server whereas number crunching analyses might be best located at a heavy-duty UNIX

workstation removed from the database system. A Windows PC might then be most

appropriate for viewing the results.

The framework for interconnecting solvers should not inhibit the ability to place the solvers

in separate processes20 or on separate computers. The framework should leverage the

underlying component technology for inter-process communication (IPC), both across

process boundaries (local procedure calls, or LPC) and across machines (remote procedure

calls, or RPC).

Synchronization. Broadly, when a client requests some service of a supplier, the client has to

decide whether to wait for the supplier to provide the response or whether to process

something else. Synchronization captures this relationship between client and supplier.

Typical function calls in modem programming languages are ynchronous. The client calls

another function, and the client does not do any further processing until that function

returns; the client and its supplier, in the form of the function, are in synchronization. An

asynchronous call is one in which the client goes on to its next processing step without waiting

for the function to return. The client and supplier are out of synchronization, and some

mechanism must exist in order for the supplier to inform the client when it has finished

processing. Asynchronous calls are an important aspect of multithreaded programming,
especially when machine boundaries must be crossed. The variability and randomness of

network latency or utilization can significantly hinder performance when the client is always

waiting for the supplier to return from a function call.

Within the framework, solvers should have the opportunity to work asynchronously if they

can. That is, the protocol should not interfere with the synchronization of a solver and its

client, and where possible, the protocol should support asynchronous activities.

Transparency. A user of the framework will want to be able to assign solvers to machines

with utmost ease. If a system has two solvers on a single machine, and the user moves one

of the solvers to another machine, there should be no additional tasks beyond specifying a

new location for the solver. That is, the user should not have to add infrastructure or special

code simply because the two solvers are now on separate machines. Fortunately, the

underlying component framework, COM, is ideally suited for this requirement, because it

effectively masks much of the remoting layer responsible for transporting function calls

across processes or machines.

20 A process in this context is an instance of a running program (Richter [89]). Modem operating

systems sandbox processes into their own memory spaces to minimize process interaction. Thus,
inter-process communication is more complicated than just calling a subroutine. See Chapter 10 of

Rogerson [90] for an explanation of crossing process boundaries with COM.

2.4.3 Notifications

The various entities in a graph solution architecture are not only submissive entities that do
what others tell them. They often have very interesting things to say themselves. Progress
updates (see section 2.3.4, page 81) are among the numerous statements a solver might
make. These statements are called notifications, because the originating object notifies the
destination of some event. The object that sends out notifications is called the notification
source, the publisher, or the subject. Any number of objects can receive notifications; a
receiving object is called a notification sink, a listener, an observer, or a client.

Each class of objects within the network might send out different kinds of notifications. For
instance, solvers might notify listeners of progress updates, execution completion, discovery
of infeasibility or dimensional inconsistencies, or of other generic failures. Data sources
might notify listeners of changes to their data values and of availability of data for
processing, for instance as a result of the completion of a specific query. For each class of
objects, there might be both generic and specific notifications. All solvers can notify listeners
of progress updates and solver completion. Only certain solvers will notify listeners when
specific variables violate certain constraints or achieve certain values; for other solvers, such
events might not be meaningful.

Consider a two-stage solution where the first stage is a mixed integer program and the
second stage is a function evaluation over the feasible set of values in the integer program.
The two stages are linked together so that they can run in parallel, with the second stage
calculating values from the first stage whenever they are available. In this example, the
second stage needs to know whenever a new feasible solution to the mixed integer program
is calculated; it is not concerned with infeasible solutions. Hence, the second stage wants to
receive a notification when a feasible solution is calculated. The first stage might provide
such a notification if the mixed integer program solver has the built-in intelligence to notify
clients of new feasible solutions.

As another example, the end user might be interested in a 9 5 % solution-a feasible value
that is verifiably within 5% of the optimal solution. Often, 95% solutions are quickly
attainable, whereas achieving the remaining 5 % can take disproportionately longer. The user
might wish to find a solver that could send a notification when the 9 5% solution is obtained;
such solvers could be hard to find. More likely, the user will find a solver that can send
notifications after every iteration, during which it is possible to query the solver for the
current solution, the best solution, and known lower and upper bounds or the optimality
gap. Then, with some custom client-side code, the user can calculate the percentage of
optimality during the notification using these queries. This will enable the user to employ
many more solvers.

The notification mechanism

The notification mechanism is an example of the Observer pattern (see Gamma et al. [30]).
It is actually quite simple. In essence, there are two objects. The subject has some notifications

of interest to broadcast, such as the completion of execution or a change of state. The
observer desires to receive these notifications from the subject.

Before receiving any notifications, the observer must inform the subject that it wants to
receive those notifications. This is frequently called an advise-the observer advises the
subject. After the advise, the subject might post notifications to the observer. Upon
receiving a notification, the observer might query the subject about its state. When the
subject or observer terminates or when the observer is no longer interested in receiving
notifications, the observer unadvises the subject, and the subject no longer sends any
notifications to that observer. A single subject might send notifications to many observers,
and with appropriate context a single observer might receive notifications from many
subjects.

The framework should define or support a notification mechanism for notifications between
solvers and clients and between data sources and solvers. To the extent that it is meaningful,
specific notifications can be defined for each class of objects in various relationships. For
instance, what notifications might a solver send to a client? What notifications might a data
source send to a solver?

2.4.4 Global/local control

In single-stage solutions, it is fairly obvious that the client of the solver is the controlling
entity. Once the client prepares the input data, it hands it off to the solver, instructs the
solver to execute, and then retrieves the output data from the solver upon completion. In
essence, the solver, the data stores, and the resource flows operate at the behest of the client.
In this simplest scenario, there is not much for the client to do. In fact, the single-stage
solution represents a minimal functionality requirement for the client. This is global control.

Moving to multi-stage and distributed solutions, it is possible to retain a single point of
control. That is, a single client application could still direct numerous solvers and data stores
spread across a network of computers, where no single solver or data store operates without
a direct command from the client. Nevertheless, it is less certain that this is a wise or
practical arrangement, primarily for two reasons.

First, a single point of control represents a single point of failure or congestion. If the client
process or the network link to the client fails for whatever reason, then all of the solvers
might become unstable or suspended, or they could even crash. If the step of taking the
outputs from a solver and saving them to a database requires the client to initiate the
database transaction, then this step depends upon the existence and availability of the client.
If many solvers need to access many databases, then the client becomes a bottleneck as
notifications from solvers queue at the client, awaiting processing. Second, maintaining the
state knowledge and control at the client significantly increases the complexity of the client
for typical networks of solvers. The client has to manage the interactions among solvers and
data stores, maintain the integrity of data through the solution network, and create and

destroy solvers as appropriate. The arrangement with the client as the single source of

control is similar to the Master-Slave pattern in Buschmann et al. [14].

To relieve the client of the duties of totalitarian control of the network, individual

components within the network take on control responsibilities. Not only is the execution of

the solution distributed among multiple solvers-and perhaps machines-but the control of

that execution is similarly distributed among multiple solvers and machines. Each element, in
effect, takes control of itself, responding to its environment based upon well-defined local
control rules. Hence, this is local control.

For instance, consider a solver that aggregates, via average, the values in a database table.
These values are themselves the output vector of another solver. In a global control
scenario, the client must initiate the first solver, wait for it to complete, store the values into
the database, initiate the second solver, wait for it to complete, and then read the final
average from the second solver. This is demonstrated in Figure 2.19.

:Client Solver: Database Solver
Solver Solver

Solve

IIIIIIIIII Finished
I~IIII

IIIf
I
III
!1III
II

Store

Finished

GetOutput

Solve

Load

Figure 2.19: Example of global control in a 2-solver network.

With local control, the client initiates the first solver, then waits for the second solver to
complete, and then reads the final average from the second solver. The first solver stores its
outputs into the database, and through notifications tells the second solver it is finished. The
second solver, after waiting for the first and receiving its completion notification, reads the
table from the database and computes the average. This is shown in Figure 2.20.

In the local control scenario, each object knows how to react to its environment. The second
solver knows to initiate its own execution when the first solver notifies it of completion.
Compare this to the global control scenario, in which the second solver relies on the client to
handle the completion notification and initiate the second solver.

100

Solverl
Client Solver Dat

Solver

Solve

Store

Finished

, GetOutput

abase
Solver2

Solver

Finished

Load
~oIve

Figure 2.20: Example of local control in a 2-solver network.

The local control description might sound more complicated than global control, but in

complex networks, local control lends itself nicely to reducing overall complexity, to

encapsulating control and state information, and to managing resource flows in the network

more effectively.

Because of the wide variety of possible architectures and control patterns, it would be most

beneficial for the framework to support both global and local control. This can be

accomplished through an infrastructure that provides the extra system support for local

control while stepping out of the way in global control scenarios.

2.5 RuOUIREMENTS OF THE CORE SERVICES

Most GUI applications display dialog boxes from time to time such as this one:

Figure 2.21: A common dialog

101

Solve

i

This particular dialog, the "Open" dialog, is one of the most prevalent in Windows

applications, because it is used when the user wants to open a file for editing. Almost every
application uses this exact dialog, and yet almost no applications actually contain the routines
that implement the dialog and bring it to life. Why? Because Windows contains the

implementation of the Open dialog so that no one else has to. It is part of the Windows
common dialogs library (which includes the Save dialog, Print setup, and the color picker).
In fact, much of Windows is not specifically operating-system functionality but is instead
shared code--common functions and routines that both decrease software development
costs and time and help standardize the look and feel of the operating systenm2.

With solvers there are similar points of commonality, areas of functionality that might exist

in every solver or client. These can justifiably be removed from all solvers and clients and

placed into a central repository, akin to the shared libraries of Windows.

There is also functionality that is used by many applications but is not provincial to any one.

Enumerating embeddable objects, such as charts and graphics, is one such activity. Most

applications -allow the operating system to enumerate these objects for them, leveraging

system libraries and registries for these central tasks. Similarly with solvers, there exists

functionality that is independent of any one solver or client, and belongs in a central

repository.

The following sections describe two such areas of functionality:

* Registry of available solvers. This area parallels the enumeration of embeddable objects.

When a client needs to select a solver, the core services can list the installed solvers on

the machine, making it easy for any application to determine what solvers are available

for processing.

* Dimension and type support. Centralized dimension support is partly a specialization of

registration of available solvers. The core services can manage a list of dimension

manipulators installed on a machine, as well as help traverse the network of dimension

conversion paths.

Finally, during the course of development of the framework in the third chapter, various

components will added to the core services as necessary. These include, primarily, helper

objects that simplify the life of a developer but are conceptually contained within the
specification of another part of the framework. One example is the advise helper, which

implements the messy details of managing a list of connections in a notification relationship.
Advise helpers are only useful within the context of notifications, so they will be discussed in

the sections on notifications.

21 Including the WebBrowser control that is the heart of Internet Explore 4.0.

102

2.5.1 Registry of available solvers

Returning to the example of inserting a chart into a document from the first chapter (see

page 20), when the user asks to insert a generic object (Insert Object... in Microsoft Word),
the application displays a list of objects that could be inserted into that application. How

does the application generate this list of objects? If the user installs a new component or

removes one, the list will be updated to include or remove that component the next time the

application is run. All applications generate the same list of objects, too. How does this

work?

Clearly, the maintenance of the list of insertable objects is a system-wide service. The

operating system provides facilities for a component to register and unregister itself with the

operating system as an insertable object. Specifically, when a component is installed, it will

register with the operating system. The operating system then makes this component

available to other applications as an insertable object. It's like registering to vote; after a new

resident registers, she suddenly gets called upon by civic functions that use the voter list,
notably jury duty. When a resident leaves town, she does not have to unregister her vote, but

she registers a forwarding mail address. Components, on the other hand, must unregister

themselves with the operating system when they are removed from the system. Thus, the

operating system will no longer present that component to the other applications. (If the

resident dies, then her postal service must be terminated, which is a form of unregistration.)

There are two essential services that the operating system provides:

* Registration and unregistration. The operating system facilitates the addition of new

components into the system by exposing registration capabilities and the removal of

components from the system through unregistration.

* Enumeration. The operating system provides a means for other applications to enumerate
the registered components.

In the realm of solvers, the parallel task to selecting an object to insert into a document is

selecting a solver to solve a particular problem. A fundamental prerequisite for solver
selection is the ability to determine what solvers are installed on a system. This implies the

existence of some mechanism for querying existing solvers on the system. In existing

systems, client applications might maintain their own list of installed solvers. A solver might

have to register with each particular client application in which it can work. Add a new client

application, and it must either import another application's database of solvers, or else the

solvers will have to be reconfigured to register with the new client.

For solvers of the future, the management of the solver database is best handled by a global

service, so that a solver is available to all potential clients. Solvers do not add and remove

themselves directly from the database (this incurs too much implementation dependency).

Instead, solvers can register and unregister themselves with a solver registration service. This

103

service is the only component that needs to understand the actual structure of the solver
database, minimizing the coupling between components.

Consider compound documents-a new document object component can register with the
operating system. Every application that can insert these objects can then see that this new
object is available. Solvers should work this way, too.

2.5.2 Dimension and type support

As discussed earlier (section 2.3.6, page 85), dimension and type manipulation and
conversion is desirable and useful for every solver, but no solver should have to implement
that functionality. Dimension conversion is orthogonal to the purpose of any solver. Instead,
specialized dimension manipulators can handle the conversion process, and solvers can use
these manipulators as if they were clients using other solvers.

So, just as a client should be able to enumerate the solvers installed on a system, it should be
possible to enumerate the available dimension manipulators on a system. This suggests a
specialized registry of dimension manipulators. Such a registry would have all of the features
listed in the previous section, as well as some additional functionality.

There are essentially two requests a solver will have of a dimension manipulator. First, are
two dimensional statements equivalent? For instance, is meters per second squared
equivalent to miles per hour per second? (No without conversion; yes, given appropriate
conversions.) Second, what is the factor to convert from one dimensional statement to an
equivalent one? For example, to convert from meters per second squared to milers per hour
per second, multiply by 2.2369. While a specific dimension manipulator can answer these
questions, the core services must help the solver or client find that dimension manipulator
among the many available. For instance, one dimension manipulator might be able to
convert within the metric system, while another might be able to convert from the metric
system to other systems. Only the latter is suitable in this example. Beyond registration and
enumeration, therefore, the core services must provide a more intelligent query mechanism
for quickly finding or assessing a dimension manipulator.

2.6 CONCLUSION

This chapter presented the requirements for a modeling framework of the future.
Specifically, based upon a domain analysis and characterization of the roles of activities in
observed industry solutions, it detailed a set of desirable features that solvers can implement
to make them easier to use and more reusable in the context of applied operations research
solutions. These features are partitioned as those that are necessary and useful for solvers
that are used in single-stage architectures and those that are necessary and useful for solvers
that are embedded in networks of solvers. Some features of the framework exist outside the
scope of any individual solver and should reside in a centralized, core group of services
provided by the operating system.

104

This chapter did not address requirements of the database, the source of input data for any

solution. The scope, scale, complexity, and capabilities of existing database connectivity
protocols, such as SQL, ODBC, and OLE DB are sufficiently powerful for the needs of the

framework. The framework will present what it needs from data sources for specialized

solver purposes, with the expectation that security, administration, table definition, and other

capabilities are leveraged from one of the existing standards.

Likewise, this chapter did not address requirements of the client, except in the context of
how the client might react to specific requirements of a solver. This is in order not to impose

any limits upon the client. There is much existing research into model selection, model
creation, solver selection, data manipulation, model presentation, and model life cycles that
already addresses client-side issues. This chapter has instead focused on the interaction
between the solver and its client. Chapter 3 will develop the framework following the
structure presented here.

105

Left blank intentionally, this page.

106

CHAPTER THREE

FRAMEWORK

Chapter Two presented a guide of requirements for applied operations research solution
implementations. This chapter presents one possible realization of a framework that satisfies
many of those detailed requirements. According to Booch [7], a framework is a "collection
of classes that provide a set of services for a particular domain." In the context of Microsoft

COM, a framework is primarily a collection of interfaces, specification of behavior, and
associated class implementations that provide a set of services for a particular domain.

The chapter begins by surveying the organization and scope of the framework. After a
discussion of some implementation details, the role and behavior of data within the
framework is described. Then, various issues relating to solvers as single entities are tackled,
including the basic solver interfaces, introspection, progress updates, and life cycle control.
Following this is the presentation of those aspects of the framework that specify the
interaction of solvers in the more complicated solution architectures, including the basics of
networking solvers, the components that enable networking solvers, and the resolution of

global and local workflow control. The description of the core services rounds out the
framework specification.

3.1 ORGANIZATION OF THE FRAMEWORK

The modeling framework will consist of a collection of numerous services and

specifications. A service in this context is a library of code that provides system-level
functionality. A .pecification is a protocol for behavior between one component and another.

Specifications are only instructions for behavior, and do not include any code. Services, on

the other hand, are implemented functions that conform to specifications.

107

The services and specifications support two different aspects of implementation: the solvers
and the interconnections between solvers. Some services and specifications address both
aspects, and some provide general capabilities. This diagram presents the classification of the
services and specifications as a Venn diagram, in Figure 3.1.

Non-italic Specification
Italic Service

Figure 3.1: Overview of services and specifications of the framework

The following sections provide brief descriptions of each item.

3.1.1 General services and specifications

Dimension and type registration service. The dimension registration service registers (or
removes) new dimensions and dimension manipulators with a system-wide database. Any
solver or modeling environment that needs to convert numbers from one dimension system
to another might use the dimension registration service to find a conversion component that
can convert between the desired dimensions. Types express what a value is measuring. Their
behavior is similar to that of dimensions, except that dimensions are typically universal
quantities (1000m = 1km), whereas types are more flexible depending on the situation (1 car
= 1800 pounds of steel, or perhaps 1 car = 1700 pounds of steel). Type registration behaves
like dimension registration: a known type (car) might be associated with a type manipulation
component that can convert that type to other types.

108

Dimension & type registration
Dimension & type manipulation

Solver selection

Dimension and type manipulation specification. The dimension manipulation specification

defines a standard protocol for manipulating dimensions. Dimension manipulations include

multiplication, comparison, and conversion. A component that implements this specification

can manipulate a self-defined set of dimensions. Different components might manipulate

different dimensions. Using the dimension registration service, a dimension (such as

"hectares") might be associated with a dimension manipulation component that knows how

to work with that dimension (such as converting to square meters). The type manipulation

specification defines a standard protocol for manipulating types. Components that

implement this specification are called "type manipulators" and can operate on a self-defined

set of types. Using the type registration service, a type (such as "cost of car production")

might be associated with a type manipulator that can work with that type.

Solver selection specification. The selection problem is to determine which model or solver

is best suited to model or solve a particular problem definition. Algorithms for selecting

solvers or model should function independently of the interface presented to the user and

independently of the underlying database implementation that manages the known models

and solvers. The solver selection specifications define protocols that separate the selection

problem from the presentation of selection, via user interfaces, and from the database of

solvers. The database-the solver registration service, described later-implements part of

this specification for enumerating available solvers. Selection components, the components

that encapsulate the logic, knowledge, or artificial intelligence of actually selecting solvers,
implement the remainder of the specification.

3.1.2 Solver services and specifications

Introspection specification. The introspection specification, implemented by a solver

component, allows the client of that component to examine the requirements, inputs,
outputs, conditions, and source of the solver. For instance, a client can determine the author

and citation of the algorithm, its expected or worst-case run times, and perhaps pre- and

post-conditions. It can also query the capabilities of the solver, including what types of

numbers if manipulates (integers, doubles, fixed-point), whether it can check input-validity,
and how interactive it is.

Progress notification specification. The progress notification specification defines a protocol

for enabling a solver to inform its client on its progress during its execution. This is a

callback notification, where the solver calls back into the client periodically. The client can

also instruct the solver to pause or cancel its processing. This specification makes it simple

to create user interfaces with a progress bar that fills from 0% to 100% as the solver

executes, and to allow the user to cancel the processing.

CBT hooks specification. CBT (Computer-based training) hooks provide a way for

educational applications to tie into the inner-workings of a process. In the case of solvers,
CBT hooks might be inserted at every iteration of an algorithm or whenever a residual

network is updated. When used, the hooks would allow a program to track each step in the

algorithm, making it possible to visually display each change as it happens. These hooks are a

109

specialization of a broader notification system, but are targeted specifically for educational
purposes.

Solver registration service. The solver registration service enables a newly installed
component to register itself with the system. Once registered, the solver is visible to client
applications when they query the registration service for installed solvers. Also, the
model/solver selection specification uses the solver registration service to enumerate
available solvers.

3.1.3 Interconnection services and specifications

Synchronization specification. The synchronization specification defines the protocol for
synchronizing activities between two components. When one solver uses another solver
during its processing, it must understand the synchronization requirements of the embedded
solver. A solver might require synchronous same-thread operation, which means that the
calling solver is suspended until the embedded solver is finished. Or a solver might run
asynchronously, meaning that the calling solver continues executing and that the embedded
solver will notify the calling solver when it is finished. The two solvers essentially perform a
"handshaking" at initialization to determine a compatible synchronization choice for their
communications.

Data flow specification. Whereas synchronization manages the behavior when one solver
passes control or sends events to another, data flow manages the requirements and
availability of input and output data for solvers. In directed acyclic graph and more complex
architectures, the availability of data is an essential concern. A solver must not execute
before its inputs are ready. It must not change its outputs before all other solvers that use its
outputs have had the chance to read the previous outputs. The integrity of data must be
preserved. The data flow specification outlines a protocol for ensuring that the data flow
requirements are satisfied among multiple solvers.

Global/local control specification. The workflow control specification. specifies a protocol
for managing the interconnections among various solvers in a complex architecture. While
data flow manages the availability of inputs and the preservation of outputs, workflow
control manages the decisions and flows of control in the network of solvers.

Notification specification. The notification specification provides a simple, standard way for
almost any event of interest to be monitored and captured. In a traditional publish-and-
subscribe framework, solvers publish a list of events that they monitor during their
execution and for which they will provide hooks, and clients subscribe to events of interest.
When these events occur, the solver notifies all subscribed clients that the event occurred,
and the client can execute code that depends on that event. This is a generalization of the
progress notification specification, which is a fixed notification mechanism.

110

3.1.4 Intersecting services and specifications

The specifications in the intersection of the Solvers and Interconnections domains of Figure
3.1 are applicable both to solvers as individual entities and to networks of interacting solvers.

I/O (solver interaction) specification. The input/output specification standardizes the
method of providing inputs to and retrieving outputs from a solver.

Control specification. The control specification defines the basic control capabilities for a
solver. These capabilities include pausing, stopping, restarting, and changing the scheduling
priority of a solver's execution.

Dimensioning and typing specification. The dimensioning specification defines an optional
protocol that a solver can implement to expose dimensioning capabilities. A component that
implements this specification can work with inputs and outputs that have dimension
information. The typing specification defines an optional protocol that a solver can
implement to expose typing capabilities. A component that implements this specification can
work with inputs and outputs that have type information.

3.1.5 Framework entities

Within the context of the domain analysis in section 2.1, page 52, and the identification of
the participants in the solution process in section 2.2, page 70, the framework defines a
collection of entities that form the basis of applied solutions within the framework. Each
entity serves a purpose within one or more of the specifications identified in the previous
sections. The entities and their roles within the protocols (specifications) are summarized in
Table 3.1. Not all of the protocols are covered by these entities; this is because the
framework in its current form does not address some of the issues, like dimension and
typing and CBT hooks. These limitations are discussed in detail in section 5.2, page 272.
Some of the entities are certainly intuitive, such as solver, set, and client. The others are each
introduced, described, and detailed in the sections that define their related protocols.

Of all of these entities, only the Solver must be implemented by developers on a regular
basis. The SolverRegistrar, DataAdviseHolder, SolverAdviseHolder, and DescriptionProp-
Manager are each part of the core services (see section 3.9, page 214). While not technically
part of the core services, the data flow entities and the networking entities have default,
canonical implementations that are provided by the same libraries that implement the core
services. So, objects like Data Element, Inbound Solver Site, and SolverInfo, all have a
default, genetic implementation that is suitable for most needs.

111

Protocol (section) Entity Purpose
Data flow (3.4) Set Manage set of items in the model

Dimension Manage dimensions of a vector or matrix

Data Element Manage collection of values: scalar,
vector, matrix, etc.

Set Factory Create a Set
Dimension Factory Create a Dimension
Data Element Factory Create a Data Element
Data Source Provide and generate Data Elements
DataAdviseHolder Manage advise list to simplify Data
(part of core services) Element implementation
client of Data Source Receive notifications from Data Source

Solver interaction (3.5) Solver Transform data and solve problems
Introspection (3.6) Solver Provide access to SolverInfo object

Provide introspection about structure and
qualities of Solver

DescriptionPropManagerDescriptionPropManager Manage registry of description properties
(part of core services)

Progress updates / Solver Send notifications and provide status
Life cycle control (3.7) SolverAdviseHolder Manage advise list to simplify Solver

(part of core services) implementation
client of Solver Receive notifications from Solver

Networking Inbound Solver Site Wrap inbound side of Solver, including
interconnections (3.8) inputs and suppliers of Solver

Outbound Solver Site Wrap outbound side of Solver, including
outputs

Wrap a connection from one Solver to
Mapping another, managing flow of data

Solver registration and SolverRegistrar Register and unregister solvers and their
selection (3.9.1) (part of core services) SolverInfo objects

Table 3.1: Summary of framework entities

3.1.6 Framework interfaces

The framework is based on Microsoft COM. Entities and objects in COM are characterized
predominately by their behavior as defined by the interfaces that they support. Hence, the
majority of the framework specification is the definition and description of interfaces. In
fact, it is not so much the entities that satisfy the framework requirements or define the
various protocols and specifications as it is the various interfaces defined by the framework.
Entities are in turn defined by the interfaces that they support. Any object can behave as any
entity; when a particular interface on an object is used, that object is playing the role defined
by that interface. For instance, the solver interaction protocol comprises six interfaces,
including IRSolver, IRSolverlnputs, IRSolverOutputs, and IRSolverParameters. Any COM
object that implements at least these four interfaces is technically a solver within the

112

framework. Whenever a client uses the IRSolverlnputs interface on an object, that object is

playing the role of a solver. In fact, different classes of objects may support this interface,

notably the Solver and the Inbound Solver Site entities.

Tables 3.2 through 3.7 summarize the interfaces defined by the framework, organized by

specification/protocol and entity.

Entity Interfaces Purpose Section (pg)

Set IRSet Access a set's values 3.4.2.1.a (121)

IRSetModifier : Modify a set 3.4.2.1.b (122)

IRSetClone t Clone a set see reference

Dimension IRDimension Access a dimension 3.4.2.2.a (124)

IRDimensionClone t Clone a dimension see reference

Data Element Access a data element's 3.4.2.3.a (125)
IRDataElement values and data source

IRDataElementClone t Clone a data element 3.4.2.3.b (126)

IRDataElementAccess : Access a sub-element 3.4.2.3.c (126)

IRDataElementScalar 1 Optimize scalar access 3.4.2.4.a (128)

IRDataElementl : Optimize vector access 3.4.2.4.b (128)

IRDataElement2 i Optimize matrix access 3.4.2.4.c (129)

IRDataElementProperties : Access properties 3.4.2.5.a (130)

I RDataElementProperties- Modify properties 3.4.2.5.b (131)
Change

Set Factory IRSetCreator Create a set 3.4.2.1.c (123)

Dimension Create a dimension 3.4.2.2.b (124)
IRDimensionCreator

Factory
Data Element I RDataElementCreator Create a data element 3.4.2.3.d (128)
Factory

DataAdvise- IRDataAdviseHolder Manage data advise list 3.4.3.3 (135)
Holder
Data Source IRDataSource Access a data source 3.4.3.1 (133)

client of Data IRDataAdvise Receive data change 3.4.3.2 (135)
Source notifications

Table 3.2: Data element entities and interfaces ($ = optional interface)

Entity Interfaces Purpose Section (pg)

Solver IRSolver Control a solver 3.5.2 (139)

Asynchronously control a 3.5.2.1 (140)
IRSolverAsynchSolve t- solver
IRSolverinputs Access and set inputs 3.5.3 (140)

IRSolverOutputs Access outputs 3.5.4 (140)

IRSolverParameters Parameterize a solver 3.5.5 (141)

IRDataSource Access solver data source 3.4.3.1 (133)

Table 3.3: Solver interaction entities and interfaces (4 = optional interface)

113

Entity Interfaces Purpose Section (pg)
Solver IRSolver Establish connections 3.7.1.1 (170)

IRSolverStatus 4 Retrieve status and state 3.7.2.3 (176)

Asynchronously control a 3.7.3.2 (177)
RSolverControl solver

SolverAdvise- IRSolverAdviseHolder Manage update advise list 3.7.1.1.b (170)
Holder

client of Solver RSolverAdvise Receive solver 3.7.1.2 (173)
I RSolverAdvise notifications

Table 3.4: Progress updates and life cycle control entities and interfaces () = optional)

Entity Interfaces Purpose Section (pg)
Solver IRSolverProvidelnfo [Access SolverInfo 3.6.1.1.h (149)

Access parameter 3.6.1.4.b.2
IRSolverPorameterslnterface $ tch interface (156)dispatch interface (156)

SolverInfo IRSolverlnfo Access solver structure 3.6.1.1.b (145)
objects IRSolverlnputlnfo Access input information 3.6.1.1.c (146)

Access output 3.6.1.1.d (148)
IRSolverOutputlnfo information

IRSolverParamlnfo Access parameter 3.6.1.1.f (148)
information

IRSolverSetlnfo Access set information 3.6.1.1.e (148)
Access dimension 3.6.1.1.g (149)

IRSolverDimnfo information
Access specific solver 3.6.2.1.a (162)

IRSolverDescription description rodescription properties
I r rt Pr rt Enumerate all solver 3.6.2.1.b (163)IRSolverDescriptionProperties descrption roerties

description properties

DescriptionProp- IRDescriptionPropRegistration Register description prop. 3.6.2.2.a (164)
Manager Enumerate registered 3.6.2.2.b (165)

I RDescriptionPropEnumeration description properties

Table 3.5: Introspection entities and interfaces (: = optional)

114

Table 3.6: Solver registration and selection entities and interfaces (4 = optional)

Entity Interfaces Purpose Section (pg)

Inbound RSolverSiteln Access inbound solver 3.8.4.1 (189)

Solver Site site

IRSolverSitelnMappings Manage mappings 3.8.4.2 (190)

IRSolverlnputs Wrap solver inputs 3.5.3 (140)
Receive notifications 3.8.4.3 (190)

IRMappingAdvise from mappings

IRSolverSitelnSolverFactory Manage solver creation 3.8.4.4 (191)

Outbound IRSolverSiteOut Access outbound solver 3.8.5.1 (193)

Solver Site site

IRSolverOutputs Wrap solver outputs 3.5.4 (140)

IRDataSource Wrap solver data source 3.4.3.1 (133)
Receive notifications 3.7.1.2 (173)

IRSolverAdvise from solverfrom solver

Mapping IRSolverMapping Access mapping 3.8.6.1 (199)

Specify mapping 3.8.6.3 (202)
IRSolverMappingMechanism $ mechanism

Table 3.7: Networking and interconnections entities and interfaces (: = optional)

3.1.7 Framework reference

All of the interfaces, structures, enumerations, and constants are defined and described in a

framework reference manual available as an MIT Operations Research Center working paper

by Ruark [92]. A current version of the reference manual will always be available at the

author's web site (see the section "About the Author," page 14).

3.2 THE SOLVER EXECUTABLE

The problem of making a solver an executable application (section 2.3.1, page 73) is easily

solved. Within the framework, all solvers are COM objects. By their very nature, all COM

objects are executable. Thus, all solvers are executable.

A primary issue when developing a solver is whether to create a stand-alone application (an

EXE) or a dynamic link library (a DLL). In the context of COM, the question is whether to

create a local server (EXE) or an in-process server (DLL). The primary advantage of the

local server is robustness; if a client, and hence the client's in-process servers, crashes or

parties on its memory space the solver is not brought down with it. Another advantage is

that all instances of the solver can exist in a single memory space, which perhaps can be

leveraged. The primary disadvantage of a local server is that every method call to the solver

must cross process boundaries, which induces marshaling and can take time. The primary

advantage of the in-process server is speed, and the primary disadvantages are lifetime

dependency on the client application and lack of the robustness found in local servers. For a

more complete exposition of choosing a server type, see Box [8].

115

3.3 SOLVER INTERFACES

As was discussed in section 2.3.2, page 75, COM is a good choice for an object model
foundation because of the popularity of the Windows family of operating systems in small-
to medium-sized solution environments. By choosing COM, the framework can target a
wide array of host and development environments that already support Microsoft's object
model. Yet, even with the decision to use COM, its long and storied past does not make it
trivial to define a single interface that is ideal for all COM environments.

Consider Visual Basic, arguably one of the most popular development environments in use
today [71]. Through version 4.0, Visual Basic could only manipulate COM objects that
supported automation, via IDispatch. IDispatch is a standard COM interface that defines a
late-bound dispatching mechanism. The original automation framework, from type libraries
to standard automation marshaling and dispatch support, derived from the Visual Basic
interpretation and implementation of what was at the time known as OLE Automation. As a
result, modern COM servers are still limited in what types of parameters their interfaces can
support to still be labeled automation-compatible. Visual Basic 5.0 can deal with more types
of interfaces', but still has a restriction on the data types it can access in COM objects
because of an underlying restriction in the fundamental Visual Basic data types.

On the other hand, most of the standard COM interfaces are based on C parameters and
implementations, especially parameters that are not accessible to Visual Basic. Any interface
that uses an IID, CLSID, or DWORD is problematic for Visual Basic. And such interfaces
abound: IClassFactory, IPersist and its subclasses, IViewObject, and even IUnknown. These
interfaces are easy enough to declare in C or C++, but nearly impossible to declare or
implement in Visual Basic. Defining these interfaces to be automation compatible would
have severely crippled any performance gains C and C++ could provide. If these had been
dispatch-only interfaces, COM would never have become as successful as it has.

All of the interfaces mentioned in the previous paragraph are crucial for creating ActiveX
controls. Starting with Visual Basic 5.0, ActiveX control creation is perhaps simpler in Visual
Basic than in C++. How does a Visual Basic application implement IOleControl,
IViewObject, and other interfaces that are not automation compatible? The Visual Basic
code that the developer writes does not implement these interfaces at all. Instead, the Visual
Basic development environment and run-time executable layer implement these interfaces
with a standard implementation, and call into the user's Visual Basic code when necessary

1 Namely, Visual Basic 5.0 can now use and implement interfaces that have automation-compatible
types even if they do not derive from IDispatch. Furthermore, VB 5 can use but not implement
interfaces that use user-defined structures of automation-compatible types.

2 Visual Basic does not support unsigned integers; so while unsigned long is valid for COM
interfaces, Visual Basic cannot use it.

3 Hack workarounds are known; for example, see Brown [12].

116

for customized activity. That is, the Visual Basic run-time wraps the user's automation-

compatible code with the necessary custom routines to implement the COM interfaces that

define an ActiveX control. It looks something like this (Figure 3.2):

9
O-

0-

0-

VB run-time

C- VB control

Figure 3.2: How the VB run-time wraps controls to expose complicated interfaces

The Visual Basic for Applications 5.0 environment, used by Microsoft Office 97, has similar

capabilities to Visual Basic 5.0, although it cannot implement non-IDispatch-derived
interfaces. VBA should be viewed as a powerful scripting engine rather than a hosting
environment.

The future looks brighter, with the advent of COM+, the successor of COM, theoretically
making interoperability with more interfaces a reality. However, in the meantime Microsoft
has taken a step backward with its simpler scripting languages, VBScript and JScript. These

two languages, designed to compete with Netscape's JavaScript for scripting web pages, and
now a part of the Windows Scripting Host, are throw-backs to early Visual Basic

generations. These interfaces only understand IDispatch interfaces in the most late-bound

fashion. If an object does not expose functionality through IDispatch, then VBScript cannot

access it. Because of a marshaling "feature" for IDispatch interfaces, an object that will be

accessed from different apartments (i.e., must be marshaled) can only expose one IDispatch-
derived interface reliably. The usual fix is to expose as many custom interfaces as is logical
and necessary, and then to group all of those interfaces' features into a single, massive

I Dispatch-derived interface.

How does this jumble of languages and capabilities impact the design of the framework?

The framework takes an approach similar to Microsoft's. All of the main interfaces defined
by the framework are custom interfaces (i.e., for C and C++), and most of them use

parameters that might make Visual Basic uncomfortable. These interfaces are designed to be
used by the solver implementation and the guts of client applications.

Components provided by the core services will be available to map from these custom

interfaces to the more accessible automation compatible interfaces. So, a solver

implementation might aggregate or defer to a core services component that maps IDispatch

calls into the actual solver interfaces. These core services components serve the same

117

function as the parts of the Visual Basic run-time that map ActiveX control interfaces into
suitable Visual Basic functions and subroutines.

The expectation is that these interfaces are the low-level guts of solvers, clients, and
operational solutions, and that more sophisticated graphical or scripting clients that have
specific vertical domain mappings will hide these interface details and present to the ultimate
user a more accessible, even drag-and-drop interface.

Why do all the interfaces start with IR?

Every interface in the framework begins with the letters "IR." In fact, every named item in
the framework follows some loose conventions. Because most everything in the Windows
programming world exists in the global namespace, there is a problem ensuring uniqueness
of names. (This is why GUIDs were designed.) The conventions in the framework are based
on Microsoft's conventions for COM.

For instance, in COM, all standard interfaces begin with the letter "I," for interface. Hence,
IOleControl is the interface for ActiveX controls (formerly OLE controls). C++ classes in
most of Microsoft's samples, and even in the symbol set for much of the Windows NT core,
begin with the letter "C" for class. Hence, COleControl might be a C++ implementation of
the IOleControl interface.

The framework uses the letter "R" as an identifying mark4 . The framework typically does the
following. First, place the letter "R" in front of the name of an object. Then, following
Microsoft's conventions for that type of object. Hence, a data element object is
"RDataElement," and therefore has as its interface IRDataElement and might be
implemented in a class CRDataElement. Constants are often all caps, and always have a
preceding "R." Similarly, library functions also begin with "R."

The presence of the "R" in interfaces, library functions, classes, constants, serve to notify the
reader that the particular name is part of the framework as opposed to part of COM proper.
In situations where this is not the case, this will be mentioned.

Remember that in COM, interfaces are truly identified only by their IID (interface ID, the
same as a GUID), and their textual names serve as convenient tools for humans.

3.4 DATA FLOW

All solvers have at least one data input or one data output. The flow of data between client
and solver and within a network is an integral part of any applied solution. Naturally, data
creation, manipulation, and observation is a complex topic. There are many existing

118

4 From the author's name.

standards for accessing data, including SQL, ODBC, JDBC, DAO, and OLE DB, as well as

a plethora of APIs for each particular database product, OLAP package, and DSS

application. The multitude of problems in working with complex data sets, such as data

security, concurrency and locking, transaction management, performance, reliability, and

optimization, are not only beyond the scope of this thesis but also fortunately orthogonal to

the use of the data within an applied solution and the framework.

One area where most modem standards are deficient, for the purposes of operations

research solutions, is multidimensional analytic processing. That is, most database

interactions are based on a rowset philosophy, where each row in a table is an individual

entity, not necessarily related to other rows in the table. Rowsets are, by their nature,
mappings from one dimension (the index of the row) into many dimensions (the value in

each column of a row); that is, rowsets are useful for vector storage. Imposing a

multidimensional interpretation upon rowsets usually requires specifying some columns in

the table as dimensional columns and other columns as data columns. The dimensional

columns define a domain lattice, and each row is a potentially non-zero element within that

lattice. Fortunately, various organizations have realized the importance of multidimensional

analysis in DSS, and a recent area of standardization is OLAP, on-line analytical processing

(see McCright [65]). These efforts will eventually lead to standard interfaces and APIs for

retrieving multidimensional data from a flat rowset schema.

Another area of deficiency is the simple manipulation of data structures. Granted, corporate

database are complex creatures, and deserve correspondingly complex interfaces. However,
in many cases an analyst wants simply to query a vector or a matrix from a database, and

have access to that vector or matrix in the simplest of terms; that is, by row and column

index. Databases are not geared towards such simple requests.

In general, solvers should not be aware whether they are working with data from a database,
a file, a spreadsheet, or the screen. Solvers should simply work with a vector or a matrix and

leave the implementation details of the vector or matrix to a specialized data component.

A solution is to define a standard set of interfaces that expose the functionality of a vector,
matrix, or higher-dimensional lattice, and to develop components that know how to

manipulate the various sources of data, such as databases, files, and spreadsheets, and that

expose the standard interfaces. The solvers then use the standard interfaces, oblivious to

where the data is located or how it is retrieved.

This technique is precisely that used by Microsoft's current data standard, OLE DB (see

Dyck [25]). In OLE DB, any application or data source that can provide data to someone is

a data provider. Special data provider components expose a standard set of data provider

interfaces and know how to map their data sources into these provider interfaces.

Applications that use data are data consumers, and expose their own set of consumer

s That is, with the simplifying assumption that the framework does not capture real-time events or
real-time architectures.

119

callback interfaces. OLE DB is a COM standard, and so would nicely fit into the framework,
except that OLE DB lacks multidimensional support. Microsoft is working on an OLAP
standard that extends OLE DB, called OLE DB for OLAP [65, 72].

The framework therefore presents a data specification that is minimally sufficient for the
needs of the framework. When necessary, components that use databases to access their data
might leverage OLE DB or ODBC or another data standard. The actual manipulation of
data elements, in the operations research sense, occurs through the interfaces presented here.
The beauty of the interface discovery capability of QueryInterface is that as more complex,
complete, and eventually useful data interfaces are created or adopted, clients and suppliers
can discover this while always being able to fall back on the original interfaces when
necessary.

3.4.1 Data structure in the framework

There are two primary pieces of the data puzzle in the framework: data elements and data
sources. A data element is an object that contains actual data, be it a vector, matrix, scalar, or
some other entity. Every vector, matrix, and scalar in a solution can have a corresponding
data element. Data elements provide read and sometimes write access to the original source
of the data values themselves.

A data source is an object that provides data elements. That is, a data source serves data
elements to clients that request them. For instance, a database application is a data source,
and the results from a query are a data element. A data source might be responsible for
managing multiple data elements, where a data element is associated with a single data
source. Almost any object can be a data source. In particular, the outputs of a solver are data
elements; hence, the solver must be a data source.

In many cases, the data source and data element might be rolled into the same object. The
following sections describe the interfaces and responsibilities of data elements and data
sources.

3.4.2 Data elements

A data element is a single data entity in the solution model. It can be multidimensional, a
vector, or a scalar. Its values can range from numbers to strings to potentially other objects.
The basic assumptions of a data element are these:

1. The data element has a fixed, non-negative, integral dimensionality.

2. For each dimension of the data element there is a finite set that defines the possible
values for that dimension. Example sets include 0...20, { Sunday, Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday), { red, blue, green), and { Somerville,

120

Mountain View, Muswell Hill }.The cardinality of the set determines the size of the
dimension.

3. The sets must have a mapping from their actual values (as strings, colors, or cities) into
the integers, and this mapping must not change during the course of a solution. That is,
if New York maps to 12, it must always map to 12 even when other items are removed
or added to the set while solving a problem. The next time the solution is executed, these
mappings might change.

4. Every item in the data element is of the same type. That is, every item is a double, or

every item is a long. The items do not need be stored contiguously in memory in any
fashion, however.

In essence, a dimension is based on a set, and a data element is based on multiple

dimensions. Their relationships are shown using UML below (Figure 3.3):

Data element Dimension > Set

Figure 3.3: Relationships of data elements, dimensions, and sets

Before discussing data elements themselves, the interfaces for sets and dimensions must be
defined.

3.4.2.1 Sets

Sets as defined by the framework are very simple entities. The primary purpose of a set in
the framework is to map the name of some entity into an ordinal value that can be used for
data lookup within a dimension and data element.

A set has two primary interfaces. One, IRSet, is for accessing set values and mapping values
to ordinals. The other, IRSetModifier, is for modifying a set. An additional interface,
IRSetCreator, is exposed by factory objects that create sets.

3.4.2.1.a Interface IRSet

IRSet is an accessor interface. The set object cannot be changed with this interface. Hence,
for read-only sets it is sufficient to implement only IRSet. It contains the following methods:

GetName. Returns the name of the set.

GetCount. Returns the cardinality of the set.

121

Getitem. Given an index from zero to one less than that returned by GetCount, returns the
value of that item in the set. Note that the index here is not the same as the ordinal value
used for lookup in the dimension and the index. Getltem is used for enumerating the values
in a set, one at a time.

IsMember. Given a set value, determines whether that value is in the set or not.

MapToOrdinal. Given a set value, returns the ordinal value for that set value. That is, the set
value "New York" might map into ordinal value 12.

GetltemByOrdinal. Given an ordinal value, returns the set value that has that ordinal value.

GetSetBounds. Returns the lowest and highest ordinal values used by the set. The bounds
can be used to create a vector for a dimension.

The interface also contains three methods for managing a lock on the set. These are LockSet,
UnlockSet, and SetLocked, which lock the set, unlock the set, and return whether the set is
locked or not, respectively. The set cannot be modified while it is locked.

The easiest mapping, of course, is to have the index of an item be the same as the ordinal
value of the item. However, in cases where a set might change during the course of a single
solution execution, this might not be possible. For instance, suppose before executing a
solver, the ordered set is { NY, AZ, MA }, so that MapToOrdinal("NY") returns 0,
MapToOrdinal("AZ") returns 1, etc. Similarly, Getltem(0) returns "NY" and Getltem(1)
returns "AZ." Then, suppose after running the solver, "NY" is removed from the set, which
now becomes { AZ, MA }. Then, MapToOrdinal("NY") returns an error,
MapToOrdinal("AZ") still returns 1, and MapToOrdinal("MA") still returns 2. However,
Getltem(0) now returns "AZ," and Getltem(1) now returns "MA."

3.4.2.1 .b Interface IRSetModifier

Sets that support IRSetModifier permit modification of the set values. Usually, sets will be
created, filled with values, and then not changed during the course of solution execution.
IRSetCreator, below, handles the creation process, and IRSetModifier handles filling the set
with values. It has the following methods:

Insert. Given a set value and an optional index, inserts the value into the set at the specified
index. Note that when possible, the set rmght assign the ordinal value for the set value to be
the same as the index, but this is not a requirement. Without the optional index, this is the
normal function to call while building a set.

Set. Given an index, changes the set value at that index to a new value. The new set value
takes the existing ordinal value of the old set value. Note that it is possible to maliciously
destroy the set assumptions by swapping values in this manner.

122

Change. Given an old set value and a new set value, replaces the old with the new.

Essentially, the set object searches for the old set value to find its index and then calls Set.

Clear. Empties the set.

Remove. Removes a set value from the set.

RemoveAt. Removes a set value, as specified by its index from zero to one less than that

returned by IRSet::GetCount, from the set.

Generally, clients will create and change sets, and solvers will just pass them around. By

design, sets will clear themselves whenever they are deleted; hence, it is not necessary to call

Clear prior to releasing a set. Note also that there is no method for assigning the name of

the set; this happens when the set is created, as described next.

3.4.2.1 .c Interface IRSetCreator

The generic factory interfaces in COM, IClassFactory and IClassFactory2, create objects

with a default state. There is no way to use these factory interfaces to initialize a new object

with a custom state. Various schemes exist for creating objects with a custom state, including

using any of the IPersist interfaces, using monikers, or using class objects. The solution

adopted by the framework is to specify a custom factory interface, I RSetCreator, that enables

the creation of a set with predetermined state. It has a single method:

Create. Given the name of a new set and the type of items stored in the set, creates a set
with that name and those types of items, and returns it to the client.

A client can create a set by first creating a SetCreator object and acquiring its IRSetCreator

interface. Then, the client creates the set itself by calling Create on the SetCreator object.

Typically, the SetCreator and the resultant set will be implemented by the same executable,
so that the process space, apartment, and other run-time characteristics of the SetCreator are

adopted by the set when it is created.

The pattern of having a custom factory interface recurs with both dimensions and data
elements.

3.4.2.2 Dimensions

Dimensions are similar to sets in their simplicity. The reason for having sets separate from

dimensions is that a dimension is associated with a single set, whereas a single set might be

associated with many dimensions. Once created, dimensions cannot be modified, although

the underlying set might be. Dimensions therefore have only accessor and creator interfaces,

IRDimension and IRDimensionCreator.

123

3.4.2.2.a Interface IRDimension

Dimensions do not have many attributes of their own.

GetName. Returns the name of the dimension. This can be different from the name of the
set or any data element.

GetBounds. Returns the lowest and highest ordinal values used by the dimension. Often this
delegates to IRSet::GetSetBounds.

GetSet. Returns the set associated with this dimension.

3.4.2.2.b Interface IRDimensionCreator

IRDimensionCreator, the factory interface for creating dimensions, has two creation
methods. One creates a new dimension based upon an existing set object. The other creates
a new dimension based upon a contiguous range of integers without requiring the pre-
existence of a set object.

CreateFromSet. Given a string and a set object, creates a dimension with the name equal to
the string and with the associated set determining the bounds and meaning of the
dimension's values.

CreateFromRange. Given a string, a lower bound, and an upper bound, creates a dimension
with the name equal to the string and with bounds from the lower bound to the upper
bound. The dimension object must implement an implicit set object, which otherwise has no
independent meaning.

3.4.2.3 Generic data element interfaces

To qualify as a data element within the framework, an object must support the
IRDataElement interface. This interface provides the basic functionality of all data elements,
such as accessing the name of the data element, accessing the element's dimensions, and
generically accessing the values in the element. Most data elements will want to support the
interface IRDataElementClone, which provides for making a copy of the data element. A less
common interface, IRDataElementAccess, provides sub-element access. The factory interface
for data elements is IRDataElementCreator; it parallels IRSetCreator and IRDimensionCreator,
described above.

There are other data element interfaces that do not apply to every type of data element. For
example, a vector implementation might support IRDataElementl, which provides vector
access. IRDataElementl would not be appropriate for a generic data element. These
interfaces are presented in section 3.4.2.4, page 128.

124

3.4.2.3.a Interface IRDataElement

Interface IRDataElement is the fundamental data element interface. This is a required

interface for data elements. Through this interface, clients can access the dimensions of the

data element, its data source, and its name. A client can also get and set (if supported) values

in the data element in a very general way. It has the following methods:

GetName. Returns the name of the data element.

GetDimensionCount. Returns the dimensionality of the data element; this is the number of

dimension objects associated with the element.

GetDimension. Given an index between zero and one less than that returned by

GetDimensionCount, returns the dimension object indicated by that index.

GetAt. Given an array of ordinal dimension values, returns the item at that position in the

data element. For a three-dimensional data element, the following code would retrieve the
item at (3, 6, 7):

long rgDim[3];
rgDim[O] = 3;
rgDim[1] = 6;
rgDim[2] = 7;
VARIANT data; Variantlnit(&data);
pDataElement->GetAt(3, rgDim, &data);

If the one of the ordinal dimension values does not specify a valid ordinal, GetAt returns

RSOLVE_E_INVALIDINDEX.

GetAt presents the data element as a mapping from the product space of the data element's
dimensions into the space of whatever type the data element is. Due to the restriction that
sets are finite, and because data element types currently map into COM's VARIANT, clearly
it is a finite mapping into VARIANTs.

SetAt. Given an array of ordinal dimension values and a new data value, assigns the new data
value to the indicated position in the data element. For a three-dimensional data element, the
following code would set the item at (3, 6, 7):

long rgDim[3];
rgDim[0] = 3;
rgDim[1] = 6;
rgDim[2] = 7;
VARIANT data; Variantlnit(&data);
data.vt = VT_R8;

125

data.dblVal = 42.0;
pDataElement->SetAt(3, rgDim, data);
VariantClear(&data);

If the one of the ordinal dimension values does not specify a valid ordinal, SetAt returns
RSOLVE_E_INVALIDINDEX. Read-only data elements return RSOLVE_E_READONLY, while
data elements that are locked return RSOLVEEDATAELEMENTLOCKED.

GetDataSource. Returns the data source that provides this data element.

3.4.2.3.b Interface IRDataElementClone

The interface IRDataElementClone enables a client to clone a data element. The client could
then modify the clone or pass it on to another solver while retaining the original. Cloning is
an important part of networked solutions. The single method, Clone, returns a new data
element object that has the same dimensions, sets, and data values as the original.

There are no particular restrictions on how the clone is implemented. For optimizations,
copy-on-write could be used, for instance. Similarly, there is no restriction on whether the
same dimension and sets objects are used with both the original and the clone or whether
those are cloned as well.

If a data element does not support IRDataElementClone, then the client will have to clone
the element piecemeal6. Clearly, IRDataElementClone provides opportunity for significant
optimizations as usually the implementation of a data element knows best how to optimize
copying the data element.

3.4.2.3.c Interface IRDataElementAccess

Sub-element access is the process of extracting a lower-dimensional data element from an
existing data element--for example, taking the first column as a vector from a matrix. Given
the view that a data element is a mapping from dimension indices into a data value (see
IRDataElement::GetAt, above), sub-element access is the creation of a new mapping by fixing
some of the arguments in the original mapping and leaving the others free.

For example, suppose there is a three-dimensional data element, with dimensions of months,
researchers { Steve, Penny, Thalia }, and customers { Tom, Liz, Chris }. The data element
stores hours worked in a month by a researcher for a customer. This data element has
12*3*3 = 108 entries. Suppose a client wanted to access values specifically for the researcher

6 There is certainly the opportunity here for a core services component which could clone any data
element, and maybe even optimize the process by somehow using intimate knowledge of the data
element's layout via private interfaces.

126

Penny. This is possible by using IRDataElement::GetAt and fixing the researcher dimension

value to always equal Penny. Essentially, this creates a two-dimensional matrix with

dimensions months and customers (Penny being the fixed researcher). However, this two-

dimensional matrix exists in spirit only, as it would not be possible to pass the two-

dimensional matrix to a solver without the client manually creating it by using

I RDataElement::GetAt.

IRDataElementAccess enables the creation of the sub-element from within the data element,
which due to internal implementation knowledge can be optimized just as with

IRDataElementClone. IRDataElementAccess has a single method:

GetSubElementAt. Given the dimension values to be fixed, returns the sub-element of the

data element that has those values fixed and all other values free. There are three inputs.
First is the number of dimensions that will be fixed. Second is an array of integers that

identify which dimensions are being fixed; these integers are the same used by

IRDataElement::GetDimension (described above). The third input is an array of integers
indicating the ordinal values of the fixed dimensions, as determined by

IRSet::MapToOrdinal. The function creates a new data element containing the desired sub-

element and returns it to the client.

Consider the example above, where the mappings are Steve = 1, Penny = 2, Thalia = 3, Tom

= 1, Liz = 2, and Chris = 3, and the months range from 1 to 12. The dimensions are
researchers = 0, customers = 1, and months = 2,. Suppose the client wants to determine the

hours worked by Penny in the month of July for all the customers. The following shows the

arrangement of the inputs to GetSubElementAt:

Number of dims. Dimensions to fix Values to fix at

20 (researchers) 2 (Penny)

2 (months) 7 (July)

The resultant sub-element would be a vector with one dimension-customers-and three
values, one for each of the customers. Sample pseudo-code for this method would be:

IRDataElement* pNewDataElement = NULL;
long rgDim[2];
long rgValues[2];
rgDim[O] = 0; // researchers
rgValues[0] = 2; // Penny
rgDim[1] = 2; // months
rgValues[1] = 7; //July
pDataElementAccess->GetSubElementAt(2, rgDim, rgValues, RDA_COPY,

&pNewDataElement);

127

The fourth parameter indicates whether the resultant sub-element should be a copy or a

contained reference of the original data. If a reference (using RDA_CONTAINED), then
changes to the sub-element will change the original data element, and changes to the original
data element will be reflected in the sub-element. Note that this code is not exact due to the
additional input parameter (not shown) of the interface identifier for the interface that
should be returned.

3.4.2.3.d Interface IRDataElementCreator

I RDataElementCreator is the factory interface for creating stand-alone data elements. As with
sets and dimensions, the implementation of a data element will also expose a factory object
that can create data elements.

The single method, Create, takes as input an array of existing dimension objects and a type
indicator for the type of values to store in the data element, and returns a new data element
with those dimensions and suitable default values.

3.4.2.4 Specialized data element interfaces

Some interfaces are designed for optimizing access to common data element types. There is
an interface each for scalars, vectors, and matrices. These interfaces can be exposed by a data
element to allow the client to more efficiently and easily access these data element types.

3.4.2.4.a Interface IRDataElementScalar

IRDataElementScalar provides easy access for scalar data elements. If a data element exposes
IRDataElementScalar, then the client can perhaps optimize its use of the data element with
this interface; otherwise it must rely on other interfaces.

GetScalar. Returns the value of the scalar.

SetScalar. Sets the value of the scalar. Read-only data elements return RSOLVE_E_READ-
ONLY, while data elements that are locked return RSOLVE_E_DATAELEMENTLOCKED.

3.4.2.4.b Interface IRDataElementl

IRDataElementl provides easy access for vector data elements. If a data element exposes
IRDataElementl, then the client can perhaps optimize its use of the data element with this
interface; otherwise it must rely on other interfaces.

GetAt. Given an ordinal index, returns the value at that index in the vector. If the index does
not specify a valid ordinal, GetAt returns RSOLVE_E_INVALIDINDEX.

128

SetAt. Given an ordinal index and a new value, sets the value at that index in the vector to

the new value. If the index does not specify a valid ordinal, SetAt returns

RSOLVE_E_INVALIDINDEX. Read-only data elements return RSOLVE_E_READONLY, while

data elements that are locked return RSOLVE_E_DATAELEMENTLOCKED.

3.4.2.4.c Interface IRDataElement2

IRDataElement2 provides easy access for matrix data elements. If a data element exposes

IRDataElement2, then the client can perhaps optimize its use of the data element with this

interface; otherwise it must rely on other interfaces.

GetAt. Given ordinal row and column indices, returns the value of the matrix at that row and

column. If the row or column does not specify a valid ordinal, GetAt returns

RSOLVE E INVALIDROW or RSOLVE_E_INVALIDCOLUMN.

SetAt. Given ordinal row and column indices and a new value, sets the value at that row and

column in the matrix to the new value. If the row or column does not specify a valid ordinal,
SetAt returns RSOLVE_E_INVALIDROW or RSOLVE_E_INVALIDCOLUMN. Read-only data

elements return RSOLVE_E_READONLY, while data elements that are locked return

RSOLVE_ EDATAELEMENTLOCKED.

GetColumn. Given an ordinal column index, returns another data element that contains the
specified column's values, as a vector. If the data element does not support sub-element

access, it returns RSOLVE_E_NOTSUPPORTED. If the index does not specify a valid column,
GetAt returns RSOLVE_E_INVALIDCOLUMN. Usually, implementations will delegate to

I RData ElementAccess::GetSubElementAt.

GetRow. Given an ordinal row index, returns another data element that contains the
specified row's values, as a vector. If the data element does not support sub-element access,
it returns RSOLVE_E_NOTSUPPORTED. If the index does not specify a valid row, GetAt

returns RSOLVE E INVALIDROW. Usually, implementations will delegate to IRDataElement-
Access::GetSu bElementAt.

3.4.2.5 Data element properties

An optional feature that a data source can provide is data element properties. For a given data
element, there can be a set of named properties. Each property is essentially another data
element that shares the same dimensions as the data element proper. However, semantically,
the properties are too closely related to the data element to warrant being their own data
elements, or else the properties are values that make no sense in array, vector, or matrix
form.

A reasonable assumption for an applied solution is that data element properties coincide
with ordered sets of dimensions. In this way, multiple data elements can share the same data

129

element property set, and when one of the properties changes, the change is reflected across
both data elements.

For example, consider a data element that contains the production volumes on a series of
five identical machines during 1997. One dimension is the set of five machines, while the
other dimension is the set of twelve months of 1997. Suppose this data element is queried
from a database table. Probably this table has sixty rows, one for each machine-month
combination. This table has two columns identifying the particular machine and month a

given row represents, and another column for production volume. Suppose this table also
contains other columns, such as a row ID (an auto-number containing a unique ID for the
row), forecast production values, and number of accidents at that machine per month.

Now, suppose a solver needs to calculate the error in the forecast for each machine for each
month, and output the result to a new table. For easy lookup, the new table should columns
for machine, month, forecast error, and row ID, where the same row ID is used in both
tables to identify the same machine-month combination. In this case, the row ID is a
property of the machine-month product space. For a given machine and a given month,
there is a unique row ID that must be transferred from the source table to the destination
table. This row ID might be a number without any numerical meaning in the model being
solved. So, the data source that encapsulates this query can store the row ID as a data
element property and propagate it forward to any other data elements that also use the same
dimensions.

A data element object exposes the IRDataElementProperties interface if it supports the look-
up of data element properties. It exposes the IRDataElementPropertiesChange interface if it
also supports the modification of these properties.

3.4.2.5.a Interface IRDataElementProperties

A data element exposes IRDataElementProperties when it provides data element properties
on its data. It has four methods:

GetitemPropertyCount. Returns the number of named properties.

GetitemPropertyName. Given an index from zero to one less than the value returned by
GetitemPropertyCount, returns the name of the property identified by that index.

MapitemPropertyNameTold. Given the name of a property, returns the index of that named
property if it is one of the named properties that exists on this data element.

GetitemProperty. Given the index of a named property, from zero to one less than the value
returned by GetltemPropertyCount, and an array of ordinal dimension values, returns the
property value corresponding to the given index and the provided position in the data
element. See IRDataElement::GetAt for an example of similar usage of the ordinal dimension
values.

130

3.A.2.5.b Interface IRDataElementPropertiesChange

If a data element supports data element properties and permits modifications of these

properties, it does so through the implementation of IRDataElementPropertiesChange. This

interface has a single modifier method:

SetitemProperty. Given the index of a named property, from zero to one less than the value

returned by IRDataElementProperties::GetltemPropertyCount, an array of ordinal dimension
values, and a new property value, sets the property value corresponding to the given index

and the provided position in the data element. See IRDataElement::SetAt for an example of
similar usage of the ordinal dimension values.

3.4.2.6 Creating and acquiring data elements

With an understanding of the capabilities of a data element, the question of how to acquire a

pointer to a data element in the first place remains. There are two main ways to acquire a
data element. The first is to create one from scratch. Assuming the sets and dimensions are

known or available, it is a simple process to create a factory object for a data element and

then call IRDataElementCreator::Create on the factory to create a new data element.

The other way to acquire a data element is from a solver or other component that provides a

data element as its output. Internally, a solver might use a stand-alone data element

component or it might roll its own implementation of one. Either way, the client does not
personally create the data element; it only receives it from the solver.

In typically solution architectures, the client will have to create a data element only as part of
initializing the original inputs to the problem. If these are queried from a database, then a
specialized database component could even handle that, relieving the creation burden
entirely from the client.

Nevertheless, for those times when a client must create a data element, the following
pseudo-code illustrates how to create a vector:

// first, create the dimension factory object
IRDimensionCreator* pDimCreator = NULL;
CoCreatelnstance(CLSID_RDimensionCreator, NULL, CLSCTX_SERVER,

IID_IRDimensionCreator, (LPVOID*)&pDimCreator);

// create a vector that ranges from 0 to 10.
IRDimension* pDim = NULL;
pDimCreator->CreateFromRange(L"SampleDim", 0, 10, IID_IRDimension, (LPVOID*)&pDim);
pDimCreator->Release();

131

// create a vector data element factory object
// this uses a special vector implementation with CLSID CLSID_RVectorCreator
I RDataElementCreator* pVecCreator = NULL;
CoCreatelnstance(CLSID_RVectorCreator, NULL, CLSCTX_SERVER, IID_I RDataElementCreator,

(LPVOID*)&pVecCreator);

// create the vector
// 1 dimension, it will hold doubles (VT_R8 = double)
IRDataElement* pVec = NULL;
pVecCreator->Create(L"SampleVec", 1, &pDim, VT_R8, IID_RDataElement, (LPVOID*)&pVec);
pVecCreator->Release();

// use the special data element interface to fill the vector
IRDataElementl pVecl = NULL;
pVec->Querylnterface(IID_IRDataElement 1, (LPVOID *)&pVec 1);
VARIANT var; Variantlnit(&var);
var.vt = VT_R8;
for(int j=O;j<= 1 0;++j) {

var.dblVal = (j-5)* (j-5)+3. 14;
pVec 1->SetAt(j, var);

}
VariantClear(&var);

3.4.3 Data sources

Data elements are the embodiment of the actual data values themselves. Data sources are the
entities that provide these values to a client. Data elements are static; they contain data. Data
sources are dynamic; they lock, update, and manage data lifetimes. A data source can provide
more than one data element. For example, a database query might yield one data element per
column in the resulting query set; the query itself might be the data source, and each column
would be a data element provided by that source.

For stand-alone implementations of data elements (such as the one demonstrated in the
example in section 3.4.2.6, above), the data source and the data element are usually the same
object. That is, the same object exposes both the data element and the data source interfaces.
In cases where the client acquires a data element from another object, such as a solver, then
usually the provider object or solver will implement the data source interfaces.

At a high level, data sources have a fairly simple state space. A canonical data source state
diagram is presented in Figure 3.4. There are two independent aspects of state. A recurring
one is that of the lock count. In the upper half of the state diagram, there are two states
indicating whether the data source is Locked or Unlocked. Values within data elements of
this data source can be changed only when it is in the Unlocked state; and doing so causes
the OnDataChange notification to be sent. The other aspect of state is the notification list,
discussed in section 3.4.3.2.

132

* Destroy-

Unlocked

entry/ lockCount = 0
Change(data)/ setData ^Send(onDataChange)

Lock / lockCount += 1Unlock [lockCount == 1]

Locked

Lock/ lockCount += 1
Jnlock [lockCount>1] / lockCount-= 1

Figure 3.4: State diagram for a data source

The primary data source interface is IRDataSource. It provides for simple data notification
advises, accessing its collection of data elements, and locking its data elements. The interface

IRDataAdvise is implemented by clients that wish to receive data change notifications. The

interface IRDataAdviseHolder is a helper interface that data sources can use to manage their
collection of notification sinks.

3.4.3.1 Interface IRDataSource

Interface IRDataSource is the primary data source interface. It has eleven methods, of which

nine are currently meaningful. The remaining two, CanMaintainSolverData and

LockRequired, will be explained in more detail in section 3.8.6.2, page 200.

133

K AdviseList

entry/ ^list.init
Advise(client)/ ^list.add(client)
Unadivse(client)/ ^list.remove(client)
Send(notification)/ ^list.sendToEach(notification)
exit/ ^list.destroy

-

i

Advise. Establishes an advise connection for data change notifications. Takes as input an

interface pointer to the notification sink interface, I RDataAdvise, and returns a magic cookie
that identifies this particular connection.

Unadvise. Breaks an advise connection for data change notifications. Takes as input a magic

cookie previously returned from Advise.

LockData. Increments the lock count on the data source and all of the data source's data
elements. When the data source's lock count is non-zero, the data source is locked. Calls to
any of the methods in the data elements that would change data will fail with

RSOLVE E DATAELEMENTLOCKED.

UnlockData. Decrements the lock count on the data source and all of the data source's data
elements (if they are above zero). While a data element is locked, calls to any of the methods

in the data element that would change data will fail with RSOLVE_E_DATAELEMENT-
LOCKED.

DataLocked. Returns a non-zero value if the data source is currently locked (as controlled by
LockData and UnlockData).

GetDataElementCount. Returns the number of data elements provided by this data source.

GetDataElementName. Given an index between zero and one less than that returned by
GetDataElementCount, returns the name of the data element for the given index.

GetDataElementAccessor. Given an index between zero and one less than that returned by
GetDataElementCount, returns an accessor interface of the data element for the given index.
Typically, this is IRDataElement.

GetDataElementModifier. Given an index between zero and one less than that returned by
GetDataElementCount, returns a modifier interface of the data element for the given index.
Typically, this is IRDataElement. The distinction between this method and GetDataElement-
Accessor enables future implementations where accessor and modification functions are in
different interfaces, as is the case with the significantly more capable OLE DB specification.

CanMaintainSolverData. Returns a non-zero value if the data source can maintain data
element data even after it has been passed to a solver and during a solver's execution. This
will be explained in more detail in the section on networking solvers (see section 3.8.6.2,
page 200).

LockRequired. If the data source can maintain solver data, as determined by
CanMaintainSolverData, this function returns non-zero if the solver must lock the data
source and its data elements in order to use it as inputs for a solver. This will be explained in
more detail in the section on networking solvers (see section 3.8.6.2, page 200).

134

3.4.3.2 Data change notifications and IRDataAdvise

Clients that wish to receive data change notifications must establish an advise connection

with the data source by calling IRDataSource::Advise, described in the previous section.

IRDataSource::Advise and IRDataSource::Unadvise are analogous to the standard COM

methods IDataObject::DAdvise and IDataObject::DUnadvise. In particular, if the data source

does not support notifications, it should return the standard error OLE_E_ADVISE-
NOTSUPPORTED from Advise and Unadvise. If an invalid magic cookie is passed to
Unadvise, it should return OLE_E_NOCONNECTION.

Data sources that do support data change notifications must maintain a list of the valid
advise connections, usually in a map of interface pointers and magic cookies. This list must
support insertion, removal, and enumeration of elements, and secondarily it must support
lookup by magic cookie.

Interface IRDataAdvise is a simple data change notification interface that enables a client to
be notified whenever a data element's data changes. Currently, it is broadcast by a data
source, so that if only one data element changes in a data source, any clients using any data
elements from that data source will receive this notification. Clearly this is a liberal
notification scheme, but it suits the purposes of the framework. This notification is used
primarily in networks of solvers to indicate when input data has been established and the
solution process can begin. Because of the assumption that the framework does not address
real-time architectures or operational solutions, it is safe to further assume that exogenous
input data will not change randomly while a solution is in progress.

OnDataChange. This message is sent by the data source to all advised clients (connections
established through IRDataSource::Advise) whenever any of the data source's data elements
change.

3.4.3.3 Simplifying implementation with IRDataAdviseHolder

The previous section described the features of a map of interface pointers and magic cookies
necessary for data change notifications. Because most data sources will implement such a list,
the core services provide a special object called the DataAdviseHolder that implements the
necessary functionality of this list, simplifying data source development. The
DataAdviseHolder takes care of managing the map of pointers and of walking through the
map to send updates whenever the data source wants to send a notification.

Generally, the data source will create an instance of a DataAdviseHolder for each instance of
the data source. The DataAdviseHolder has CLSID CLSID_RDataAdviseHolder, and the
data source can create it with the normal call to CoCreatelnstance. The DataAdviseHolder
supports the IRDataAdviseHolder interface, which has the following methods:

135

Advise. Takes as inputs a pointer to the data source's implementation of IRDataSource and

the client's implementation of IRDataAdvise, adds the client's pointer to the
DataAdviseHolder's internal map, and returns a magic cookie for the data source to pass
back to the client.

Unadvise. Takes as input the magic cookie passed from the client to the data source and
removes the interface pointer that corresponds to that connection from its internal map.

SendOnDataChange. Sends the OnDataChange notification to all connections in the

internal map. See IRDataAdvise for more details.

The data source can incorporate the DataAdviseHolder object simply, by following these
steps (examples are shown for C++).

1. Add an interface pointer to IRDataAdviseHolder to the class that implements the data
source. In the header file for the data source class:

Class CRMyDataSource : public IRDataSource
{

IRDataAdviseHolder* m_pDataAdviseHolder;
// remainder of class definition

2. In the constructor of the data source class, make sure to initialize the pointer, and in the
destructor make sure to release the pointer if it is non-zero:

CRMyDataSource::CRMyDataSource() : m_pDataAdviseHolder(O) {}
CRMyDataSource::~CRMyDataSource()
{

if(m_pDataAdviseHolder)
m_pDataAdviseHolder->Release();

3. Add implementations of Advise and Unadvise that look like this:

STDMETHODIMP CRMyDataSource::Advise(lRDataAdvise* pAdvise, DWORD* pdwCookie)
{

if(pdwCookie)
{

if(lm_pDataAdviseHolder)
{
HRESULT hr = CoCreatelnstance (CLSID_RDataAdviseHolder, NULL, CLSCTX_SERVER,

IID_IRDataAdviseHolder, (LPVOID*) &m_pDataAdviseHolder);

136

if(FAILED(hr))
return E_OUTOFMEMORY;

return m_pDataAdviseHolder->Advise(static_cast<l RDataSource* >(this), pAdvise,
pdwCookie);

return E_POINTER;
I

STDMETHODIMP CRMyDataSource::Unadvise(DWORD dwCookie)

if(!m_pDataAdviseHolder II IdwCookie)
return OLE E NOCONNECTION;

return m_pDataAdviseHolder->Unadvise(dwCookie);

4. Add at the point where the data source wants to update clients of a data change the

appropriate call to SendOnDataChange:

// ... call notification
if(m_pDataAdviseHolder)

m_pDataAdviseHolder->SendOnDataChange();

3.5 THE PRIMARY SOLVER INTERFACES

To be a solver within the framework, a component must implement and expose the primary

solver interfaces IRSolver, IRSolverlnputs, IRSolverOutputs, and IRSolverParameters, as well

as IRDataSource. These interfaces expose, naturally, the inputs, outputs, and parameters of a
solver, as well as provide control over the solver's execution.

The basis of the solver interfaces stems from the framework's assumptions about the
structure of solvers. These assumptions are discussed next, followed by a description of the
primary solver interfaces.

3.5.1 Solver structure

Almost all solvers have a similar structure. They take inputs, generate outputs, and can be
parameterized in some fashion. The following items clarify the assumptions the framework
makes about solvers:

The solver has a set of inputs, a set of outputs, a set of parameters, and a set of sets. The

inputs are the actual problem data, the parameters are the configuration values for the

algorithm, the outputs are the results of the analysis, and the sets are the collections of

interesting entities in the problem.

137

* Each set is an enumeration of related entities. A set might be ordered or unordered,
sorted or unsorted, or exhibit other properties. For instance, the union of all possible
facility locations is a set for the facility location problem. Months of the year might form
another set.

* Each input and each output is a single data element. This element can be a scalar value, a
matrix, an unordered set, etc. Each input and each output has a set of dimensions,
describing the domain of the input data element. Scalar input or output elements have
no associated dimensions. See section 3.4.2, page 120, for more information on data
elements.

* A dimension references one of the sets of the solver, so that the range of possible values
for a given dimension is specified by the elements of one of the sets.

* A parameter is a single value that configures the solver.

In essence, a solver contains inputs, outputs, parameters, and sets. Each input contains
dimensions. Each output contains dimensions. Each dimension references a set. This
abstraction is represented in Figure 3.5.

Figure 3.5: High-level class diagram of solver structure

Example-Knapsack problem. Consider the knapsack problem. This problem has four
inputs, one output, one set, and no parameters, as shown in the object model in Figure 3.6.
The set Items is the list of possible items to load into the sack. This can be simply the values
from one to five if there are five pieces, or it could be the named values {apple, cheese,
bread, water, beef jerky}. One input, Capacity, is a scalar. The other three inputs are each
vectors, indexed by the dimension ItemDim which is enumerated by the set Items. The
InitialSolution input is a first-guess solution for the problem, probably a zero vector by

138

Figure 3.6: Object diagram of knapsack solver structure

default. The Cost and Weight vectors have their usual meanings for the knapsack problem.

The output, Solution, is a vector indicating the number of each item to place in the knapsack.

It is not necessary for a solver's actual structure to correspond to the representation in
Figure 3.5. However, for most solvers there are mappings from their structures to the one
presented.

3.5.2 IRSolver

I RSolver is the fundamental solver interface. It is the cornerstone of a solver implementation.
Its methods are partitioned into several areas of functionality.

First is generic state and life cycle control. The Solve method initiates the synchronous

execution of the solver. The reason of existence of a solver is the Solve method. The
associated methods Clearlnputs and ClearOutputs help to reset the state of a solver if it will
be used to solve multiple problem instances. See section 3.8.5.4, page 195, for more

information on ClearInputs and ClearOutputs.

Two notification registration methods, SolveAdvise and SolveUnadvise, enable a client to
establish an advise connection for progress updates. See section 3.7, page 169, for more
information on solver progress notifications.

Finally, four other methods, GetSolverSiteln, SetSolverSiteln, GetSolverSiteOut, and

SetSolverSiteOut, are used in a network of solvers. These functions are described in detail
and in context in section 3.8.7.1, page 204.

139

3.5.2.1 IRSolverAsynchSolve

An optional interface, IRSolverAsynchSolve, enables a client to initiate asynchronous
execution of a solver. Solvers that support such activation indicate so by implementing this
interface. It has a single method, AsynchSolve, that has the same semantics as
IRSolver::Solve, except that AsynchSolve should return to the caller as soon as possible,
performing the actual solver execution on a separate thread or in a separate process.

3.5.3 IRSolverlnputs: Setting the inputs

The interface IRSolverlnputs describes how a solver exposes its inputs to clients, and how
clients can pass inputs into the solver. Each input is a data element with an associated data
source.

Three methods relate to setting and getting inputs:

GetlnputCount. Returns the number of inputs to the solver.

GetlnputData. Given an index from zero to one less than that returned by GetlnputCount,
returns the data source and the index of the data element within that data source that stores
the values for the given indexed input. GetlnputData can return a number of errors,
including RSOLVE_E_INVALIDINDEX if the index parameter is invalid,
RSOLVE_E_OUTOFORDER if the solver requires ordered inputs and the specified index is
out of order, RSOLVE_E_SOLVING if the solver is currently solving,
RSOLVE_E_INPUTSLOCKED if the inputs are currently locked and inaccessible, and
RSOLVE E INPUTNOTSET if the input was never set in the first place.

SetlnputData. Given an index from zero to one less than that returned by GetlnputCount, a
data source, and a data element index for that data source, assigns the specified data element
to the indexed input of the solver. SetlnputData returns errors similar to GetlnputData (see
above), including RSOLVE_E_INVALIDINDEX, RSOLVE_E_OUTOFORDER,
RSOLVE_E_SOLVING, and RSOLVE_E_INPUTSLOCKED.

Three other methods manage the lock count state of the input side of the solver. Locklnputs
increments the input lock count, Unlockinputs decrements the input lock count, and
InputsLocked returns whether the inputs are currently locked.

3.5.4 IRSolverOutputs: Getting the outputs

The interface IRSolverOutputs allows a client (or another solver in a network) to access the
output data elements of a solver.

GetOutputCount. Returns the number of outputs exposed by the solver.

140

GetOutputData. Given an index from zero to one less than that returned by

GetOutputCount, returns the data source and the index of the data element within that data

source that stores the values for the given indexed output. GetOutputData can return a

number of errors, including RSOLVE_E_INVALIDINDEX if the index parameter is invalid,
RSOLVE_E_SOLVING if the solver is currently solving, RSOLVE_E_OUTPUTSLOCKED if the

outputs are currently locked and inaccessible, and RSOLVE_E_OUTPUTNOTSET if the output
has not yet been set by the solver.

Three other methods manage the lock count state of the output side of the solver.
LockOutputs increments the output lock count, UnlockOutputs decrements the output lock
count, and OutputsLocked returns whether the outputs are currently locked.

3.5.5 IRSolverParameters: Parameterization

IRSolverParameters is a simple interface that provide array access to the parameters of a
solver. It has three methods:

GetParameterCount. Returns the number of parameters supported by the solver.

GetParameter. Given an index from zero to one less than that returned from
GetParameterCount, returns the parameter identified by the index.

SetParameter. Given an index from zero to one less than that returned from
GetParameterCount and a new parameter value, sets the parameter identified by the index.

3.6 INTROSPECTION

Section 2.3.3 outlined the need for active documentation that helps a user select and
subsequently use a solver. As indicated in that section, the problem of documentation for
using a solver is in large part resolved by virtue of having a standard interface and protocol
for using all solvers within the framework. To some extent, once the user learns one, all are
the same. However, solvers differ in their structure, in their inputs, outputs, and
parameterization capabilities. Knowing thus how a solver operates, the user still needs to
learn what the structure of a solver is in order to use it. To tackle this problem and the
problem of solver selection, this section presents an introspection protocol that enables solvers
to actively participate in the documentation process and for clients to discover at design-time
and run-time the capabilities of a solver. Through introspection, a client can determine the
structure and capabilities of a solver.

There are three aspects to the introspection model for solvers. The first, Solverlnfo,
characterizes the quantitative structure of the solver, such as its inputs, outputs, parameters,

7 Named similar to the JavaBeans equivalent in the JavaBeans introspection API, the BeanInfo.

141

and dimensions. The second, SolverDescription, captures the qualitative details of an algorithm
implementation, such as the author, developer, and citation. The third aspect is the discovery
of capabilities based on supported interfaces, as determined by calls to

I Unknown::Querylnterface.

3.6.1 Solverinfo: Paralleling the structure of the solver

The SolverInfo protocol enables a client to determine the nature of inputs, outputs, and
parameters for a solver, in order to automate the application of the solver in a solution
environment. If a solver does not support the protocol, then the client must use other
techniques to ascertain the structure of the solver.

Figure 3.7: Class diagram of Solverinfo interfaces

142

Solverinfo structure. SolverInfo attempts to describe the overall outward appearance of the

structure of a solver. To this end, the SolverInfo structure parallels that of a solver; see
section 3.5.1, page 137, for a description and explanation of the presumed solver structure.

Solverinfo protocol. The SolverInfo protocol mirrors this structure in a set of interfaces that

provide documentation for each piece of the solver structure. Specifically, the SolverInfo

interface provides information about the solver itself, the InputInfo provides information

about an input, etc. The relationship of these interfaces is displayed in Figure 3.7; the

correspondence between the information interfaces and the solver structure in Figure 3.5 is

self-evident. The attributes of each class will be discussed shortly.

A typical implementation of the SolverInfo protocol will create a separate object for each

input, output, dimension, set, and parameter. Each object will support the interface that

represents that object. Another object for the solver will provide access to all of these

objects. For instance, a possible SolverInfo structure for the knapsack example described in
section 3.5.1, page 138, is shown in Figure 3.8.

Figure 3.8: Object diagram of knapsack Solverinfo structure

The SolverInfo protocol is a collection of interfaces supported either by the solver or by an
accessory object acting on behalf of the solver.

143

3.6.1.1 Solverinfo interfaces

This section describes the various interfaces of the SolverInfo protocol.

3.6.1.1.a Interface IRSolverBaseinfo

All of the solver information interfaces derive from a common base interface,
IRSolverBaselnfo. This interface provides the method definitions of common routines for all
of the information interfaces. It includes:

GetName. Returns a string containing the name of the object, whether it is a solver,
dimension, input, output, or set. An example name for a solver might be "John's Knapsack."
An input might be named "Weight" or "Cost," while a dimension might be "Items."

GetShortDescription. Returns a string containing a short, human-readable description of the
object. For instance, the description for the input element "Cost" might be "A vector
containing the cost of each item." The short description can be used in solver browsers to
assist a user in understanding the elements of a solver (for solver selection, see section
2.3.3.1, page 78) and assigning mappings to inputs and outputs of solvers (for solver
utilization, see section 2.3.3.2, page 80).

GetFlags. Returns a bitmask containing global and object-specific status information. Each
bit in the returned value represents a true or false value for some property of the object. All
SolverInfo objects can have the following flags:

RSI_EXPERT The element is intended for expert users only. I.e., if a
client has a "novice" setting, this element can be hidden
and default values will be used. This is particularly useful
for solvers with many parameters that can highly
customize the operation of the algorithm.

RSI_HIDDEN The element should not be displayed in a solver browser.
I.e., the element is accessible programmatically for clients
that know the element exists, but in a visual browser the
element should be hidden from the user.

Table 3.8: Bitmask values for IRSolverBaselnfo::GetFlags

Each specific object will define its own set of flags that apply specifically to that type of
object.

GetHelpFile. Returns a string that identifies a help file containing more extensive information

on the particular object. By calling this and GetHelpContext, a client can load a help topic
using the operating system's help functionality.

144

GetHelpContext. Returns a number that identifies a help context ID that references a help
topic within the file identified by GetHelpFile (above). By calling this and GetHelpFile, a
client can load a help topic using the operating system's help functionality.

3.6.1.1.b Interface IRSolverinfo

Interface IRSolverlnfo is the primary interface for solver information. It provides details
about the solver as a complete entity and accessors to the specific objects of the solver. As
with all of the SolverInfo interfaces, it derives from IRSolverBaselnfo. It defines the flags in
Table 3.9 for IRSolverBaselnfo::GetFlags. Typically, one of RSI_SYNCHRONOUS_EXE-
CUTION or RSI_ASYNCHRONOUS_EXECUTION must be set.

RSI_ASYNCHRONOUS_IN PUTS

RSIORDERED_INPUTS

RSI_ASYNCHRONOUS_EXECUTION

RSI SYNCHRONOUS EXECUTION

If set, then the solver can accept inputs for a new
problem instance at any time, for example while the
solver is solving another problem. Otherwise, the
solver can only accept inputs when it is doing
nothing else. Most solvers would not set this bit.
See page 91 for a canonical state diagram of solvers.

If set, then the solver can only accept inputs in the
ordered specified by their indices (see below). If not
set, then the solver can accept inputs in any order.
The solver might need to have ordered inputs if the
values of one input can modify the meaning or size
of another input. For example, if one input is the
number of elements to analyze and another input is
the vector of elements, then the number of
elements might need to precede the elements
themselves if the solver needs to allocate internal
memory to hold the elements.

If set, then the solver supports asynchronous

execution through the IRSolverAsynchSolve

interface. The I RSolverAsynchSolve::AsynchSolve
function of the solver will typically immediately
return, and the client will then be notified via
progress updates or notifications when the actual
execution of the solver has completed. If not set,
then the solver does not support asynchronous
execution.

If set, then the solver supports synchronous
execution. Calling the Solve function will invoke the
solver, and it will not return until execution is
complete. The client can receive progress updates

and notifications nested within the Solve function.
If not set, then the solver does not support
synchronous execution.

Table 3.9: Bitmask values for IRSolverlnfo::GetFlags

145

The remaining functions of IRSolverinfo provide accessors to the subordinate objects of the
solver information:

GetinputinfoCount. Returns the number of input information objects. This is typically the
same as the number of inputs to the solver.

Getinputinfo. Given an index from zero to one less than that returned by GetinputinfoCount,
returns the input information corresponding to that index. See IRSolverlnputlnfo, below. If
RSI_ORDERED_IN PUTS is set in the value returned from GetFlags of the solver info object,
then the ordering specified by Getinputinfo's index is the order in which inputs must be set.
This assumes, therefore, that the ordering of inputs is invariant on the input values for
solvers that required ordered inputs.

GetOutputlnfoCount. Returns the number of output information objects. This is usually the
same as the number of outputs from the solver.

GetOutputinfo. Given an index from zero to one less than that returned from
GetOutputlnfoCount, returns the output information corresponding to that index. See
IRSolverOutputlnfo, below.

GetSetlnfoCount. Returns the number of set information objects. This is usually the same as
the number of distinct sets used by the solver.

GetSetlnfo. Given an index from zero to one less than that returned from GetSetlnfoCount,
returns the set information corresponding to that index. See IRSolverSetlnfo, below.

GetParamlnfoCount. Returns the number of parameter information objects. This is usually
the same as the number of parameters that can configure the solver.

GetParaminfo. Given an index from zero to one less than that returned from
GetParamlnfoCount, returns the parameter information corresponding to that index. See
IRSolverParam nfo, below.

3.6.1.1.c Interface IRSolverinputinfo

Interface IRSolverlnputlnfo provides information about a single input data element to the
solver. As with the other interfaces, it derives from IRSolverBaselnfo, adding these methods:

GetAssignmentFlags. Returns a bitmask indicating properties of the input with respect to
assigning new values to the input. These flags include the following (Table 3.10):

146

RSAF_CANUNLOCK- This flag indicates that the solver copies the input data
AFTERSETTING element internally, and does not use the data element

passed to it in IRSolverlnputs::SetlnputData. Hence, the
client or mapping can unlock or destroy the data element
after calling SetlnputData.

RSAF_OPTIONAL The input element is optional. If this element is not set,
the solver will use a default data element.

RSAF_CANMAINTAIN- The solver can maintain the input data element during
DATA execution; for more information on the solver

maintaining data, see section 3.8.6.2, page 200.

Table 3.10: Bitmask values for IRSolverlnputlnfo::GetAssignmentFlags

GetChangeFlags. Returns a bitmask indicating properties of the input with respect to
changing input values. These flags include the following (Table 3.11):

RSICF_READONLY The input element is read-only. Once calling IRSolverlnputs::
SetinputData, the client cannot change values in the data
element. If the solver specifies the flag
RSAF_CANUNLOCKAFTERSETTING (see GetAssign-

mentFlags, above), then the client cannot modify the data

element returned by a call to IRSolverlnputs::GetlnputData.

RSICF_CANGET The input element is accessible to clients calling
IRSolverlnputs::GetlnputData. Some solvers might copy the
input data element into internal, optimized buffers that are
not themselves data elements; in these cases, it is not possible
to retrieve the input by calling GetlnputData, and this flag
would be cleared for those inputs.

Table 3.11: Bitmask values for IRSolverlnputlnfo::GetChangeFlags

GetDataType. Returns the data type of each element in the input. For example, an input
could contain integers, doubles, dates, strings, etc. The data type currently maps into the
same types available in the COM type VARIANT.

GetDimlnfoCount. Returns the number of dimension information objects attached to this
input. This is usually the same as the dimensionality of the input element for the solver itself.
For instance, a vector input would have one dimension whereas a matrix input would have
two.

GetDimlnfo. Given an index from zero to one less than that returned from

GetDimlnfoCount, returns the dimension information corresponding to that index. See

IRSolverDimlnfo, below. The dimensions of the input are ordered by the ordering provided
here. So, for a matrix A(i ,j), index zero corresponds to i, and index one corresponds toj.

147

3.6.1.1.d Interface IRSolverOutputlnfo

Interface IRSolverOutputlnfo provides information about a single output element of the
solver. As with the other interfaces, it derives from IRSolverBaselnfo, adding these methods:

GetRetrievalFlags. Returns a bitmask indicating properties of the output with respect to
retrieving values to the input. Currently there are no defined retrieval flags.

GetChangeFlags. Returns a bitmask indicating properties of the output with respect to
changing output values. These flags include the following:

RSOCF_READONLY The output element is read-only. The client cannot modify
the data element retrieved from IRSolverOutputlnfo::Get-
OutputData.

Table 3.12: Bitmask values for IRSolverOutputlnfo::GetChangeFlags

GetDataType. Returns the data type of each element in the output. For example, an output
could contain integers, doubles, dates, strings, etc. The data type currently maps into the
same types available in the COM type VARIANT.

GetDimlnfoCount. Returns the number of dimension information objects attached to this
output. This is usually the same as the dimensionality of the output element for the solver
itself. For instance, a vector output would have one dimension whereas a matrix output
would have two.

GetDiminfo. Given an index from zero to one less than that returned from
GetDimlnfoCount, returns the dimension information corresponding to that index. See
IRSolverDimlnfo, below. The dimensions of the output are ordered by the ordering provided
here. So, for a matrix A(i ,j), index zero corresponds to i, and index one corresponds toj.

3.6.1.1.e Interface IRSolverSetinfo

Interface IRSolverSetlnfo provides information about a distinct set of the solver. As with the
other interfaces, it derives from IRSolverBaselnfo, adding one method:

GetSetFlags. Returns a bitmask indicating properties of the set that the solver requires.
Currently there are no defined flags, so this function should return zero.

3.6.1.1.f Interface IRSolverParamlnfo

Interface IRSolverParaminfo provides information about a single parameter that configures
the solver. As with the other interfaces, it derives from IRSolverBaselnfo, adding these
methods:

148

GetDataType. Returns the data type of the parameter. For example, a parameter could

contain integers, doubles, dates, strings, etc. The data type currently maps into the same

types available in the COM type VARIANT.

GetDefaultValueAsString. Returns the default value used by the solver, in a string
representation. This is for browsers that wish to display the default value to the user.

GetTagStrings. Returns an array of strings that indicate possible values of the parameters, for
parameters that have a finite set of possible values. Associated with each string is a magic

cookie that can be used to retrieve the actual value of the parameter using GetTagValue.

GetTagValue. Given a magic cookie acquired from GetTagStrings, returns the value for the
parameter associated with that cookie. The client can use the value to directly set the

parameter in the solver.

3.6.1.1.g Interface IRSolverDimlnfo

Interface IRSolverDimlnfo provides information about a dimension associated with an input
or an output. Whereas each input, output, parameter, and set is unique for a given solver, the
same dimension can be used repeatedly for several inputs or outputs. Dimension
information is only accessible through an input or an output.

Each dimension has an associated set that is one of the sets for the solver. That is, the values
of a dimension are selected from one of the solver's sets. Dimensions are distinguished from
sets, however, in that a set is unique to a solver while a dimension is not. Furthermore, many
dimensions, of different names and uses, can be indexed over the same set.

As with the other interfaces, it derives from IRSolverBaselnfo, adding one method:

GetSetlndex. Returns an index into the array of sets, accessed by IRSolverlnfo::GetSetlnfo,
that parameterizes this dimension.

3.6.1.1.h Interface IRSolverProvidelnfo

An important issue is how a client initially retrieves the SolverInfo for a solver (see section
3.6.1.5, below). One solution is to have the solver directly provide its SolverInfo. This is an
optimized scenario for when the client already has access to the solver. If a solver provides

its SolverInfo, it does so by implementing the IRSolverProvidelnfo interface, which has a

single method. (Note this interface does not derive from IRSolverBaselnfo, as it is not one of
the SolverInfo interfaces.)

GetSolverlnfo. Returns an interface pointer to the SolverInfo for the solver.

149

3.6.1.2 Example using the interfaces

The following Visual Basic pseudo-code example shows how to retrieve the list of inputs
and their associated dimensions from the IRSolverlnfo interface:

Sub Showlnputlnfo(Info As IRSolverinfo)

' Retrieve the number of inputs
Inputs = Info.GetlnputlnfoCount

For i = 0 To Inputs- 1
' Retrieve an input information object
Inputlnfo = Info.Getlnputlnfo(i)

' Get the name
Name = Inputlnfo.GetName
Print "Input #" & i & ": " & Name & vbNewLine

' Get the number of dimensions for this input
Dimensions = Inputlnfo.GetDimlnfoCount

For j = 0 To Dimensions - 1
' Retrieve a dimension information object
Dimlnfo = Inputlnfo.GetDimlnfo(j)

' Get its name
Name = Dimlnfo.GetName
Print Name & ", "

Next j
Print vbNewLine

Next i
End Sub

Typical output from this subroutine would look like this:

Input #0: Capacity

Input #1: Cost
ItemNumber,
Input #2: Weight
ItemNumber,

150

3.6.1.3 Per-solver implementations of Solverinfo

For each solver, there can be at most one SolverInfo. When developing a new solver, a
developer can also choose to implement the various interfaces that make up the SolverInfo

protocol to describe the solver. By implementing IRSolverProvidelnfo in the solver class, a
client can access the SolverInfo implementation. (See the next section for another approach

to implementing SolverInfo.) This is called a "per-solver implementation" because the

SolverInfo is customized for each solver. That is, two knapsack solvers would have to use

different code to implement their respective SolverInfo objects.

This technique has the advantage of providing the most flexibility. While a proper restriction

is that the SolverInfo is invariant upon its creation, there is no reason the same solver cannot

expose a different structure if it is created for different purposes. The primary disadvantage
of this technique is that it requires coding the SolverInfo interfaces and the associated object

relationships by hand. A more efficient but less flexible technique is to use a generic
implementation of the SolverInfo object, described next.

3.6.1.4 A generic Solverinfo: Solverlnfo Definition Language

This section presents an alternative to implementing the SolverInfo interfaces for each

solver. The core services provides a generic implementation of a SolverInfo object that uses
as its input a SolverInfo Type Libray (SITL), based on COM type libraries and generated using
the COM interface definition language (IDL). Almost all SolverInfo objects can be described
using the variant of COM IDL presented here, named SolverInfo Definition Language (SIDL),

so that a single, generic implementation is suitable for most cases. This transforms the
SolverInfo implementation from a complex set of COM objects to the development of an
IDL text file that describes the SolverInfo object. With the addition of pleasant-looking user
interfaces for defining solver structures, the details of the creation and interpretation of a
SITL can be entirely hidden from the solver developer.

COM IDL and type libraries. COM IDL is the Microsoft extension to the OSF DCE RPC
Interface Definition Language (see Box [9]) that allows a developer to describe the interface
of a class independently of any implementation, implementation language, operating system,
or machine. Well-defined mappings from IDL to implementation languages like C++ or

Java make it possible for programs in these languages to communicate with each other.
Because this solver framework is a collection of COM interfaces, they are all described by
COM IDL.

A special compiler named MIDL is used to parse COM IDL files and generate the mappings
for C and C++ 8. Additional IDL code instructs MIDL to also create a mapping for other

8 Specifically, MIDL generates header files that describe in C and C++ the declared interfaces as
abstract base classes and source files for the remoting layer of those interfaces for local and remote
procedure calls.

151

languages in the form of a type library. A type library is a collection of interface definitions
(and definitions of other, less common elements) that can be accessed by a set of standard
COM interfaces (for example, ITypelnfo and ITypeLib). Normally, type libraries are used by
Visual Basic, Microsoft's Java Virtual Machine, and other development environments that
cannot manipulate directly C header files.

The power of the custom() attribute. An especially powerful feature of the COM IDL
specification is the capability to assign custom key-value attributes to almost every element in
a library and interface. The custom attribute uses a GUID as the key and a string as the value.
Any element that can have attributes in the IDL specification can also have a custom
attribute. For example, an interface definition can look like this:

uuid(808DEDFF-71 C5-11D1-9101-0020781 0C74 1),
custom (4D7BA5 FF-61 B3-11 D 1 -90D7-0020781 0C74 1, "John Ruark"),
custom(4D7BA5 FF-61 B4-11 D 1 -90D7-0020781 0C741, "42")

interface Sampleinterface
{

This interface has two custom attributes. The particular GUIDs used as keys have meaning
only to those applications that are aware of them; hence, the introspection specification
defines the necessary GUIDs for the framework. Usually, an included define file can be used
to simplify the use of the GUID keys, so that the above interface might instead be coded as:

#include "RGuidDefs.h"

uuid(808DEDFF-71 C5-11D1-9101-0020781 0C741),
custom(RGUID_SOLVERAUTHOR, "John Ruark"),
custom(RGUID_ANSWERTOLIFETHEUNIVERSEANDEVERYTHING, "42")

interface Sampleinterface
{

The included header file simply uses preprocessor defines to provide textual names to the
GUID keys. This makes IDL files more understandable for the human viewers.

Because of the flexibility of the type library interfaces and the capability in type libraries to
assign key-value attributes to almost every element in an interface, it is easy to map the
capabilities of the SolverInfo object into the type library structure.

152

A Solverinfo definition language. The SolverInfo Definition Language (SIDL) is an

extension to COM IDL that allows the creation of a type library that represents the structure

of a solver. A special generalized SolverInfo object can then use the COM type library
interfaces to provide a SolverInfo implementation for any solver with its associated

SolverInfo type library. This section describes the extensions to COM IDL that define
SIDL.

A solver may have an associated SolverInfo. This SolverInfo can be described by a

SolverInfo Type Library (SITL). The SITL is a standard COM type library that also satisfies

the following conditions:

1. The SITL has three interfaces, one each for the solver's inputs, outputs, and parameters.
These interfaces are described below.

2. The SITL contains a named typedef for each of the solver's sets. The typedefs are
described below.

3. The SITL's library block specifies a set of custom attributes that identify its three

interfaces, as described below.

Hence, the structure of the SITL as described in COM IDL looks like this:

... standard TLB attributes, like uuid() and helpstring()

... SITL custom attributes

library ExampleSolverlnfoLib
{

... library imports

// typedefs for sets

... typedef attributes

typedef long ItemNumber;

// Input interface
[

... interface attributes, like uuid() and helpstring()

interface Inputs

{
... Input data elements

153

// Output interface

... interface attributes, like uuidO and helpstring()

interface Outputs

... Output data elements

// Parameter interface

... interface attributes, like uuid() and helpstring()

dispinterface Parameters

properties:
... Solver parameters as dispinterface properties
methods:

Note that the SIDL is just one way to create a SITL. An application could use the COM type
library creation interfaces (e.g., ICreateTypeib and ICreateTypelnfo) to create a SITL just as
MIDL and Visual Basic do to create normal type libraries.

3.6.1.4.a SITL set typedefs

Set typedefs are essentially placeholders for unique types. A set is a collection of like types,
such as integers, strings, or reals. With the restriction that sets must contain only elements
that can be mapped into COM type libraries, it is easy to define a set using a typedef. For
example, this IDL typedef

uuid(808DED01-71 C5-11 D1-9101-00207810C741),
helpstring("The item number to potentially place in the knapsack.")

typedef long ItemNumber;

declares a set of elements of type long with the interpretation that each element in the set is
an item number or index into a data element that will describe some feature of the knapsack
problem.

The typedef must have its own uuid attribute to distinguish it from other types in the library.
The helpstring attribute is optional.

154

3.6.1.4.b SITL interfaces

The SITL must contain three interfaces. Two of these interfaces describe the input and

output data elements for the solver. The third interface describes the solver's parameters.

3.6.1.4.b.1 Input and output interfaces

The two input and output data element interfaces must follow these guidelines:

1. The interface should not derive from any other interface. The primary consequence of
this is that the interface is not a COM interface, because it does not derive from

IUnknown. Hence, the interface is used solely as a descriptive vehicle, and not as any

kind of interface that would ever be exported or implemented.

2. The interface should have a unique interface identifier, specified by the uuid attribute.

3. The interface may support the optional helpstring and version attributes, for assisting
interface browsers.

4. The interface can be named anything, although "Inputs" or "Outputs" is a reasonable
choice. (Custom attributes in the library attribute list will identify the input and output
interfaces by their interface identifiers, so the text names need not be unique.)

5. The interface should contain a method for each input or output of the solver. The name
of the method is the name of the input or output. The parameters of the method, all of

which should be [in] parameters, are the names of the sets, as typedefed in the type
library, that define the dimensions of the data element. The data type of the return value
of the method is the data type stored in each element of the array for that data element.

6. A method may support the optional helpstring attribute for assisting interface browsers.

Example. The input and output interfaces, along with the typedef of a set they use, for a
knapsack algorithm might be:

// Set ItemNumber

uuid(808DED01-71 C5-1 1 D1-9101-0020781 0C741),
helpstring("The item number to potentially place in the knapsack.")

typedef long ItemNumber;

// Inputs interface

uuid(808DED02-71 C5-11D1-9101-00207810C741),
helpstring("The inputs for my knapsack algorithm.")

155

interface Inputs
{

[helpstring("Specifies the capacity of the knapsack.")]
long Capacity();

[helpstring("Specifies the cost of each item.")]
long Cost([in] ItemNumber i);

[helpstring("Specifies the weight of each item.")]
long Weight([in] ItemNumber i);

// Outputs interface

uuid(808DED03-71 C5-1 1 D1-9101-00207810C741),
helpstring("The outputs for my knapsack algorithm.")

interface Outputs

[helpstring("The total cost of the optimized knapsack.")]
long Cost();

[helpstring("Specifies whether each item is placed into the knapsack or not.")]
VARIANT_BOOL Selected([in] ItemNumber i);

In this example, there are three inputs. The input Capacity has no dimensions (it is a scalar)
of type long. The inputs Cost and Weight each have one dimension indexed by the set
ItemNumber and contain elements of type long. Hence, Cost and Weight are vectors of
integers. There are two outputs of this solver. The first, Cost is a scalar of type long. The
second, Selected, is a vector indexed by the same set ItemNumber where each element is a
boolean value, True or False, indicating whether or not the particular piece is included in the
optimal knapsack loading.

3.6.1.4.b.2 The parameters interface and IRSolverParametersinterface

Parameters to a solver are not necessarily data elements in the sense that inputs and outputs
are. A primary difference between parameters and inputs or outputs is that parameters are
independent of the problem data and of any other solvers in the solution network. Because
of the potential increased complexity of a parameter to a solver, the parameter interface in
the SITL can be correspondingly more complex. Therefore, instead of using a restricted
interface as described above for inputs and outputs, the parameter description is modeled on
a standard dispatch interface (i.e., a dispinterface).

9 For more information on dispinterfaces and implementing them, consult Brockschmidt [11].

156

In fact, the solver can choose to implement the described dispinterface directly to permit the

assignment of parameters to the solver, obviating the need to use the IRSolverParameters
interface. This capability is necessary if the solver requires parameters more complex than

those supported by the data element specification. Implementing the parameters

dispinterface is perhaps preferable in situations where there are many parameters as well, as
the developer can leverage existing code libraries to develop dispatch interfaces whereas the

I RSolverParameters interfaces must be coded by hand.

This listing shows an example parameters interface description:

uuid(2E578553-A1 4D-1 1 D1-9170-0020781 0C741),
custom(GUID_RSOLVERIMPLEMENTEDINTERFACE, "True")

dispinterface RDBLoadParameters
{
properties:

[id(1), helpstring("The name of the database.")]
BSTR DatabaseName;

[id(2), helpstring("The user name for access to the database.")]
BSTR UserName;

[id(3), helpstring("The password for access to the database.")]
BSTR Password;

[id(4), helpstring("The SQL string to load the element from the database.")]
BSTR Command;

[id(5), helpstring("An array of dimensions used to load the element or an ordered array of
dimension names used to load the element.")]
VARIANT Dimensions;

[id(6), helpstring("An array of column names used to generate per-item properties.")]
VARIANT ItemPropertyNames;

[id(7), helpstring("An array of column names used the generate the elements.")]
VARIANT ElementNames;

methods:

Note that the id attributes are required for dispinterfaces. The helpstring, as always, is
optional yet desirable. Typically, parameters do not have any associated dimensions,
although this is not a requirement. Often, it is easiest just to wrap any vector or array into a
VARIANT SafeArray, as the last three parameters in the example above describe.

The single custom attribute shown in the example can be used to indicate that the solver
actually implements the dispinterface to permit assignment of its parameters. The GUID to

157

use is GUID_RSOLVERIMPLEMENTEDINTERFACE and the string should resolve to a

VARIANT_BOOL (i.e., "True" or "-1" for true, "False" or "0" for false).

If the solver chooses to implement the parameters dispinterface, then it must implement the

special interface IRSolverParameterslnterface. This interface has a single method,
GetParametersinterface, that returns the I Dispatch pointer to the solver's implementation of
the parameters dispinterface. Normally this dispinterface will not be implemented by the
solver directly but by a sub-object of the solver. This is due to a bug in the current COM
remoting layer that enables a remote client to access only a single dispatch interface on any
given object identity.

3.6.1.4.b.3 Specifying flags on methods

As declared in the IRSolverBaselnfo interface, flags for data elements, sets, the solver, and
parameters are usually bit-masked values. With SIDL, each possible flag value is mapped
into a custom attribute whose string resolves into a VARIANT_BOOL ("True" or "False") or
into some enumeration value as defined by the particular flag. The GUID of the custom
attribute is specified by appending to the characters "GUID_" the name of the particular
flag, as named in the previous sections. Therefore, the flag RSI_ORDERED_INPUTS would
have attribute GUID GUID_RSI_ORDERED_INPUTS. All flags default to a "False" or zero
value. An example is presented here:

interface Inputs
{

[custom(GU ID_RSICF_READONLY, "True")]
long Capacity();

[custom(GUIDRSICF_READON LY, "True")]
long Cost([in] ItemNumber i);

[custom(GUID_RSICF_READONLY, "True"),
custom(GUID_RSAF_OPTIONAL, "True")]

long Weight([in] ItemNumber i);

3.6.1.4.c SITL custom attributes

With the specifications of the set typedefs and the three interfaces complete, all that remains
is to tie them together into a cohesive whole. This is accomplished by placing several custom
attributes in the attribute list of the type library block. Each of these attributes is a string
representation of a GUID; as such, they must resolve correctly through the COM API
function CLSIDFromString into a proper GUID. These attributes are listed in Table 3.13.

158

Attribute GUID Attribute interpretation

GUIDRSOLVERINPUTS The interface identifier of the inputs interface.

GUID RSOLVEROUTPUTS The interface identifier of the outputs interface.

GUID_RSOLVERPARAMETERS The interface identifier of the parameters disp-
interface.

GUID_RSOLVERCLSID The CLSID of the solver that uses the SolverInfo
described in the type library. This attribute is
optional.

GUID_RSOLVERTYPELIBID The LIBID of the solver that uses the SolverInfo
described in the type library. This attribute is
optional.

GUID_RSOLVERDESCRIPTION The GUID of the module that enumerates the
SolverDescription properties (see section 3.6.2.3.a,
page 166).

Table 3.13: Custom attributes for Solverinfo Type Library

An example library block header is shown here:

uuid(2E578550-A14D-11D1-9170-00207810C741),
version(1.0),
helpstring("Ruark RDBLoadlnfo 1.0 Solver Info Type Library"),
custom(GUID_RSOLVERIN PUTS, "{2E57855 1-Al 14D-1 1 D1-9170-0020781 0C741)"),
custom(GUID_RSOLVEROUTPUTS, "{2E578552-Al 14D-1 1 D 1-91 70-0020781 0C74 1)"),

custom(GUID_RSOLVERPARAMETERS,"{2E5 78553-A14D-11 D1-91 70-00207810C741)"),
custom(GUID_RSOLVERCLSID, "{C42BOCC2-9E2F-1D 1D-9169-0020781 0C741 }"),
custom(GUID_RSOLVERTYPELIBID, "{EF665925-9997-1 1 Dl-915F-0020781 0C741)")

library RDBLOADLib

... remainder of SIDL file

In the above example, the library would contain an interface with the attribute
uuid(2E578551-A14D-11D1-9170-00207810C741) that describes the inputs to the
RDBLoad solver, and similarly for the output interface and parameter dispinterface.

With these custom attributes, the object that implements the generic SolverInfo object can
acquire the correct interfaces for inputs, outputs, and parameters, regardless of their textual
names, which might change depending on the locale of the user. Also, the SolverInfo object
can find the proper solver implementation through its CLSID and determine more solver
information with its type library LIBID, if these are included.

159

3.6.1.4.d Registry settings for solvers

Beyond the standard registry settings for type libraries and COM components, there are
some registry settings which help to link a solver to its SolverInfo object. These entries are
used by the core services implementation of the SolverRegistrar (see section 3.9.1.3, page
216).

[HKCR\CLSID\{solver's CLSID}\Solverlnfo]
GUID=string containing the LIBID of the Solverlnfo type library
MajorVer=DWORD containing the major version number of the Solverinfo type library
MinorVer=DWORD containing the minor version number of the Solverinfo type library

An example, with actual values is:

[HKCR\CLSID\(B65 B5871-97E7-1 1 D 1-915B-0020781 0C741}\Solverlnfo]
GUID="{2C6C8B60-984D-1 1 D1-915 D-0020781 0C741 }"
MajorVer= 1
MinorVer=O

3.6.1.4.e Adding SolverInfo to a solver

The framework core services define and implement several global functions that aid client
and solver developers in working with the generic SolverInfo implementation. These
functions include:

RLoadSolverlnfo. Given a file name of a (SITL) type library or an executable containing a
type library (according to the rules of the COM API function LoadTypetib), loads and
returns the general SolverInfo object described by the type library.

RLoadRegSolverlnfo. Given a LIBID, version number, and locale identifier (according to the
rules of the COM API function LoadRegTypeib), loads and returns the general SolverInfo
object described by the type library.

RLookuplnfoGuid. Given the CLSID of a solver, uses special settings in the registry (see
section 3.6.1.4.d, above) to lookup the LIBID and version number of the (SITL) type library
that describes the SolverInfo of the solver.

RLoadSolverlnfoClsid. Given the CLSID of a solver and a locale identifier, calls
RLookupinfoGuid to determine the LIBID and version number of the solver's SolverInfo,
and then calls RLoadRegSolverlnfo to load the SolverInfo object.

Adding the generic SolverInfo implementation to a solver is straightforward. The developer
only needs to take these steps:

160

1. Create and compile with MIDL the SIDL file. This generates a type library file.

2. Optionally add the type library to the solver executable as an embedded binary resource,
with a line like "2 TYPELIB "RMinMaxlnfo.tlb"" in the resource file.

3. Add the appropriate registry settings to the solver's registration code to hook up the
solver and the SolverInfo type library, as described in section 3.6.1.4.d, above.

4. Add code to register and unregister the SolverInfo type library at the appropriate times,
for example in DIIRegisterServer/DI U nregisterServer for DLLs.

5. Implement the IRSolverProvidelnfo on the solver, with an implementation for
GetSolverlnfo that looks like this:

STDMETHODIMP CRMySolver::GetSolverlnfo(REFIID riid, LPVOID* ppVoid)

if(ppVoid)
{

IRSolverlnfo* pinfo = NULL;
HRESULT hr = RLoadSolverlnfoCIsid(CLSID_RMinMax, 0, &plnfo);
if(SUCCEEDED(hr))

hr = plnfo->Querylnterface(riid, ppVoid);
plnfo->Release();

return hr;
)
return E_POINTER;

3.6.1.5 Acquiring Solverinfo

A client can acquire a pointer to a solver's SolverInfo object in a number of ways.

* If the solver supports IRSolverProvidelnfo, then the client can call GetProvideinfo to
acquire the SolverInfo if the solver has already been instantiated. This is the only
possible way to acquire the SolverInfo object if the solver implements it own SolverInfo
object.

* Given the solver's CLSID, the client can call the framework function

RLoadSolverlnfoClsid to acquire the SolverInfo object.

* Given the SolverInfo type library LIBID and version number, the client can call the

framework function RLoadRegSolverlnfo to acquire the SolverInfo object.

161

* Given the file name of the SolverInfo type library, the client can call the framework

function RLoadSolverlnfo to acquire the SolverInfo object.

3.6.2 SolverDescription: The capabilities of the solver

The SolverInfo portion of the introspection protocol enables a client to discover the
structure of a solver at run-time. If two solvers have precisely the same structure, though,
there is no way for a client to distinguish between the two using the SolverInfo interfaces.
The SolverDescription interfaces are designed to allow a client to determine the qualitative
characteristics of a solver, thereby enabling the distinction between structurally similar
solvers.

The nature of SolverDescription is based on the idea that the capabilities of a solver can be
described broadly by a set of key-value ordered pairs. The keys are strings that identify
qualitative or quantitative concepts such as "author" or "citation," and the value for a given
key is the string representation of the key's concept, such as "John Ruark."
SolverDescription defines a set of standard common keys and enables the definition of new,
customized keys for future solvers.

SolverDescription is substantially simpler than SolverInfo, but the general layout of the
protocol remains the same. Just as a solver may provide a SolverInfo object describing its
structure, it may provide a SolverDescription object describing its capabilities. The solver
might implement the SolverDescription object itself, or, by following an IDL-based
language, leverage a system-provided implementation of a general SolverDescription object.
This is all described in the following sections.

3.6.2.1 SolverDescription interfaces

There is only a single SolverDescription object for a solver. (Compare that to the hierarchical
nature of the SolverInfo specification, which has an interface for the solver and each of its
part types.) The SolverDescription object for a solver implements at least the
IRSolverDescription interface. Another interface, along with a core services registration
component, enables the creation of custom description tags. As with many items in the
framework, a description property is identified by a GUID; in this case, these are typedefed
to a new type, RDESCPROPID. All of the properties available in IRSolverDescription are also
indexed by individual RDESCPROPIDs, and all property values are themselves
VARIANTs. A solver also exposes the IRSolverDescriptionProperties interface if it supports
description property lookup by RDESCPROPID.

3.6.2.1.a Interface IRSolverDescription

Interface IRSolverDescription provides quick access to a set of common, standard
description properties. Most of these properties can be supported by all solvers. All of these

162

functions return a blank string or NULL pointer if the particular item does not apply to the
solver.

GetAuthor. Returns the author or authors of the algorithm that the solver implements.

GetDeveloper. Returns the developer or developers of the solver software.

GetCitation. Returns a bibliographic citation for an article on the algorithm that the solver

implements or for an article on the solver software itself.

GetSolutionFlags. Returns a bitmask providing some solver characteristics, including the
following elements:

RSD_GENERATES_FEASIBLE_SOLUTIONS The solver generates
solutions that are feasible.

RSD_GENERATES_INFEASIBLESOLUTIONS The solver generates
solutions that are not feasible.

RSD_GENERATESOPTIMALSOLUTIONS The solver generates
solutions that are optimal.

RSD_GENERATESNONOPTIMALSOLUTIONS The solver generates
solutions that are not optimal.

Table 3.14: Bitmask values for IRSolverDescription::GetSolutionFlags

If both RSD_GEN ERATES_FEASIBLE_SOLUTIONS and RSD_GENERATES_ IN-

FEASIBLE_SOLUTIONS are set, then the solver might output either a feasible or an infeasible
solution. The same holds for the optimality or non-optimality of a solution.

GetWorstRuntime. Returns the asymptotic worst case run time as a human-readable string.

GetWorstRuntimeAsTeX. Returns the asymptotic worst case run time as a TeX string.

GetURL. Returns a URL at which the client can find more information about the solver.

3.6.2.1.b Interface IRSolverDescriptionProperties

Interface I RSolverDescriptionProperties provides description property lookup by

RDESCPROPID and enumeration of all description properties of a solver.

LookupProperty. Given an RDESCPROPID, returns a VARIANT containing the description
property identified by the RDESCPROPID. If the solver does not have a corresponding
property for that RDESCPROPID, the method returns RSOLVE_E_INVALIDINDEX.

EnumDescriptionProperties. Returns a COM enumerator object that provides enumeration

of all the description properties of the solver. The enumerator interface is of type

163

IEnumRDESCRIPTIONPROPERTY, and it enumerates structures of type RDESCRIPTION-
PROPERTY, which has the following typedef:

typedef struct tagRDESCRIPTIONPROPERTY
{

RDESCPROPID rdpidPropld;
VARIANT varProp;

} RDESCRIPTIONPROPERTY, *LPRDESCRIPTIONPROPERTY;

3.6.2.2 Description Property IDs

There is a pre-defined RDESCPROPID for each of
IRSolverDescription. These are shown in Table 3.15.

the properties available in

RDESCPROPID value Maps to IRSolverDescription method

RDESCPROPID_Author GetAuthor

RDESCPROPID_Developer GetDeveloper

RDESCPROPID_Citation GetCitation

RDESCPROPID_SolutionFlags GetSolutionFlags

RDESCPROPID_WorstRuntime GetWorstRuntime

RDESCPROPIDWorstRuntimeAsTeX GetWorstRuntimeAsTeX

RDESCPROPID_URL GetURL

Table 3.15: Pre-defined RDESCPROPIDs

A solver developer can add new RDESCPROPIDs to the system; these are then available
for all other solvers and clients. Registration and unregistration occurs through the
IRDescription PropRegistration interface. A client can enumerate all of the available
RDESCPROPIDs as well as lookup a single RDESCPROPID by using the IRDescription-
PropEnumeration interface. Both I RDescription PropRegistration and I RDescriptionProp-
Enumeration are implemented by an object in the core services named the DescriptionProp-
Manager, which has the CLSID CLSID_RDescriptionPropManager. Normally, neither solvers
nor clients need to implement either of these interfaces.

3.6.2.2.a Interface IRDescriptionPropRegistration

I RDescription PropRegistration, implemented by the core services object
DescriptionPropManager, has two methods. RegisterRDESCPROPID takes as input an
RDESCPROPID, a locale identifier (an LCID), and a string identifying the name of the
description property. The method registers the RDESCPROPID in the registry of

164

RDESCPROPIDs. The method UnregisterRDESCPROPID takes as input an RDESCPROPID

and an LCID, and removes the corresponding RDESCPROPID from the registry. The locale

identifiers are provided for localization of the name of the RDESCPROPID.

As an implementation note, the list of RDESCPROPIDs registered on a system are stored

with the following structure in the registry:

[HKLM\SOFTWARE\RuarkSoft\Solvers\RDESCPROPI D\rdescpropid}]
Icid="description"

An example, with actual values, is:

[HKLM\SOFTWARE\RuarkSoft\Solvers\RDESCPROPID\(3 3 BC 1 DO 1-700D-11 D1-90F7-
00207810C741)]

409="Algorithm author"
[HKLM\SOFTWARE\RuarkSoft\Solvers\RDESCPROPID\{33 BC1 D02-700D-11 D1-90F7-

00207810C741)]
409="Solver developer"

3.6.2.2.b Interface IRDescriptionPropEnumeration

A client uses the IRDescriptionPropEnumeration interface, implemented by the core services

object DescriptionPropManager, to determine information about a description property.

The interface has two methods. The first, EnumRDESCPROPIDINFO, takes as input a locale

identifier (an LCID) and returns as output a COM enumerator object that enumerates over a

set of RDESCPROPIDINFO structures. The RDESCPROPIDINFO structure is defined as:

typedef struct tagRDESCPROPIDINFO {
GUID rdescpropid;
LCID Icid;
OLECHAR pwszDescription[108];
} RDESCPROPIDINFO, *LPRDESCPROPIDINFO;

In this structure, rdescpropid is the RDESCPROPID, Icid is the locale identifier, and

pwszDescription is the name of the description property. The locale identifier is repeated
here in order to make this structure more versatile; another interface could return all
registered description properties regardless of locale, for instance.

The second method, LookupDescription, takes as input an RDESCPROPID and an LCID and

returns the name of the description property corresponding to the provided RDESCPROPID
with the given locale. This method simplifies client implementations by saving the client the

165

trouble of enumerating the description properties itself when it knows the specific one it
needs.

3.6.2.3 SolverDescription implementations

Implementations of SolverDescription objects parallel those of SolverInfo objects. In
particular, a solver can choose to implement its own SolverDescription, using

IRSolverProvidelnfo to return the object to the client, or it can use the generic
implementation. See section 3.6.2.3.b, page 167, for information on implementing a per-
solver SolverDescription.

The generic implementation of SolverDescription is contained in the same implementation
for SolverInfo. In the generic SolverInfo implementation, the root of the SolverInfo
hierarchy, the object that implements IRSolverlnfo also implements the SolverDescription
interfaces IRSolverDescription and IRSolverDescriptionProperties. The specification of the
solver's description properties is correspondingly folded into the SIDL and SITL
specifications, as described next.

3.6.2.3.a Rolling into Solverinfo definition

Section 3.6.1.4, page 151, describes the SolverInfo Definition Language, based on COM
IDL. The SolverDescription of a solver can be folded into the SIDL for a solver using the
following steps:

1. Within the SIDL type library block, add a module block, with its own GUID attribute.

2. In the type library block for the SITL, add a custom attribute with attribute GUID
GUID_RSOLVERDESCRIPTION and with value of the string version of the GUID of the
newly created module block.

3. For each description property for the solver, create a constant value. The constant value
should have these characteristics: Its helpstring attribute should be the string version of
the RDESCPROPID for the property"'. Its type should be the type of the description
property, and should be an automation-compatible type (i.e., map into VARIANTs). Its
name should be descriptive of the property type, such as "Author" or "Developer."

A sample module block with its library block header is shown here:

I
helpstring("RKnap 1.0 Solver Info Type Library"),
custom(GUID_RSOLVERDESCRIPTION, "{808DED05-71C5-11D 1-9101-00207810C741)"),

10 Constants in COM IDL modules cannot have uuid attributes, so helpstring is used instead.

166

//... other attributes, such as for GUID_RSOLVERINPUTS

library RKNAPINFOLib

uuid(808DED05-71 C5-11 D1-9101-0020781 0C74 1),
dllname(""), helpstring("SolverDescription")

module RKNAPSolverDescription

[helpstring("{33BC1 DO02-700D-1 1 D-90F7-0020781 0C741 }")]
BSTR const Developer = "John D. Ruark";

[helpstring("{33 BC 1 D03-700D-1 1D -90F7-0020781 0C74 1)")]
BSTR const Citation = "Nemhauser, G.L., and L.A. Wolsey, Integer and Combinatorial
Optimization, John Wiley & Sons, New York, 1988, p. 433-434.";

The generic implementation of the SolverInfo object will expose the SolverDescription
interfaces if the description module is present, and it will enumerate the provided constants

as the description properties of the solver.

3.6.2.3.b Adding SolverDescription to a solver

Adding a per-solver implementation of a SolverDescription is simple. Just create and

implement an object that implements the SolverDescription interfaces, returning properties
appropriate for the solver, and then provide a reference to this object in the implementation

of IRSolverProvidelnfo on the solver object. If the solver also provides its own SolverInfo

through IRSolverProvidelnfo, the SolverDescription interfaces should be implemented on the

SolverInfo object that implements the I RSolverlnfo interface.

Adding the generic implementation of a SolverDescription is equally simple, assuming that
the solver already supports the SolverInfo object. The same core services functions,
RLoadSolverlnfo, RLoadRegSolverlnfo, and RLoadSolverlnfoClsid, that are used to load

SolverInfo objects can be used to load SolverDescription objects, as the generic
implementation of the SolverInfo object is the same as the SolverDescription. The client just

needs to acquire the correct interface, as shown below:

IRSolverlnfo* plnfo = NULL;
IRSolverDescription* pDesc = NULL;
HRESULT hr = RLoadSolverlnfoCIsid(CLSI D_RMinMax, 0, &plnfo);
If(SUCCEEDED(hr))
{

hr = plnfo->Querylnterface(llD_RSolverDescription, (LPVOID*)&pDesc);
plnfo->Release();

167

//...use pDesc->

3.6.2.4 Acquiring SolverDescription

From the client's perspective, acquiring the SolverDescription is equivalent to acquiring the
SolverInfo of a solver. If the client has an active pointer to the solver and the solver
supports IRSolverProvidelnfo, the client should use GetSolverlnfo, asking for one of the
SolverDescription interfaces, to acquire the SolverDescription. Otherwise, the client should
first acquire the SolverInfo of the solver (see section 3.6.1.5, page 161), and then
Querylnterface the SolverInfo interface pointer for one of the SolverDescription interfaces.

3.6.3 Discovering capabilities through Queryinterface

The previous two methods of determining capabilities or information about a solver rely on
custom COM interfaces and their methods to specifically return that information. A third
technique is to rely on the dynamic, run-time querying capabilities of the
I Unknown::Querylnterface mechanism.

To recap briefly, the interface IUnknown, from which all custom COM interfaces derive,
contains a method named Querylnterface. QueryInterface takes as input an identifier to a
desired interface (an IID) and provides as output a pointer to the implementation of the
requested interface if the object supports it or an error code if the object does not. Hence,
from any COM interface of a COM object, it is possible to determine whether that object
supports any specific COM interface.

By logically grouping related solver functionality into distinct, disjoint, and orthogonal
interfaces, it is possible to determine if a solver supports a specific capability at run-time by
simply querying the solver for the interface that defines that capability's protocol.

For instance, the interface IRSolverProvidelnfo contains a single method, GetSolverlnfo, that
returns a pointer to the SolverInfo object for the solver. If a solver has the capability to
provide its own SolverInfo object, then it declares that capability by implementing the
IRSolverProvidelnfo interface and handing a pointer to that interface to clients when they
request that interface. If a client queries a solver for IRSolverProvidelnfo and Querylnterface
returns E_NOINTERFACE, then the solver does not have the capability to provide its own
SolverInfo object, and the client will have to look elsewhere to acquire that object.

For more details on the Querylnterface mechanism, requirements, and philosophy, see
Brockschmidt [11] and Box [9].

168

3.7 PROGRESS UPDATES AND LIFE CYCLE CONTROL

Section 2.3.4, page 81, identified the need for a client to be able to determine the progress of

a solver, particularly for solvers that require excessive time to execute. There are two primary
models for acquiring progress updates from a solver: the push model and the pull model. In

the push model, clients and other interested entities register with (advise) the solver to

receive notifications, and then during processing the solver pushes progress notifications to

the registered clients. In the pull model, a client asynchronously queries the solver at any

time during processing to pull the current progress from the solver. The framework defines

interfaces for both types of progress updates, and a client or solver is free to choose the

most appropriate methods.

Associated with the progress of a solver is the control of a solver. Section 2.3.5, page 84,
discussed the need for the ability for a client to terminate or otherwise control the solver's

execution. Some level of control is provided as part of the progress notification

specification, but the framework also defines an interface, IRSolverControl, for direct,
asynchronous control of a running solver.

3.7.1 Progress notifications (push)

The progress notification (push) method for progress updates uses the Observer (publish-

subscribe) pattern (see Gamma et al. [30]). The main feature of this pattern is that the client

and the solver switch roles-the client becomes a server, and the solver becomes a client.

That is, the client implements the notification interface while the solver calls methods in that

interface. This is typical of notification patterns and callbacks. The notification interface in

this case is named IRSolverAdvise.

There are three main steps:

1. A client interested in receiving progress notifications registers with the solver prior to the
solver's execution.

2. During processing, the solver sends progress update notifications to the registered clients

through the I RSolverAdvise interface.

3. When the solver is destroyed or when clients are no longer interested in receiving
progress update notifications, they unregister with the solver.

The following section discusses the registration and unregistration steps, and the subsequent

section describes the actual notification protocol and IRSolverAdvise.

169

3.7.1.1 Registering for notifications

Two methods of the primary solver interface, I RSolver, allow a client to register and
unregister with the solver to receive notifications.

SolveAdvise. The client calls IRSolver::SolveAdvise to establish a progress update advise
connection with the solver. SolveAdvise takes as input a pointer to the client's
implementation of the IRSolverAdvise interface (see the next section). It returns as output a
magic cookie that identifies this particular connection. The cookie is unique in the context of
all clients that have called SolveAdvise for that particular instantiation of the solver. Clients
must use that magic cookie when referring to this connection.

SolveUnadvise. The client calls IRSolver::SolveUnadvise to disconnect a progress update
advise connection with the solver. SolveUnadvise takes as input the magic cookie that the
client had previously received through a call to SolveAdvise.

Interested clients must call SolveAdvise before the solver begins processing. They can call
SolveUnadvise any time after calling SolveAdvise. During processing, any active connections
might receive progress update notifications at any time.

3.7.1.1.a Implementing SolveAdvise and SolveUnadvise

SolveAdvise and SolveUnadvise are analogous to the standard COM interface methods
IDataObject::DAdvise and IDataObject::DUnadvise. In particular, if the solver does not
support progress update notifications, it should return the standard error
OLE_E_ADVISENOTSUPPORTED from SolveAdvise and SolveUnadvise. If an invalid magic
cookie is passed to SolveUnadvise, it should return the standard error
OLE E NOCONNECTION.

Solvers that do support progress notifications must maintain a list of the connection
pointers (IRSolverAdvise interface pointers) and their associated magic cookies. This list
must support insertion, removal, and enumeration of elements and secondarily lookup by
magic cookie. Maps are ideally suited for this purpose.

3.7.1.1.b Simplifying implementation with IRSolverAdviseHolder

The previous section described the features of a map of interface pointers and magic cookies
necessary for progress update notifications. Because most solvers will implement such a list,
the core services provide a special object called the SolverAdviseHolder that implements the
necessary functionality of this list, simplifying solver development considerably. The
SolverAdviseHolder takes care of managing the map of pointers and of walking through the
map to send updates whenever the solver wants to send a notification.

170

Generally, the solver will create an instance of a SolverAdviseHolder for each instance of the
solver. The SolverAdviseHolder has CLSID CLSID_RSolverAdviseHolder, and the solver can
create it with the normal call to CoCreatelnstance. The SolverAdviseHolder supports the
IRSolverAdviseHolder interface, which has the following methods:

Advise. Takes as inputs pointers to the solver's implementation of IRSolver and the client's
implementation of IRSolverAdvise, adds the client's pointer to the SolverAdviseHolder's
internal map, and returns a magic cookie for the solver to pass back to the client.

Unadvise. Takes as input the magic cookie passed from the client to the solver and removes
the interface pointer that corresponds to that connection from its internal map.

SendOnSolveComplete. Sends the OnSolveComplete notification to all connections in the
internal map. See section 3.7.1.2.b, page 174, for more details.

SendOnSolveNotify. Sends the OnSolveNotify notification to all connections in the internal
map. See section 3.7.1.2.a, page 173, for more details.

The solver can incorporate the SolverAdviseHolder object simply, by following these steps
(examples are shown for C++).

1. Add an interface pointer to IRSolverAdviseHolder to the class that implements the
solver. In the header file for the solver class:

Class CRMySolver: public IRSolver
{

IRSolverAdviseHolder* m_pSolverAdviseHolder;
// remainder of class definition

2. In the constructor of the solver class, make sure to initialize the pointer, and in the
destructor make sure to release the pointer if it is non-zero:

CRMySolver::CRMySolver() : m_pSolverAdviseHolder(O)
{
I

CRMySolver:: CRMySolver()
{

if(m_pSolverAdviseHolder)
m_pSolverAdviseHolder->Release();

}

171

3. Add implementations of SolveAdvise and SolveUnadvise that look like this:

STDMETHODIMP CRMySolver::SolveAdvise(IRSolverAdvise* pAdvise, DWORD* pdwCookie)
{

if(pdwCookie)
{

if(Im_pSolverAdviseHolder)

HRESULT hr = CoCreatelnstance(CLSID_RSolverAdviseHolder, NULL,
CLSCTX_SERVER, IID_IRSolverAdviseHolder, (LPVOID*) &m_pSolverAdviseHolder);
if(FAILED(hr)) return E_OUTOFMEMORY;

}
return mpSolverAdviseHolder->Advise(static_cast<I RSolver*>(this), pAdvise,
pdwCookie);

return E_POINTER;

STDMETHODIMP CRMySolver::SolveUnadvise(DWORD dwCookie)

if(Im_pSolverAdviseHolder I I !dwCookie)
return OLE_E_NOCONNECTION;

return m_pSolverAdviseHolder->Unadvise(dwCookie);

4. Add at the point where the solver wants to update clients of its progress the appropriate
call to SendOnSolveNotify, and upon completion of processing, add a call to
SendOnSolveComplete:

//... begin processing
bool bProcessing = true;
while(bProcessing)
{

... do some work
// now send notification
if(m_pSolverAdviseHolder)

m_pSolverAdviseHolder->SendOnSolveNotify(...parameters...);

if(...check for done...)
bProcessing = false;

// complete, send complete notification
if(m_pSolverAdviseHolder)

m_pSolverAdviseHolder->SendOnSolveComplete(...result...);

172

3.7.1.2 Sending/receiving notifications

In order to receive progress update notifications, the client must implement the

IRSolverAdvise interface. To send notifications, the solver calls a method of the

IRSolverAdvise interface for all active advise connections.

As described in section 2.3.4, page 81, there are two types of interesting updates. One is
percentage complete; the other is estimated time remaining. Both of these are captured in a

single method of the IRSolverAdvise interface, OnSolveNotify. Additionally, this interface

defines another method, OnSolveComplete, that should be sent when the solver has finished
all of its processing.

3.7.1.2.a IlRSolverAdvise::OnSolve Notify

OnSolveNotify is the workhorse of the progress updates protocol. This function is designed

to support percentage complete notifications, estimated time remaining notifications, or

both at the same time. The function has three groups of inputs, as shown in Table 3.16:

dwFlag A flag indicating what type of notification is being
sent. See below.

dPercComplete A double indicating the fraction complete if that
type of notification is being sent. The value should
be between 0 and 1. Multiple by 100% to
determine the percentage complete.

IHoursLeft Integers indicating how many hours, minutes, and

inutesLeft milliseconds are left, respectively, if that type of
notification is being sent. The total time left for

IMillisecondsLeft the solver is the sum of all three values.

Table 3.16: Parameters of IRSolverAdvise::OnSolveNotify

The flag dwFlag is a bitmask that can take on the values in Table 3.17.

RSNF_PERCENTAGE The parameter dPercComplete is valid.

RSNF_HOURS The parameter IHoursLeft is valid.

RSNF_MINUTES The parameter IMinutesLeft is valid.

RSNF_MILLISECONDS The parameter IMillisecondsLeft is valid.

RSNF_TIME All three time parameters are valid.

Table 3.17: Bitmask values for IRSolverAdvise::OnSolveNotify

173

The function has a single output that indicates the action the solver should take after
notifying all observers. This output can take the following values (Table 3.18):

RSNA_CONTINUE The solver should continue processing.

RSNA_CANCEL The solver should stop (cancel) processing as soon
as possible.

Table 3.18: Action codes for IRSolverAdvise::OnSolveNotify

Additionally, this action can have the bit RSNA_STOPNOTIFY set, which instructs the solver
to not notify any other registered clients of the progress notifications. This is useful if there
has been some catastrophic failure and the client is telling the solver to cancel at the earliest
possible moment.

The flexibility of the time parameters allows the solver to provide estimated time left
notifications from 1 millisecond to over 49 days with a granularity of one millisecond and up
to almost half a million years with a granularity of one hour. That should be more than
enough time for most solvers. The primary reason for this classification is to make
conversion on the client side easy. If a solver can only estimate on the order of hours, it can
set the RSNF_HOURS flag only and provide a best guess in the IHoursLeft parameter.

3.7.1.2.b IRSolverAdvise::OnSolveComplete

The second function of IRSolverAdvise is OnSolveComplete. This notification should be
sent from the solver after it has finished its processing and is in its final state. The
notification includes a single enumerated parameter that indicates the result of the solver's
processing. It can take one of the values in Table 3.19.

RSCR_OK The solver finished successfully.

RSCR_OPTIMIZED The solver finished successfully and found an
optimal solution.

RSCR_CANCELLED The solver was cancelled during processing.

RSCR_OUTOFTIME The solver ran out of time before completing (if,
for instance, one of its parameters was a maximum
time bound).

RSCR_MAXITERATIONS The solver reached a maximum number of
iterations before completing.

RSCR_APPROXIMATED The solver finished successfully and found an
approximate, not necessarily optimal or non-
optimal, solution.

Table 3.19: Notification codes for IRSolverAdvise::OnSolveComplete

174

Some solvers do not optimize but only calculate; in these cases, RSCR_OK is preferred over

RSCR_OPTIMIZED.

3.7.1.3 Assumptions about solver state during notification

The progress update notification is a simple arrangement. There are only a few assumptions

about the state of the solver during notifications that must be observed. First, whenever the

solver calls OnSolveNotify on its advised clients, its internal state must be consistent,
because the clients might very well query other interfaces of the solver during the

notification. This is true of most notifications; for example, at the end of an iteration a client

might wish to determine per-iteration values such as an optimality gap. These values, when
requested, must be consistent with the state of the solver at the time of the notification.

Second, the solver should not call OnSolveComplete until it has completely finished

processing. Again, the internal state of the solver at completion must be consistent. It is

usually best to wait to call OnSolveComplete until just before returning from the solver

execution method.

3.7.2 Progress queries (pull)

The progress query (pull) mechanism gives a client running asynchronously with the solver
the ability to query the solver for its current status and progress at any time. A solver

supports progress queries by implementing and exporting the IRSolverStatus interface. If a

client has any interface pointer to a solver, it can call QueryInterface to obtain the

I RSolverStatus interface, and then it can asynchronously query the solver for its status.

Hence, there are two issues to resolve. First, how does the client get an interface pointer to

the solver to begin with, and second, how shall it query the solver for its status? These are

discussed in detail below.

3.7.2.1 Acquiring a running solver

The first issue is important in this scenario because the solver has no a priori knowledge of

the client, as it does in the progress update notifications (push) mechanism. The usual

scenario in the push case is that there is some global entity that is at the very least hooking all

of the various clients, solvers and data elements to each other prior to initiating execution. It

is reasonable, thus, that the various advises can be set up before everything gets started. In

the pull case, however, an entirely random client might want to just step in, get the status of

some running solver, and depart. For example, a separate utility application might try to

attach to all running solvers on a system to determine each of their status in order to report

to the user.

The usual way in COM for an application to acquire an already existing object is to use the

running object table, and the framework will leverage that existing capability. Namely, if a solver

175

supports asynchronous progress queries from any client, it should register a moniker
identifying itself in the running object table using IRunningObjectTable::Register. A good
solution is to use the Composite Moniker comprising a Class Moniker to identify the solver
class object and an Item Moniker to identify a particular running instance of the solver.

All the client then needs is the CLSID of the solver and a name for the particular running
instance. The CLSID can be determined from the ProgID, for instance. With these two
items, it can create a moniker, query the running object table using IRunningObject-
Table::GetObject, and then call Querylnterface for IRSolverStatus if that was successful.

An obvious simplification of this process is to provide a core services object that wraps this
functionality into a simpler interface. This running solver table is discussed in more detail in
section 3.9.2, page 216.

3.7.2.2 Querying the solver

Because of the asynchronous nature of the query relationship between client and solver in
the pull scenario, the client does not have the luxury of presuming that the solver is in any
consistent internal state. As such, the client needs to make sure to only call methods on the
I RSolverStatus interface, which defines the capability to retrieve both the state status and the
progress of the solver.

3.7.2.3 Interface IRSolverStatus

The first method in IRSolverStatus enables a client to determine broadly in what state a
solver is. GetStatus returns a bitmask that can contain any combination of the values in
Table 3.20.

RSS_UNINITIALIZED The solver has been created but has not been
initialized with any inputs or outputs. Only default
values might be set.

RSS_INPUTSVALID All inputs of the solver have been set. The client
could query the solver to receive the input data
elements.

RSS_SOLVING The solver is currently solving its problem.

RSS_PAUSED The solver is currently paused in the process of
solving its problem.

RSS_OUTPUTSVALID The solver has solved its problem, and its outputs
are valid.

RSS DESTROYING The solver is being destroyed.

Table 3.20: Status codes for IRSolverStatus::GetStatus

176

The second method, GetProgress, is the pull version of the IRSolverAdvise::OnSolverNotify
notification method. It has no inputs and receives as outputs the same values that the solver

would send with OnSolverNotify; see section 3.7.1.2.a, page 173, for more details.

3.7.3 Solver life cycle control

Section 2.3.5, page 84, discussed the need for the ability for a client to terminate the solver's

processing. The progress update notification, described in section 3.7.1, page 169, provides

one means for termination. A return parameter of the function IRSolverAdvise:: OnSolve-

Notify allows the client to instruct the solver to cancel its processing.

One situation that cannot use this mechanism is analogous to the asynchronous progress
query of section 3.7.2. Some client that has no advise connection or even any relation
whatsoever with the solver might need to terminate the solver upon the user's request. To

handle this, the framework defines the interface IRSolverControl. If the solver supports

asynchronous termination then it implements and exports IRSolverControl. IRSolverControl
is an optional interface, and a solver can choose to support synchronous control through

I RSolverAdvise::OnSolveNotify but to not support asynchronous control via

IRSolverControl.

3.7.3.1 Acquiring a running solver

The client that wishes to control the solver must first acquire a pointer to the solver. This
can be accomplished in the same way as a client attempting to query the solver for its
progress; see section 3.7.2.1, page 175, for details.

3.7.3.2 Interface IRSolverControl

I RSolverControl includes the following methods:

Abort. Instructs the solver to cancel its processing at the earliest possible moment. The
solver should conceptually discard its internal state of the problem it is solving.

Pause. Instructs the solver to suspend its processing at the earliest possible moment. The
solver should retain its internal state, on the assumption that the client will instruct it to
resume its processing.

Resume. Instructs the solver to resume previously paused processing.

Wait. Instructs the solver to pause for a specified amount of time during its processing. This

might be useful if the client needs access to the system resources for a known time amount.

177

3.8 NETWORKING SOLVERS

Everything that has come before is applicable to solvers in single-stage architectures. With
everything in the preceding sections and in the core services, to follow, many useful
solutions can be built. Now it is time to turn to solving the problem of linking multiple
solvers into a solution network.

Throughout, the development of the networking framework will refer to this example.
Consider a four-stage solver network with the architecture shown in Figure 3.9.

Figure 3.9: Sample solution network for framework development

This network has two data sources that each serve as an input to one of two solvers. A third
solver uses the outputs of both of the first two solvers as its inputs, while a fourth solver
uses only the outputs from the first solver as its inputs. The outputs from the third and
fourth solvers are the end results.

The next section examines how traditional client applications might manage this solution
network, which also happens to be a method for global control. Subsequent sections
introduce aspects of the framework that relieve implementation work from clients and
enable simplified local control.

3.8.1 Networks in traditional clients and global control

For a fixed, a priori known network such as the example network, the traditional
implementation is also the most obvious. Not coincidentally, it is also the simplest.
Independent of whatever the client does, in terms of user interface, data input, etc., the
routines that solve the solution network can be purely procedural, in the grand tradition of
flowchart-based design. The client's solution routine simply needs to:

1. Create or load the four solver objects or libraries.

2. Query or load Data 1.

178

3. Pass Data 1 to Solver 1, and run Solver 1.

4. Query or load Data 2.

5. Pass Data 2 to Solver 2, and run Solver 2.

6. Pass the outputs of Solver 1 and Solver 2 to Solver 3, and run Solver 3.

7. Pass the outputs of Solver 1 to Solver 4, and run Solver 4.

8. Retrieve the outputs from Solver 3 and Solver 4.

9. Destroy or unload the four solver objects or libraries.

In a client application where the solution network is embedded into the application and is
inflexible, this nine-step procedure can be hard-coded into the application logic. When
maximal control over performance, robustness, solver location, and efficiency is paramount,
this is an ideal choice. The client application has complete, global control over the state of

the entire network. Solvers do not act without instructions from the client.

Everything presented in the framework until this point can be leveraged by clients, for
instance, to manage the passing of data, the initialization and parameterization of solvers,
and solver selection. The framework does not interfere with the client's global control of a
network of solvers.

The problem for the client arises when the underlying solution network is exposed directly
to the user for manipulation. When the network structure can change, either through the
addition or removal of solvers or of links between them, the client application can no longer
hard-code the solution procedure. Instead, the client must dynamically create something akin
to a finite state machine that ensures that the solvers execute in an order such that each
solver has all of the inputs it requires when it executes. If the network is a directed acyclic
graph, then a topological ordering of the network leads to the solver execution order. If
there are cycles with decision points, then the client will need to be correspondingly more
sophisticated.

In any event, the client is still a global controller. All of the intelligence of the network
topology resides in a single place, at the client. Without the support of the framework,
implementing local control-spreading topology knowledge across the network-would
require much custom work on the parts of the client or solver developers. That is, solvers
would require special code to deal with local control scenarios, which is functionality
orthogonal to the purpose of solvers, and, hence, best avoided. The following sections
develop the framework in order to mitigate that development burden.

179

3.8.2 Moving to local control

The goal of the networking framework is to minimize clients' and solvers' workloads in local
control situations. Ideally, the behavior of the client is quite simple. Given the network
topology as an input, the client should only have to create the solvers and the links, hook
them all together, say "Go!" and then sit back, waiting for the answer to unfold. Obviously,
there will be some more work than that, but the overall work should be minimized.

The need, then, is to move the various pieces of the control logic away from the client
without forcing the solvers to shoulder any of the burden. This will require new components
that sit within the network between the various solvers and data flows. It is these new
components that the framework specifies.

In the context of the example network, of the original nine tasks, the following must be
moved out of the client and into local control components:

1. Pass Data 1 to Solver 1, and run Solver 1.

2. Pass Data 2 to Solver 2, and run Solver 2.

3. Pass the outputs of Solver 1 and Solver 2 to Solver 3, and run Solver 3.

4. Pass the outputs of Solver 1 to Solver 4, and run Solver 4.

These four tasks can be categorized into two types of activities: passing data and running
solvers. The client is still responsible for creating and destroying the solvers, establishing the
initial data inputs prior to solver execution, and retrieving the final outputs after the final
solver completes processing". In essence, through creation and initial inputs, the client
brings the network into an initialized, steady state, and through final outputs and destruction,
the client takes the network out of steady state. During this "steady state," the local control
components run the network.

Now consider the network from the perspective of one of the solvers. Sitting on top of
Solver 3 in the global control scenario, what does an observer see? First, Solver 3 is created
(giving the observer some place to sit). For a long time, nothing happens, as, unbeknownst
to the observer, Solver 1 and Solver 2 execute. Then, Solver 3 suddenly receives the output
of Solver 1 followed by the output of Solver 2, both coming from the client. Then the client
instructs Solver 3 to execute, which it does. Upon completion, Solver 3 notifies the client it
is finished, and then the client takes the output of Solver 3. Afterwards, the observer on
Solver 3 is idle until Solver 3 is destroyed. This is shown (minus destruction, which works
the same as creation in all examples) in Figure 3.10.

11 The fourth chapter will describe solver components that manage data storage and retrieval, thereby
elevating data access to the level of solvers and relieving data management duties from some clients.

180

Client

Create

Setlnput(Solver1 Output)

Setlnput(Solver20utput)

Solve

OnSolveComplete

GetOutput

Figure 3.10: Perspective of Solver 3 under client global control

The desired behavior in a local control is different, as the solvers acquire some autonomy in
their environment. Again, Solver 3 is created by the client. The client then tells Solver 3 that
it will be using the outputs of Solver 1 and Solver 2, and that it should wait for their outputs
to become available. So, the observer and Solver 3 wait as Solver 1 and Solver 2 execute.
Thus, the solver has some context of its environment; it knows it is waiting for two solvers

to finish before it can begin execution. Suppose Solver 1 finishes first; it notifies Solver 3
that it is done. Solver 3 takes the output from Solver 1 and sets its input. The waiting
continues, now only for Solver 2. When Solver 2 finishes, it notifies Solver 3, which takes

output from Solver 2 and sets its own input. With all of its inputs set, Solver 3 then begins
executing. When complete, it notifies the client, which then retrieves its output. Afterwards,
the observer is idle until Solver 3 is destroyed. This is presented in Figure 3.11, below.

The main differences are that the solver knows its whereabouts within the network, so to

speak, it knows what it is waiting for to begin, and it has control over its own execution.
However, adding this intelligence to every solver needlessly complicates solvers. Network
knowledge and local control functionality are orthogonal to the purpose of a solver, which is

to implement an algorithm. The solution within the framework is to add helper components
into the network, at the point of each solver, to handle the needs of the network. A

component sits in the network as a surrogate for the solver, wrapping the solver, handling
the notifications and local control. The solver is shielded inside the component, and to the

solver it appears as if there is global control. This component is called a wrapper, and each
solver is wrapped by one. This is shown in Figure 3.12.

181

L
III
IIIII
I
I

oveo % : v e

Figure 3.11: Perspective of Solver 3 under local control

Figure 3.12: Sample solution network with wrapper components

182

If the observer were sitting on the wrapper of Solver 3, things would look a lot like the local
control scenario just described. The client creates the wrapper, which in turn creates Solver
3. The client tells the wrapper that Solver 3 will be using the outputs of Solver 1 and Solver
2. So, the wrapper waits for Solver 1 and Solver 2 to finish. When Solver 1 finishes, the
wrapper takes it output and perhaps stores it at an intermediate location. When Solver 2
finishes, the wrapper passes both Solver 1's output and Solver 2's output on to Solver 3, and
instructs Solver 3 to execute. When Solver 3 is finished, it notifies the wrapper, which then
notifies the client. The client retrieves the outputs from the wrapper, which retrieves them
from Solver 3. When the client destroys the wrapper, it destroys Solver 3. This is presented
in Figure 3.13, below. The wrapper is now a surrogate for Solver 3, and passes the important
activities on to Solver 3 when necessary, such as retrieving outputs, creation, and
destruction.

jolver

Figure 3.13: Perspective of a Solver 3 wrapper under local control

Place the observer back at Solver 3, and consider only those events from Figure 3.13 that
Solver 3 receives or generates. As shown in Figure 3.14, below, the observer at Solver 3 will
feel like it is back in the original, global control scenario, where the wrapper has taken the
place of the client. Solver 3 is created, and then nothing happens as Solver 1 and Solver 2
execute. Then, Solver 3 suddenly receives the output of Solver 1, followed by the output of
Solver 2, both coming from the wrapper. The wrapper instructs Solver 3 to execute, and

183

:Wrapper

Create
P Solver3 : Solver

Setlnput(Solverl Output)

Setlnput(Solver20utput)

Solve

OnSolveComplete

GetOutput

Figure 3.14: Perspective from Solver 3 under local control with wrapper

upon completion, Solver 3 notifies the wrapper that it is finished. The wrapper then takes
the output of Solver 3. Eventually, Solver 3 is destroyed.

The addition of the wrapper, which can be a common component, has alleviated the need
for any particular solver to worry about the state of all surrounding solvers, the availability of
data, or the particular run-time configuration of the system. Figure 3.14 is identical to Figure
3.10 with the wrapper taking the place of the client. This shows that a wrapper can
sufficiently hide network interactions in a local control scenario so that the solver cannot
distinguish between global control and local control with a wrapper.

3.8.3 Solver sites and mappings

The wrapper described in the previous section is a container for solvers. The network that
the client creates is no longer a network of solvers, but instead is a network of solver
containers. What were once heterogeneous solvers, the "nodes" of the network are now
homogenous containers. That these containers wrap the original heterogeneous solvers does
not effect their behavior in the network. The "arcs" of the network will also be wrapped, by
link containers. These two containers are the embodiment of nodes and arcs in a network of
solvers in the framework.

3.8.3.1 Introducing solver sites

A solver container is called a solver site object, or solver site for short'2 . Much of the framework
specification relates to the behavior, structure, and interface of solver sites, as these objects
are the primary enabling technology of solution networks.

12 The name derives from the interfaces exposed by ActiveX control containers in Microsoft's
ActiveX specifications, namely IOleControlSite, IOleClientSite, and IOleinPlaceSite.

184

Now that the solver site is identified, it is easier to state its responsibilities. The solver site
that contains a solver must:

1. Be aware of all solvers or external sources that provide inputs to the solver. These are
the solver's suppliers.

2. Establish advise connections to receive notifications from the suppliers when they have
data available for the solver.

3. Manage the flow of data from a supplier to the solver. This includes determining where
the data itself should be stored and making sure it gets there.

4. Assign all of the input data elements to the solver when all input data are available.

5. Execute the solver.

6. Provide a locking mechanism to ensure data integrity. That is, the solver site must
provide locks so that the solver does not trash output data with new data from another
set of input data.

7. Expose the outbound side of the solver to any clients interested in receiving notifications
or output data; these clients are the solver's customers. Customers will need to register
with the solver site so that it can manage data integrity correctly.

8. Reset the solver by clearing its inputs and outputs and freeing any data elements held by
the solver or the solver site.

9. Possibly manage the creation and destruction of the solver itself, although alternatively
this can be handled by the client.

Without loss of generality, any link in a solution network connects a supplier's solver site to
a customer's solver site. Whether the supplier or customer is a client or database or some
non-solver entity, it can still expose or be wrapped by the solver site object interfaces that
will be presented shortly. Somewhere in that chain from the supplier's solver site through
the link to the customer's solver site must lie the intelligence and the responsibility for
managing the flow of data-in particular, acquiring the correct output data element from the
supplier and passing it, possibly marshaling or converting it, to the correct input data
element of the customer. Arbitrarily, the framework assigns this responsibility to the
customer's solver site. Because a supplier might also be a customer, in fact every solver site
has this responsibility. To be more precise, it is the inbound side of the solver site, called the
inbound solver site, that has the responsibility, which can be succinctly put:

The inbound solver site is responsible for managing the mapping of data from the outputs of
its suppliers to the inputs of its solver.

185

The other end of the solver site, called the outbound solver site, has the easier duties. From the
solver site's perspective, outputs are conceptually simple. Customers register for advise
notifications, they lock whatever data they need access to, they acquire the data and take it
away, and then they unlock it. Clearly the interesting activity takes place at the inbound
solver site.

The functionality of a solver site is thus divided into its inbound functionality and its
outbound functionality. In fact, in the framework the inbound and outbound sides can be
separate objects entirely. Solvers could implement one side or the other of their own solver
site, if they needed to add some specific, custom behavior. Solver sites will therefore be
displayed as two bars that sit between inputs and outputs of a solver instead of a complete
wrapper of the solver. (This makes more sense as well because the client will still
communicate directly with the solver to set parameters, which a complete wrapper implies is
not possible.) A solver site wrapping a solver appears thus:

ThM 1- ; ;i , l 1rti+ rb 4L
I; LIIULI. 3n o UnLV 31L 13 II I.LL W V VLt41 U%4.L LU LI Ie; I o UL L

solver, while the outbound solver site is to the right of the solver.
The line between inbound and outbound solver sites illustrates that
the two are closely interconnected (they are aware of each other) and
also that the solver sits within the overall solver site.

The new image of the solver sites in the sample network is presented in Figure 3.15:

Figure 3.15: Sample solution network with solver site components

3.8.3.2 Introducing mappings

Solver sites wrap individual solvers. Without any further assistance, as a network becomes
more dense and more links are added to the inbound side of a solver, the solver sites will
have to manage more connections, more data, and more complexity. It will help to introduce
another component associated with the links, subservient to the solver site but responsible
for activity on any given connection from a supplier to a customer. This component is, in

186

essence, the embodiment of links in the framework. It is called a mapping, as it specifies the
mapping from one object's outbound data elements to another object's inbound data
elements.

To summarize, networks in the framework are captured by solver sites as the nodes and
mappings as the links. Solver sites are containers for solvers, while (arbitrarily chosen) the
inbound side of solver sites are the containers for mappings.

A mapping is displayed as a small horizontal box
straddling the inbound solver site as shown here.
There are two mappings on Solver 3's inbound
solver site, one for each of Solver 3's inputs. The
mappings overlap the inbound solver site to show
that they are managed by the inbound solver site,
but they extended beyond the inbound solver site to
emphasize that they are the objects that retrieve
suppliers' outputs and pass them to the solver.

Solver 3

When mappings are added to the sample solution network, the picture appears thus:

Figure 3.16: Sample solution network with mappings and internal solver connections

To complete the picture, the client, with its hypothetical implementation of the inbound and
outbound solver sites, is added, where for convenience the client's inbound solver site is on
the right of the client, as indicated by the presence of the mappings in Figure 3.17:

Note that in this figure, the client implementation abuts its solver site, to indicate that the
site implementation is actually rolled into the client itself.

187

Figure 3.17: Sample solution network with mappings, solver sites, and the client

3.8.3.3 Partitioning responsibilities

The inbound solver site and its mappings and the outbound solver site work together to
perform the nine duties described on page 185. These duties can now be reformulated and
allocated to these three classes of objects, as follows.

The inbound solver site is responsible for:

1. Managing the collection of mappings for its solver's inputs.

2. Executing the solver.

3. Managing the creation and destruction of the solver.

The outbound solver is responsible for:

1. Providing a locking mechanism to ensure data integrity.

2. Exposing the outbound side of the solver to any customers.

3. Resetting the solver.

Each mapping is now responsible for the other activities, which are specifically concerned
with a particular supplier-solver connection:

1. Being aware of the supplier on the connection.

188

2. Establishing an advise connection to receive notifications from the supplier when it has
data available for the solver.

3. Managing the flow of data from the supplier to the solver on the connection.

4. Assigning the input data element managed by the mapping to the solver.

The following sections discuss in detail how the inbound solver site, the outbound solver
site, and the mappings undertake their responsibilities.

3.8.4 Inbound solver sites

As discussed in the previous section, an inbound solver site, sitting between a solver and its
suppliers, has three primary responsibilities: managing the collection of mappings, executing
the solver, and optionally supporting the creation and destruction of the solver itself. As
always, these activities are specified by interfaces, which include IRSolverSiteln,
IRSolverSitelnMappings, IRSolverSitelnSolverFactory, and IRSolverlnputs. An object that
supports at least IRSolverSiteln and IRSolverinputs can function as an inbound solver site.
These interfaces will be discussed in the context of the inbound solver site's responsibilities.

3.8.4.1 Inbound solver site basics: IRSolverSiteln and IRSolverinputs

Two interfaces an inbound solver site must support are IRSolverSiteln and IRSolverlnputs.
IRSolverSiteln provides basic inbound site attributes. Most notably, it has two pairs of
get/set methods for accessing and assigning the solver and the outbound solver site paired
to the inbound solver site. These methods are, consequently, GetSolver, SetSolver,
GetSolverSiteOut, and SetSolverSiteOut. While "wiring up" the network, the client calls
SetSolverSiteOut on the inbound solver site and IRSolverSiteOut::SetSolverSiteln on the
outbound solver site to match them together13. IRSolverSiteln defines an additional method,
IsSolverlnputAvailable, that takes as input an index from zero to one less than that returned
by the SolverInfo's IRSolverlnfo::GetlnputlnfoCount and returns a non-zero value if the input
data element corresponding to that index is available in the solver or in the mapping for that
input. If IsSolverlnputAvailable is non-zero for every input, then the solver is ready to
execute.

Inbound solver sites must also expose their own implementation of IRSolverinputs, the input
interface for solvers (see section 3.5.3, page 140). For the most part, this implementation will
delegate directly to the solver. This is necessary because the inbound solver site wraps the
input side of the solver. A mapping will call IRSolverlnputs::SetlnputData on the inbound

13 This induces a circular reference, so the client must be sure to clear the references by calling
IRSolverSiteln::SetSolverSiteOut and IRSolverSiteOut::SetSolverSiteln with NULL pointers when
destroying the network.

189

solver site in order to map its data into the solver. Exposing IRSolverinputs is also a feature
because doing so (along with the outbound solver site's support of IRSolverOutputs, see page
193) enables the creation of solver sites that wrap custom solvers that do not conform to the
framework solver specification. Furthermore, as the interfaces for solvers evolve, new solver
sites can be created to ensure that old solution networks still work. Likewise, new solver sites
can be developed to ensure that new solution networks that use new solver interfaces will
still work with old solvers that use the old interfaces.

3.8.4.2 Managing the mappings: IRSolverSiteinMappings

The inbound solver site is a container for the mappings. For each input to the solver, there
must be a mapping. The interface IRSolverSitelnMappings specifies the container activities
that the inbound solver site must support. These activities include:

AddMapping. Given an existing mapping object, adds it to the collection and returns a
magic cookie identifying the mapping within the container.

RemovingMapping. Given a cookie returned from AddMapping, removes the mapping
from the container.

GetMappingCount. Returns the number of mappings currently in the container.

GetMapping. Given a cookie, returns the mapping corresponding to that cookie.

GetMappingBylndex. Given an index from zero to one less than that returned by
GetMappingCount, returns the mapping corresponding to that index.

The mappings themselves maintain their own state data, such as the supplier and the
particular solver input for that mapping. The inbound solver site will need to verify during
processing that the correct number of mappings have been added to the container, and that
all non-optional solver inputs have been mapped.

This flexibility in adding and removing mappings might seem like over-specification,
especially under the assumption that there is one mapping per solver input. However, this
specification permits enhancements such as a single mapping mapping into multiple solver
inputs. The specification also enables different mapping implementations to coexist within
the inbound solver site mapping container.

3.8.4.3 Executing the solver

In the local control scenario, it is the inbound solver site that controls the beginning of the
solver's execution 4. This is because the inbound solver site has the best knowledge of when

14 Once running, the client can still pause or cancel the solver.

190

all of the suppliers' output data are ready. In particular, once the inbound solver site is

running and all of the mappings have been established (via IRSolverSitelnMappings::Add-

Mapping), then the inbound solver site waits for each mapping to notify it that its data

element has arrived. Mappings establish data advise notifications with their suppliers (see

section 3.8.6, page 199, below), and when a mapping receives the OnDataChange
notification, it notifies the inbound solver site that it is ready with data (this processed is

described below).

Once all of the mappings have notified the inbound solver site that they are ready with data,

the inbound solver site instructs each mapping to map its data into the solver. How a

mapping does this is discussed below, in section 3.8.6.2, page 200. After all of the inputs

have been mapped, the inbound solver site begins the solver execution.

A mapping notifies the inbound solver site through the IRMappingAdvise interface. This

interface has a single method, OnMappingDataAvailable, that takes as input the magic

cookie that identifies the mapping sending the notification. The inbound solver site does not

directly support this interface, but instead it creates a sub-object that does5 .

3.8.4.4 Creating and destroying the solver: IRSolverSiteinSolverFactory

Because the solver site is a container for the solver, and nearly completely wraps the solver,
it is not necessary for the client to create the solver object itself in order to specify the

solution network. If the solver object requires extensive resources, it is beneficial to delay the

instantiation of the solver as long as possible. If the client does not require any interaction

with the solver-if the solver has no parameters or the client is satisfied with the default

parameter values-then the creation of the solver can be delayed until all of the input data

are ready to be mapped and execution is ready to begin16.

The inbound solver site specification enables this by allowing the client to specify the class

of the solver object without creating it. In order to establish and verify the mappings, the

inbound solver site requires only the SolverInfo of the solver, which is usually accessible

from the CLSID of the solver (see sections 3.6.1, page 142, and 3.6.1.5, page 161).

15 This is a common pattern in COM when two objects need to reference each other without causing
circular reference counts. The inbound solver site maintains a reference count on the mapping, but
also needs to receive updates from the mapping. If the mapping held a reference count on the
inbound solver site, there would be a circular reference. Instead, the mapping maintains a reference

count on the inbound solver site's notification sub-object. This way, there is no circular reference
count and the objects can be safely released.

16 An extension to the framework would be to cache parameters at the solver site, which would then

set the parameters in the solver once it creates it. In this manner, solver creation could be delayed as

late as possible.

191

An inbound solver site indicates support of this feature by implementing and exporting the
IRSolverSitelnSolverFactory interface, which has four methods:

SpecifySolver. Provides the inbound solver site the CLSID of the solver, its class context
flags, and flags for solver creation and destruction. The class context flags are from the
CLSCTX enumeration (see the COM API function CoCreateinstance for details), while the
other set of flags might include one value from each of Table 3.21 and Table 3.22.

Creation flag Meaning
RSFC_NORMAL The solver will be created in the normal fashion;

by the client creating it independently and passing
it to the inbound solver site via
IRSolverSiteln::SetSolver. This is the default.

RSFC_IMMEDIATE The inbound solver site should create the solver
during the call to SpecifySolver.

RSFCLAZY The inbound solver site should create the solver at
its convenience.

RSFC_LASTPOSSIBLE The inbound solver site should create the solver at
the last possible moment. This is at the first call to
IRSolverSiteln::GetSolver or once all of the
mappings have notified the solver site that their
data is ready, whichever comes first.

Table 3.21: Creation flags for IRSolverSitelnSolverFactory::SpecifySolver

Destruction flag Meaning

RSFD_NORMAL The solver will be destroyed in the normal fashion.
This is the default.

RSFD_ONSOLVECOMPLETE The inbound solver site should destroy the solver
once the solver has finished executing and all
customers are finished acquiring the solver's
outputs.

RSFD_ONSITEDESTROY The inbound solver site should destroy the solver
when it is itself destroyed.

Table 3.22: Destruction flags for IRSolverSitelnSolverFactory::SpecifySolver

Note that as always with COM, destruction of an object is usually at the object's discretion.
That is, all of the clients can release their references to an object, indicating that the object is
no longer needed, but rarely do the clients actually control the destruction of the object, the
restoration of its resources, and its removal from memory.

192

SpecifySolverProglD. Similar to SpecifySolver, but takes a ProgID instead of a CLSID to
identify the solver. A ProgID is a string that maps to a CLSID through the COM library

function CLSIDFromProglD. This function might just call CLSIDFromProglD and then

delegate to SpecifySolver.

CreateSolver. Instructs the inbound solver site to create the solver immediately. This

method gives the client manual control over the creation of the solver. In most cases, the

client will either create the solver directly and pass it to the inbound solver site using

IRSolverSiteln::SetSolver or else allow the inbound solver site to create it according to the

creation flags in Table 3.21 rather than call CreateSolver.

DestroySolver. Instructs the inbound solver site to effectively destroy the solver

immediately. (Note that in COM this means releasing any references to the solver.) This

method gives the client manual control over the "destruction" of the solver. In most cases,
the client will allow the solver to be destroyed naturally when the solution process is

complete or allow the inbound solver site to destroy it according to the destruction flags in

Table 3.22 rather than call DestroySolver.

3.8.5 Outbound solver sites

The outbound solver site has three tasks. When customers need the outputs of a solver, the
outbound solver site must make sure those outputs remain valid; this is the data integrity
problem, and it is solved through a locking mechanism on the solver. The outbound solver
site also exposes the outputs to the customers. When all customers are finished with the
outputs of the solver, the outbound solver site can reset the solver and release its locks,
allowing another invocation of the solver if necessary.

An outbound solver site supports the interfaces IRSolverSiteOut and IRSolverOutputs. The
tasks are discussed in detail below.

3.8.5.1 Outbound solver site basics: IRSolverSiteOut

Interface IRSolverSiteOut is the outbound solver site's version of IRSolverSiteln for inbound
solver sites. As with IRSolverSiteln, it defines two pairs of accessor and assignment methods
for the solver and the inbound solver site paired with this outbound solver site. These
methods are, naturally, GetSolver, SetSolver, GetSolverSiteln, and SetSolverSiteln.

3.8.5.2 Locking the solver

The outbound solver site has responsibility for ensuring data integrity of the solver's
outputs. This is managed by a simple locking mechanism on the solver and the inbound
solver site. The locking mechanism is engineered so that the client can assume the following
about the validity of outputs from a solver:

193

* When the client receives the OnSolveComplete notification (see section 3.7.1.2, page
173), the outputs are valid.

* If the client calls IRSolverOutputs::LockOutputs while the outputs are valid, the outputs
will remain valid until at least the point at which the client calls
IRSolverOutputs::UnlockOutputs.

Note that while the outputs might be valid outside of these bounds, the client cannot assume
this.

The locking mechanism is pictured in Figure 3.18. The essence of the diagram is that the
outbound solver site receives the OnSolveComplete notification from the solver and
propagates this on to the clients in the form of OnDataChange notifications (indicating that
data elements the clients are interested in have changed). The OnDataChange notifications
are bracketed by calls to the solver's LockOutputs and UnlockOutputs methods. Hence, the
outputs will be valid during the OnDataChange notification. If the client wants to do
something with the output data, it calls GetOutputData and then LockData to lock the data
for future use. The data source, implemented by the outbound solver site as a wrapper for
the solver's output data source, internally notifies the outbound solver site of the LockData

Figure 3.18: Interaction diagram of outbound solver site locking mechanism

194

EL"C

call, so the outbound solver site locks the solver's outputs again. When the client is finished

with the data, it calls the data source's UnlockData method, which eventually ends up as an

UnlockOutputs call to the solver.

Not shown in this diagram is that the outbound solver site also calls the LockInputs method

on the inbound solver site's implementation of IRSolverlnputs. This instructs the inbound

solver site not to allow any mappings to map data into the solver. When the outputs are

finally unlocked, the outbound solver site calls UnlockInputs on the inbound solver site.

3.8.5.3 Exposing the outputs

Just as the inbound solver site exposes IRSolverinputs, often just delegating to the solver's

implementation (see section 3.8.4.1, page 189), the outbound solver site completes the wrap

of the solver by exposing IRSolverOutputs (see section 3.5.4, page 140). Customers retrieve

the solver's outputs by calls to the outbound solver site's implementation of

IRSolverOutputs. The outbound solver site can also usually just delegate to the solver's

implementation of IRSolverOutputs.

3.8.5.4 Resetting the solver

When the final client has unlocked the solver's outputs, as specified above, the outbound

solver site has the responsibility of resetting the solver if it will be used in another execution.

It does this by calling IRSolver::ClearOutputs and IRSolver::Clearlnputs. This happens after

unlocking the outputs for the final time but before unlocking the inputs via the inbound

solver site.

The solver uses ClearOutputs and Clearlnputs to flush any internal data structures and to

reset default parameters and inputs. During the final run of a network, the outbound solver

site does not need to call Clearinputs and ClearOutputs, so upon destruction, a solver would

clear any resources as necessary before unloading.

Another option for a solution network, of course, is to create a new instance of the solver

during every iteration of the network. In this way, the solver will always be initialized to

default values prior to setting new inputs.

3.8.5.5 Using outbound solver sites to make decisions

A potentially powerful aspect of wrapping the outbound side of the solver is that the

outbound solver site can filter and direct the solver's completion notifications. That is, the

outbound solver site is the primary recipient of the solver's completion notification, and it is

responsible for notifying all of the mappings that require outputs from this solver that data

they need are available. However, there is no restriction that all outbound solver sites must

195

notify all interested mappings that data are available. Instead, the outbound solver site could
selectively filter mappings to receive data availability notifications.

This has the effect of inducing flow of control on a network. Because solvers do not execute
until inbound solver sites tell them to, and because the inbound solver sites wait for all of
their mappings to be ready, and because the mappings wait on the outbound solver sites for
availability notifications, the outbound solver site can effectively manage the flow of control
in a network based upon some criteria that are perhaps dependent on the solver's outputs.

An example should help to illustrate this power. First, imagine a solver that must process ten
sets of input data, queried from a database using a simple SQL query parameterized by the
iteration number, something like SELECT DEMAND.* FROM DEMAND WHERE
((DEMAND.SCENARIO)=[s]); 7 where [s] goes from 1 to 10. The solver might receive its
input data element from a query engine solver and send its output to another query engine
solver, so in each iteration the three solvers form a simple, directed acyclic (serial) graph
architecture. The client could execute this directed-acyclic graph network ten separate times,
changing the parameter [s] with each execution. This is illustrated in Figure 3.19 by the large
cyclic flow between the solution network and the client.

Figure 3.19: Iterating a solution network from the client

Another option would be to add intelligence to the outbound solver of the final solver (the
"Save Data" solver in this case) so that during the first nine iteration is increments the
parameter counter and notifies the "Load Data" mapping again, and during the tenth
iteration it notifies the client. This is illustrated in Figure 3.20 by the cyclic flow within the
solution network; this cycle is not perceived directly by the client. The special outbound
solver site is shaded in this figure.

17 This SQL statement was generated with Microsoft Access 95.

196

Figure 3.20: Adding intelligence to the outbound solver site to iterate within the network

In this example, there is no real input to the "Load Data" solver, as the iteration number is a

parameter to the query engine rather than being a data element per se. So in the diagram

where there are two links feeding into one mapping, it is understood that the mapping does

not technically map data, and therefore has no real supplier. It is only necessary to make sure

that first the client and then later the outbound solver site of the final solver can send the

OnDataChange notification to the first solver's mapping.

3.8.5.6 Implementation: Outbound solver site state diagram

Figure 3.21 presents a possible state diagram for an outbound solver site. The object has a

single global state, which represents the life of the object. Upon creation, it enters that global

state, and upon destruction leaves it. The global state contains four concurrent sections. The

first indicates whether the outbound solver site has been hooked to its inbound pair. The

second concurrent section shows the OnSolveComplete notification and that the outbound

solver site propagates this notification to its advise list. The third section shows the locking

mechanism for the outbound solver site, and the fourth section shows the advise list for the

site.

The advise list for the outbound solver site contains the mappings and other clients that

hook to the solver's outgoing data source which is wrapped by the outbound solver site.

When the outbound solver site sends the OnSolveComplete notification, it is sending it to

these mappings and clients; this might trigger them to map data.

197

SiteinHooked I

NoSiteln SetSolverSiteln(newSite)/_, SetSolverSiteln(newSite)/
siteln = newSite entry/ ^siteln.Advise(this) siteln - newSite

exit/ ^siteln.Unadvise(this)

IF Solved

Ready) entry/ ^Lock

do/^SendOnSolveComplete
exit/ ^Unlock

OnSolveComplete

[in SitelnHooked]

lockCount +- 1

Locked

entry/ Asiteln.Lock

Lock/ lockCount +- 1
Unlock [lockCount>1] / lockCount -- 1
exit/ ^siteln.Unlock

nt == 1] / lockCount -= 1

AdviseList

entry/ ^list.init

SAdvise(client)/ ^list.add(client)
Unadivse(client)/ ^list.remove(client)
SendOnSolveComplete/ ^list.OnSolveComplete()
exit/ Alist.destroy

Destroy/
Asiteln.Unadvise(this)

Figure 3.21: State diagram for outbound solver site object

t.

198

3.8.6 Mappings

The bulk of the intelligence and capabilities in a solution network resides in the mappings.

These components represent the links of data flows between solver components wrapped by

solver sites. The mapping contains the knowledge of how to take an output or other data

from one solver and turn it into an input for another solver.

For the most part, the framework specification of the primary solver interfaces, especially

IRSolverlnputs and IRSolverOutputs, makes the mapping's job significantly easier, as a single

mapping component that works with those two interfaces is sufficient for most purposes in

networks of solvers that support those interfaces. However, in cases where a solver has a

custom interface for setting inputs or retrieving outputs, either a special mapping component

can map into that solver, or a custom solver site can wrap the solver so that it can plug into a

solution network.

A mapping has four primary responsibilities. First, it must know its supplier. That is, the

mapping maintains knowledge of the source, or tail, of the link it represents. Second, it must

receive notifications from its supplier when its particular data element is available (or

changes). Upon receiving this notification, it must notify the inbound solver site, which will

later instruct it to map its data element into the solver. Third, the mapping must know how

to translate its supplier's data element into a form the solver requires. As mentioned above,
most often the data element will be directly useable by the solver, so that this task is trivial.

More complicated or special mappings might be able to perform pre-processing tasks on the

data, as discussed below in section 3.8.6.4, page 203. Finally, the mapping must pass its data

element to the solver. These final two tasks are sometimes referred to as "mapping the

data."

The primary mapping functionality is specified and accessed by the interface

IRSolverMapping, which all mapping components must implement. In particular,

IRSolverMapping covers the first two tasks of the mapping. Because of the potential variety

of mapping techniques for the third and fourth tasks, different mapping components might

expose their settings in different ways. The standard interface for specifying precisely how

mappings map their data is IRSolverMappingMechanism. This simple interface allows a

client to specify the particular destination of the mapping's data element into the solver,
based on the numbering of the inputs in the solver's SolverInfo. Mappings can be

remarkably versatile, as they have complete control when mapping their data. Some

possibilities will be discussed at the end of this section.

3.8.6.1 Mapping basics: Interface IRSolverMapping

Just like inbound and outbound solver sites, mappings have a standard interface that handles

the basic chores. In this case, it is the interface IRSolverMapping. While somewhat large, the

interface breaks down into five groups of methods.

199

First are three locking mechanism methods, LockMapping, UnlockMapping, and

MappingLocked. These are like the similar methods in IRDataSource. Here, the inbound
solver site uses LockMapping and UnlockMapping whenever its inputs are locked or
unlocked with calls to I RSolverlnputs::Locklnputs or I RSolverlnputs::Unlocklnputs.

Second is an accessor and modifier pair for the inbound solver site that contains the
mapping. The inbound solver site calls SetSolverSiteln in its implementation of
IRSolverSitelnMappings::AddMapping, while GetSolverSiteln returns the inbound solver
site.

Third is another accessor and modifier pair, this time for the data source that is the
mapping's supplier. The client calls SetDataSource when creating the network to assign a
data source as a supplier for this mapping. GetDataSource returns this data source, once
assigned. In more complicated mappings, where the mapping might manage more than one
data source, these functions might return the primary or first data source, or they might not
be implemented.

Fourth is the method that actually maps the data, logically named MapData. This method is
discussed in detail in the following sections.

The final group is another attribute accessor and modifier pair. The attribute is known as
MaintainPreference, and it specifies the desired location of the actual data values during
solver execution. The two functions are SetMaintainPreference, which sets the preference,
and GetMaintainPreference, which returns the preference. The MaintainPreference attribute
is discussed in the next section.

3.8.6.2 Transferring the data from the supplier to the solver

How does the mapping transfer data from the supplier to the solver? In COM, objects are
handled by their interface pointers. A mapping or solver knows its data through the interface
pointer to that data, such as IRDataElement*. Behind the interface pointer, however, is the
actual data that the solver needs to execute. This distinction gives rise to three possible
answers of how to map the data.

The mapping could pass the interface pointer to the solver, and the solver could use that
directly. In this case, the solver uses the data managed by and stored with the supplier. The
supplier would need to be forbidden from changing the data element while the solver is
executing. This technique is called data source maintains data.

The mapping could clone the data, and pass an interface pointer of the clone to the solver.
In this case, the solver uses the data managed by and stored with the mapping. Two copies
of the data exist, but the supplier could change its data (such as by beginning another
iteration of the solution). The solver's behavior remains unchanged. This technique is
mapping maintains data.

200

The mapping could pass the interface pointer to the solver, which then immediately copies
the data into its internal structures. In this case, the solver manages and stores the data. Two
copies of the data exist, in possibly different forms entirely, but the supplier can change its
data. In this case, the solver must specifically know it has to copy the data rather than just
hold on to a lock on the original data. This scenario is possible only when the solver can take
inputs as soon as the data is available from the mapping. That is, the solver can maintain the
data only when it is idle and waiting for (unordered) inputs or when the solver can accept
inputs asynchronously. This technique is solver maintains data.

The differences are summarized in the table here:

Who maintains Copies of data Supplier lock Special solver
data required? code required?

Data source 1 Yes No

Mapping 2 No No

Solver 2 No Yes

Table 3.23: Characterization of who maintains data in mappings

The client can indicate a preference for who should maintain the data at each mapping, on a
mapping by mapping basis. This preference is contained in the MaintainPreference attribute,
accessed and modified by the GetMaintainPreference and SetMaintainPreference methods
of the interface IRSolverMapping. The MaintainPreference attribute can take one of the
values in Table 3.24.

MaintainPreference value Meaning
RMP_UNKNOWN The client has no preference.

RMP_DATASOURCE The client prefers that the data source maintains
the data.

RMP_MAPPING The client prefers that the mapping clone the data
and maintain it.

RMP_SOLVER The client prefers that the solver copy the data and
maintain it, if possible.

Table 3.24: Possible values for the MaintainPreference mapping attribute

The MaintainPreference attribute is just that: a preference. The mapping might not and does
not have to use the location specified by the attribute when the time comes to actually store
the data. When the mapping receives its data availability notification, it can dynamically
determine where to maintain the data using the decision tree in Figure 3.22. The mapping

can determine if the data source can maintain data by calling IRDataSource::CanMaintain-

201

Solver available
asynchronously and can

manage data?

Data so

Yes

Preference?

urce can S

No

Data source can
maintain data?

Yes No

Preference?

maintain data?

Yes No

S:
D-r uired on

data source?

Yes No

g 4;

Who maintains data

Data source

Mapping

Solver

Figure 3.22: DetermineWhoMaintainsData: Decision tree

SolverData, and it can determine if a lock is required to do so by calling IRDataSource::Lock-

Required. The mapping can determine if the solver can maintain data by checking if the

RSAF_CANMAINTAINDATA flag is set in the bitmask returned by the IRSolverinputinfo::
GetAssignmentFlags method of the SolverInfo's input object for a particular input.

3.8.6.3 The basic mapping mechanism: IRSolverMappingMechanism

The mapping mechanism is the means by which a mapping takes its supplier's data element
and passes it to the solver. The simplest mapping mechanism takes the data element from
the supplier and passes it to one of the solver's inputs. Based upon the decision of where to
maintain the data, the mapping might clone the data element before passing it to the solver.

To support this simple mechanism, the mapping might implement the
IRSolverMappingMechanism interface. This interface allows the client to get or retrieve the
SolverInputNum attribute through the GetSolverlnputNum and SetSolverlnputNum
methods. The SolverInputNum is an index from zero to one less than the number of inputs

in the solver (from IRSolverlnputs::GetlnputCount) that identifies the input to which the

mapping will pass its data. In its implementation of IRSolverMapping::MapData, the

mapping would call the inbound solver site's implementation of IRSolverlnputs::SetlnputData
using the SolverInputNum as the destination input for the mapping.

202

3.8.6.4 Extending mapping mechanisms: The versatility of mappings

Mappings provide an opportunity for preprocessing of inputs. In essence, mappings can be

miniature solvers themselves, manipulating data while in transit from a supplier to a

customer.

An example is dimension aggregation. An aggregating mapping might take an n-dimensional
data element and perform some simple aggregation over k of the dimensions to yield an (n-
k)-dimensional data element. Summation is the most common example. Suppose a data
element captures sales per day per employee. A solver might need sales per employee. The

aggregating mapping might be designed to calculate the total sales or average sales per

employee for the entire year. Rather than dedicating a special addition solver to the task, a
special mapping could be used.

To support this custom functionality, the mapping needs to define and implement a custom
interface, and the client needs to be aware of this interface. For these situations, a
dispinterface or dual interface is often the best choice.

Another example of a special mapping is one that instead of applying fixed logic or mapping
a data element directly to the solver allows the client to provide custom code to handle the

mapping. Namely, the implementation of MapData in the mapping calls a client subroutine
instead of providing its own functionality. One way to handle this is through a callback
interface (again, custom-designed for the situation). Another, elegant technique is to engineer
scripting into the mapping component. The client would provide a script to the mapping

that the mapping executes in MapData. This script could be JavaScript, VBScript, or
something similar. This technique is quite simple to implement in a COM environment given
Microsoft's Active Scripting technology. For more information, see Microsoft's scripting
technology web site [70].

The callback or scripting technique gives the client an amazing latitude for handling the
mapping. The client could walk through the data element and only use the values of interest,
or could set parameters on the solver based upon values in the data element, or manipulate
other objects outside the scope of the solution network, or even display messages or
windows to the user. In general, the mapping specification should be general enough to
provide extensive freedom in mapping data into a solver's inputs. The primary assumptions
about a mapping are that it relies on specific suppliers for inputs and that it initializes the
input of a solver; how it does this is up to the mapping implementation.

3.8.7 Putting it together

With the pieces in hand, it is time to put them together and build the network. The solution
network life cycle has three primary phases. First is the creation and wiring of the various
components into the solution network. Second is the execution of the network. Tearing
down and destroying the network is the final phase. The following sections describe these
three phases in the context of the sample solution network.

203

3.8.7.1 Creating and wiring the network

The first step is to create the four solver sites and hook the inbound and outbound pairs
together. An example, in C++, is shown here:

const nSolvers = 4;
IRSolverSiteln* rglnboundSites[nSolvers];
IRSolverSiteOut* rgOutboundSites[nSolvers];

for(int i=O0;i<nSolvers;++i)
{

// Create Solver i's inbound and outbound solver sites
CoCreatelnstance(CLSID_RSolverSiteln, NULL, CLSCTX_SERVER,

IID_I RSolverSiteln, (LPVOID*) (rglnboundSites+i));
CoCreatelnstance(CLSID_RSolverSiteOut, NULL, CLSCTX_SERVER,

IID_IRSolverSiteOut, (LPVOID*) (rgOutboundSites+i));

// Now wire them together
rglnboundSites[i]->SetSolverSiteOut(rgOutboundSites[i]);
rgOutboundSites[i]->SetSolverSiteln(rglnboundSites[i]);

Wiring together the solver sites of Solver 3 is presented as the first two steps in the object
interaction diagram of Figure 3.23. This wiring happens for all four pairs of solver sites.

siteOut3 : SolverSiteOut I]:Client siteln3: SolverSiteln

1: SetSolverSiteln(siteln3) 2: SetSolverSiteOut(siteOut3)
3: SetSolver(solver3) 4: SetSolver(solver3)

Figure 3.23: Wiring Solver 3's solver sites

Next, the client either instantiates the solvers and hooks them into the solver sites or
specifies their creation attributes using IRSolverSitelnSolverFactory, if that is supported by
the inbound solver site. Hooking Solver 3 to its solver sites are steps 3 and 4 in Figure 3.23.
Example code, using fake CLSIDs for the solvers, is shown here:

IRSolver* rgSolvers[nSolvers];

// CLSIDs for Solvers 1-4 (these are sample CLSIDs only)
CLSID rgClsid[nSolvers] = {

{0x33 BCOFOO,Ox700E,Ox 11 d1 ,{0x90,OxF7,0xOO,0x20,0x78,0x 10,OxC7,0x41)},
{0x33 BCOFO 1,0x700E,Ox 11 d 1 ,{0x90,OxF7,0xOO,0x20,0x78,0x 10,OxC7,0x41)),
{0x33BCOFO2,0x700E,Ox1 d 1 ,(0x90,OxF7,0xOO,0x20,0x78,0x 10,OxC7,0x41 })),

204

{0x33BCOF03,0x700E,Ox 11dl ,{0x90,OxF7,0x00,0x20,0x78,0x 10,OxC7,0x41))

1;

for(i=0;i<nSolvers;++i)

// Create Solver i
CoCreatelnstance(rgCisid[i], NULL, CLSCTX_SERVER, IID_IRSolver,

(LPVOID*)(rgSolvers+i));

// Hook it up
rglnboundSites[i]->SetSolver(rgSolvers[i]);
rgOutboundSites[i]->SetSolver(rgSolvers[i]);

The next step is to create the mappings and place them into their respective inbound solver

site containers. This is shown for Solver 3, again, in steps 1 to 4 of Figure 3.24, with example

code below for the sample network:

// Mapping interface pointer array
const int nMappings = 5;
IRSolverMapping* rgMappings[nMappings];

// The mapping cookies for later removal
DWORD rgCookies[nMappings];

data1 : DataSource

6: SetDataSource(data 1)7: Advemp
8: SetSolverlnputNum()

map 9: Mapping
siteOut l : SolverSiteOut I map : Mapping

1: AddMapping(mapl) 2: SetSolverSiteln(siteln3)

5: GetDataSource(datal) 3: AddMapping(map2)

: Client siteln3 : SolverSiteln

9: GetDataSource(data2)
4: SetSolverSitelin(sitein3)

siteOut2 : SolverSiteOut I map2: Mapping

10: SetDataSource(data2)
12: SetSolverlnputNum()

data2 : DataSource

Figure 3.24: Interaction diagram showing wiring of Solver 3's site

205

// rgSitesForMappings[x] = y means that mapping x goes to inbound solver site y
int rgSitesForMappings[nMappings] = { 0, 1, 2, 2, 3 };

for(i=0;i< nMappings;++i)
{

// Create Mapping i
CoCreatelnstance(CLSID_RMapping, NULL, CLSCTXSERVER, IID_IRSolverMapping,

(LPVOID*)(rgMappings+i));

// Add mapping i to its specified inbound solver site
IRSolverSitelnMappings* pMappings = NULL;
rglnboundSites[rgSitesForMappings[i]]->Querylnterface(ID_IRSolverSitelnMappings,

(LPVOID*)&pMappings);
pMappings->AddMapping(rgMappings[i], &rgCookies[i]);
pMappings->Release();

Finally, the client links the mappings to their specific solver outputs, data sources, and solver
inputs. These are steps 5 through 12 in Figure 3.24 for Solver 3, with example code shown
below for the entire four stage network:

// Hook in data sources to input side of each mapping
IRDataSource* pSource = NULL;
IRSolverOutputs* pOutputs = NULL;
UINT uElem = 0;

// First two mappings use pre-existing external data sources
rgMappings[O]->SetDataSource(pExternal 1, 0);
rgMappings[1]->SetDataSource(pExternal2, 0);

// Third and fifth mappings use output from Solver 1
rgOutboundSites[O0]->Querylnterface(l D_IRSolverOutputs, (LPVOID*)&pOutputs);
pOutputs->GetOutputData(O, IID_IRDataSource, (LPVOID*)&pSource, &uElem);
rgMappings[2]->SetDataSource(pSource, uElem);
rgMappings[4]->SetDataSource(pSource, uElem);
pSource->Release();
pOutputs->Release();

// Fourth mapping uses output from Solver 2
rgOutboundSites[1]->Querylnterface(lI D_I RSolverOutputs, (LPVOI D*)&pOutputs);
pOutputs->GetOutputData(O, IID_IRDataSource, (LPVOID*)&pSource, &uElem);
rgMappings[3]->SetDataSource(pSource, uElem);
pSource->Release();
pOutputs->Release();

206

// Now hook mappings to specific solver input ports
int rglnputsForMappings[nMappings] = { 0, 0, 0, 1, O);
for(i=0;i<nMappings;++i)

IRSolverMappingMechanism* pMech = NULL;
rgMappings[i]->Querylnterface(IlD_ RSolverMappingMechanism, (LPVOID*)&pMech);
pMech->SetSolverlnputNum(rglnputsForMappings[i]);
pMech->Release();

With that, the network is ready to go.

3.8.7.2 Component interactions

Once the network is created and wired together, the client is ready to begin solving the

problem. Typically, this happens by triggering the OnDataChange notifications at all of the

root data sources. These notifications will cause a propagation of solver execution through

the network until the client receives OnDataChange notifications from all of the final data

sources.

This section presents interaction diagrams for a solution network with one solver embedded

in a solver site that has a single mapping. The diagrams are intended to show the life cycle of

the solution process, from the point of triggering the initial OnDataChange until the

network is returned to an idle state after the client has retrieved the final outputs. There are

three diagrams, one for each of the possible objects that might maintain the input data.

Flow arrows (0--+) are used to indicate the transferal of a large amount of data, either

the input to or the output from the solver.

3.8.7.2.a Data source maintains the input data

In the first scenario, the data source maintains the data, as shown in Figure 3.25.

First, the client sets the input data into the data element (1); this causes the data element to

send out its change notifications (2,3). The mapping locks the data source, which locks the

data element (4,5). This is so that the data will not change until the solver is finished with it.

The mapping then notifies the inbound solver site that it has data ready (6). At the

appropriate time-there could be a delay if there were multiple mappings-the inbound

solver site instructs the mapping to map its data into the solver (7). To do this, the mapping

retrieves the data element from the data source (according to its mapping mechanism) and

then passes it to the solver (8,9). After this is complete, the inbound solver site executes the

solver (10). During processing, the solver retrieves the input data from the data element (11)

to solve the problem. When it is finished, it sends the OnSolveComplete notification to the

outbound solver site (12), which propagates the notification to the client in the form of an

207

3: OnDataAvailable()

13: OnDataChange()

Figure 3.25: Interaction diagram when the data source maintains input data

OnDataChange notification (13). Upon receiving this, the client locks the outputs of the
solver, retrieves the outputs, and then unlocks them (14-16). The lock is necessary so that
the solver will not be run again before the client has successfully retrieved the outputs. Once
the outputs are unlocked, the outbound solver site notifies the inbound solver site that it is
finished with the inputs, whose locks are tied to those of the outputs (17). The inbound
solver site instructs each of its mappings to unlock their data (18). Each mapping unlocks its
supplier's data source, which unlocks the data element, allowing it to be modified or
destroyed (19,20). At this point, the client could set new data, beginning the process over
again.

3.8.7.2.b Mapping maintains input data

In the second scenario, the mapping maintains the data, as shown in Figure 3.26.

208

14: OnDataChangeO

Figure 3.26: Interaction diagram when mapping maintains input data

First, the client sets the input data into the data element (1); this causes the data element to
send out its change notifications (2,3). Unlike the previous scenario, where the mapping
locked the data element because it would be used by the solver later, the mapping will now
create a clone of the data element to use. So, the mapping retrieves the data element from its
data source, and tells it to clone itself (4,5,6). The mapping locks the newly created clone (7),
and then tells the inbound solver site that it has data ready (8). At the appropriate time-
there could be a delay if there were multiple mappings-the inbound solver site instructs the
mapping to map its data into the solver (9). To do this, the mapping passes the cloned data
element to the solver (10). After this is complete, the inbound solver site executes the solver

(11). During processing, the solver retrieves the input data from the data element (12) to

solve the problem. When it is finished, it sends the OnSolveComplete notification to the

outbound solver site (13), which propagates the notification to the client in the form of an

OnDataChange notification (14). Upon receiving this, the client locks the outputs of the

solver, retrieves the outputs, and then unlocks them (15-17). Once the outputs are unlocked,

209

the outbound solver site notifies the inbound solver site that it is finished with the inputs,
whose locks are tied to those of the outputs (18). The inbound solver site instructs each of
its mappings to unlock their data (19). The mapping unlocks its cloned data element (20),
which is subsequently destroyed. At this point, the mapping is ready to receive a new data
change notification.

3.8.7.2.c Solver maintains input data

In the third scenario, the solver maintains the data, as shown in Figure 3.27.

3: OnDataAvailable()

10: OnDataChange()

Figure 3.27: Interaction diagram when solver maintains input data

First, the client sets the input data into the data element (1); this causes the data element to
send out its change notifications (2,3). Unlike the previous scenarios, the mapping will now
map the data directly to the solver, as the solver needs to copy it internally. This is the only
case in which the mapping calls MapData on itself without waiting for the inbound solver
site. The mapping retrieves the input data element from the data source and passes it to the

210

solver (4,5). The solver retrieves the actual input from the data element (6) and does

whatever is necessary internally to store the data. The mapping then tells the inbound solver

site that it has data ready (7). The inbound solver site might instruct the mapping to map its

data, but this is not shown because this is an empty operation, as the data was mapped when

it was passed to the solver in steps 5 and 6. The inbound solver site executes the solver (8),

which already has the complete input data internally. When it is finished, it sends the

OnSolveComplete notification to the outbound solver site (9), which propagates the

notification to the client in the form of an OnDataChange notification (10). Upon receiving

this, the client locks the outputs of the solver, retrieves the outputs, and then unlocks them

(11-13). Once the outputs are unlocked, the outbound solver site notifies the inbound solver

site that it is finished with the inputs, whose locks are tied to those of the outputs (14). The

inbound solver site instructs each of its mappings to unlock their data (15), and then

instructs the solver to clear its inputs (16).

3.8.7.3 Destroying the network

Once all desired processing is complete, it is a simple matter to destroy the network. The

client simply walks through the list of solvers, inbound and outbound solver sites, and

mappings, and releases each of them. With the inbound solver sites, the client should call

SetSolverSiteOut(NULL), while with the outbound solver sites, the client should call

SetSolverSiteln(NULL), and for both the client should call SetSolver(NULL), or DestroySolver

on the inbound solver site if it supports IRSolverSitelnSolverFactory. Because all of the

components in the network are COM objects, they are responsible for terminating their own

lifetimes, so it is not necessary to actually delete or free any of the components.

3.8.8 How this fulfills the networking requirements

This section examines how the framework's representation and specification of the solution

network attempts to satisfy the networking requirements identified in the second chapter.

3.8.8.1 Satisfying data integrity

Fortunately, by restricting the framework to non-real time activities, both in solution

architecture and execution periodicity, the data integrity problem is not as great as it might

have been. Nonetheless, there are some issues that the framework has had to resolve.

In a basic directed acyclic graph architecture, the data integrity problem is resolved by

ensuring that no solver begins executing before all of its suppliers have finished. This is

handled in the framework through the relationship between mappings and inbound solver

sites. Before executing the solver, the inbound solver site waits for all of its contained

mappings to notify it that their data are ready. The outbound solver sites of suppliers, or data

sources themselves, notify mappings that data are ready only at the completion of solver

execution. Where data are maintained (data source, mapping, or solver) is irrelevant to data

integrity in these networks.

211

In a decision-based directed graph architecture, or in any architecture with relatively complex
components, such as custom aggregating mappings or specialized outbound solver sites,
ensuring data integrity is slightly more difficult. In global control scenarios, it will require
more intelligence at the client, naturally, to manage data integrity in the presence of cycles. In
local control scenarios, the most likely place for adding intelligence to the network is at the
mappings. It is the mappings that receive the data change and data availability notifications,
and it is the mappings that have control over where and how input data is stored or cloned.

For example, in a network with cyclic data flow, if for each mapping the data source
maintains the data, then after the first iteration, every solver in the cycle might be locked,
waiting for its customer to unlock it. This results in a deadlock situation, where each solver
waits indefinitely. If one of the mappings clones its input data, then the cycle is effectively
broken, as the act of cloning a data element enables the mapping to unlock its supplier, and
the cycle is unlocked all the way around. This requires an awareness and appreciation of this
cyclic complication on the part of the user or client. Either the user or developer must make
sure to manually specify how to break the cycle, or the client must have appropriate analysis
tools to find and break cycles.

Another example is when one solver iterates many more times, and more quickly, than its
customer. The mapping receives data availability notifications from its speedy supplier while
its solver is slowly working on the previous input. What should be the mapping's reaction?
There are a number of possibilities. The mapping could aggregate the many inputs into a
single one, via summation or average, for instance. It could queue each notification for
future processing as individual inputs to the solver. Or, it could simply disregard any
notifications received while its solver is busy. In this way, the mapping manages the
dependencies of the resource flow from supplier to customer when they are not precisely in
timing agreement. This begins to hint at the power of the mapping component as a manager
of resource flow dependencies. For more information on these dependencies, see Dellarocas
[20, 21].

3.8.8.2 Satisfying local/global control

The framework resolves the local/global control problem by supporting and encouraging
local control while not hindering global control. Notably, a client can exert complete, global
control on a network of solvers that are compliant with the specifications in the previous
sections, leveraging introspection, progress notifications, and life cycle control, while
completely ignoring any of the network specification. On the other hand, a client can create
a network using the inbound and outbound solver site and mapping components and
employ local control at each node, relieving it of most of the control responsibilities. The
client can even create a network of mixed global and local control, by essentially wrapping
the local control sub-networks.

212

3.8.8.3 Fulfilling the distribution requirement

As with the requirement that solvers be executable applications, the problem of distribution

is largely solved by COM. One of the design philosophies of COM is that clients do not

know anything about the servers they use except the definition of the interfaces through

which they use those servers. Almost universally, the behavior of the server from the

perspective of the client is independent of whether the server is in the same thread or

process (or apartment in COM terminology) or on another machine. This is accomplished in

COM through the use of proxy-stub objects that know how to marshal the parameters of

interface methods across the process or machine boundaries; these proxy-stub objects are

managed by COM and are transparent to the client. Hence, when a client interacts with an

object in its same memory space'", it calls methods directly on the server implementation.

When the client is on a different machine, it calls methods on a proxy object that transfers

the call to the other machine where the server resides. The process of transferring the

method calls is called marshaling.

When developers define custom interfaces that they expect might be marshaled, they will

develop the proxy-stub objects and ship those with the implementation of the interfaces

themselves. In the framework, these proxy-stub objects are part of the core services,
included with any implementation of the framework. Users of the framework do not need to

worry about the presence of these proxy-stub objects for the standard framework interfaces.

Nevertheless, there might be instances where areas of the framework are concerned with

distribution of components beyond the transparency provided by COM. In particular, many

solution networks have the special property of needing to transport large data sets. In

traditional programs, when two objects in the same memory space must share data, they

usually share the data via a pointer to the data, which requires four bytes"9. The data exist at a

single location in the memory space, and both objects have access to it. In distributed

systems, there is no guarantee that two objects exist in the same memory space, and when

they do not but must share data, the data have to be copied from one memory space to the

other. With the standard proxy-stub objects (which is standard marshaling), whenever

marshaling occurs, data are copied".

Developers can take control of marshaling by using custom marshaling on their objects by

implementing the IMarshal interface. Objects that implement this interface are responsible

for marshaling their own data to other memory spaces or machines. This gives the developer

complete freedom on how data are transported.

18 With the appropriate assumption that the client is in the same apartment as the server.

19 Four bytes on typical 32-bit operating systems; results might vary.

20 The COM infrastructure does a good job of optimizing marshaling by caching object references at

the various client and server computers, so data are not necessarily always copied when an interface

pointer is passed across apartment boundaries.

213

The result is that better data element objects could be designed for particular needs or

instances of data flow. Knowing the use, source, and structure of a data element within a

solution network, a developer could design a custom data element object that implements all

of the data element interfaces as well as IMarshal. Because marshaling is transparent to
clients, the data element can plug directly into any standard solution network without
modifying other parts of the network.

3.8.8.4 Fulfilling the synchronization requirement

The synchronization requirement was fairly simple (see page 97): the framework should not
interfere with the synchronization of a solver, and it should support asynchronous
operations when solvers desire it. This requirement is easily solved by the specification of the
network protocols. Because all solvers are contained within solver sites, the solver sites have
complete control over whether the solver is run synchronously or asynchronously.
Furthermore, the solver sites inherently act asynchronously; that is, they wait for
notifications of input data availability from suppliers, then they initiate solver execution, and
then they notify customers of output data availability. The inbound solver site, which is
responsible for executing the solver, can work with either synchronous or asynchronous
solvers. With synchronous solvers, the solver site simply calls the synchronous method and
waits for its return. With asynchronous solvers, the solver site calls the asynchronous
method and waits for the completion notification. Either way, to objects outside the solver
site, the solver and its site behave the same. This alleviates any dependencies a client might
have had on the synchronization of the solvers. This is another benefit of wrapping solvers
within solver sites in the network.

3.9 CORE SERVICES

This section describes the functionality provided by the core services of the framework. As
described in section 2.5, page 101, the core services provide centralized, global capabilities,
such as the system-wide solver database, as well as recurring, common functionality, such as
various helper components. Section 2.5 identified the need for both a global solver database
and centralized support of dimension and type manipulation. The discussion of the solver
database follows, while the discussion of dimension and type manipulation is deferred until
section 5.2, page 272, because in its present form the framework does not address dimension
and type information.

Also included in the core services, categorized as "miscellany," are the numerous
components and functions that have been introduced throughout this chapter that act as
supporting routines for the various implementations of solvers and clients. Examples include
the various advise holder components and the generic SolverInfo implementation.

214

3.9.1 Solver database

As identified in section 2.5.1, page 103, there are two primary functional needs of a database

of available solvers. One need is registration, so that solvers can alert the operating system
when they are installed or removed from a computer. The other is enumeration, so that

clients can determine what solvers are available on a machine.

There are many possible levels of registration and enumeration. The solver database could

range from a simple, unordered, and unorganized list of solvers to a highly detailed,
structural or hierarchical tree of related solvers, models, solvers that can solve models or

their derivatives, and solvers that are substitutes for each other.

At its minimum, the framework provides an implementation of the former-a simple listing
of the solvers installed on a machine without further thought to what these solvers are or
how they might be used. Simple registration and unregistration of a solver is handled by the

interface I RSolverRegistration. Enumeration is managed by the interface

IRSolverEnumeration. Any component is free to manage a solver database of its own and

expose these interfaces. The framework provides a standard implementation, the
SolverRegistrar, that uses the Windows Registry and component categories to maintain the
database.

3.9.1.1 Interface IRSolverRegistration

Because of the simple nature of the minimal database, registration is correspondingly simple.
The method RegisterSolver takes as input the CLSID of a solver component and registers
the solver in the solver database. The method RegisterSolverWithlnfo takes as input the
CLSID of a solver component and the GUID of that solver's associated SolverInfo object,
and it registers the solver and its SolverInfo in the solver database. The method

UnregisterSolver takes as input the CLSID of a registered solver component and removes it
and its SolverInfo, if present, from the solver database.

3.9.1.2 Interface IRSolverEnumeration

Interface IRSolverEnumeration exposes the minimal enumeration functionality of the solver
database. It has two methods.

EnumSolvers. Returns a COM enumerator object that enumerates the CLSIDs of all

registered solvers. It returns an IEnumCLSID interface pointer. A client can use the CLSID to

lookup the names of solvers or to instantiate solvers using CoCreateinstance.

EnumSolversWithlnfo. Returns a COM enumerator object that enumerates pairs of CLSIDs

and GUIDs of all registered solvers and their SolverInfo objects. This method returns a

pointer to the custom interface IEnumRREGSOLVERINFO, which like IEnumCLSID is an

enumerator interface. It enumerates structures of type RREGSOLVERINFO, which contains

215

two members, the CLSID of a solver and the GUID of its SolverInfo. If a solver does not
have a registered SolverInfo, the GUID will be GUID_NULL.

3.9.1.3 The SolverRegistrar component

The SolverRegistrar component is an implementation of IRSolverRegistration and
IRSolverEnumeration provided by the core services of the framework. The component has
CLSID CLSID_RSolverRegistrar, and can be created using CoCreateinstance. To acquire
either of the interfaces it implements, the client calls QueryInterface.

The SolverRegistrar works by using a moderately recent innovation in COM, component
categories, which is a simple category association scheme. The SolverRegistrar defines a new
component category CATID (the same as a GUID), CATID_RSolver. When a client calls
IRSolverRegistration::RegisterSolver or IRSolverRegistration::RegisterSolverWithlnfo, the
SolverRegistrar uses the standard component category manager to register the solver as
implementing the category CATID_RSolver. Additionally, with IRSolverRegistration::Register-
SolverWithlnfo, the SolverRegistrar adds the SolverInfo key as described in section 3.6.1.4.d,
page 160. For more information on component categories, see Chappell [15] for an overview
and Box [9] for specifics.

3.9.2 Miscellany

Throughout the development of the framework, numerous helper components have been
added to the core services. These components serve to aid development of solvers, clients,
and data sources. In summary, they are:

AdviseHolder components. The AdviseHolder components are simple helpers that maintain
a list of advise connections for an object, and provide broadcast of notifications to all of the
advise connections with a single method call. The DataAdviseHolder, in section 3.4.3.3, page
135, helps data sources to notify clients of data changes. The SolverAdviseHolder, in section
3.7.1.1.b, page 170, helps solvers to notify clients of their solution progress and solution
completion. These AdviseHolders are modeled after the COM DataAdviseHolder (which
implements IDataAdviseHolder, without an "R").

Solverinfo components and functions. The generic SolverInfo implementation is provided by
the core services. This implementation uses type libraries to characterize solvers' structures
and descriptions, moving the customization of SolverInfo objects from code into source
files. The SolverInfo implementation is described in sections 3.6.1.4, page 151, and 3.6.2.3,
page 166. The functions that access and create SolverInfo objects are described in section
3.6.1.4.e, page 160.

Dispatch wrapper components. Dispatch wrapper components, mentioned briefly but not
yet explained, are simple implementations of the COM dispatching interface, IDispatch, for
specific components. Developers can use these wrappers to easily add dispatch support to

216

their objects with a minimum of overhead. The SolverDispatch wrapper, for instance,

provides dispatch support for all of the functionality of a solver. There are also wrappers for

inbound and outbound solver sites, mappings, data sources, data elements, and the various

advise notification interfaces (in the form of COM connection points).

Dispatch wrappers work by implementing the dispatch functions as simple delegators to the

various interfaces supported by an object. For instance, the SolverDispatch supports a

property "InputCount" that simply calls IRSolverlnputs::GetlnputCount and returns the

number of inputs.

Running solver table. Section 3.7.2.1, page 175, suggested simplifying the task of acquiring a

running solver by implementing a running solver table that mimics the COM running object table.

Actually, the running solver table would be a subset of the running object table. While not in

the current core services, such an object could easily be defined. Its interface would support

the registration and unregistration of running solvers, and a client could query for an

enumeration of the running solvers or acquire an interface pointer of any running solver.

3.10 CONCLUSION

This chapter has presented a framework for useful, operation research-oriented solvers that

can satisfy the requirements detailed in the second chapter. The framework is divided into

three broad areas. First, the framework defines protocols, interfaces, and library functions

useful for building and interacting with individual solvers. The features for individual solvers

include basic solver interaction through the primary solver interfaces, introspection, progress

updates, and life cycle control. Second, the framework defines protocols and interfaces for

networks of solvers. The network portion of the framework introduces a number of new

components, including solver sites and mappings. Finally, the framework specifies behavior

of the core services, a centralized library implementation of global routines usable by all

solvers and clients. To support solvers, the framework also provides a generic data element

specification.

While some of the requirements have not been directly addressed by the framework,
including dimension and typing support, notifications, and testing and validation, the

framework is extensible and amenable to these activities. The absence of specific interfaces

for these features should be viewed as an opportunity for future growth of the framework.

These particular requirements are also discussed in the final chapter, in section 5.2, page 272.

Furthermore, because of the interface-based programming discipline imposed by the

underlying choice of COM for the framework, any part of the framework could be reworked

in the future without substantially affecting other parts. Each part can evolve to resolve new

problems or better resolve the old ones, and existing solutions will still work within the

framework.

217

Intentionally, this page left blank.

218

CHAPTER FOUR

SOLVERS AND APPLICATIONS

This chapter describes a collection of solvers and applications to demonstrate the use,
effectiveness, and overhead of the framework. The goal of this chapter and the following

chapter is to answer these questions about the framework:

* Does the framework work as described?

* What is the cost of developing a solver that complies with the framework?

* What is the cost of using a solver that complies with the framework in a client

application?

* What are the benefits of developing and using a solver that complies with the

framework?

* What are the barriers to entry to using the framework? That is, what does a solver or

client application developer need to know in addition to the framework to develop for

it? Also, what can be done to mitigate those barriers?

The first part of this chapter presents three solver modules that have to varying degrees been

implemented both with and without the framework. The second part presents a number of

applications that use the three solvers from the first part as well as some additional solvers.

Each case demonstrates a different feature, characteristic, or benefit of the framework. The

following chapter describes the benefits of and the issues regarding the framework, as well as

future research areas.

219

4.1 SOLVERS

This section presents three solver modules in the framework. The goals are to establish the
level of difficulty in creating a framework solver, that is, to determine the overhead imposed
by the framework when creating a solver, and to show that this overhead is not an exacting
price to pay, especially in light of the benefits that can be gained. The RandVar module
contains several solvers that evaluate functions of random variables. The RNetOpt module
contains three solvers of network flow optimization algorithms. The RLPWrapper solver
wraps the CPLEX Callable Library, exposing the CPLEX linear programming function as a
solver within the framework. In the subsequent Applications section, which discusses several
applications around the framework, other solvers will be introduced as necessary to solve an
application's problems. Before discussing the solver modules, though, it is instructive to
examine the different techniques for creating a solver in the framework.

4.1.1 Packaging a solver

There are basically four ways, from an implementation perspective, to create a solver in the
framework. These range from hand-coding all of the necessary COM and framework
support in a low-level language such as C or C++ to implementing solvers in Visual Basic
and Java to using a (future) solver development environment that hides all of the COM and
framework details.

4.1.1.1 Raw packaging, C/C++

To hand-code a framework solver in C or C++, as all of the code in the thesis demonstrates,
requires knowing COM sufficiently well to develop COM servers. The objects in the thesis
were developed with a standard C++ library that is part of Microsoft's Visual C++ 5.0, the
Active Template Library 2.1 (ATL), which handles all of the annoying COM details such as
object creation, IUnknown implementation, etc.

This is the most complicated, but also the most flexible way, to build solvers. With complete
control over the implementation of the COM aspects, the solver can be imbued with the
broadest range of functionality. Additional interfaces that extend beyond the framework,
such as IPersistStream or the ActiveX interfaces, can easily' be added to the solver.
Nonetheless, the developer needs to remember all of the small details, such as managing
correctly the reference counts and life cycles of COM objects and implementing the various
framework interfaces. Much of the basic implementation of the solver interfaces are
scattered throughout this thesis in code samples.

1 Easily, that is, relative to the other packaging systems. Manually adding support for all of the
interfaces required for an ActiveX control is about equivalent to solving an LP by hand.

220

4.1.1.2 Framework C++ class library

It would be fairly simple to create a C++ class library that handles most of the common

tasks in creating solvers, such as dealing with the solver sites, advise holders, etc. This class

library would, essentially, wrap the COM language of the framework into a nicely packaged

C++ metaphor, with functions to override, implementation inheritance, and the like. This is

precisely the technique used by ATL, mentioned above, for saving developers days of effort

developing the COM infrastructure in their objects.

The downside of developing these class libraries is that they take a language-independent

standard-the framework and COM-and add value in a language-dependent way.

However, it more than pays for itself if sufficient numbers of solvers are developed using the

class library.

With this class library, the C++ developer would not have to worry at all about COM, but

would instead override pure virtual functions. The class library would take a call to

IRSolver::Solve and map that into a call to a virtual function like "OnSolve" that the

developer would then implement on the derived solver class. Similarly, the wrapper class

would expose a method like "SendNotification" that internally calls IRSolverAdviseHolder::

SendOnSolveNotify. Methods such as IRSolver::SolveAdvise would be hidden entirely from

the developer.

An addition to the raw class library would be enhancements to the development

environment for adding simple classes. Microsoft Visual C++ provides hooks for

application wizards that can create a shell of a solver. ATL utilizes this feature to create the

shell of a COM server, with basic implementations of the necessary server registration and

execution functions, as well as to create the shell of new objects, including basic interface

and class factory support.

4.1.1.3 Visual Basic/Java solver development

If part of the overall goal is to simplify the process of creating solvers, then it cannot be

expected that all solvers will be created in languages like C and C++. Requiring knowledge
of both C++ and COM is unacceptable for the wide potential audience of algorithm

researchers and developers. For them, it will become imperative that more attractive

environments like Visual Basic and Java support not just the application of solvers, but their

creation as well.

To that end, there are two issues that need to be resolved. First is the support for the

creation of COM objects of any kind. Visual Basic handles this with ease, because COM is

the native language of the underlying Visual Basic implementations; all Visual Basic class

modules are COM objects automatically. For Java, only Microsoft's implementation of the

Java Virtual Machine can create COM components, but even so, it also can easily create

COM objects.

221

The second issue is that most of the framework interfaces that an object in the framework
needs to implement are not automation-compatible. Visual Basic and Java can only use and
implement interfaces that are automation-compatible. The usability issue is circumvented by
having objects that wish to be used in automation environments exposing IDispatch as well
as the necessary framework interfaces. This is insufficient for implementation, however.

To enable implementation in Visual Basic and Java, as well as other automation-compatible
environments, it will be necessary to create a collection of wrapper objects, one for each type
of object in the framework-solver, data element, etc.-that would be implemented in the
automation-compatible environment. These objects form essentially a class library similar to
the one for C++ described in the previous section. Namely, one of these objects implements
the non-automation-compatible interfaces demanded by the framework, and then calls
automation-compatible methods on the object implemented in the automation-compatible
environment. Whether these objects work through containment, COM aggregation, or some
other idiom still remains to be determined. Most likely, a new automation interface will be
defined that contains all of the methods that the Visual Basic object will have to implement.
The wrapper object will call methods on this interface when handling the custom framework
interfaces.

The end result will be that a framework-compliant solver can be constructed in Visual Basic
or Java by implementing one or more automation-compatible interfaces, allowing the
developer to know only the Visual Basic or Java environments and the particular wrapper
specification, without being an expert in COM, C++, or the framework. With Visual Basic,
the goal is to make implementing a solver as easy as implementing an ActiveX control,
which is orders of magnitude easier in Visual Basic than in C++.

4.1.1.4 Solver development environment

As much as the framework and COM details could be hidden by a suitable Visual Basic and
Java environment, the developer still has to know Visual Basic or Java. While this is not quite
as stringent a requirement as knowing COM and C++, it might still be much to ask of
researchers who create, rather than implement, algorithms. Beyond the previous techniques,
it is inviting to imagine a future development environment that speaks the language of the
researcher. Some environments, like AMPL or MPL, come close for using solvers, but no
suitable commercial packages exist for creating them. A future environment might have the
capability to implement algorithms as framework solvers by following algorithm instructions
similar to what a researcher might publish. A statement like "for each item in a set" would be
implemented as enumeration over a set object.

A few existing environments have fairly strong algorithm creation capabilities today. Two in
particular are both popular and powerful. Matlab, with a focus on efficient matrix
manipulation, has a programming capability that enables the creation of subroutines and
functions. Mathematica, with a more analytical bent and a workbook metaphor, has a similar
programming language. The most recent versions of these applications can also tie into
mainstream applications like Microsoft Excel as well as databases. As solver implementation

222

environments, though, they have some problems. The most important is that a "solver"

created in one of these applications is constrained to that application. Hence, one cannot be

invoked from different applications. Another is that these applications have trouble using

components from other applications for which specific customization is not included. These

are problems typical of any modeling environment today.

If environments such as these include broader solver and application support, especially in

the form of this framework, or if existing solver creation tools elevate their modeling

capabilities to those of Matlab or Mathematica, then creating solvers of the future will be a

significantly simpler task.

4.1.2 RandVar module

From 1995 to 1997, researchers at MIT developed a number of applications that required

sampling from a normal distribution. One way to sample from a known continuous

distribution is to generate a sample from the uniform distribution between zero and one, and

then compute the inverse of the cumulative distribution function of the desired distribution

at the generated sample point. The inverse is the sampled value. Sampling from a normal

distribution thus requires the inverse normal CDF, which is not a closed formula. Numerous

techniques exist to calculate it. Most take one of two approaches. One is to search over the

cumulative distribution function, calculated by numerically integrating the probability density

function, which is a closed formula. This can yield "exact" results at the cost of more

computations. The other approach is to approximate the inverse CDF function by a high-

order polynomial. This is a quick calculation, but has some approximation error, whose

magnitude depends on the quality of the fit polynomial.

The applications were originally created in Pascal, but had to be converted to C++. The

researchers had a library of object code for the InverseNormalCDF function for the Pascal

application, but no such object code for the C++ application. In porting the Pascal version

to C++, they had to find a suitable implementation of the InverseNormalCDF function as a

replacement. The search for an adaptable source code implementation in C, eventually found

among the numerous libraries of NetLib, took about one day. Adapting the C code, with its

many separate source files, conflicting global namespace identifiers (the library had its own

sqrt and floor functions, for instance), and its numerous machine configurations, required

another day. In all, it took two days to implement a simple problem statement (calculate the

inverse normal cumulative distribution function). To reuse the new code in other

applications also turned out to be marginally complicated, because of the need to copy the

correct source files around, namespace issues, and the like.

After another two days of effort, the InverseNormalCDF, the NormalCDF, the

InverseNormalPDF, and the NormalPDF functions were all implemented within a single

solver. This solver is the normal random variable, which follows the specification for

random variables outlined in Appendix A.3.3, page 315. Now, calculating these parameters

for a normal random variable is a simple matter of creating a normal random variable object

223

and asking for its InverseNormalCDF. It takes only five minutes to add normal random

variable calculations to an application. Furthermore, because the normal random variable

solver supports sampling, there is minimal additional effor required to acquire samples
from a normal distribution, which was the goal all along. This normal random variable, part
of the RandVar module of random variable solvers, has been used in several applications
since then, including FlexCap, described in section 4.2.2, page 239, and SIPModel, described
in section 4.2.4, page 250.

Besides the normal distribution, the RandVar module contains solvers for exponential,
Bernoulli, geometric, Poisson, and uniform distributions.

4.1.2.1 Packaging effort

A single C++ base class implements the common framework-related code, and a derived
class for each distribution implements the distribution-specific calculations. The random
variable base class is 270 lines of code. Each derived distribution is about 250 additional
lines. This does not include the underlying calculations for each random variable, which
technically are not part of the framework packaging.

The base class is an implementation detail, but demonstrates nicely the power of
implementation inheritance as one COM implementation technique. By encapsulating the
framework-specific, distribution-independent code in a base class, changes to the
framework-specific code only need to be made in one place, which improves maintainability.
Furthermore, in this case, the savings (about 270 lines) grow linearly with each additional
distribution. This module is also an example of packaging related solvers into a single
executable.

4.1.3 RNetOpt module

The RNetOpt module is an executable containing three network optimization solvers that
demonstrates the effort required to convert an existing algorithm implementation into a
framework solver. A publicly available network optimization library, available via ftp (now
available via http at Goldberg [38]), provided C-based source code for various network
optimization algorithms. Each algorithm was embedded within a stand-alone executable
application. An algorithm was controlled by passing the problem in a moderately standard
text format via the console input and by receiving the outputs in an entirely non-standard
text format via the console output. Any particular algorithm file had primarily three parts:
the algorithm itself, data structure management and initialization, and standard input/output
and startup/shutdown code. The data structure initialization code was intricately mixed with
the I/O code, which is a clear transgression of the separation of orthogonal functionality
principle, described in section 1.4.3, page 27. If an end-user wanted to embed one of these

2 The minimal effort is in creating a uniform random generator and passing it to the normal random
variable sampling engine, which takes three lines of code.

224

algorithms into another application as a subroutine, it would require disentangling the data

structure code from the I/O code and developing a life cycle and interface for interacting
with the network code, because it operated in an entirely linear, flowchart-style fashion3 .

By wrapping one of these algorithms into a framework solver, all of these problems vanish.

It is then easy to replicate the original application, with its console input and output, using
the framework solver, but also it is substantially easier to use the solver in other applications.
Three of these algorithms, for the shortest path problem, maximum flow problem, and
minimum cost flow problem are packaged into a single executable, named RNetOpt.

4.1.3.1 Packaging effort

Each of the original implementations can be divided into a parsing step and a solution step.
The parsing step includes all of the input/output code and error checking as well as the basic
network data structure creation and pre-processing. The solution step contains the specific
algorithm. The original three algorithms have the line counts and file sizes (in parentheses)
shown in Table 4.1.

Algorithm Parsing code Algorithm code Total
Maximum flow 456 (15k) 550 (12k) 1006 (27k)
Min-cost flow 475 (15k) 1606 (36k) 2081 (51k)
Shortest path 480 (15k) 224 (5k) 704 (20k)

Table 4.1: Network flow algorithm implementation sizes-original solvers

The solvers, as repackaged, have two parts. The first is the COM/framework layer, which is
a simple transport mechanism to the underlying algorithm and data structures. The second
part is the modeling, structure, and algorithm code. In going from the existing algorithms to
the solvers, code that had been in the parsing section moves to the algorithm section, to
reflect its true purpose. The results for the framework solvers are shown in Table 4.2.

Solver Framework code Algorithm code Total
Maximum flow 393 (9k) 704 (14k) 1097 (23k)
Min-cost flow 356 (8k) 1990 (36k) 2346 (44k)
Shortest path 366 (8k) 534 (14k) 900 (22k)

Table 4.2: Network flow algorithm implementation sizes-framework solvers

Discussion

In all three cases, the algorithm code size grew in line count and file size; this is because
of the transferal of what is truly modeling code from the original parsing routines into

the algorithm code proper.

3 Another option, of course, is to use the algorithm as designed, as a stand-alone executable, and pass
data to and receive data from the application by using pipes.

225

* In the case of the maximum flow and min-cost flow algorithms, the repackaged solvers
have more lines but fewer total characters. Fewer characters represents a savings in re-
packaging; more lines is due to differences in coding styles (such as placement of
brackets).

* In the case of the shortest-path solver, the new algorithm code is substantially larger.
This demonstrates a measure of the growth of a C application upon re-development into
C++. Most of the algorithm code in the shortest path solver is divided between the
mechanics of the shortest-path class itself', and what had been the parsing engine before.
With the addition of the framework code, the resulting solver was larger than the original
implementation. In fact, each of the solvers suffers from some of this natural C++
expansion, so the gain of moving from the parsing engine to the COM framework is
underestimated in these tables.

4.1.4 RLPWrapper solver

This section discusses wrapping an LP optimization engine by a solver component. Wrapping
in this context is the process of adding a simple shell that conforms to the framework
around an existing solver that does not conform to the framework, without modifying the
existing solver itself. This enables an existing solver to be used with little effort by clients and
other solvers within the framework. The result in this case is a new solver, RLPWrapper,
that wraps the optimization engine. This particular wrapper exposes only the basic
optimization functionality. For simplicity it ignores the file management capabilities, output
of bases, and performance characteristics of the optimization engine.

The solver is based loosely on the functionality of the CPLEX Callable Library version 4
[17]. The solver has two sets, the set of variables and the set of constraints. It specifies six
inputs: the objective function, the right-hand side vector, the constraint matrix, a variable
lower-bound vector, a variable upper-bound vector, and a constraint sense vector. It
specifies five outputs: the final objective value (a scalar), the primal variables, the dual
variables, the slack values, and the reduced costs. These data elements are summarized in
Table 4.3 and Table 4.4.

The CPLEX Callable Library offers a staggering number of parameters. A select few have
been included here, to demonstrate how parameters might be defined.

4.1.4.1 Packaging effort

The RLPWrapper solver requires about 1000 lines of C++ code. The details of completely
wrapping the basic CPLEX Callable Library functionality are in Appendix A.1, page 289.

4 Including some long descriptive names, which the original implementation noticeably lacked.

226

Input

ObjectiveFunction

RightHandSide

ConstraintMatrix

LowerBound

UpperBound

ConstraintSense

Number of
dimensions

1

1

2

1

1

1

Sets defining
dimensions

Variables

Constraints

Constraints,
Variables

Variables

Variables

Constraints

Table 4.3: Inputs to the CPLEX wrapper solver

Number of Sets defining Data type Notes
dimensions dimensions

ObjectiveValue 0 (none) double

PrimalVariables 1 Variables double

DualVariables 1 Constraints double

SlackValues 1 Constraints double

ReducedCosts 1 Variables double

Table 4.4: Outputs from the CPLEX wrapper solver

4.1.4.2 Results

This solver serves as an example of how to package an existing solver into the framework

without modifying the original solver. Therefore, the additional code required for the

wrapping bestows no savings on the development of the remainder of the solver, unlike in

the first two cases. Wrapping a solver of this nature must be undertaken for the benefits that

the clients will acquire. In this case, clients will have the ability to use a powerful linear

programming optimization engine from any environment that complies with the framework,
including Visual Basic, Microsoft's Java Virtual Machine, Excel, Word, etc. The wrapper

serves as an enabling device, expanding the market opportunities for the solver and

enhancing the capabilities of the clients that can use it.

227

NotesData type

double

double

double

double

double

string

Optional

Optional

4.1.5 Using a solver

Without the use of a modeling environment, there are basically two ways to use solvers in
the framework. The first is to develop applications using the framework interfaces described
in the third chapter, in C++ or another language suitable for calling methods on those
interfaces. The second, if supported by a solver, is to use a scripting macro language like the
macro language Visual Basic for Applications (VBA), found in Microsoft Office and other
applications.

The first technique provides direct access to the actual interfaces that specify a solver's
functionality. Developing a solution using this technique is akin to writing a C++
application; in fact, with the current specification and core services, C++ is one of the few
ways that the first technique is even possible. The second technique provides access to a
solver through a common scripting method known as late-bound dispatching, where the
scripting engine and host application, such as Microsoft Excel, query the solver for its
capabilities, method names, and signatures at run-time instead of design-time.

VBA provides an incredibly powerful programming capability, as it enables the complete
automation of almost any task in its host application. VBA is available, through licensing
from Microsoft, in a variety of applications today, including Microsoft Office, Autodesk
AutoCAD, and Visio Corp. Visio. If a solver supports the COM mechanisms that enable
this macro language to use it, then using the solver in an environment that contains VBA
becomes a simple task of writing only a very few lines of VBA code. For instance, the code
to use the MMQueue solver, described in section 4.2.3.5.a, page 247, is only ten lines (see
Appendix A.4.2, page 323, for the code). The amount of code required will typically be some
constant amount to create, execute, and destroy the solver object plus some linear multiple
of the number of inputs and outputs.

Developers of solvers, knowing that environments like Excel might be popular platforms for
their solvers, could choose to implement a custom Excel Add-in that hides or wraps the
VBA code to execute the solver. Using the solver then becomes as easy as using any other
Excel function. Eventually, using any solver could become as simple as using the statistical
functions in Excel that provide a simple dialog box for parameterization and then generate a
worksheet full of output data.

The first technique, using the raw interfaces, is the technique proscribed by the solver
interfaces in section 3.5, page 137. This is the only technique that is guaranteed to work for
all solver components. The client application uses the solver by setting inputs using the
interface IRSolverlnputs, executing the solver using IRSolver or IRSolverAsynchSolve, and
retrieving the outputs using IRSolverOutputs.

Nonetheless, the flexibility of the interface-based nature of COM specifications enables any
particular solver to support multiple methods of use. There are two ways for a solver to do
this. One is through new custom interfaces. For example, a solver might define a new solver
interface that has more advanced execution features than are available with IRSolver. The

228

new interface could be named IRSolver2. Or, a solver for a particular problem might define

an interface with input, output, and control specific to that problem. For instance, a bin-

packing solver could support an interface that allows for direct piece placement or bin

retrieval without using the framework input and output interfaces. If enough solvers support
the new custom interface, the interface becomes part of the "standard."

The second way is through the standard COM interface IDispatch. This interface is the very
mechanism that enables the second technique described above, that allows the macro

languages to use a solver. IDispatch provides methods that allow a client to access the type
information of an interface, which provides the details of the properties and methods of an

interface in much the same way as the SolverInfo interfaces provide the number and

characteristics of inputs and outputs of a solver. With this type information, the client can

determine the number and order of parameters to a function and dynamically construct the

correct protocol for executing the function on the interface. The client then calls

IDispatch::Invoke to execute the function; Invoke is the dispatching mechanism that gives the
interface its name. Macro languages work by exploiting the type information an interface

provides and the ability of an object to unpack a dynamically-created invocation request at
run-time. For the user, the result is simple text-based coding with seemingly instantaneous
execution.

4.2 APPLICATIONS

This section presents several applications that have been or could be developed with the
framework. Some of these cases demonstrate how much effort is required to include support
for the framework, and in particular, for using solvers built for the framework, versus the
effort required to include support for similar functionality without the framework. Other
cases show the versatility of solvers created for the framework-that solvers can easily be
used across separate applications and programming languages.

4.2.1 Monsanto

The first case study is an analysis of a project undertaken in 1995 by members of the MIT
Integrated Supply Chain Management (ISCM) consortium. This project examined the yearly
planning process for Monsanto's domestic Crop Protection products production and
distribution for a single plant. See Graves et al. [42], Gutierrez [44], and Ruark [91] for more
information on this project. The project resulted in a delivered software suite that optimized
a linear program. This case examines how the project could be implemented within the
context of the framework. As development progresses, several components that have

general use beyond the Monsanto project are proposed. These components, together with
the core services of the framework, result in a significant decrease in the size and complexity
of the client code--code that is specific to the Monsanto project.

229

4.2.1.1 Project background and original implementation

There were several primary goals for this project. Chiefly among them were to quantitatively
validate or challenge current production, distribution, and marketing policies, to understand
the best positioning of inventory across the supply chain, and to ascertain the impact of
structural changes to the supply chain. The model developed by the team to meet this goal
incorporated multiple products, multiple time periods, uncertain demand, and multiple
shared production and storage facilities. The model was formulated as a linear program with
ten sets of variables and ten sets of constraints. The decision variables include production
and packaging schedules for various product and product-package combinations over time,
production levels at the various production and packaging resources, inventory levels of the
many pieces that flow through the system between production and packaging resources and
customers, and satisfied demand and lost sales for each packaged product over time. The
constraints include the usual production capacity and inventory flow balance constraints as
well as beginning and minimum ending inventory level and demand balance constraints.
System costs comprise holding, distribution, production, and lost sales costs. For details of
the LP, see Gutierrez [44] or Ruark [91].

In the fall of 1995, a team of MIT developers delivered a software package that optimized
the model using the commercial LP optimization engine LINDO. Development time was
split between creating the model generation code to interface with LINDO and creating the
data generation and output generation code to interface with quantitative analysts. The
model generation code was implemented as a custom executable application written in
Pascal for the Macintosh. It has 4900 lines of Pascal code and required about one person-
month's effort. The user interface code was implemented as a series of Microsoft Excel
VBA macros, hosted in Excel 95. These macros translate between the worksheets in which
the quantitative analysts enter input data and analyze output data and the text files required
by the custom application. The macros required an additional two weeks of effort.

In 1996, Monsanto expanded the scope of the project and contracted an outside
development firm to translate the software into AMPL calling CPLEX, with Microsoft
Access as the user interface component. The new solutions presented for this application are
comparable to the contracted solution.

4.2.1.2 Needed components

The Monsanto case requires three primary components. These are a linear program
optimization engine for solving the model, a database access component for loading and
storing the data and results, and a model generation component, for converting the various
input data into the linear program formulation and generating the Monsanto model outputs
from the linear program outputs.

LP optimization. The original implementation used LINDO, which provides a FORTRAN-
based API to the LINDO run-time. A similar package from CPLEX, the CPLEX Callable
Library, exposes a C-based API to the CPLEX run-time. The two solutions presented here

230

use the RLPWrapper solver that wraps the CPLEX Callable Library into the framework,
described in section 4.1.4, page 226.

Database access. The original implementation had a set of custom functions for reading to
and writing from comma-separated values (CSV) text files. The two solutions here develop
two solver components, RDBLoad and RDBStore, for reading to and writing from OLE
DB-compliant data sources.

Model building. Model building in this case is the process of generating the input matrices
and interpreting the output vectors for the linear program. This involves translating the
many different input matrices into the appropriate cost vector, constraint matrix, and right-
hand side vector. It also includes translating the outputs back into meaningful vectors. The
original implementation had extensive, hard-coded routines that generated the various rows
and columns of the matrices. The two solutions presented here describe two solver
components, the Monsanto solver and the RSML solver, that encapsulate the model building
process.

4.2.1.3 Initial solution

The original implementation of the Monsanto software has three main phases. In the first
phase, the user enters the various input values into sheets in a Microsoft Excel workbook.
When ready to run the optimization, the user executes an Excel macro that saves all of the
input data into a collection of temporary files that are used by the second phase. In the
second phase, the user runs a custom application that reads the temporary input files, creates
the corresponding linear program, drives the optimization engine, retrieves the outputs, and
creates a collection of temporary output files. In the final phase, the user runs another Excel
macro that opens the temporary output files and creates a new Excel workbook that
contains all of the model outputs, some cost reports, and some utilization graphs.

In relation to the framework, the interesting activities of the original implementation are in
the custom application. Namely, how the many input files are turned into a linear program,
how the linear program is optimized, and how the linear program outputs are transformed
into output files. The Excel macros, relatively simple by comparison, encapsulated much of
the user-interface side of the client and can reasonably be expected to exist in any
implementation that uses Excel as a database.

The custom application has four pnmarv packages, as shown in the package diagram of
Figure 4.1. The database code package contains the implementation for reading and writing
matrices from or to the specified input or output files. The matrix code package manages the
memory representation of the inputs and outputs. Constraint generation is responsible for
creating the rows of the constraint matrix and interpreting the dual values and shadow
prices, while variable generation is responsible for managing the columns of the constraint
matrix and managing the variable list. The application, as originally implemented, uses the
LINDO optimization library.

231

Client application I

Database Constraint
code generation

LINDO

Figure 4.1: Package diagram for original Monsanto solution

4.2.1.4 Wrapping the optimization and the model building

The first change to the initial solution, from the perspective of the client, is to move the
knowledge of the Monsanto LP model into its own solver. This involves two steps: first,
creating a solver that wraps the LP optimization engine, and second, creating a solver that
wraps the LP model itself. The RLPWrapper solver, discussed in section 4.1.4, page 226,
serves as the optimization engine; this takes the place of LINDO in the original solution.

A new solver, the Monsanto solver, encapsulates the model building, the constraint and
variable generation, of the Monsanto LP model. Thus, the client no longer has to know the
LP model itself, just the inputs and outputs of the model. The Monsanto LP model is
moderately complex. It has ten sets of variables, half of which have non-trivial bounds, and
ten sets of constraints. The constraint matrix, right-hand side, objective function, and
variable bounds are derived from thirty-one different matrices. The Monsanto solver must
transform these thirty-one matrices into the six inputs required by the RLPWrapper solver.
Upon completion of RLPWrapper's execution, the Monsanto solver must transform the
primal variables, dual variables, reduced costs, and slack values into the ten variable sets'
primal values and reduced costs and the ten constraint sets' shadow prices and slack values,
totaling forty outputs. Appendix A.2, page 308, shows the SolverInfo file that specifies this
solver.

4.2.1.5 First new solution

With the RLPWrapper and Monsanto solvers, a first solution for the Monsanto problem can
be developed. The client can be greatly simplified over the original solution; it must only
generate the thirty-one data elements that are inputs to the Monsanto model. These vectors
and matrices can be read directly from the database. Generating these thirty-one data
elements is significantly easier than generating the six data elements that go into the LP

232

Variable
generation

engine itself, as required in the original implementation. The client is still responsible for the

database interaction, as shown in the package diagram for this solution in Figure 4.2.

Common
{global)

Data elements

Figure 4.2: Package diagram for Monsanto solution with a special model solver

One of the primary benefits of this solution over the previous is that now the Monsanto
model knowledge is independent of the client. Any number of clients can solve the model
without having to embed the model knowledge, in the form of the variables and constraints,
in each client. One client could be a GUI-based decision support tool that allows many

interactive what-if scenarios, while another could be a backroom, command-line shell that

drives the model for production needs'.

Each client still is responsible for database access and data element generation. A further

improvement will be to abstract the database interactions into their own solvers, which is

explained next.

4.2.1.5.a Cost of using RLPWrapper and Monsanto solvers

Assuming that the data elements that serve as input to the Monsanto solver are already
created, as discussed in the next section, using the solvers requires fewer than fifty lines of
code. The code simply creates the solvers, iterates through the input data elements, assigning
each one to an input on the Monsanto solver, executes the solver, and then retrieves the

outputs. The creation of inputs and interpretation of outputs is handled by the database
code.

5 The Monsanto model does not quite have the execution periodicity to warrant such a production-
environment implementation, so this is just an example.

233

4.2.1.6 Wrapping database access: RDBElements module

To build the input matrices in the original solution, the original application specifies as input
two types of files. One type is a dictionay file, which specifies the members of one of the sets
(such as Technical), one set member per line of the file. The other type is a data file, which
contains the values for one of the matrices. The data file is a comma-separated value (CSV)
text file, where each line is a non-zero value in the matrix. The first few columns (the
number of columns depends on the file) specify the dimension indices for the non-zero, and
the last column specifies the actual value.

These files are easily imported into a database that has a table for each of the original input
files. In the previous solutions, the client is responsible for querying this database and
building the matrices from the rowset format of the table. An obvious enhancement to the
solution is to develop a new component that can generate the data element from the
database, given enough parameters to access the specific table that references the input data.
Similarly, another useful component would be one that can convert a data element into
rowset form and append it to a table in a database.

These components, named RDBLoad and RDBStore, respectively, are designed as solvers
themselves. Therefore, they can be embedded in a solution network and wrapped by solver
sites, and they can respond to and generate the proper notifications. The RDBLoad takes no
inputs but many parameters. These parameters specify the database, the SQL query string,
and the meanings of the columns in the query string that define the dimensions and the data
elements. Those parts of the SIDL file look like this:

// Excerpts from RDBLoadlnfo.idl SIDL specification
[uuid(2E578551-A14D-11 D1-9170-00207810C741)]
interface Inputs

[uuid(2E578553-A14D-1 1 D1-9170-00207810C741),
custom(GUI D_RSOLVERIMPLEM ENTEDINTERFACE, "True")]

dispinterface RDBLoadParameters

properties:
[id(1), helpstring("The name of the database.")]

BSTR DatabaseName;
[id(2), helpstring("The user name for access to the database.")]

BSTR UserName;
[id(3), helpstring("The password for access to the database.")]

BSTR Password;
[id(4), helpstring("The command string to load the element from the database (SQL).")]

BSTR Command;

234

[id(5), helpstring("An ordered array of dimensions used to load the element (does not create

ordinals for dimensions), or an ordered array of dimension names used to load the

element (creates ordinals for dimensions).")]
VARIANT Dimensions;

[id(6), helpstring("An ordered array of column names used the generate per-item
properties.")]
VARIANT ItemPropertyNames;

[id(7), helpstring("An ordered array of column names used the generate the elements.")]
VARIANT ElementNames;

methods:

The RDBLoad solver partitions the column space of the table schema into four sets:

dimensional columns, data columns, property columns, and unused columns. The first three

columns are determined by the parameters Dimensions, ElementNames, and

ItemPropertyNames, respectively. The dimensional columns specify the dimensions of the

output data element. The client can specify a set of existing dimensions to use to create the

data element, in which case the dimensional columns in the table are selected from the

names of the existing dimensions, and the size of each dimension in the data element is the

size of the existing dimension, regardless of whether every element in the dimension's set is

found in the table. Or, the client can specify a set of column names to use to create the data

element's dimensions, in which case each dimension is created from an enumeration of the
distinct values in that dimension's column in the table.

Either way, each row in the table represents a potential non-zero value for each of the

specified data elements. For a given row, the values of the dimensional columns provide the

indices for the data element's value. The ElementNames and ItemPropertyNames are used to

fill the various data element and data element properties.

The RDBLoad solver has a simple Solve implementation. It first opens the specified
database and executes the given query, which returns the query rowset. It then creates the

dimensions, if only dimensional column names were set in the Dimensions parameter, by

iterating over the rowset and determining all of the distinct values in each of the dimensional
columns. After the dimension objects are created (or just accessed from the parameter if that

was the case), it creates a matrix large enough to hold the data6 for each data element and

data element property. Then it iterates over each row, determining where to store each non-

zero value and storing the values for each data element and each data element property.

Upon completion, it sends the OnSolveComplete notification and returns to the caller.

The RDBStore solver works in much the same manner, except that it outputs a table based

on a data element, its dimensions, and its data element properties.

6 This could be a full matrix or a sparse matrix, depending on the desired characteristics of the
RDBLoad solver itself.

235

4.2.1.6.a Baseline effort

The baseline effort for creating solvers of this complexity is quite large, but mainly it is
database-specific implementation details to read rowsets, manage queries, enumerate unique
values, and the like. The solvers described here are more versatile than the simple CSV-based
database system of the original solution, so while more effort is required to build the
database activity of these solvers, that is not due to the framework.

4.2.1.6.b Packaging effort

Packaging these solvers is a simple task, because they were designed and created from the
beginning with the goal of making them solvers. The framework-specific code for each is
around the minimal packaging amount for any solver with parameters, about 500 lines.

4.2.1.7 Wrapping the model: RSML solver

The Monsanto solver component discussed in the previous section contains much of the
code that was in the original implementation's constraint and variable generation packages.
This code simply builds the columns of the various input matrices by calculating the offset
of each variable based on the thirty-one input matrices. It then builds all of the constraints of
the matrix, remembering where each of the ten constraint sets is located within the single
constraint matrix. All of this bookkeeping and iteration over so many dimensions and data
elements bulks up the code. So rather than hard-code the variable and constraint logic, an
improvement is to store the model knowledge in a declarative form and then develop the
solver to work from that model description to dynamically generate the variables and
constraints. This is exactly the purpose of many modeling languages, and the Structured
Modeling Language is a good choice to use as an example.

This section discusses a pair of solver components that wrap a generic LP solver interface,
with its six inputs and four outputs, with a dynamic modeling interface that is shaped by a
model description in SML. One of the components takes an SML text as a parameter and
dynamically enables the inputs required for the described model. The client sets these inputs,
and the component "solves" by mapping these inputs into the six inputs required for the LP
solver inputs. This is the SMLInput component. It can be viewed as the matrix generation
module in many existing solution networks. These matrix generation modules typically
combine many different inputs, quenes, and matrices into a single set of LP inputs,
represented in a standard format such as an MPS file. The SMLInput component is similar,
except it uses standardized elements within the framework and outputs a set of data
elements rather than an MPS file. It would be a simple step to then store these data elements
into an MPS file if that is desired.

The other component, SMLOutput, takes as its parameters the same parameters as the
SMLInput component and as its inputs the outputs from the LP solver component, and
from the LP solver outputs it dynamically generates the output data elements as described by
the SML text. This is the post-processing step that recovers all of the variables and

236

constraints from the massive, homogenous LP matrices. The ability to automatically process
the LP outputs relieves the client and other components within the solution network from
the burden of having to know precisely where in the LP matrices to find the variables and
constraints of interest.

It would also be possible to implement the SMLInput and SMLOutput components as a
single solver site (inbound and outbound together). This would ensure that the input and
output sides are always wired together correctly.

Implementing the SML parser and modeling generation code might take several thousands
lines; these are activities independent of the framework.

4.2.1.7.a Packaging effort

Packaging the SML solver is comparable to packaging the database solvers, on the order of
several hundred lines of raw framework-related code.

4.2.1.8 Second new solution

The final solution examined here uses the LP wrapper component, the database solvers, and
the SMLInput and SMLOutput solvers to solve the Monsanto problem. The SML solvers
take the place of the custom Monsanto Solver from the first new solution, which once again
reduces dramatically the coding requirements for this problem. The package diagram for this
solution is shown in Figure 4.3.

Common
{global}

Data element:
CPLEX

Figure 4.3: Package diagram of Monsanto solution with entire component-based solution

Now, the LP modeling knowledge is stored in the SML description of the Monsanto LP.
Before, the modeling knowledge was hard-coded into the Monsanto Solver component,
which would make modifying the Monsanto LP a laborious process involving a reiteration of

237

I I

the compile-link-debug cycle. The ultimate end-users, the Monsanto quantitative analysts
would have had to rely on the MIT developers to make even the slightest modification to
the LP, via source code changes. Now, the quantitative analysts could change the LP simply
by changing the text file that contains the SML description of the Monsanto LP, and
appropriately re-wiring the data element inputs and outputs as necessary.

4.2.1.8.a Cost of using RDBElements and RSML modules

Using the database solver simplifies the database and matrix code in the client considerably.
The client no longer needs to understand the input format, manage file operations, or deal
with memory allocation for the input and output elements. Now, the client simply creates
the thirty-one RDBLoad solvers, configuring each one with the proper query string and
dimensions. The dimensions are created as independent objects, loaded from dictionary
tables in the database. This insures that each data element is loaded with the proper
dimension and set indices. Each solver is executed in turn to generate the data element that
serves as an input to the SMLInput solver.

Using the SML solvers is a little more complicated than using the Monsanto solver itself.
The client creates the solvers, sets the SML string to specify the Monsanto model, loops
through the thirty-one inputs and assigns them, and then executes the SMLInput solver. The
outputs of this solver are assigned to the inputs of the RLPWrapper solver, which is
executed, and its outputs are passed into the SMLOutput solver, which then outputs the
decision variables and constraint information.

4.2.1.9 Results

Table 4.5 shows the line count of the three proposed solutions of the Monsanto application.
The rightmost column indicates the solvers used in each application. Matrix code includes
routines for allocating and managing matrices. Database code includes the file operations,
input parsing and output printing, and acquisition of the input values themselves. LP code
includes the matrix generation in the original solution and the code to drive the solvers in all
solutions. Report code includes the generation of special cost reports that are outputs of the
application but not outputs of the modelper se. Utility code includes various string, set, and
file routines that are used by multiple components. Total code is the sum of all the parts.

Solution Matrix Database LP Report Utility Total Solvers
Original 550 675 2450 500 750 4925 LINDO

Solution 1 550 675 50 500 50 1825 RLPWrapper,
Monsanto

Solution 2 0 350 75 500 50 975 RLPWrapper,
RDB, RSML

Table 4.5: Summary of Monsanto implementation techniques' code sizes

238

Discussion

This example demonstrates the significant client code size reduction that is possible if useful
framework solvers are available. In particular, the supporting routines, such as the Matrix
and Utility code, are highly reducible because their functionality is embedded within the

appropriate solvers. The client no longer needs to specifically know how to read and write
files, how to parse input structures, or how to read from databases. Moreover, the client
does not need to be able to interact directly with any particular optimization engine in the
proposed framework solutions.

4.2.2 FlexCap

Based on a paper by Jordan and Graves [52], FlexCap is an application that simulates a

single-echelon production system to examine the impact of manufacturing process flexibility.
This moderately simple model uses a network min-cost flow optimization to select
production levels of multiple parts at multiple, capacitated production facilities based upon
random demands at multiple demand points. Facilities have flexibility in that they can
produce different products, and each facility can serve a set number of demand points. The
goal is to calculate the expected shortfall in attempting to meet demand, as well as the
utilization of each facility.

FlexCap has been in development at MIT, through three version, since 1995. The first
incarnation was built for Macintosh systems using a custom framework developed at MIT

(see McKay et al. [66]). The second and third versions were built with Microsoft Visual
Basic; the third version improved upon the first two by adding extra modeling capabilities,
such as non-deterministic production capacities and the ability to minimize cost or lost sales.
A screenshot of the most recent version is displayed in Figure 4.4.

4.2.2.1 Needed components

FlexCap requires two interesting operations research components. One is a component to
sample from a normal distribution. The second is to solve a minimum cost flow network
optimization problem.

Normal sampling. The demands, and in the third version, the production capacities, are
assumed to be independent and normally distributed. Because the application repetitively
simulates demand cycles, it is necessary to sample from the normal distribution. A typical
way to do this is to sample from the umform distribution and then calculate the inverse of
the normal cumulative distribution function of the random sample, which yields a sample
from the normal distribution. So, FlexCap needs a way to either (a) sample from a uniform
distribution and compute the inverse cumulative distribution function of the normal
distribution, or (b) sample directly from the normal distribution.

239

Figure 4.4: Screenshot of FlexCap

In the original solution, the underlying framework provided both a uniform sampling and an
inverse CDF computation function. In the later versions, these routines had to be
implemented directly, so they were packaged into the RandVar module, described in section
4.1.2, page 223.

Network optimization. The basic FlexCap model can be solved with a maximum flow
network optimization algorithm. The first version used a custom implementation of a
maximum flow algorithm, linked in as object code directly into the final executable. The
second version used the maximum-flow code from the RNetOpt module, described in
section 4.1.3, page 224. With the new capability in the third version of optimizing either lost
sales or total cost, the problem was formulated as a minimum-cost flow network, so this
version used the min-cost flow solver in the RNetOpt library.

240

4.2.2.2 Initial solution-OMAC

The initial solution was implemented in C for MacOS using OMAC, a custom framework
built at MIT from 1993 to 1994 by McKay et al. [66]. OMAC is a Pascal and C framework
that provides a skeleton environment for Macintosh applications and a set of many callbacks
that allow for custom implementation of various event handlers, such as menu items and
mouse actions. Furthermore, it provides a suitable selection of numerical algorithms, such as
common statistical functions, including the inverse normal cumulative distribution function
required by FlexCap.

OMAC generates entirely self-contained executables, so the solver is always part of the user-
interface. It becomes difficult to separate the algorithm from its presentation-a solver
cannot use the benefits of the OMAC libraries without being in an OMAC application. In

fact, this difficulty helped spark the ideas of the framework presented in this thesis.

4.2.2.3 Framework solution, in Visual Basic

The two versions created in Visual Basic are roughly equivalent; the latest version, described

here, adds some user interface features to account for the new optimization options, and the
simulation uses the min-cost flow solver rather than the max-flow solver.

Visual Basic is a sophisticated integrated development environment (IDE). Much of the final
code in the FlexCap application was added by the IDE. In particular, all of the property lets

and gets and the collection capabilities in the class modules are handled automatically by

Visual Basic'. Furthermore, class modules in Visual Basic are used by other components in

the Visual Basic application and exposed to other applications beyond Visual Basic as COM

objects. The FlexCap model was created as a set of class modules in Visual Basic, so the new

version of the FlexCap application is usable from applications like Excel using VBA.

The FlexCap application is divided more soundly in the Visual Basic versions into modeling
modules and user interface forms. To the user, it appears much as the original version did.
Inside, it has become more object-oriented over time.

4.2.2.3.a Cost of using RandVar and RNetOpt

Using the RandVar module is extremely easy. It takes only one or two lines of code to create
a normal random variable. Calculating the inverse cumulative distribution function is a
simple matter of assigning the mean and variance and then asking for the inverse CDF at a

7 Property lets and gets are the functions that access and modify object member variables. Essentially,
Visual Basic adds the necessary skeleton code when it is requested; that is, when the developer wants
to customize a particular routine. OMAC, on the other hand, presents all of the callbacks at once,
and the developer has to fill in code to the correct functions as necessary.

241

point. In cases where the mean and variance do not change, these values need only be
assigned the first time, saving some execution time.

Nonetheless, it is not quite the same as (or have the simplicity of) a simple function call, as
provided in the base solution. A simple Visual Basic function could be provided by the
developer of the RandVar library, though, that wraps the creation of the normal random
variables solver and calls the inverse CDF function.

Using the RNetOpt module is comparable to using the RLPWrapper solver; that is, it takes
around thirty lines of code to declare, create, fill, solve, and analyze the min-cost flow solver.

4.2.2.4 Framework solution, in Visual C++

To demonstrate the language-independent nature of the solvers, a version of FlexCap was
also developed using Microsoft Visual C++ 5.0. This version is a straight port of the Visual
Basic version described above. Besides yielding a significant performance improvement, the
C++ version supports multiple threads. The simulation runs on a worker thread while a
status dialog reports the progress of the simulation. The user can cancel the simulation at any
time. The worker thread enables the user interface thread to remain responsive, even as the
simulation length increases and as the per-iteration optimization time increases.

A.2.2.4.a Cost of using RandVar and RNetOpt

The use of smart COM pointers in Visual C++ 5.0 makes using the COM servers in C++
nearly as easy as using them in Visual Basic. About 90% of the Visual Basic client code that
handles the simulation could be ported over to C++ line for line, with changes for syntax
and variable names. Obviously this is not true of the user interface code, because of the
different paradigms of developing interfaces between Visual Basic and Visual C++.

The RandVar and RNetOpt modules are the same files in both applications. These modules
are indifferent to whether their clients are implemented in Visual Basic or C++ or some
other language, as long as they follow the COM contracts of interfaces.

4.2.2.5 Results

Table 4.6 shows the approximate line counts of the various components in the FlexCap
application. The rightmost column indicates which solvers or other frameworks are used in
the development. UI code is the user-interface, non-modeling code of the FlexCap
application. Modeling code includes the simulation and the plants, products, and links data
structures and collections. RandVar code includes the random variable generation client
code. Network code drives the max-flow or min-cost flow optimization algorithms. Total
code is the sum of the four code groups.

242

Configuration UI Modeling RandVar Network Total Notes
OMAC,

Original 1000 250 30 80 1360 MaxFowLibMaxFlowLib

Visual Basic 1000 300 30 30 1360 RandVar,
RNetOpt
RandVar,Visual C++ 1100 500 30 50 1680 RandVar,
RNetOpt

Table 4.6: Comparison of FlexCap implementations

Discussion

* These numbers do not include code generated by the application development
environment or provided as skeleton code by any framework or solver.

* The user interface in each application uses a pre-existing network display component, so
the bulk of the user interface code deals with responding to events, validating data, and
interacting with the modeling component.

* While the code sizes of the original and Visual Basic solutions are almost identical, the
Visual Basic version was more quickly implemented, because of the integrated nature of
the Visual Basic development environment and the wizards that place the developer in
the right place at the right time.

* The Visual C++ modeling code size is larger than the other solutions for a number of
reasons. First, the original solution's modeling component was only as complex as it
needed to be and no more, it was highly-integrated into the other components, and it
had no object-oriented aspects. Second, the Visual Basic environment generated
automatically much of the structural code, such as collections and property lets and gets,
that had to be implemented by hand in C++. Third, the C++ version is the most
"object-oriented" of the solutions, and this incurs a natural mark-up of code size.

* Using the solvers is equally easy in all of the solutions, compared to the other
programming challenges. Building the original application required knowing how to edit
makefiles to include the max-flow object code. The Visual Basic environment required
no knowledge on the part of the developer to include the COM solvers. The same is true
of the Visual C++ environment, which has special C++ extensions that wrap COM
pointers into relatively straightforward objects.

* The same RandVar and RNetOpt modules are used in both the Visual Basic and Visual
C++ versions, without modification. Furthermore, these solvers are used in other
applications, as well.

243

4.2.2.6 Postscript: JFlexCap, FlexCap in Java

Some effort was spent in creating a Java version of FlexCap. Using Microsoft Visual J++ 1.1
and Microsoft's Java Virtual Machine (JVM), it is a simple task to access COM objects on
Windows platforms. Microsoft's JVM exposes all Java objects as automation objects, in the
COM sense, and it imports COM interfaces and objects into the JVM as Java interfaces and
objects. The necessary framework interfaces and RandVar and RNetOpt objects are
imported as Java interfaces and objects, and using them is exactly the same as in Visual
Basic. In fact, Microsoft's Java has precisely the same restrictions that Visual Basic has when
using COM objects, in terms of implementing and using automation-compatible types.

Hence, Java can be used as another programming language that complies with the
framework, under the restriction of using Microsoft's JVM. Extending the framework into
Sun's version of Java requires, of course, mapping the framework interfaces into Java
interfaces and using another communications mechanism between Java and other
applications, such as CORBA or JNI.

4.2.3 M/M/k queueing model in Excel

Consider a familiar, common, and eminently understandable problem: calculating the
expected waiting time for an M/M/k queue. Analysts at Scudder, Stevens, and Clark, Inc.,
faced a similar problem in 1995 when they were trying to determine what service rate would
be necessary to satisfy a waiting time constraint in an M/M/k queue system that modeled
their call centers. That is, how fast would their customer service representatives need to
process calls in order to keep the waiting time at or under a given threshold? Usually, waiting
time might be thought of as a function of service rate, rather than the other way around, but
it is an invertible function, so service rate can also be a function of waiting time, all other
parameters remaining constant.

So, first think about how to calculate the waiting time in an M/M/k queue given arrival rate
k, service rate i, and number of servers k. One form of the equation is:

ExpWaitTimeMMk(, ,k)= 1 where p -

k1_1 - A (kp)+ k-1 (kp)' kU

k! 1-p ,=0 k!

This equation has two primary components: an iterative component and an infinite
,=0 k!

series component that reduces to .(k
k! 1-p)

244

4.2.3.1 Needed components

This problem requires two components. One is some way of calculating the expected
waiting time, and possibly other performance measures of interest in an M/M/k queue. The
second is an algorithm for calculating the service time given a waiting time. The queueing
component ranges from a spreadsheet model to a VBA function to a framework solver. The
calculation of service time given the waiting time is expressed only as a VBA macro for
exposition purposes. It is trivial to add it to the framework solver.

4.2.3.2 Initial solution

Almost every attempt by students and analysts to model the expected waiting time equation
uses a spreadsheet to calculate the iterative part. Each row is one iteration through the loop.
Often there are painstaking, laborious intermediate steps per rows, but the optimized form
of this spreadsheet appears in Figure 4.5.

lambda =i li >=k part =
mu 4 <kpart 7.0001S U M (B7:B 1000)

k 5 p(queue) 0.059701493 =D 1 /(D1+D2)
rho'k 2 Wali * 0O004975124 =D3/(B4"B2.81)

n (rho "k)^n/n! i Prob(n)
0 _1=1 0.134328358
1 2=1F(A8>=B4,0,B7'B4/A8)j 0.268656716
2: 2il repeats i 0.268656716
31 1.3333333331 0.179104478
4i 0.6666666671 . 0.089552239:

S.......6 ...0 0
8 0 0

Figure 4.5: Screenshot of spreadsheet modeling of M/M/k queue

The items within the box are the "inputs," while the "output," the expected wait, is shown in
bold.

8 Including, usually, separation of the calculation of rho^n and n!, which can lead to significant
numerical inaccuracy.

245

0.4441 =Ltld"t~~j/l~AU1 (83j"[1-84/831) j

This technique has a number of disadvantages, not the least of which is that in order to

determine the desired end result, the service time given the waiting time, it is necessary to
optimize by hand or use Excel's Goal Seek functionality. Goal Seek is a quite simple, if
manual, feature that works by allowing the user to specify a target value for a target cell for
which Excel will search by changing a source cell. Excel's Goal Seek appears in Figure 4.6.

lambda =1 81l >=k part =! 0.444 =(B 4 B43)/(FACr(B3)"(1 -B 4/B 3))
-- - 7.OjSM(7B00
mu = -<kart = 7 000 =SUM 7"BI000)

k= 5 p(queua) = 0.059701493 =D 1/(D1 +D2)

rho"k-I 2 Wail- O.OO49751241 =D3/(B4"B2.B1)

... 0.1343283581

2

3 1
4
5
6
7
8

01

0.268656716
0 268656716
0.179104478
0.089552239

,I--- --- --- ---- ------ ---- -------- -------

Figure 4.6: Screenshot of goal seeking in spreadsheet modeling

Another problem with the worksheet-based solution is that the maximum number of servers
is limited to however many rows the matrix at the bottom is extended (in this case, 1000).

Most operations research practitioners have created this spreadsheet at least once in their
career. Even after three of four times of modeling it, it can still take half-an-hour to an hour
to create this spreadsheet from scratch, in its optimized and correct form.

With this as a baseline, the following three solutions present alternative techniques for
calculating the expected waiting time and the service time given a waiting time.

4.2.3.3 Macro solution

Assuming that the developer starts with nothing other than the previous solution, the first
solution is to develop a macro that performs the iteration as code, rather than hard-coding
the solution into a worksheet. The macro is a new, user-defined workbook function, and
reduces the entire worksheet above into a simple cell formula. In cell D4, the formula for
the above calculation would be "=ExpWaitMMk(15,2,10)." It doesn't get any easier for the
client than that. The problem is having to develop the function in the first place.

246

For many people, this in and of itself is a challenge. Usually it is much easier just to model
into a worksheet rather than learn Visual Basic for Applications enough to write and debug a
function. The two functions, which calculate the probability of queueing and the expected
waiting time, took several hours to develop, debug, and optimize. The macros are provided
in Appendix A.4.1, page 319.

For the user, this solution has a high coding requirement, but it is more flexible and
substantially simpler to use than the traditional worksheet solution.

4.2.3.4 Add-in solution

Assume now that the developer has an Excel Add-in with an ExpWaitMMk function. This
function might have been created using the VBA macro above or using a variant of the
traditional worksheet solution, compiled into an Excel Add-in using Excel's Add-in creation
capabilities.

The developer now has it as easy as possible. The worksheet formula for calculating the
expected waiting time is the same as with the VBA macro: "=ExpWaitMMk(15,2,10)" and
the formula for determining the service time from the waiting time is

"=ServiceRateFromWaitTimeMMk(15,2,0.1)." But now the developer does not have to
write the VBA macros, as the function already exists in the Add-in. This is component
software for Excel. The solution is as flexible and as quick and useful as before, but the
coding has been minimized to a simple formula in a worksheet cell.

What are the downsides? Add-ins only work in Excel (discounting some COM contortions).
And, Add-ins run at the speed of the just-in-time compiled macro language in Excel, which
is to say, not natively. The final solutions, using the framework, improves upon both of these
aspects.

4.2.3.5 Framework solution

Now imagine that the developer has a framework-based solver that uses the random variable
and queueing system extensions from Appendix A.4.2, page 323, for M/M/k queueing
systems. To use this solver will require a macro, so it is not as easy as the Add-in solution's
simple worksheet formula. However, it has the advantages over the Excel Add-in of being
usable outside of Excel and of potentially running faster than the Add-in.

4.2.3.5.a MMQueue solver

The M/M/k queueing calculations were embedded into a framework solver, named
MMQueue, that follows the specification in Appendix A.3.4, page 317, for queueing systems.
The COM and framework overhead for this solver class is about 400 lines of C++. This
handles the various queueing properties of IRQueueData. The random variable outputs,
namely the random variables for waiting time, system time, queue size, and system size, are

247

created using the RandVar module, described in section 4.1.2, page 223. This provides an
elegant solution, because the MMQueue solver must only create the appropriate kind of
random variable and then assign the parameters. Whenever the output of a queue is a
Poisson or geometric random variable, it takes two or three lines of code to create the
output: one line to create the random variable, and one or two lines to set the parameters.
When the output random variable is more interesting, and in particular is not implemented
by the RandVar module, then the MMQueue solver has to implement its own version of a
random variable. These can be read-only implementations, because they are outputs, and this
simplifies the implementation of these objects considerably.

4.2.3.5.b Cost of using MMQueue

Using the framework solver in Excel requires some macros to create the solver, fill its values,
and retrieve the results. A function macro for the expected waiting time in the M/M/k
queue is shown in Appendix A.3.4, page 317. Similar macros would be required for each
desired output. With this macro, using the framework solver is as simple as using an Add-in;

it takes a single equation "=ExpWaitMMk(15,2,10)" to invoke the macro, which executes
the solver. Therefore, using the framework solver from scratch requires knowing how to
code a VBA macro. With that knowledge, it is not too much work to use the solver itself.

4.2.3.6 Framework with Add-in solution

Using the framework solution requires more effort for the analyst than an Add-in. The
developer of the MMQueue solver (or any other solver) might recognize that Excel will be a
popular target environment for the solver. The savvy developer can include an Excel Add-in
that hides the necessary macros, thereby making the solver as easy to use now as in the Add-
in case while also leaving the solver in a separate executable and thereby making it available
to all clients that understand the framework.

4.2.3.7 Results

Table 4.7 summarizes the features of the four solution techniques.

The Flexible column indicates whether the solution technique is robust in its inputs. The
spreadsheet solution is limited depending upon the number of rows filled in.

The Code requirement column identifies the effort required by the analyst to calculate the
expected waiting time, from the initial assumptions.

The Multiple calculations column indicates whether the solution technique can be used in
multiple cells in a worksheet in a recalculation. To recalculate the spreadsheet solution
requires the analyst to manually change values.

248

Spreadsheet
solution

VBA macro

Add-in

Framework
solver
Solver and
Add-in

Flexible

No

Yes

Yes

Yes

Yes

Coding
requirement

Medium

High

Lowest

Low

Lowest

Usable
outside
Excel

Multiple
calculations

No

Yes

Yes

Yes

Yes

Knowledge
required

Modeling,
Spreadsheets

VBA,
Modeling

VBA,
Framework

Table 4.7: Summary of M/M/k queue implementation characteristics

The Usable outside Excel column indicates whether the solution
programs other than Excel.

technique can be used in

The Knowledge required column indicates the areas in which the analyst must have working
knowledge to develop a solution.

The Best speed column gives the fastest speed at which the technique can run.

Discussion

* The biggest gains, in productivity, reliability, and maintainability, come from having the
algorithm knowledge encapsulated in a third-party solver, such as in the Add-in and the
two framework solutions. The modeler simply uses the formula without even needing to
know how the M/M/k expected waiting time is calculated.

* The framework solver has wider applicability than any of the other solutions. Because
the queueing system is its own object, it is easier to incorporate many queues into a
solution network of queues using the solver. Furthermore, the framework solver will
work in other applications whereas the others generally will not.

* The framework solver by itself is not the easiest solution to use within Excel. Hence, if
the solver developer knows that Excel will be a popular environment, the solver can be
customized to work optimally within Excel. This yields the benefits of both the
framework solver and the Add-in technique, because the solver is as easy as possible to
use in Excel, like the Add-in, but works normally in other environments, like any solver.

9 If Excel is installed, it is possible to run Excel macros from other applications, but it is a tough task.

249

Best
speed

Excel

Excel
compiled

Excel

compiled

Native

Native

No

No

No

Yes

Yes

4.2.4 SIPModel

Extending serial-line inventory analysis by Simpson, SIPModel is a graphically-intensive

planning tool used by numerous companies for analyzing strategic inventory placement in

supply chains (see Graves and Willems [43] for details). The SIPModel application has been

in development at MIT since 1995, and has seen three major releases as of 1998: one for

Macintosh and two for Windows. The application enables a client to graphically draw a

supply-chain on a workspace, inspecting and modifying properties for each stage and link in

the chain. Costs are dynamically, automatically calculated, and the user can optimize the

supply chain at any time. The "algorithm" part of the application handles all of the model

structures, as well as the cost calculations and the optimization. A screen shot of the

workspace is show in Figure 4.7.

Custom ASIC A form Bas

Digital Product Ship to DC

DRAM C ircut Board

Other Parts Printer

Ship to

h AR

Ship to VAR

Figure 4.7: Screenshot of SIPModel 2.1 user interface

By double-clicking on one of the stages or links that connects stages, the user can view the

many properties, costs, and performance measures associated with each element. An

example display of the cost information for a stage appears in Figure 4.8.

SIPModel has evolved from handling serial lines only to handling networks that can handle

pure-assembly into pure-distribution tree networks to handling general tree networks. As the

algorithm grows more complex, the complexity of interaction with the user increases, the

250

Figure 4.8: Sample property dialog from SIPModel 2.1

number of potential model inconsistencies grows, and the solver becomes more difficult to
develop. The algorithms have always used dynamic programming to calculate the optimal
service times at each stage; the ordering of the dynamic programming steps, the calculations
of costs and the range of feasible service times, and the necessary data structures for
backtracking through the dynamic program have been the source of complexity for this
problem.

Nevertheless, the run times usually range from a few seconds to a minute for the most
complex practical (i.e., modeling real life) networks. While the heart of this application is its
cost calculations and optimization, the user spends far more time building, tweaking, and
analyzing a network in the user interface than the algorithm spends finding an optimal
solution. This imbalance of time will be reflected in the size of the various components. The
user interface code is nearly twice as large as the modeling engine code.

4.2.4.1 Needed components

This application requires essentially a monolithic solver. That is, the application is built
around a single algorithm, developed by Graves and Willems [43], and this algorithm
encompasses the entire model knowledge. This algorithm component is named SIPEng
(with a soft g). Thus, SIPModel refers usually to the application perceived by the user, but
the implementation of SIPModel uses SIPEng. As with the main application, SIPEng has

251

had three versions. In the first two, it was interwoven into the SIPModel user interface
fabric. In the third, SIPEng was implemented as its own COM server.

4.2.4.2 SIPEng solver

SIPEng is significantly more functional than a solver in the framework would need to be,
and it pre-dates the framework; nonetheless, it follows the same philosophies promoted by
the framework and was a source of inspiration for it. Going beyond the comparatively
simple interfaces of a framework solver, the SIPEng library provides substantial COM
services to automation controllers, like Visual Basic and Visual Basic for Applications. These
services include collections, special data types for each stage and link in a network, and the
ability to store a model to and load a model from persistent storage.

4.2.4.3 Cost of using SIPEng

Because SIPModel and SIPEng are custom applications, they are tightly integrated.
Whenever the user changes any parameter or property in the graphical model, the SIPModel
interface notifies SIPEng of the change, SIPEng recalculates new values as necessary, and
the interface updates its display to reflect new cost values. In some cases, these evaluations
are lazy--values are marked as "dirty" in the SIPEng structures, and are calculated only
when requested by the interface or other parts of the optimization engine.

This integration imposes a slightly higher overhead on the SIPModel client application than
would be found in a modeling environment that follows a more traditional build-pre-
process-execute-post-process-analyze life cycle. That said, the COM interfaces themselves
were very easy to work with, especially given the COM integration in Microsoft Visual C++
5.0; in most cases, it only required one or two lines of code to retrieve or set the desired
properties for any event. Having the solver details encapsulated behind a set of interfaces
made it very easy to control.

4.2.4.4 Results

The SIPEng algorithm is 9,100 lines of C++ code. The COM routines are 6,000 lines of
C++ code. Had the engine been written as a minimally sufficient, compliant solver within
the framework (i.e., without all of the added dispatching capabilities), that six thousand could
have been reduced to between two and three thousand lines. By comparison, the SIPModel
user-interface that wraps the SIPEng library is nearly 25,000 lines of code.

Both the decision to separate the optimization into a separate module and the decision to
wrap it with extensive COM support have proved justified. During development of the user
interface, which lagged the development of the SIPEng optimization engine, the
optimization engine was debugged with Microsoft Excel. Because they are separate modules,
one can be updated independently of the other.

252

After deployment, a customer asked how much effort would be required to use the
algorithm from Excel. They were delighted to learn that the solver already had that
capability, and within a day they had developed the macros necessary to drive the solver
repetitively with different scenarios queried from a corporate database. Because this
capability had been built in at the beginning, the client had instant access and quickly
developed a solution to their problem without having to wait for more development and
debugging by the MIT developers.

4.2.5 ALCOA

A brief project undertaken by MIT researchers at ALCOA to examine loading heat treat
units resulted in a software suite with embedded algorithms that provides an interesting case
study for how the framework could have been applied. Within the plate mill of an aluminum
production facility in Iowa, the delivered products are flat sheets of aluminum plate, whose
gauges (thicknesses) range from an eighth of an inch to over sixteen inches, and whose
lengths range from about ten feet to over one hundred feet. Products are distinguished not
only by their dimensions but also by their alloy and flow paths that specify different
processing steps, such as finished milling or treading. Even though there are potentially
thousands of SKUs and hundreds of flow paths, every piece of metal going through the
plate mill must be heat treated. In 1996, the plant had three heat treat units, massive
horizontal ovens fifteen feet wide and over one hundred feet long. Each unit has a loading
and unloading bed, each as long and wide as the oven itself. These units are huge capital
investments.

Because of the long batch cycles and limited capacity of the heat treat units, they are the
aggregate bottleneck operation for the plate millo. For ALCOA, any increase in utilization at
these units directly impacts the bottom-line. ALCOA charged the researchers with the task
of examining the opportunity for improvements in utilization at the heat treat units, while
taking into consideration the due dates of customer orders.

The problem examined is quite simply expressed. Customers order pieces of plate aluminum,
specifying width, length, gauge, alloy, and final characteristics such as milling. Customer
orders are organized into lots, where each lot comprises pieces of metal that all have exactly
the same characteristics and flow path; this includes the width, length, gauge, alloy, flow
path, and customer. A lot typically contains from one to sixteen pieces. Whenever the
processing of a lot is split across multiple batches at a production step, a new lot number is
assigned to each split part, in order to track exactly where and when each piece was
processed. A batch process step at a heat treat unit is a load. Loads comprise pieces from one
or more lots. Two pieces may run in the same load if they have the same or compatible
alloys and are within a fixed range of gauges. Therefore, not every piece of every lot can be

10 Other processes have less capacity or longer batch cycles, and in some flow paths another
operation is the bottleneck for that path, but for the plate mill as a whole, the heat treats are the
primary bottleneck.

253

loaded with every other piece from other lots. Because lots contain pieces of identical alloy
and gauge, the lots are partitioned into sets of compatible lots; these sets are called buckets.
Any two pieces from any lot in the same bucket can be loaded together.

Pieces are laid flat onto the loading bed, and they cannot be stacked. The production time of
a load depends on the alloy and gauge of the pieces within the load; thicker metal requires
more time to heat treat. Utilization is measured in terms of area, not volume, so lighter,
thinner pieces with greater area contribute more to utilization than heavier, thicker pieces
with less area. Given a bucket from which to choose pieces, the loading problem becomes a
two-dimensional bin-packing problem. Each piece in a lot is assigned a value based upon the
amount of bed space it consumes (its contribution to utilization) and the degree to which it
is late or early relative to the due date.

Scheduling at the heat treat has traditionally been by hand. Every morning, a scheduler lists
the lots that should be processed in the next forty-eight hours, and the production
supervisor on the shop floor has freedom to mix and match those lots, depending upon
layout constraints and metal availability", into loads at the heat treat. ALCOA has a
thorough shop-floor database system that can identify the location of every lot in the mill.
Each night, a snapshot of this database is stored on off-line servers. Each day in March,
1996, this snapshot was sent to MIT to provide the baseline data set of inventory.

The MIT researchers developed a simple, two-step system to develop a potential daily
schedule. The system first walks through each bucket and creates hypothetical loads of all
the lots in the bucket, using a bin-packing algorithm. Next, given all of the loads for all of
the buckets, the system executes a knapsack algorithm to pick the best twenty-four hours
worth of loads. This system was designed to be used as a planning assistance tool, helping
the scheduler explore opportunities for deciding which lots should be processed over the
next few days, and for how pieces might be loaded onto a bed.

4.2.5.1 Needed components

The ALCOA analysis requires three primary components. These are database access, a two-
dimensional bin-packing algorithm, and a knapsack algorithm.

Database access. The data source for the ALCOA program is a single Microsoft Access
database that contains many tables for different input factors. The primary input table is a
list of all of the metal in inventory over the month of gathered data. The database
component must be able to query the proper day and metal configuration in order to
determine the list of available, mixable lots to combine in a load. The set of available pieces
that can run together is referred to as a bucket of lots.

11 That is, metal at the bottom of a large pile of inventory is not available without help from an
expeditor.

254

Bin-packing algorithm. The first algorithm run against a bucket of lots is a two-dimensional
bin-packing. Given the list of lots to load and the size of the bed in which to load them, the
algorithm must return a set of loads and the mapping of loads to pieces to lots from which
those pieces are selected. This algorithm is run for all possible buckets for any given day. In
this manner, every piece in the inventory is mapped to some potential load that could be run
during the course of the day.

Knapsack algorithm. The knapsack algorithm has the task of choosing at most twenty-four
hours worth of loads from the list of all available loads output by the bin-packing algorithm.
This is a normal, one-dimensional knapsack problem.

4.2.5.2 Initial solution

The initial solution involved a two-phase process, much like the Monsanto application in
section 4.2.1, page 229. In the first phase, the user launches a custom, graphical client
application that displays possible bin-packed loads graphically, and allows the user to specify
some bin-packing configuration parameters, such as which bin-packing algorithm to use and
the order in which pieces are sorted before being packed. This interface, with a set of
possible loads for a certain alloy in the 2.000"-2.500" range, is shown in Figure 4.9.

Figure 4.9: Screenshot of initial ALCOA client application

With the configuration parameters set, the user can initiate the first phase of the analysis.
The client application steps through all of the possible buckets of lots for a given day,
calculates the bin-packing of all of the lots within each bucket, and stores all of the possible

255

~UU~~' P"IIIYI

loads back into the original database, with a special time-stamp indicating which analysis run
this is. All of the runs are stored in the same table in the database, so that past configuration
settings can be examined.

In the second phase of the analysis, the user opens a special Excel workbook that contains
the knapsack macros. Using Excel's data import facility, the user imports the list of possible
loads output from the first phase, and then executes a knapsack algorithm macro on the
imported data. The knapsack macro creates a knapsack solver object (a simple COM server
at the time), fills it with the imported data, executes it, and stores the results back into the
Excel workbook. The output of the knapsack algorithm is a list of which loads should
actually be run in the next twenty-four hours to maximize the value of the day. The value of
a load, determined during the first phase, is a measure of the load's utilization as well as the
lateness of each piece on the load.

This tool made it relatively easy to examine all thirty days' worth of data that had been
acquired from ALCOA using two separate bin-packing algorithms (finite first fit and finite
next fit). Further analysis using data of what loads actually ran indicated that the simple on-
line bin-packing algorithms, in ideal conditions, performed as well or better than the loads
that were actually run about 75 % of the time.

Apart from the two-phase, multi-application, manually-oriented nature of the process, the
initial solution suffered from numerous design flaws. For instance, it was quite cumbersome
to add new bin-packing algorithms to the client application. The two bin-packing algorithms
available were C++ classes coded directly into the application executable. The user interface
code interacted directly with the classes, and not through an abstract base class, so in order
to add new algorithms, the entire chent application would need to be recompiled.
Furthermore, some custom and arbitrary structures were passed frequently among the
objects.

Also, parts of the knapsack phase of the process were hard-coded into the Excel
spreadsheets. This included, for instance, the maximum size of the data sets that might be
imported into Excel from the outputs of the first phase. Similar constraints were found in
the Excel modeling of the M/M/k queueing system in section 4.2.3.2, page 245.

To alleviate these problems, the three required components could be framework
components. The RDBElements module, from section 4.2.1.6, page 234, serves as the
database access, while two new modules implement the bin-packing and knapsack
algorithms.

4.2.5.3 RBinPack module

The RBinPack module comprises two two-dimensional bin-packing algorithms, though it
certainly could contain more. The first is finite next fit, a simple algorithm with linear time
and constant memory requirements. The second is finite first fit, a better-performing
algorithm with quadratic time and linear memory requirements.

256

Each algorithm is implemented in a solver. Each solver has the same structure, and hence,
the same SolverInfo description. In fact, this is an instance where a single SolverInfo
description could service every bin-packing algorithm that the ALCOA client can use. In
situations such as this, the SolverInfo takes on a role beyond describing any particular solver,
but instead becomes a model description-something like a ModelInfo object.

As with the queueing and random variable extensions to the framework, the bin-packing
solvers define custom interfaces for more direct access to the solver functionality that is
especially designed for the two-dimensional bin-packing problem. So, the bin-packing
solvers are both framework compliant but also have direct access interfaces for clients that
know they are there. The client has to query each solver for this interface; if the solver
supports it, the client can optimize its access to the solver. Otherwise, the client needs to use
introspection to discover the structure of the solver.

In implementation, the two bin-packing solvers use a common base-class to handle the
COM and framework details. It is therefore simple to add new bin-packing algorithms by
simply deriving a new class and overriding the necessary virtual functions that customize the
implementation.

4.2.5.4 RKnapAlg solver

The knapsack algorithm, packaged into the RKnapAlg solver, is one of the simplest solvers
there is. Its implementation is on par with the shortest-path solver in the RNetOpt module,
described in section 4.1.3, page 224. This particular knapsack algorithm solves a 0-1
knapsack problem, so that the output is a vector of True or False values for each item,
indicating whether or not the item is placed in the knapsack or not.

4.2.5.5 Framework solution

The framework solution, though not implemented, would be a single application that
handles both phases from the original solution. This simplifies the task of the user, who
before had to exit the custom application after the first phase in order to execute the second
phase from Excel.

Internally, the primary difference would be the use of the framework interfaces to separate
the bin-packing algorithms from the client code. That is, the client would use the framework
interfaces to interact with the bin-packing algorithms, thus removing the compile and link
dependencies that existed between the two in the original application. This will make it easier
to incorporate new bin-packing algorithms, an important capability given the simplicity of
the original two heuristics.

In fact, the real task of the bin-packing algorithm is to generate a set of loads for all the
pieces in a given bucket. A solver could be developed that provides an interactive load
generation capability, allowing the user to specify a set of loads from pieces in a bucket.
These manually-created loads would then be used in the knapsack algorithm. The solver

257

would follow the framework interfaces and would also provide its own user interface. While
the framework specifies no user-interface interfaces, a number of existing options are likely
suitable, including ActiveX controls or a separate application environment. Another solver
could be one that wraps the entire problem into a mathematical program, and uses the
RLPWrapper or RSML solvers to generate a good feasible solution.

4.2.5.6 Results

Without having implemented the framework version of this application, it is difficult to
quantify the productivity and code size improvements that would be possible using the
framework. Certainly the database components will simplify development of the client
considerably. Nonetheless, the main benefits in this example are qualitative.

Using the framework will make it substantially easier to add new bin-packing algorithms to
the system. In the original solution, a new bin-packing algorithm would have to be added to
the executable, requiring a new compile-link-debug-ship cycle. Using the framework, the
system would be designed to select at run-time among the available, installed bin-packing
algorithms 12. Adding a new bin-packing algorithm would be as simple as installing the
executable and registering it. The client code would not need to change. Furthermore, the
application could be designed to potentially incorporate other techniques for solving the
entire problem, rather than hard-coding the two-phase bin-packing, knapsack algorithm.
Without too much effort, using the tools available in the final Monsanto solution, described
in section 4.2.1.8, page 237, a math program of the problem could be included as one
solution, allowing for comparisons between the optimization and approximation methods.

4.3 CONCLUSION

This chapter presented a number of solvers and applications to demonstrate the cost and
benefits of using the framework to build solvers and solve problems. These are summarized
in Table 4.8. While the framework does impose an overhead in packaging solvers, in some
cases this overhead is about the same as the overhead might be in developing another form
of interface for the solver (see, for instance, the RNetOpt module, section 4.1.3, page 224),
and usually the overhead is small compared to the size of the algorithm code itself.

In traditional solution applications, like the Monsanto project (section 4.2.1, page 229), the
framework and solvers built for it can provide significant client code reductions. In others,
such as FlexCap (section 4.2.2, page 239), solvers built for the framework can be easily
reused by different applications in different programming environments.

The next chapter describes the benefits for the core target audiences and some primary
issues regarding the framework, using these solvers and applications as examples, and
concludes the thesis.

12 Using COM component categories, for instance.

258

Solver/Application Section (Page) Example demonstrates...
Potential application of the framework to daily
scheduling problems.

Versatility of framework solvers in different
FlexCap 4.2.2 (239) programming environments, like VB and C++.

The perspective of an analyst using the framework
M/M/k queueing model 4.2.3 (244) in Excel.

Packaging a queueing engine using the extensions
MMQueue solver 4.2.3.5.a (247) in Appendix A.3, page 311.

Potential reduction in client-side code from using
components and the framework.

Cost of packaging algorithms into a reusable
module. RandVar is used in several applications.

RBinPack module 4.2.5.3 (256) Packaging multiple solvers with the same structure.

RDBElements module 4.2.1.6 (234) Way to wrap database access into a solver, unifying
solvers and database actions.

RKnapAlg solver 4.2.5.4 (257) Packaging a simple knapsack algorithm solver.

RLPWrapper solver 4.1.4 (226) How to wrap an existing LP optimization engine.

Cost of repackaging existing algorithms. Similar or
RNetOpt module 4.1.3 (224 smaller code sizes and wider applicability.

Packaging a modeling language as a solver in the
RSML solver 4.2.1.7 (236) framework.

SIPModel 4.2.4(250) Savings in net development time provided by
adding support for COM and the framework.

Table 4.8: Summary of solvers and applications from Chapter 4

259

Intentionally blank, this left page.

260

CHAPTER FIVE

CONCLUSION

The previous three chapters in turn presented the need, a solution, and its application. The
need is for more reusable solver components, at the level of easy to use, executable
applications. The solution presented here is a framework for implementing and using solvers
and data, built on top of the binary standard COM. Its application demonstrated that the
framework can improve reusability and reduce client coding requirements while not overly
imposing upon solver developers.

This chapter attempts to explain the why: Why should analysts, solver developers and
researchers, and modeling environment developers be interested in and adopt the framework
for using solvers and modeling environments, implementing solvers, and implementing
modeling environments? The chapter begins with a discussion of the benefits generated by
the framework for each of these three target audiences. It then describes some of the issues
that might limit the framework's applicability or hinder its adoption. This is followed by a
listing of potential research areas relating to the framework, both to address the issues raised
in the preceding section as well as to propose new topics that the framework could tackle.
The chapter ends with an overall conclusion of the thesis.

5.1 BENEFITS OF THE FRAMEWORK

Section 1.1, "The Target Audience," page 19, identified three groups of users who should
benefit from a standardized, component-based framework. End users--clients, analysts, and
applications developers-use the solvers, components, and integrated modeling
environments to solve real world problems and build modeling applications. Solver
developers and researchers build the individual components that implement specific
algorithms or models. Tool developers build the integrated modeling environments, class

261

libraries, and component services that tie together the individual labors of the solver
developers and the integrative needs of the end users.

The framework presented in Chapter Three brings desired benefits to each of these groups,
depending on their needs. These benefits are described in the following sections.

5.1.1 For clients, analysts, and application developers

The clients of applied operation research solutions, the analysts who model, create, and
validate those solutions, and the applications developers who implement them are perhaps
the most important target audience of all. Without them, the solver and tools developers
have no reason to produce their components. (Without solver and tools developers, the life
of the analyst is just more difficult.) The primary benefits for this audience of a standardized,
component-based framework, and of this one in particular, are threefold. First, with the
framework it is easier for an end-user to transform a problem model into an implemented
application. Second, the framework encourages and increases reuse of personal and third-
party components, which decreases development time, costs, and bugs. Third, the
framework reduces dependencies on specific modeling environments or solvers, which
increases freedom and choice. These are discussed in further detail below.

5.1.1.1 It is easier to transform a model into an application

Whether it is to reduce implementation time in order to concentrate more fully on modeling
the problem itself or to mitigate the learning curve for implementation expertise, one of the
primary goals of the end user is to simplify the task of implementing solutions. The
framework accomplishes this in three ways.

First, the framework reduces the size of the code, and hence development effort, required to
implement the custom features of a particular solution. In part, this is a natural result of
reusable component technology. The framework adds to this by standardizing the
interaction mechanisms for solvers and their data, thereby simplifying the process of adding,
changing, and wiring solvers in a solution network. With the addition of modeling
environments and tools based on the framework, much of the work is already complete, and
the end user only has to specify and create the solvers, wire them up, and provide the data.

Example. The Monsanto application, described in section 4.2.1, page 229, demonstrates the
reduction in custom, client code as progressively more and more generic components are
added to the problem. cQ

Second, the framework reduces the effort required to use someone else's solver. Because solvers
in the framework are COM executables, they are already compiled and ready for execution.
The end user does not have to learn or understand the third-party solver's programming
language, or comprehend its build environment, just to have a usable solver. The executable
requirement induces usability onto solvers and other components. Furthermore, because the
interactions of solvers and data are standardized, the end user only has to understand and be

262

able to use a single pattern of interaction-that defined by the framework. So rather than
having to deal with separate command-line interfaces, obscure initialization files, batch files,
environment variables, a clunky user interface, or arbitrary APIs, the user interacts through a
single mechanism.

Example. The network optimization algorithms converted into the RNetOpt module,
described in section 4.1.3, page 224, are examples of the simplification of using someone
else's solver provided by the framework. Each of the original algorithms was embedded
within a stand-alone executable application. An algorithm was controlled by passing the
problem in a moderately standard text format via the console input and by receiving the
outputs in an entirely non-standard text format via the console output. Any particular
algorithm file had primarily three parts: the algorithm itself, data structure management and
initialization, and standard input/output and startup/shutdown code. The data structure
initialization code was intricately mixed with the I/O code. If an end-user wanted to embed
one of these algorithms into another application as a subroutine, it would be necessary to
disentangle the data structure code from the I/O code, and to develop an API for
interacting with the network code, because it operated in an entirely linear, flowchart-style
fashion'. By wrapping one of these algorithms into a framework solver, all of these problems
vanish. oa

Finally, the framework enables simple manipulation of complex solution networks. The
framework's specification for networks of solvers, perhaps coupled with a suitable modeling
environment, make it an easy task to piece together interesting networks with a minimum of
effort. The ability to create a network with local control can simplify the client code, because
the client does not have to implement a global controller. The standardization of data
elements and solver protocols relieves the client of the burden of significant data
transformations between solvers.

To conclude, by decreasing required custom client code size, by removing the hassle of non-
executable third-party solvers, and by simplifying the process of creating solution networks,
the framework reduces the overall effort, in code size and development time, and the overall
knowledge level required to build effective operations research solutions.

5.1.1.2 The framework encourages and increases reuse

Reusability of software components can provide many benefits for clients, analysts, and
application developers. Aside from the obvious gains in productivity in reduced
development times, there are benefits through increased reliability, better consistency, and
improved maintainability. Meyer [69] devotes an entire chapter of his tome to studying the
benefits as well as the techniques of building reusable software. Two aspects of the
framework in particular encourage and increase the potential for reusing solvers.

1 Another option, of course, is to use the algorithm as designed, as a stand-alone executable, and pass
data to and receive data from the application by using pipes.

263

First, because of the ease of using solvers, it is now no longer more cost-effective to

implement the same algorithm again and again for different applications. Implementing an
algorithm, especially validating it, can be complicated work. Yet until now in many cases

re-implementing an algorithm has been a simpler task than trying to reuse someone else's

existing implementation. As discussed in the network example in the previous section,
current implementations are often too closely integrated into and dependent upon platform-
specific operations. Extricating the algorithm implementation from the other source code
functionality proves to be more difficult than building the entire solver from scratch to
conform to the desired characteristics. In the context of the framework, however, because
solvers are executables with well-defined interfaces, using an existing solver is substantially
simpler than building the same algorithm in a new solver--even one that does not conform
to the framework.

Reuse in this manner does not just improve productivity. Assuming that the solver is a
correct implementation, it is more reliable to use the existing solver than to attempt to
implement a new one. Quick implementations of algorithms, suitable for the rapid needs of
application development, are apt to contain numerical inaccuracies, off-by-one bugs, and
similar problems. Furthermore, finding a suitable algorithm for a common problem can even
be tedious, and wastes the analyst's time.

Example. The RandVar module, described in section 4.1.2, page 223, is an example of a
heavily reused set of random variable objects. Various functionality from that module has
been used, without modification in any way to the module itself, in the various
implementations of the FlexCap application (section 4.2.2, page 239) and in the MMQueue
solver and the M/M/k analysis in Excel (section 4.2.3, page 244). ca

The second aspect of the framework that encourages reusability is the standardization of
interfaces and protocols for the interaction of solvers, clients, and data elements. As
described in section 2.3.3, page 76, when many components follow a single standard, overall
complexity is reduced, and it becomes easier for a developer to use those components. All
else being equal, a developer is more likely to choose a component with a familiar interface
rather than one with an unfamiliar interface. Also, because two components that solve the
same problem with different algorithms are now implementing the same interfaces, it is a
simple task to interchange them. This allows the developer to explore alternative solution
alternatives with the least possible effort.

5.1.1.3 The framework reduces dependencies

Seemingly simple decisions made early in a solution or development process and often in an
ad hoc manner can have long-term effects that outlast any single project and continue to
haunt well after everyone has forgotten the circumstances of the original decision. The most
common decision of this type is what programming language, modeling environment,

2 Usually, writing loops from 1 to n when it should have been 0 to n or 1 to n-1.

264

processor architecture, operating system, etc., should be used or targeted for project and
application development. The choice can lock in the developer or client for years-the more
time and value added to a particular machine or programming language, developing libraries,
interfaces, and a knowledge base, the more difficult and expensive it is to change to a
different system. In many cases, being forced to switch, because of customer demand or
obsolescent technology, is tantamount to starting over.

While particularly true, and most harshly felt, for developers who have built a foundation of
code and knowledge in a specific programming language, and then must switch (say, from
Pascal to C to Java), this is also true for clients and analysts who have built an equally firm
foundation in a modeling environment like GAMS but then have to switch, because their
modeling environment does not support the solvers, data capabilities, or modeling interfaces
required by their problems or their customers. The analyst has, through acquiring experience
and models in a particular modeling environment, established a dependency on that
environment. The more extensive the experience, code, and models, the more difficult it is
to switch to another environment, especially if much of the code and models have to be
rebuilt in the new environment. Just as Pascal functions will not work in C without
modifications, many expression of models in modeling environments will not work in other
environments without substantial revisions. This can be alleviated to the extent that
modeling environments have import and export filters (and programming tools have
language converters), but that shifts the dependency to one of import-export relationships.

The framework breaks these dependencies by establishing standards that all solvers,
modeling environments, and clients follow. Interoperability is no longer an issue. Modeling
environments are separated into graphical tools for building models and solver tools for
executing them. The value and differentiation of modeling environments comes not from
managing the solvers and solution networks, as that is captured within the framework, but
from assisting the modeler in building models and managing data more effectively.

One area of the framework that is particularly promising is the introspection protocol.
Coupled with the core services registration facility, the framework standardizes the processes
of discovery, enumeration, introspection, and documentation. Any modeling environment or
client can enumerate the installed solvers on a machine, query them for their fundamental
qualitative and quantitative characteristics, select an appropriate one for application, and
access further documentation, via help files or web sites, as necessary. Because the database
of solvers resides outside any single modeling environment, all environments have access to
all solvers.

Example. Solvers no longer need to be designed to be run within a single environment
only-although they could still be optimized for a single environment while still running in
many. The M/M/k queueing model from section 4.2.3, page 244, is an example of this. In its
final form, the queueing model follows the random variable and queueing system extensions
to the framework, so it can operate within any compliant client. On top of this solver
component, specialized code is added to simplify the task of computing common values,
such as expected waiting time, within Excel, via Excel Add-ins. Using the M/M/k solver
from Excel is as simple as using a native function because of the Add-in. The key distinction

265

between previous systems and the framework is that the Add-in is no longer a requirement
for simplified operation, but is now an optimization. Without the Add-in, the solver is still
accessible. From a different perspective, if a solver was developed as an Add-in for Excel, it
is practically inaccessible from other applications. However, if the solver was developed as a
solver in the framework, then it is equally accessible to both Excel and other applications.
The developer has the further choice to optimize its use in Excel with an Add-in. ca

Two further benefits of breaking the dependence upon modeling environments and specific
solvers are that clients and analysts can more often use their preferred tools and
environments and that it becomes easier to interchange elements within an environment.
Because solvers are no longer dependent on import and export filters or similar custom
APIs to work in a modeling environment, the analyst's preferred modeling environment can
now handle more solvers than it could before. Furthermore, new solvers are automatically
accessible from the same modeling environment, without updates to the environment. This
extends the life of the modeling environment and of the analyst's knowledge base. Whereas
many current modeling environments support only the largest, monolithic math
programming optimization engines, with the framework they will support all solvers,
whether monolithic or specialized for the smallest of problems.

5.1.2 For solver developers

The developers who implement algorithms, which in the context of this thesis are
specifically operations research algorithms, are the primary target of much of the technical
detail of the framework. Solver developers make many crucial decisions when implementing
an algorithm, such as which machine, operating system, and programming language to target
and use. Often, these decisions limit the potential customer base for an implementation. The
first benefit of the framework for solver developers is that it expands the customer base
instead of shrinking it. Another decision solver developers might have to make is for which
modeling environments to customize their implementations. Each environment might
require a non-trivial amount of work to implement necessary interfaces, expose the correct
functionality, and create a proper installation. The developer then depends on the success of
these environments for the success of the solver. The framework breaks this dependency by
making the solver equally accessible to all environments that support the framework. Finally,
while developing a solver to comply with the framework requires more code in the solver
itself, the net code size, integrated over the life of the solver for all of the solver's customers,
application developers, and future maintenance of the solver itself, is smaller for solvers in
the framework. These three benefits are discussed in more detail below.

5.1.2.1 The framework enlarges the customer base

Choices a solver developer makes during the early design phases of the development cycle,
especially the system design choices such as hardware, operating system, and programming
languages for implementation, inevitably serve to diminish the customer base. Initially,
anyone can use an algorithm. Discounting emulation, only owners of Intel-based systems

266

can use an executable compiled for Intel processors. Only users of Windows can use
Windows applications. Only C++ programmers can use C++ class libraries. Every decision
divides the potential customer base into the cans and cannots.

Given the initial limiting decisions to use an Intel-Windows combination, using the
framework enlarges the potential customer base compared to typical class libraries or source
code implementations. COM, the underlying component technology on which the
framework is based, is ubiquitous in Windows applications. Since Microsoft began licensing
the Visual Basic for Applications environment, and because it freely distributes the VBScript
and JScript engines, many Windows applications now embed automation and simple if not
complex macro capabilities. VBA and the scripting hosts VBScript and JScript can control
COM objects, and therefore they can control framework solvers. Because solvers are COM
executables and not source code distributions, any application that can contain COM objects
is a potential modeling environment. Solvers are no longer limited to users who know
FORTRAN or C, but now can reach analysts and modelers who live and breathe Excel and
Visual Basic.

What about Java? While the "Intel-Windows combination" is a minor limitation given the
massive installed base of these systems, it is nevertheless still a limitation. It is tempting to
think that reworking the entire framework in Java would extend the customer base and
applicability to even more analysts. This is partly true for users who crunch their algorithms
on UNIX systems. But Java is not yet the elixir operations researchers have been seeking, for
several reasons. First, as analyst Peter Coffee [16] notes, Java is not so much "write once, run
everywhere" as it is "write once, run anywhere that has JVM and a full set of API classes."
Others label it a "write once, test everywhere" capability. The productivity in actually writing

Java code compared to C or C++ code is offset by the need to test against different
implementations of the virtual machine. Second, Java is still a slow, cumbersome
environment in which to solve sufficiently complicated algorithms. Just-in-time compilation
helps, but for best results it is necessary to compile to native code, and that removes any
multi-platform benefits of Java class files. Finally, Java is not yet sufficiently supported by
the most common modeling environments for the small- to medium-sized problems
targeted by the framework, Microsoft Excel, Visual Basic, and the like. Given Microsoft's
strategy that Java is a programming language and not a platform, it is unlikely that those
environments will fully support Java applications unless they have been tweaked to use
COM through Microsoft's virtual machine. Therefore, Java just becomes another
programming language, like C++, for building COM components.

In the end, the choice of COM does limit solutions to Windows environments (discounting
the existing implementations of COM on UNIX), but most of the problems and
environments targeted by the framework already have that limitation. For these
environments, and for solution developers working within them, the framework does
expand the customer base, providing more potential users, and therefore more potential
revenue.

267

5.1.2.2 The framework reduces dependencies

Section 5.1.1.3, above, described some of the dependencies created by clients, analysts, and
application developers when they choose to use a particular modeling environment, tool, or
programming language, and how the framework removes those dependencies. Solver
developers have similar dependencies, with a slightly different emphasis. Whereas clients are
dependent upon their choices because of invested time, available capabilities, and a high
switching cost, solver developers are dependent upon their implementation choices and
targeted modeling environments for their very success.

Developing a solver specifically for a modeling environment requires extra work beyond the
function of the solver. This includes adding the necessary interfaces, callbacks, and data
structures, and using the appropriate APIs for the modeling environment. This extra code
must be developed for each modeling environment with which the solver will operate. The
success of the solver depends on the success of the modeling environments it targets. If the
developer chooses to target what is essentially a sinking ship, then the solver will go down
with it. The developer has to balance the costs of developing for many environments against
the mitigation of risk that this brings.

Some environments are even more infuriating: they do not have any plug-in API or any
other suitable means for extending the environment with new components or solvers. In
these cases the solver developer must rely on the environment developer to specifically add
support for the solver into the environment. This requires either sufficient market presence,
money, or diplomacy to convince the environment developer to invest the time and
development effort to extend the environment in such a manner.

Example. Consider a parallel in word-processors, the import-export file capability. Many
word-processors understand several common standards, such a ASCII text files, rich text
format (RTF) files, and more recently, HTML files. But the native, often optimal, storage
format for word-processors is usually not a standard format. Microsoft Word alone has
several different formats for its versions over the years. When the old applications no longer
exist but their documents remain (such as when Word 97 replaces the Word 95 application
and its document format but not the old files), the documents run the risk of becoming
inaccessible. If no current word-processor can read the old application's file formats, the
documents are effectively destroyed. Modern word-processors read old word-processors'
formats using components known as "import filters." These components know how to
translate other file formats into the native format for an application. At the other end,
"export filters" can transform the native format into other formats. The Open and Save As
dialogs in applications show the existence of these filters, depending on what types of files
can be opened or saved.

3 Thus, for long term backup, it is important to backup not just the documents but the applications
that can read those documents, and the operating systems that can run those applications, and the
hardware that can read the backup medium, and so forth ad infinitum.

268

Developers of applications that have their own file formats and want them to be usable by

Microsoft Word have three choices. First, they could license Microsoft's document format,
and create documents directly in that format. This is equivalent to using the API or software
development kit provided by a modeling environment to develop a solver that conforms to
the environment's specifications. Second, they could convince program managers at
Microsoft that the new file format is sufficiently important to warrant Microsoft developing
a new import filter for the format. This is equivalent to a solver developer convincing a
modeling environment developer to build in support for a solver. The cases in which
Microsoft or the environment developer would capitulate are comparable too: the file format
or solver developer needs to have sufficient market share or money. Finally, they can use a
standard format, such as RTF or ASCII text, for communicating with Word. Besides being
compatible with Word, the document format would then be compatible with all word-
processors and other applications that understand the standard. In current modeling
environments, the closest equivalent is a text-based model format like MPS, but MPS is
insufficient for solution needs that extend beyond math programming. ca

The framework introduces a standard of communication, removing the dependencies of
custom modeling environment specifications, APIs, and interfaces, and the reliance upon
modeling environments for equivalent import and export filters.

5.1.2.3 The framework yields a net savings in development

It is tempting, as a solver developer, to survey the framework, with its many requirements on
solvers, and decide that developing a solver for the framework is too complicated and
demands too many resources, and that it is better to implement a solver "the old-fashioned
way." Indisputably, developing a solver for the framework requires more development time,
code, and discipline than not developing for the framework, all else being equal. However,
assuming that the solver receives even moderate acceptance by customers, the initial extra
investment yields an overall net savings in development time, productivity, and reuse.

It is a maxim that over-engineering early in a process saves time and effort down the road.
The questions are how much effort must be spent early, and how much is saved when the
rewards are reaped?

The overhead of wrapping an algorithm from scratch, without the assistance of any helper
libraries, can range from 350 to 2000 lines of code, depending on the complexity of the
algorithm (number of inputs, outputs, parameters, etc.). The use of skeleton base classes and
helper components significantly reduces this overhead. Certainly, for calculating averages or
other simple functions, 350 lines of code can be a substantial overhead. On the other hand,
for sophisticated algorithms this additional code is minimal compared to the development of
the core of the algorithm. Furthermore, there are several ways to package algorithms into
framework solvers, some of which provide significant improvements of the overhead
required and hide the framework details from the solver developer. See section 4.1.1, page

220, for more details.

269

Example. The LP Wrapper solver, described in section 4.1.4, page 226, demonstrates that

around one thousand lines of code are sufficient to wrap a core subset of the CPLEX

Callable Library. These one thousand lines enabled many other applications, such as Excel,
Visual Basic, Active Server Pages (and hence, web sites), to use the CPLEX optimization

engine with very little effort of their own. ca

Example. The RandVar module, described in section 4.1.2, page 223, and the RNetOpt
module, described in section 4.1.3, page 224, are two examples of libraries that repackaged
existing algorithm implementations within the context of the framework. Wrapping the
RandVar library required several hundred lines of framework-specific code, while the

RNetOpt library required the same amount of new code but significantly more modification
of the existing code. Those modifications were due to the design differences between the
original implementation, which had a strict program flow with console input and output, and
the framework-compliant version. Both of these libraries have been used by applications
developers and clients in several applications that require random variable calculations and
sampling or network optimization. These applications, built in Excel, Visual Basic, and C++

have easily incorporated the libraries with only a few lines of code. ca

Example. The SIPModel application, described in section 4.2.4, page 250, contains one
particularly noteworthy example of a net development savings. In the most recent release,
the optimization engine, known as SIPEng, was separated into a module distinct from the
user interface application. Going beyond the comparatively simple interfaces of a framework
solver, the SIPEng library provides substantial COM services to automation controllers, like
Visual Basic and Visual Basic for Applications. These services include collections, special
data types for each stage and link in a network, and the ability to persist a model to storage.
Both the decision to separate the optimization into a separate module and the decision to
wrap it with extensive COM support have proved justified. During development of the user
interface, which lagged the development of the SIPEng optimization engine, the
optimization engine was debugged with Microsoft Excel. After deployment, a customer
asked how much effort would be required to use the algorithm from Excel. They were
delighted to learn that the solver already had that capability, and within a day they had
developed the macros necessary to drive the solver repetitively with different scenarios
queried from a corporate database. Because this capability had been built in at the beginning,
the client had instant access and quickly developed a solution to their problem without
having to wait for more development and debugging by the MIT developers. ca

5.1.3 For modeling environment developers

Developers of modeling environments add value to solutions by simplifying the modeling
process, by providing a unifying, integrated interface to data, models, and solvers, and by
hiding the details of solver invocation. The framework benefits developers of modeling
environments by standardizing the implementation language of solvers, making it easier to
develop a modeling environment that can use many solvers. The framework simplifies
through standardization the invocation process, and makes building networks of solvers
easier. The time saved by the framework on the back-end of the modeling environment can

270

be devoted to the front-end, providing a richer and more marketable experience for the
analyst. These benefits are discussed in more detail below.

5.1.3.1 It is easier to develop an environment that uses more solvers

Modeling environments bring an analyst and a solver together into a workspace, mapping
the user's needs onto the solver's capabilities. Without the analyst or solver, the environment
is worthless. For a modeling environment to be successful, it has to support the solvers that
analysts want to use. When solvers support different invocation patterns, adding support for
solvers is a cumulative effort without economies of scale. Each solver requires its own
supporting code. If the solver interface or semantics change during an upgrade, the modeling
environment needs to be re-developed and re-deployed with support for the new version4 .

By using the framework, the modeling environment developer adds support for a single
invocation specification, and the environment automatically supports every solver that
complies with the framework. Furthermore, by using the framework instead of a custom
plug-in specification for the environment, it is much easier for solver developers to build
solvers usable within the modeling environment. That is, if a solver developer has to choose
between adding code to comply with a framework supported by several modeling
environments as well as existing business productivity applications or adding code to comply
with a single modeling environment's plug-in specification, the first choice is clearly
preferable to the second. The modeling environment gains by supporting more solvers,
because the analyst can then spend more time within the environment to solve broader
problems, rather than needing to use other environments or applications to utilize particular
solvers'.

Modeling environments do not only invoke solvers. They also assist the analyst in selecting
models and solvers, hooking them together, and assigning data inputs and storing data
outputs. A modeling environment that uses the framework can reduce its development
effort by leveraging the core services to provide common capabilities while supporting the
framework. For instance, the environment can use the core services' solver registration and
enumeration facilities to determine which solvers are installed on a system. With the list of
solvers, the environment can use the introspection protocol to show the analyst the
qualitative capabilities and structure of each solver in a solver browser. Because all
framework solvers support introspection, the environment can provide a unified view of
every solver in one location. Users appreciate such uniformity, because it reduces their
learning curve. The networking specification, discussed in the next section, simplifies the
creation of solution networks and of assigning and retrieving inputs and outputs.

4 This is true, for instance, with AMPL and CPLEX; a particular version of AMPL works with
CPLEX 4.0 but not CPLEX 5.0, so it is necessary to retain a copy of CPLEX 4.0 even after
upgrading to CPLEX 5.0 in order to use CPLEX with AMPL.

s This is similar to the goal of many web sites: add sufficient content and capabilities so that the web
surfer never has to leave the site. The site becomes the anchor point, acquiring substantial visibility
and name recognition, as well as increased potential for ad revenues because of long-term viewers.

271

5.1.3.2 It is easier to build distributed solution networks

One aspect of building a modeling environment that can be troublesome, and for which the
framework provides a solution, is the construction of solution networks, especially
distributed networks where solvers reside on different systems. The modeling environment
can use the networking protocol in section 3.8, page 178, to create networks whose stages
embody local control. This can simplify the creation of the environment. Furthermore, the
distributed capabilities of COM (i.e., DCOM) make it easy, almost transparent, to distribute
solvers across a network of computers. The local control network protocol thereby makes it
easy to parallelize multi-stage solution networks across multiple machines, where each solver
will begin executing once its inputs are available. The modeling environment might even be
designed to create the network, start the solution process, and then shut down, leaving a
minimal implementation of the progress notification interface viable to receive the final
solver completion notification. Upon receipt of this notification, the environment could
reawaken or send an email to the user.

5.2 Issues

This section addresses thirteen of the primary issues concerning the framework. Some issues
concern areas where the framework does not fulfill the requirements of Chapter 2. Others
relate to the implementation of solvers, environments, and applications that use the
framework. For some, potential future research opportunities are discussed.

1. The framework is limited to platforms that support COM.

The framework builds a specification on top of COM, and it relies on the COM run-time
services for object creation, marshaling, component categories, memory allocation, and
more. The COM specification itself is platform-independent. The platform-dependency
arises because of the few systems that support COM. Some version of COM is present in all
of Microsoft's 32-bit operating systems6 . DCOM, which enables machine-to-machine
communications, is available only on Windows NT 4.0, Windows 95 with Internet Explorer
4.0, and Windows 98. The core of DCOM is also available on a number of UNIX systems,
as Microsoft has been developing ports of important subsets of COM and DCOM in an
effort to make COM more widespread.

Three factors mitigate the COM restriction imposed by the framework.

First, as argued in sections 2.3.2, page 75, and 3.3, page 116, limiting a framework to
Windows and COM is reasonable because of the popularity of 32-bit Windows operating
systems in solving the small- to medium-sized problems targeted by this thesis. That is, most
of the applications targeted by the framework will be running on Windows regardless, and

6 Windows 95, Windows 98, Windows NT 3.51, Windows NT 4.0, and Windows 3.1x with Win32s.

272

environments like Excel and Visual Basic are built around COM, so it turns out not to be
such a great limitation.

Second, COM objects on Windows systems are becoming more and more accessible to
other, non-Windows systems through the growing support for COM-CORBA bridges and
mappings. Almost all systems that do not support Windows support CORBA, a
"competing" object model. Some companies that produce CORBA ORBs, like IONA
Technologies, Inc., and Digital Equipment Corporation, have either licensed or pledged
support for COM in their products in the form of COM-CORBA bridges [39, 22]. These
bridges translate calls from CORBA-compliant objects into calls to COM objects and vice
versa. Microsoft and the OMG, the overseer of CORBA, have been working on a COM-
CORBA mapping, as well, which standardizes the communications between CORBA and
COM objects. The ideal end result, which is quite probable, is that COM objects and
CORBA objects will be able to communicate seamlessly without being aware of each other's
object model. Developers will then be able to work in whichever object model they prefer.
In particular, the framework can still be based on COM yet be accessible to both COM and
CORBA clients.

Third, in the absence of any COM-CORBA bridge or mappings, the framework could be
specified as an all-CORBA solution. This would create two separate frameworks, one in the
COM world and one in the CORBA world, but this would greatly ease a transition in the
future when the two are interoperable. Certainly, none of the aspects of the framework
transgress any CORBA principles or capabilities, so mapping the framework into CORBA is
largely a technical exercise.

Basing the framework on COM is truly a value-added proposition, as it enables the
framework to leverage COM's extensive object services. Such activities are horizontal to the
vertical framework effort, and hence it is a great savings to not re-specify such services when
they are already available in the form of COM. The limitation that this imposes is a small
price to pay given the popularity of Windows systems for the targeted application set and the
almost assured future interoperability between COM and CORBA.

2. Solvers must be compiled into binaries for each intended processor and operating system.

Section 2.3.1, page 73, specified that framework solvers should be executable objects, rather
than simply source code files. This implies that solvers must be binary executables, which
have to be compiled for each particular processor and operating system. Such a restriction is
mitigated by emulators for other processors and operating systems, such as FX!32 for DEC
Alpha processors and Insignia Solutions' SoftWindows 95 for MacOS.

Java is one potential tool for circumventing the multiple-executable syndrome. With Java, a
single class file is sufficient for all systems that have a suitable Java Virtual Machine that can
interpret that class file. As Java adopts more CORBA capabilities, or as Microsoft enhances
its Windows and Macintosh implementations of the Java VM to incorporate COM, Java will
become a viable language and platform for creating and using solvers and driving other

273

applications. For now, Java is a suitable self-contained environment, when requirements do
not dictate the need for other applications that do not support or understand Java classes.

3. Because the interfaces use types that are not automation-compatible, most of the interfaces
cannot be used directly from automation environments.

Most of the interfaces defined by the framework are designed for C++ semantics, for several
reasons. First and foremost, the majority of standard COM interfaces follow the same
philosophy. Second, modeling environments and most solvers will typically be implemented
in C++ at this time. Nevertheless, Visual Basic and the Visual Basic for Application clients
like Microsoft Excel and Word, and Autodesk AutoCAD are common solution development
tools, and it is desirable that COM solutions work in these environments. Unfortunately, as
mentioned before (see section 3.3, page 116), Visual Basic and its derivatives understand
only a subset of the types that C++ understands; these types are the automation-compatible
types. Some of the types used by the framework, such as UINT and REFIID, are not
automation-compatible, and therefore interfaces that use those types are not available to
Visual Basic or VBA without appropriate kludges.

Each object in the framework should support IDispatch, the primary automation interface. A
single implementation of IDispatch should contain suitable methods for all of the interfaces
implemented by the object; it is, essentially, a "garbage can" for everything the object can do.
Because different objects of the same type (two different solvers, for instance) might support
different sets of required and optional interfaces, a single dispinterface (IDispatch plus
specification of properties and methods) is not suitable for all solvers. Therefore, each object
must implement its own I Dispatch, and the clients that must use I Dispatch for automation-
compatible types or because they do not understand custom interfaces must discover at run-
time the exact calling mechanism for those objects. While not a travesty, this is not an ideal
condition.

One remedy is to define a new set of framework interfaces that are all automation-
compatible. In some cases, this will incur a performance penalty when customized types
must be wrapped into VARIANTs, SAFEARRAYs, or their own custom objects. A set of
automation-compatible interfaces, even if they do not derive from IDispatch, would be
entirely usable from Visual Basic without any extra helper objects. VBScript and other
"dumb" hosting environments still require a single I Dispatch implementation on each object,
however.

A second remedy is to add significant support, in the form of helper objects, development
wizards, and frameworks, for using the framework from automation-compatible
environments. Even though Visual Basic might not be able to implement all of the
framework interfaces, helper objects can simplify the creation of solvers within Visual Basic
by implementing the non-compatible interfaces and delegating to Visual Basic when
necessary. This is discussed further in section 4.1.1.3, page 221.

274

The final remedy, less appealing than the others, is to wait for Microsoft to release the

specifications and eventual implementation of COM+, the successor to COM, that is

scheduled to ship with Windows NT 5.0, and to perform all development and analysis with

NT 5.0 and COM+. At this time, the ambiguous feature set and unlikely availability of
COM+ on other Microsoft platforms makes this a questionable strategy.

4. The framework does not support dimension and typing information.

Section 2.3.6, page 85, described the need for dimension and typing support, especially in
enterprise systems. While none of the interfaces or protocols presented in the framework
specifically address dimensions or typing, adding a dimension and typing protocol to the
framework would not be too difficult. Because COM development is interface-based
programming, new interfaces could be defined to provide dimension and typing support on
each of the primary objects in the framework. Data elements, solvers, and the network
components would each implement additional interfaces that provide access to dimension
manipulation, conversion, analysis, and validation.

For example, a data element might support an interface to retrieve the dimensionality and
type of its contained data. Another interface might provide the capability to change the
dimensionality of the data element, under appropriate conversion factors. A solver might
support an interface that has methods for validating the dimensional consistency of its
inputs. The input and output interfaces could be extended to support dimensionality and
typing, allowing clients to query the dimension or type of outputs, for instance. The core
services would include a new set of registration and enumeration services, for maintaining a
database of dimension manipulators'.

The real challenge in adding dimension and typing support to the framework is in specifying
the relationships among dimension systems and dimensions and types. A dimension
manipulator converts or validates dimensions, but how do two manipulators work together
to convert dimensions between each other? Converting from one dimension to another is
essentially a network traversal process, where each node is a dimension and each arc is the
conversion function from one dimension to another equivalent dimension. If a path exists
from one node to another in the network, then the two dimensions represented by the nodes
are equivalent, and the conversion function is the composition of the conversion functions
along the path. The collection of nodes is theoretically unbounded, so patterns must be
identified to simplify constructs. These patterns include dimension multiplication, division,
and exponentiation. The collection of available arcs represents the knowledge of dimension
conversion. If a developer knows it is possible to convert from Fahrenheit to Celsius but
does not know the equation, the arc from Fahrenheit to Celsius is effectively non-existent. A
dimension manipulator defines a set of arcs in the network; for example, a dimension
manipulator that converts temperatures might connect all known temperature dimensions in
a complete sub-network. The union of all of the arcs from all dimension manipulators on a
computer represents the complete dimensional knowledge available for the computer.

7 See page 85 for more information on dimension manipulators.

275

A core services function could have the task "convert the value x from dimension d, to
dimension d2." The challenge of this function is to determine the existence of a path from d,
to d2 in the network of dimensions. Another function might be to "reduce a dimension
expression," such as reducing (miles per hour) * (seconds) into just miles. This requires more
than just calculating the conversion factor from hours to seconds; it requires discovering that
such a conversion exists at all. This can be discovered and calculated over the network of
dimensions nodes and conversion arcs, but how best to optimize it or implement it remains
unclear.

The challenge of any framework extension in this area, then, is to develop a sufficiently
powerful conversion mechanism that can handle complicated dimension and type
conversions, reductions, and manipulations quickly and reliably, while making it flexible
enough to handle new dimensions, types, and manipulators.

5. The framework does not specifically support testing and validation.

Section 2.3.7, page 88, introduced the need for coherent and simple testing and validation
capabilities. In particular, an ideal testing and validation framework would make it easy to
interchange different implemented algorithms (solvers) in a testing environment. The
framework does not included specific support for testing and validation.

With the most optimistic assumption that all algorithms to be compared or tested have been
developed as solvers within this framework, it is trivial to develop a testing client that
repeatedly solves the same problem with the different solvers. In this manner, the testing
and validation problem is solved easily. Less optimistically, it might be necessary to develop
special solver sites or mappings that can interface with proprietary or custom input and
output interfaces of solvers that do not conform.

An extension to the framework that might benefit certain testing operations would be the
introduction of a performance-related interface for solvers. The parameterization interface,
IRSolverParameters, is intended primarily as a way to configure the behavior of the solver.
However, it could also be used to retrieve outputs from the solver, such as the active basis,
the number of cuts or iterations, or the elapsed CPU time. It might be better, however, to
add another interface, something like IRSolverStatistics, that provides performance outputs.
Clients could then query this interface for the various testing results.

6. The framework does not provide specialized support for notifications and CBT hooks.

Notifications are one way that a server can talk back to a client, telling the client about its
progress or state. Section 3.7.1, page 169, described progress update notifications in the
framework, which is a specific, well-defined notification mechanism. The need for a more
generic notification mechanism was introduced in section 2.4.3 on page 98.

Generic notifications are distinguished by two important factors: First, different solvers (or
data sources, solver sites, etc.) might generate different notifications. While every solver has

276

some concept of progress, not every solver has iterations, optimality gaps, or feasible

solutions. Therefore, solvers need to be able to send only those notifications that are

relevant for their behavior. Second, clients need a general way to register with an object to

receive notifications. Rather than requiring every client to understand how to register with

every object, which introduces too many interface dependencies, a single set of interfaces

should suffice to establish notification advise connections between server and client. The

IRSolver::SolveAdvise and IRSolver::SolveUnadvise methods are an example of this-a
standard method of registering to receive progress and completion notifications.

Fortunately, the COM specification already contains a generic notification mechanism in the

form of connection points. Connection points are simple yet powerful. Suppose a client
wants to receive notifications of a certain kind from a server. These notifications are defined

by some interface, often a dispatch interface, say IMyNotificationsDisp. This is an interface
that is implemented by a sub-object on the client. The client first acquires the

IConnectionPointContainer interface of the server, via a QueryInterface from another

pointer. With this interface, the client queries the server if it supports notifications through

the IMyNotificationsDisp interface. If it does, the connection point container on the server
establishes an advise connection, and whenever the server sends out notifications of the

requested type, it will send them to the client through the IMyNotificationsDisp interface.

How does the client know that the server will support the IMyNotificationsDisp interface for

notifications? Usually, the server will indicate this in its coclass type library definition, by

declaring IMyNotificationsDisp as a [source] interface. The server might also implement

IProvideClasslnfo2, a standard COM interface that could provide this information as well.

ActiveX controls use connection points, as does Visual Basic (the "with events" keywords
use connection points for implementation), so they make an excellent mechanism for generic
notifications within the COM-based framework.

As for computer-based training (CBT) hooks, discussed in section 2.3.8 on page 89, the
connection point mechanism for notifications is also satisfactory for CBT hooks. Some
distinction might be made in the specification of notification and CBT hook interfaces
between regular notifications and CBT hooks, as many clients will not be interested in the
latter at all.

7. The framework provides simplified solver selection capabilities, but no model selection or
intelligent solver selection capabilities.

In providing a minimalist solver registration and enumeration capability, through the

SolverRegistrar component and its IRSolverRegistration and IRSolverEnumeration interfaces,
the framework ignores an entire field of research in knowledge-based model selection and
solver selection. Much of this work proposes various knowledge-based database schemes,

8 For details on connection points and connection point containers, see Brockschmidt [11].

277

hierarchical model and solver relationships, or selection criteria to help a user to select a
model to match a problem and a solver to solve a model. The framework's approach is to
ignore the notions of problems and models, and focus on solvers. Furthermore, all solvers
exist on a flat namespace; that is, the solvers are all members of a single set of available
solvers. This relationship is expressed in the IRSolverEnumeration interface, which simply
enumerates all installed solvers on a system without regard to their purpose or the models
they solve. The philosophy of the framework is that more a sophisticated structure for
solvers and models can be imposed upon the flat solver namespace.

Is this a sufficient solution? Most likely, too much has been left unspecified. In
characterizing the dimension and typing problem, the thesis describes dimension
manipulator objects, which are small components whose only purpose is to convert
dimensions and types for other objects. In a similar vein, the solver selection problem might
specify model selectors and solver selectors, components that manage model and solver selection
systems. Each selector might be based on a particular system developed by a team of
researchers. The client could then choose a selection system, and the environment would
execute functionality on the selector for that system in order to select a model or solver.

The key issues in establishing such a system for selection are standardizing the model
selector and solver selector interfaces and protocols, and specifying how the installation of a
new solver is propagated to all of the model and solver selectors on a system, so that they
can appropriately incorporate the new solver into their particular selection scheme.

Standardizing the selector interfaces would not be too difficult, as the selector has a simple
directive: return a solver identifier (a GUID or CLSID) for the solver selector, or a model
identifier (some GUID, likely) for the model selector. Specifying an installation notification
system is a challenging task, as the solver, at installation, needs to be able to announce what
models and problems it can solve, and traversing the networks of solvable models, sub-
problems, and related models is at the core of the research question.

8. The framework provides a limited data flow specification.

The data flow specification presented in section 3.4, page 118, is truly prototypical. It is a
minimally sufficient specification for the needs of the remainder of the framework. In
intensive database environments, or in environments that require more attention to the
dynamic, non-deterministic, multi-user nature of most data sources, the existing data flow
specification is inadequate. This is clearly an area where database expertise is required to
establish a suitable, practical standard for handling multi-dimensional objects in the
framework. One solution might be to use the OLE DB for OLAP specification [72], which
itself is built on top of COM.

One of the benefits of COM's use of GUIDs for uniquely identifying interfaces is that
anyone can define an interface, give it a GUID, and declare it to be a standard. Whether
anyone actually uses that interface is another matter entirely. While all of the interfaces in the
framework form just such a "standard," the data element interfaces in particular are worthy

278

of note. These interfaces are clearly a crutch, a solution to a complex problem simplified for

the sake of exposition and to give the solver specification something on which to work.

Fortunately, none of the solver interfaces specifically use the IRDataElement interface,
thereby making it easy in the future to adopt a new data specification without redesigning the
solver interfaces.

9. The framework does not specify whether or how real-time directed graphs and operational
solutions work within the networking protocols.

The discussion of solution archetypes in section 2.1.3, page 69, limited the focus of the

framework to solutions that do not have a real-time directed graph architecture or an

operational or real-time execution periodicity. This limitation allowed significant

simplifications in the data flow specification (section 3.4, page 118) and in the networking
specification (section 3.8, page 178). In particular, because no objects need to respond to

real-time, non-deterministic events, their behaviors can be well-characterized.

The domain analysis of section 2.1 argued that even with this limitation, the framework still

could apply to a significant set of applied operations research solutions, especially those of
the small- to medium-size that run on Windows and are specifically targeted. Nevertheless, a

future research area is extending the framework to account for real-time activity, and to

enable the use of solvers in operational environments.

10. In solution networks, the framework only manages data and simple control flows. By
default, flows are "lockstep flows;" details for managing other flow types are not specified.

In the taxonomy of flow dependencies characterized by Dellarocas [20], a lockstep flow is

described as one "where there must exist tight synchronization between producers and users

of resources. All resources produced must be used and no resource can be produced until all

previous resources have been used by all designated users." This is precisely the model

adopted by data flows in section 3.4, page 118, within the framework.

It is just one type of flow, however, and Dellarocas describes several others, all of which

have a place in the more complex solution architectures. These include persistent flows, where
for example a solver is executed once and its output is then stored persistently and used
many times by another solver, and transient flows, where an upstream solver might be executed
many times while a downstream solver is executed much less frequently, and the
downstream solver uses only the most recently available upstream output. Another example

might be a case where an upstream solver produces outputs constantly, while a downstream
stage aggregates those outputs into a single input.

It is probable that most of these flow types can be captured by mappings, introduced in

section 3.8.6, page 199. Mappings are the essence of links on which data flows in the

solution network, and are therefore the likely recipient of per-flow functionality. Section

3.8.6.4, page 203, hinted at the versatility of mappings, describing aggregating or scripting

mappings. Other mappings could be designed to specifically handle the other types of

279

resource flows, such as persistent flows and transient flows. An area for further research is in

identifying what mappings are necessary to capture the most interesting solution
architectures, and how those mappings interact in complicated networks.

1 1. There is a non-trivial implementation overhead to add framework support to a solver.

In implementing an algorithm, adding support for any new feature requires more code. As
demonstrated by the solvers in section 4.1, starting on page 220, the overhead imposed by
the framework can range from a few hundred to a few thousand lines, depending upon the
level of support and complexity of the inputs, outputs, and parameters of the algorithm.

When beginning implementation of an algorithm, a developer must ask, is it worth it to
develop this solver for the framework? Without a class library or solver development
environment, the overhead to do so might prove too great. Hopefully, however, the benefits
outlined in section 5.1.2, page 266, as well as elsewhere in this thesis, are compelling enough
to convince the developer that the overhead is a small price to pay for the enlarged potential
customer market and usability within mainstream development environments.

Clearly an area for future work is in minimizing this overhead, through class libraries, new
environments, and the like, as described in section 4.1.1, page 220. Besides minimizing the
overhead, the existence of popular modeling environments that support the framework will
increase the return on coding investment.

12. Developing for the framework requires knowing COM and the framework interfaces.

In its current form, the framework relies directly on raw aspects of COM. Throughout there
is mention of IUnknown, reference counting, CoCreatelnstance, IDispatch and automation,
and other COM concepts and terminology. Obviously, discussions that include these COM-
isms assume that they are at least recognizable if not utterly familiar; such is the nature of the
technical details of vertical extensions to COM or any other object model.

Therefore, developing a solver that complies with the framework or a client that leverages
the framework using current tools (that is, without solver development environments or
suitable modeling environments) requires that the programmer understand COM enough to
create and use COM interfaces and components. In terms of complexity and learning curves,
such a requirement is similar to requiring that the developer know C++. Object models are
complicated entities; understandably so, given the problems they address.

Don Box, a leading guru on COM, describes his learning experience with COM:

It took me roughly six months before I felt I understood anything about COM. During this
initial six-month period of working with COM, I could successfully write COM programs and
almost explain why they worked. However, I had no organic understanding of why the COM
programming model was the way it was. Fortunately, one day...I had an intense epphany and
at once COM seemed obvious to me...I understood the primary motivating factors behind

280

COM. From this, it became clear how to apply the programming model to eveyday programming

problems. Many other developers have related similar experiences to me. (Box [9], page xix)

At the heart of COM is a programming discipline, a programming way-of-life.

Understanding the technology, the function calls, and the interfaces comes later, on a just-in-

time basis. The book quoted above, Box [9], provides an excellent introduction to the

technical aspects of COM, while Chappell [15] provides an equally excellent introduction to

the philosophical aspects. Box's book is geared towards C++ programmers, while Chappell's

is accessible to anyone who uses Windows.

As more class libraries, development environments, modeling environments, helper objects,
and other tools support the framework, the requirements on any one developer or

quantitative analyst will diminish. For example, quantitative analysts who live in Excel do not

need to understand reference counting, as that is hidden by the Visual Basic layer. In an

integrated modeling environment, an analyst will not even need to know what COM is to

use and network solvers. In a full-featured solver development environment, the same might

eventually be true for developing solvers.

13. The framework requires a critical mass of buy-in and support to achieve true value.

Indisputably, the return on investment for a developer to add framework support to a solver

that is never used is zero. The ROI for adding COM support is certainly not zero, as it is

COM that enables solvers to be used from existing, mainstream applications like Excel and

Visual Basic. The framework adds on top of COM a set of custom interfaces focused on

applied operations research solutions. Primarily, it is this specialization that must be justified,
and that is the topic of section 5.1.

To achieve true value, the framework-any framework-must attain a critical mass level of

support, from the solver community, the main modeling environments, and the many

clients. Ideally, a popular solver or modeling environment would support the framework or

another open standard, providing a "killer application" for the framework or standard. Until

that happens, support must be acquired solver by solver, application by application.

This framework has sufficient issues, such as an inadequate data flow specification, to keep it
from becoming widely adopted. Nevertheless, it provides a foundation upon which a truly

useful and utilized framework can be built.

5.3 FOR FUTURE RESEARCH

The previous section indicated the need for further research in some areas, such as a more

robust data specification, specifications for dimension and typing, testing and validation, and

CBT hooks, and an analysis of more complicated solution types. There are certainly many

additions and enhancements to the framework that are possible, and some of these are

discussed here.

281

First and foremost would be the creation of a graphical modeling environment that uses the
framework to hook solvers together. This environment would allow an analyst to describe a
network of solvers, data sources, and their relationships as a set of visual nodes and arcs, as
pictured in Figure 5.1. This environment would demonstrate the feasibility of using the
framework to catalog, browse, network, and control various solvers installed on a computer.

Data 1 Solver 1 Solver 4

Data 2 Solver 2 Solver 3
Data 2 Solver 2 Solver 3

Figure 5.1: Screenshot of modeling environment solution network

Another important area of future work is the evangelism of the framework, or at least the
primary ideas of the framework. As stated in the previous section; to be truly successful, the
framework would require significant support from third-party vendors, ideally the creators of
the most popular solvers. The framework should likely be re-formulated (or extended) under
supervision of an experienced standards or organizational committee with input from the
major solver and environment developers and users. Such an effort would elevate the
framework or its progeny to true standards status.

Some other areas of potential research include:

Allowing sets to be inputs to and outputs from a solver. Currently, sets are used only in
determining mappings from set values into indices for dimensions and data elements.
Some problems might need to manipulate sets directly as inputs and outputs. This can be
approximated by using a vector of boolean values to simulate membership in a set, but
another solution is to simply output a set object containing the items. The facility

282

location problem is one example where the output might be more meaningfully rendered

as a set.

* Adding solverperformance statistics. A useful addition would be a specific interface or group
of interfaces that solvers could implement to provide performance characteristics, such

as elapsed CPU time, number of solutions tried, number of iterations executed,
optimality gap, etc. The progress update interfaces presented in section 3.7, page 169,
provide only for remaining time or percentage, but do not provide the exact numbers

that might be necessary for performance analysis and tuning.

* Adding a dimension and typing specifcation. The need for interfaces for dimension and typing

is discussed in the previous section, item number 4, page 275.

* Developing automation-compatible interfaces and helper objects for Visual Basic and scripting

environments. The need for low-level supporting COM objects to make it easier to use the

framework from Visual Basic, VBScript, and other automation-based environments is

discussed in the previous section, item number 3, page 274.

* Adding solver and model selection interfaces. The need and some possible directions for adding

specific solver and model selection interfaces and component helpers is discussed in the

previous section, item number 7, page 277.

* Developing a robust data flow specfication. The need for a more substantial, useful data flow

specification is discussed in the previous section, item number 8, page 278. This is an

area that clearly requires significant data expertise from industry partners.

* Standardizng solution network persistence. Currently, it is up to each client individually to be

able to reconstruct a solution network. One possible feature would be a standardized

persistence mechanism for storing the layout and configuration of solvers, data sources,
and their links in a solution network. This would enable different environments to share

networks, and would make it easy to pause and store an entire network execution.

* Supporting more complex solution networks. The need to be able to handle more complex
solution network archetypes and flow types more complex or different than simple
resource and control flows is discussed in the previous section, item numbers 9 and 10,
page 279.

* Examining ways to reduce implementation overhead Implementing a solver to support the
framework requires a non-trivial overhead, as described in the previous section, item

number 11, page 280. Different ways of packaging a solver are discussed in section 4.1.1,
page 220, and an area of research and development is creating ways to simplify solver

creation by reducing the overhead.

283

5.4 CONCLUSION

Are the benefits of the framework and its potential for further research sufficient to make up
for the issues previously raised? This is the proverbial $64k question. In its current form, the
framework requires more work, particularly with the data flow specification, and it requires
support from vendors of solvers and environments to achieve true success. The framework
should be viewed as a first step toward a standard for interaction, rather than the final word.
Nevertheless, even with its current shortcomings, there are some potent ideas that perhaps
represent the true contribution.

First is the nature of interface-based specifications. The framework is a specification of
interfaces between objects. One object implements and exposes many interfaces, and clients
know objects only through those interfaces. Interface-based programming is the philosophy
of most modem object models, like COM and CORBA, so clearly this is nothing new.
Furthermore, there-has been some research to propose interfaces for solvers at the level of
modeling languages (see Ramirez, Ching, and St. Louis [86] and Eck, Philippakis, and
Ramirez [26]). However, the framework presented ii Chapter Three might be the first
proposal of an interface-based specification for the actual implementation of solvers and
environments.

Interface-based programming provides a near-optimal encapsulation of objects. But three
additional features of the COM standard are perhaps more important, especially early in the
evolutionary cycle of the framework. First is the ability of an object to support multiple
interfaces. As the standard evolves, new interfaces are defined that support more features or
resolve newly discovered problems. Subsequent versions of solvers and environments
support the new interfaces as well as the old ones. Everything remains backwards-
compatible for those situations where older components use the older interfaces. The
widespread acceptance and use of COM is a testament to multiple interfaces. Over the years,
as functionality has been added to Windows, interfaces to use that functionality have been
added to COM.

The second feature is that interfaces are immutable. That is, once defined, an interface
cannot change. New features in the form of new properties or methods require a new
interface. Immutable interfaces allow a client or server to guarantee behavior of an interface
regardless of when the objects were implemented or what version number they have. So, as
the framework evolves, new interfaces will be defined, but the old ones remain, ensuring that
older solvers and environments continue to work in the framework well into the future.

The third feature is the use of globally unique identifiers (GUIDs) for identifying almost
every unique item in the framework. All of the interfaces, objects, property identifiers,
solvers, etc., have their own statistically unique identifier, a 128-bit GUID. Because of
potential name violations from different developers or because of language translation
issues, elements are not identified by names. Instead, each element is identified uniquely by
its GUID. Textual labels attached to interfaces, solvers, and the like, are contextual; the
GUID is universal. The benefit for the framework here is that anyone can add new

284

interfaces to the framework, just as with COM, by defining an interface and assigning it a
new GUID. Suddenly, it is part of the standard, to the extent that anyone uses the interface.
The random variable and queueing system interfaces defined in Appendix A.3, page 311, are
examples of this capability. The framework is a fluid entity.

The three features described above are features of COM that the framework has co-opted.
They do not represent new contributions to the field of software. However, their application
to the particular domain of applied operations research solutions is new. Interface-based
specifications represent a different and, for this field, new way of thinking about how to
implement solvers and modeling environments, at the low level of component interaction.

Some parts of the framework present interesting ways to tackle some well-known problems.
For instance, the introspection protocol transforms the documentation process from a
textual representation, which is fraught with potential language translation problems and
namespace collisions, into an binary, interface-based representation where each element is
uniquely identified by a GUID or is identified within the context of a GUID. With GUIDs,
the homonym problem, where the same name refers to two distinct concepts, simply
disappears, and all that remains is the synonym problem, that of determining when two
items with different names refer to the same concept. Furthermore, the introspection
protocol is an implementation protocol, not a modeling protocol, so that existing
documentation schemes could use the introspection protocol in their implementation. One
example of a modeling protocol is the SolverInfo Definition Language, presented in section
3.6.1.4, page 151. Others schemes could easily be used instead, and as long as they compile
down to the SolverInfo Type Library specification, which is the proposed binary standard
that leverages existing COM type libraries, the documentation scheme would be a valid
introspection method for the framework.

The networking components, discussed throughout section 3.8, starting on page 178, are
also noteworthy. The goals of the networking protocol are twofold. First is to make it simple
for a client or modeling environment to create a network of solvers that exhibit local
control, where each node in the network executes of its own accord once its inputs are
available. In a distributed environment, this might be more efficient or more suitable than
using a global controlling process. Second is to separate the functionality of managing the
networking details and of executing algorithms. Solvers embody algorithms; they should not
have to manage the various interconnections, mechanisms, and notifications that make a
network function. The network details are encapsulated into the network components: the
solver sites and the mappings. These components wrap each solver, presenting to each one
the faqade of a single client, as if the solver existed as a single stage.

The potential versatility of mappings, which manage the flow of data from one solver, data
source, or client, to another, is also an important feature. Mappings to handle all manner of
resource flows, data types, specialized solver interfaces, or flow requirements could be
developed and incorporated into the existing framework network protocol. Mappings are the
connectors, the translators, between two components in a network, and as specified are
generic yet highly flexible objects.

285

Finally, the core services, a centralized repository of installed solvers and their
documentation objects, and eventually a repository of dimension manipulators and model
and solver selectors, is an important part of the framework. A common registry enables a
solver to register itself with the core services once, and then to have that solver available to
all clients and modeling environments that use the core services. Modelbases and solver
databases for individual environments or particular methodologies have been proposed
before, but the core services represent a database that imposes no model-solver relationships
or structure, and is open to all environments and methodologies. While the lack of structure
or selection capabilities inherent in the framework might be viewed as a deficiency, it can
also be viewed as an opportunity. The core services is a foundation upon which
methodologies, modelbase structure, and selection knowledge can be built; it represents a
greatest common factor for all selection needs, and hence is always a viable technique for
selecting solvers.

This comes full circle back to the nature of interface-based programming. The framework
describes a viable standard for building applied operations research solutions. It might not
have all of the best features, or approach everything with precisely the correct interfaces or
patterns or protocols, but it can always be a technique of last resort when two components
cannot find any other way to communicate. As the framework evolves, and as
implementations of solvers and modeling environments evolve, and new interfaces and
standards replace entirely the functionality of interfaces in the current framework, the old
interfaces can be slowly phased out. New versions of solvers will eventually implement only
the new interfaces, decreasing the development effort by not supporting the old. In the
interim, there will be solvers that support both old and new; it is an evolutionary process.

* CODA

In a survey article on visualization, optimization, and software, Jones [51] predicts the future
of optimization and modeling software. Two points in particular are germane. First,
"Spreadsheets will therefore become the delivery vehicle of optimization, at the expense of
algebraic modeling languages." Second, "More and more optimization systems will be
composed of modular building blocks linked together by facilities provided by the computer
operating system." This thesis addresses the issue of modularity at the level of the operating
system. The framework is an implementation standard that enables modularity,
encapsulation, and independence of components. It essentially forms part of the operating
system, and it exists independently of any one solver, modeling environment, or client. By
using the COM standard as its foundation, it is accessible to the most common spreadsheet
packages in use today.

Jones also predicts that a single algebraic modeling standard will emerge, and by inference,
will dominate and propel the optimization market. This could very well be the "killer
application" that leads to an explosion of solvers, modeling tools, applications, solutions,
and exposure. The framework is not this sought-after killer application, certainly. It is,

286

however, a motivating force, an opportunity, and a starting point. The framework is not the

grail, but leads on the path towards it.

In Wolfram von Eschenbach's ParZival, the early thirteenth century Germanic retelling of the

French Arthurian romance Conte du Graal by Chretien de Troyes, the protagonist knight

Parzival commits in his youth three sins that impel the story and for which he must atone.

One of the sins occurs at the castle Munsalvesche, home of Anfortas the Angler, Parzival's

uncle, known otherwise as the Fisher King, keeper of the Gral. (In Wolfram's version, the

"Grail" is called the Gral, and is a stone rather than the vessel popularized by Malory.) At

Munsalvesche, Parzival sees the procession of the Gral and the lance that drips blood from

its tip. Parzival learns that Anfortas is afflicted with severe injury, so that he cannot stand

and walk. But as a simpleton instructed never to question a host, Parzival remains silent

throughout the evening among these wonders, though questions ring in his head. In the

morning, when he has finally resolved to ask his questions, the castle stands empty. Parzival

arms himself and leaves the castle, to be confronted quickly by a page and a maiden who

both admonish him for not asking the Question, the most important of the questions

Parzival had desired to ask. For the very act of asking the Question would have cured and

freed Anfortas and brought happiness to everyone in the castle. His sin was in not asking the
Question in the presence of Anfortas and the Gral, while he had the chance. The adventures
that follow form Parzival's quest to find the Gral again, to confront Anfortas, and to ask his

Question, as well as to atone for his other two sins. When finally he returns to
Munsalvesche and meets Anfortas again, he does not fail:

Parival wept. 'Tell me where the Gral is," he said. I'f the goodness of God triumphs in me,

this Company here shall witness it!" Thrice did he genuflect in its direction to the glory of the

Trinity, praying that the affliction of this man of sorrows be taken from him. Then, rising to his

full height, he said, 'Dear Uncle, what ails you?"[104, p. 394-5]

With the Question asked, Anfortas was cured, and Parzival became the new Gral King. The

Question is part of the mechanics of the story; by not asking it during his first visit to
Munsalvesche, Parzival must return at the end of the story to complete the quest. But it also
symbolizes his maturation from an inexperienced youth, when during his first visit he did
not express the sympathy he felt for Anfortas by asking what ails him, to a knight worthy of
being the Gral King, when his first act upon meeting Anfortas the second time is to ask the

Question.

Hatto, the translator of the version quoted above, interprets Wolfram to be saying that if
Parzival, who fell so low as to even reject God at one point, can rise to be the highest knight
in the world, then others can rise high as well. "For if a pot-hunting, crack-jouster could win

the Gral, Wolfram was suggesting to [his audience], why not they too? Their Grals were
waiting [104, p. 415]." The story of this unique individual serves as inspiration for all.

To bring the metaphor to the task at hand: The framework might not be the Gral, but it is,
perhaps the Question. The act of asking it, of using and adopting it or its descendants, might

lead to the cure of the ailment, the current disparity between modern software and modern

operations research algorithms.

287

Howzat!

288

APPENDIX A

SAMPLE CODE AND EXTENSIONS

This appendix provides code listings referenced in the fourth chapter as well as some
possible extensions to the framework.

A.1 DEVELOPIN THE RLPWRAPPER SOLVER

The following sections detail the development of the RLPWrapper solver component that
wraps the CPLEX Callable Library [17], described in section 4.1.4, page 226. There are six
main phases to the solver implementation: generating the SolverInfo, implementing the
skeleton functionality of the solver, implementing the inputs, implementing the solve action,
implementing the outputs, and implementing the parameters.

The solver uses the CPLEX function CPXIoadlp to load the LP into the CPLEX engine.
This function takes the entire linear program as its input. These inputs have special format
requirements. Because of this and because the solver itself can take inputs in any order, the
solver creates an internal buffer to store the inputs whenever IRSolverlnputs::SetlnputData is
called. The same holds for the outputs. The CPLEX function CPXsolution returns all of the
outputs at once, in arrays of doubles. The solver must copy these values to its own data
elements to expose them as outputs. The solver uses CPXoptimize to solve the LP.

A.1.1 Generating the Solverinfo

The first step is to create the SolverInfo source file. Based on the specification in section
4.1.4 for inputs and outputs, the resulting SolverInfo SIDL file looks something like this:

289

// File RLPWrapperlnfo.idl

uuid(3494F400-BD4B-1 1D 1-9194-0020781 0C74 1), version(1.0),
helpstring("Ruark RLPWrapperlnfo 1.0 Solver Info Type Library"),
custom(GUIDRSOLVERINPUTS, "(3494F401-BD4B-1 1D1-9194-0020781 0C741)"),
custom(GU I D_RSOLVEROUTPUTS, "{3494F402-BD4B-1 1 D1-9194-00207810C74 1)"),
custom(GU ID_RSOLVERPARAM ETERS,"{3494F403-BD4B-1 1 D 1-9194-0020781 0C741)"),
custom(GUID_RSOLVERCLSID, "{3494F481-BD4B-11 D1-9194-00207810C741)"),
custom(GUID_RSOLVERTYPELIBID, "3494F480-BD4B-11 D1-9194-00207810C741)")

library RLPWrapperlnfoLib
{

importlib("stdole32.tlb");
importlib("stdole2.tlb");

[uuid(3494F404-BD4B-1 1 D1-9194-0020781 0C741)]
typedef long Variable;

[uuid(3494F405-BD4B-11 D1-9194-0020781 0C741)]
typedef long Constraint;

[uuid(3494F401-BD4B-1 1 D1-9194-0020781 0C741)]
interface Inputs

double bbjectiveFunction([in] Variable v);
double RightHandSide([in] Constraint c);
double ConstraintMatrix([in] Constraint c, [in] Variable v);
BSTR ConstraintSense([in] Constraint c);
[custom(GUID_RSAF_OPTIONAL, "True")]
double LowerBound([in] Variable v);
[custom(GU ID_RSAF_OPTIONAL, "True")]
double UpperBound([in] Variable v);

[uuid(3494F402-BD4B-1 1 D1-9194-0020781 0C741)]
interface Outputs

double ObjectiveValue();
double PrimalVariables(Variable v);
double DualVariables(Constraint c);
double SlackValues(Constraint c);
double ReducedCosts(Variable v);

290

uuid(3494F403-BD4B-11 D1-9194-0020781 0C74 1),
custom (GUI D_RSOLVERIMPLEMENTEDINTERFACE, "True")

dispinterface RLPWrapperParameters
{
properties:

[id(1), helpstring("Global time limit."), custom(GUID_RDEFAULTVALUE, "1 e+75")]
double TimeLimit;

[id(2), helpstring("Use CPU time (True) or wall clock time(False)."),
custom(GUI D_RDEFAULTVALUE, "True")]

VARIANT_BOOL CPUTime;

[id(3), helpstring("Dual pricing algorithm."), custom(GUID_RDEFAULTVALUE, "0")]
long DualPricingAlgorithm;

[id(4), helpstring("Maximum iteration limit."), custom(GUID_RDEFAULTVALUE, "Varies")]
long IterationLimit;

[id(5), helpstring("Lower object value limit."), custom(GU I D_RDEFAULTVALU E, "-
1 e+75")]
double ObjectivelowerLimit;

[id(6), helpstring("Upper object value limit."), custom(GU IDRDEFAULTVALUE,
"1e+75")]
double ObjectiveUpperimit;

[id(7), helpstring("Feasibility tolerance."), custom(GU ID_RDEFAU LTVALU E, "1 e-06")]
double FeasibilityTolerance;

methods:
};

//EOF.

The MIDL compiler generates the type library RLPWrapperlnfo.tlb, which is embedded into
the final executable.

A.1.2 The solver skeleton

Development begins with the solver skeleton. The class that implements the wrapper is
named CRLPSolver. The implementation shown here uses the Active Template Library 2.1,
part of Microsoft Visual C++ 5.0. The generic C++ solver class header file for a solver that
implements typical solver interfaces and uses the SolverAdviseHolder component is:

291

// RLPSolver.h : Declaration of the CRLPSolver

#ifndef RLPSOLVERH
#define RLPSOLVER_H_

#include "resource.h" // main symbols
#include "RSolve.h"

// CRLPSolver
class ATL_NO_VTABLE CRLPSolver:

public CComObjectRootEx<CComSingleThreadModel>,
public CComCoClass<CRLPSolver, &CLSID_RLPWrapper>,
public IRSolver,
public IRSolverlnputs,
public IRSolverOutputs,
public IRSolverProvidelnfo,
public IRSolverParameters

CComQIPtr<lRSolverSiteln, &IID_IRSolverSiteln> msiteln;
CComQIPtr<lRSolverSiteOut, &llIID_IRSolverSiteOut> m_siteOut;
CComQIPtr<lRSolverAdviseHolder, &llD_IRSolverAdviseHolder> m_solverAdviseHolder;

public:
CRLPSolver() {}

DECLARE_REGISTRY_RESOURCEID(IDR_RLPSOLVER)

BEGIN_COM_MAP(CRLPSolver)
COM_INTERFACE_ENTRY(IRSolver)
COM_I NTERFACE_ENTRY(I RSolverlnputs)
COM_INTERFACE_ENTRY(IRSolverOutputs)
COM_INTERFACE_ENTRY(I RSolverProvidelnfo)
COM_INTERFACE_ENTRY(I RSolverParameters)

END_COM_MAP()

// IRSolver
STDMETHOD(GetSolverSiteln)(REFIID riid, LPVOID* ppVoid);
STDMETHOD(SetSolverSiteln)(LPUNKNOWN pUnk);
STDMETHOD(GetSolverSiteOut)(REFIID riid, LPVOID* ppVoid);
STDMETHOD(SetSolverSiteOut)(LPUNKNOWN pUnk);
STDMETHOD(Solve)();
STDMETHOD(Clearlnputs)();
STDMETHOD(ClearOutputs)();
STDMETHOD(SolveAdvise)(IRSolverAdvise* pAdvise, DWORD* pdwCookie);
STDMETHOD(SolveUnadvise)(DWORD dwCookie);

292

// IRSolverlnputs
STDMETHOD(Locklnputs)();
STDMETHOD(Unlocklnputs)();
STDMETHOD(InputsLocked)(DWORD* pfLocked);
STDMETHOD(GetlnputCount)(UINT* pclnputs);
STDMETHOD(GetlnputData)(UINT ulnput, REFIID riid, LPVOID* ppVoid, UINT*

puElement);
STDMETHOD(SetlnputData)(UINT ulnput, LPRDATASOURCE pSrc, UINT uElement);

// IRSolverOutputs
STDMETHOD(LockOutputs)();
STDMETHOD(UnlockOutputs)();
STDMETHOD(OutputsLocked)(DWORD* pfLocked);
STDMETHOD(GetOutputCount)(UINT* pcOutputs);
STDMETHOD(GetOutputData)(UINT uOutput, REFIID riid, LPVOID* ppVoid, UINT*

puElement);

// IRSolverProvidelnfo
STDMETHOD(GetSolverlnfo)(REFIID riid, LPVOID* ppVoid);

// IRSolverParameters
STDMETHOD(GetParameterCount)(UINT* puCount);
STDMETHOD(GetParameter)(UINT ulndex, VARIANT* pVar);
STDMETHOD(SetParameter)(UINT ulndex, VARIANT Parameter);

1;
#endif //RLPSOLVER_H_
//EOF.

The skeleton implementation provides only some of the solver interface functions, namely
those supporting the advise list and the solver sites:

// IRSolver
STDMETHODIMP CRLPSolver::GetSolverSiteln(REFIID riid, LPVOID* ppVoid)
{

if(IppVoid) return EPOINTER;
*ppVoid = NULL;
if(Imsiteln) return NOERROR;
return m_siteln->Querylnterface(riid, ppVoid);

STDMETHODIMP CRLPSolver::SetSolverSiteln(LPUNKNOWN pUnk)
{

m_siteln = pUnk;
return NOERROR;

}

293

STDMETHODIMP CRLPSolver::GetSolverSiteOut(REFIID riid, LPVOID* ppVoid)

if(IppVoid) return E_POINTER;
*ppVoid = NULL;
if(Im_siteOut) return NOERROR;
return m_siteOut->Querylnterface(riid, ppVoid);

STDMETHODIMP CRLPSolver::SetSolverSiteOut(LPUNKNOWN pUnk)
I

m_siteOut = pUnk;
return NOERROR;

}

STDMETHODIMP CRLPSolver::SolveAdvise(IRSolverAdvise* pAdvise, DWORD* pdwCookie)

if(IpdwCookie) return E_POINTER;
if(Im_solverAdviseHolder)
{

HRESULT hr = CoCreatelnstance(CLSID_RSolverAdviseHolder, NULL, CLSCTXSERVER,
IID_I RSolverAdviseHolder, (LPVOID*) &m_solverAdviseHolder);
if(FAILED(hr)) return E_OUTOFMEMORY;

return m_solverAdviseHolder->Advise(staticcast<LPRSOLVER>(this), pAdvise, pdwCookie);

STDMETHODIMP CRLPSolver::SolveUnadvise(DWORD dwCookie)
{

if(Im_solverAdviseHolder II IdwCookie) return OLE_E_NOCONNECTION;
return m_solverAdviseHolder->Unadvise(dwCookie);

}

// IRSolverProvidelnfo
STDMETHODIMP CRLPSolver::GetSolverlnfo(REFIID riid, LPVOID* ppVoid)
{

if(IppVoid) return E_POINTER;
LPRSOLVERINFO plnfo = NULL;
HRESULT hr = RLoadSolverlnfoCIsid(CLSID_RLPWrapper, 0, &plnfo);
if(SUCCEEDED(hr))

I
hr = plnfo->Querylnterface(riid, ppVoid);
plnfo->Release();

return hr;
I

294

Obviously, this skeleton code, along with other skeleton code for other features of different

solvers, could easily be consolidated into a C++ class library that simplifies the creation of
solvers and clients.

A.1.3 Implementing solver inputs

Implementing the input side of the wrapper comes next. Th

stored internally in the form that CPLEX uses. As such, t
manage inputs, the solver uses a simple switch statement to d
function that will set the particular input within the solver.

STDMETHODIMP CRLPSolver::GetlnputCount(UINT* pclnputs)

{

lere are six inputs, which are
he inputs are write-only. To
ispatch the data element to a

if(Ipclnputs) return EPOINTER;
*pclnputs = 6;
return NOERROR;

STDMETHODIMP CRLPSolver::GetlnputData(UINT, REFIID, LPVOID*, UINT*)

({ return RSOLVE_ECANNOTGETINPUTDATA; }

STDMETHODIMP CRLPSolver::SetlnputData(UINT ulnput, IRDataSource* pSrc, UINT uElement)

// check for errors
if(IpSrc)
if(ulnput > 5)
if(inputsLocked())
if(solving())

return E_INVALIDARG;
return RSOLVE_E_INVALIDINDEX;
return RSOLVE_E_IN PUTSLOCKED;
return RSOLVE_E_SOLVING;

// get the data element
LPRDATAELEMENT pElement = NULL;
HRESULT hr = pSrc->GetDataElementAccessor(uElement, I ID_IRDataElement,

(LPVOID*)&pElement);
if(FAILED(hr)) return hr;

// based on the input, the that particular input in the solver
switch(ulnput)

case 0O hr = setObjFunc(pElement);
case 1: hr = setRHS(pElement);
case 2: hr = setConstraint(pElement);
case 3: hr = setSense(pElement);
case 4: hr = setLower(pElement);
case 5: hr = setUpper(pElement);
}

break; // Objective function
break; //RHS
break; // Constraint matrix
break; // Constraint sense
break; // Lower bound
break; // Upper bound

295

pElement->Release();
return hr;

}

The CRLPSolver class defines a number of member variables for storing these inputs.

class CRLPSolver // ...base classes here

protected:
int m_nCols; // number of variables
int m_nRows; // number of constraints
double* m_rgdObjFunc; // array of objective function values
double* m_rgdRHS; //array of right hand sides
char* m_rgchSense; / character array of constraint senses
int* m_rgnMatBegin;// Next four are the constraint matrix arrays
int* m_rgnMatCount;
int* m_rgnMatlndex;
double* m_rgdMatValue;
double* m_rgdLowerBound; // array of lower bounds on variables
double* m_rgdUpperBound; // array of upper bounds on variables
int m_nColSpace; // Size of the variable space (same as m_nCols)
int m_nRowSpace; // Size of constraint space (same as m_nRows)
int m_nNZSpace; // Size of the non-zero space

// ...remainder of class here

All six of the setXxx functions called in SetlnputData, listed above, are member functions of
the CRLPSolver class. For the five of these inputs that are vectors, the functions to set those
inputs look very much alike, so only one is shown here:

HRESULT CRLPSolver::setObjFunc(LPRDATAELEMENT pElement)
{ // check the dimension against any existing variable vectors

HRESULT hr = checkVectorDimension(pElement, &m_nCols);
if(FAILED(hr)) return hr;

m_nColSpace = m_nCols;
m_varDim.Release();
cloneOrCopyDimension(pElement, 0, &m_varDim);

delete [] m_rgdObjFunc; m_rgdObjFunc = NULL;
m_rgdObjFunc = new double[m_nColSpace];
if(Im_rgdObjFunc) return E_OUTOFMEMORY;
return fillDoubleArray(pElement, m_rgdObjFunc);

}

296

First, setObjFunc needs to make sure the data element being passed to it is a vector. This is

handled by the CRLPSolver member function checkVectorDimension. Furthermore,

checkVectorDimension has the responsibility for validating that as the inputs arrive they
agree in terms of the number of variables or constraints:

HRESULT CRLPSolver::checkVectorDimension(LPRDATAELEMENT pElement, int* pnSize)

{
// Data element must be one dimensional
UINT uDim = 0;
HRESULT hr = pElement->GetDimensionCount(&uDim);
if(FAILED(hr) I I uDim 1= 1) return RSOLVE_E_WRONGNUMBEROFDIMENSIONS;

// now, if the size is non-zero, they must match
long nLower, nUpper;
LPRDIMENSION pDim = NULL;
hr = pElement->GetDimension(0, &pDim);
if(FAILED(hr) I I IpElement) return EFAIL;

pDim->GetBounds(&n Lower, &nUpper);
pDim->Release();
long nSize = nUpper-nLower+l;
if(*pnSize && (nSize 1= *pnSize)) return RSOLVE_E_WRONGDIMENSIONSIZE;

if(I*pnSize)
*pnSize = nSize;

return NOERROR;

To see if the vector does not match already existing inputs, checkVectorDimension takes as
its second parameter a pointer to the member variable indicating the number of variables or
constraints, depending on which input is being set. If no inputs have been set, these values

are zero, and checkVectorDimension will set one or the other using the size of the vector.
Hence, the first input passed to the solver determines the number of variables or constraints,
or both, to which all other similar inputs are compared.

The method setObjFunc then clones the dimension associated with the vector using the

helper _cloneOrCopyDimension and stores it in a class member variable. The variable and
constraint dimensions are used to generate the output vectors, so that they use the same

domain and sets as the input dimensions. Then, setObjFunc takes the data element vector
and copies its values into a C array of doubles. This copy is handled by the member function

fillDoubleArray, which illustrates iterating over the values of a data element:

297

// Given a vector data element (assumed), copy its values into a pre-allocated array of doubles
HRESULT CRLPSolver::fillDoubleArray(LPRDATAELEMENT pElement, double* rgd)
{

long nLower, nUpper;
LPRDIMENSION pDim = NULL;
pElement->GetDimension(O, &pDim);
pDim->GetBounds(&n Lower, &nUpper);
pDim->Release();

VARIANT var; Variantlnit(&var);
for(long i = nLower; i <= nUpper; ++i)

pElement->GetAt(1, &i, &var);
VariantChangeType(&var, &var, 0, VT_R8);
*rgd++ = var.dblVal;
VariantClear(&var);

return NOERROR;

For the ConstraintSense input, which is a vector of characters, there is a similar method
named fillCharArray.

To set the matrix requires a little bit more work because CPLEX uses a sparse matrix format
that stores only the non-zero values of the constraint matrix in a single array. Nonetheless,
the general structure is the same as setObjFunc, checkVectorDimension, and fillDoubleArray.

A.1.4 Solving the linear program

To solve the LP, the wrapper's implementation of IRSolver::Solve first checks whether all of
the inputs have been set, whether the solver is already solving, and whether CPLEX has
been initialized correctly:

STDMETHODIMP CRLPSolver::Solve()
I

if(solving()) return RSOLVE_E_SOLVING;
if(IlgotAlllnputs()) return RSOLVE_E_NOTALLINPUTS;
if(Icplex_env()) return EFAIL;

The method solving returns true if the solver is already in the Solve method. This is an
important check because there is technically nothing to prevent the client from calling Solve
again during any progress notifications. The method gotAllnputs ensures that all of the non-

298

optional inputs have been set by checking that the corresponding member variables are non-

NULL.

// ...Solve() continued
Locklnputs();
ClearOutputs();
m_bSolving = true; // indicate that solving is in progress

Next the method locks the inputs, so that other solvers will not try to set new inputs. It also

clears the outputs, in preparation for a new solution. This is a least-optimal scenario, as the
solver is effectively isolated during the entire solution process. A more intelligent solution,
requiring more code, might be to clear the outputs as late as possible, allowing clients to
access outputs from a previous run even as the solver is working on the next.

// ...Solve() continued
// build the lower and upper bounds if need be
buildDefaultBounds();

The lower and upper bound inputs are optional, so the buildDefaultBounds method checks
to see if the member variables for lower and upper bounds have been set, and if not, it
creates them and initializes them to default values, namely a lower bound of zero and an
upper bound of infinity.

The next step is to load the problem into CPLEX's system and solve it. This is normal
CPLEX Callable Library code.

// ...Solve() continued
// Load the LP
CPXLPptr pLP = CPXloadlp(cplex_env(), "Problem", m_nCols, m_nRows, CPX_MIN,

m_rgdObjFunc, m_rgdRHS, m_rgchSense, m_rgnMatBegin, m_rgnMatCount,
m_rgnMatlndex, m_rgdMatValue, m_rgdLowerBound, m_rgdUpperBound,
NULL, m_nColSpace, m_nRowSpace, m_nNZSpace);

if(IpLP)

m_bSolving = false;
Unlocklnputs();
return E_OUTOFMEMORY;

// Solve it
int nResult = CPXoptimize(cplex_env(), pLP);

299

After CPLEX has determined a solution or returned an error, the next task is to retrieve the
outputs. The solver uses scalar and vector components provided by the framework library,
created from the dimensions cloned while setting input data. The member variables
m_objValue, m_primal, m_dual, m_slack, and m_reduced hold the five outputs.

// ...Solve() continued
// Create the output vectors
LPRDATAELEMENTCREATOR pCreator = NULL;
CoCreatelnstance(CLSI D_RScalarCreator, NULL, CLSCTX_IN PROC_SERVER,

IID_I RDataElementCreator, (LPVOID*)&pCreator);
pCreator->Create(L"ObjectiveValue", 0, NU LL, VT_R8, IID_IRDataElementScalar,

(LPVOID*)&mobjValue);
pCreator->Release();

CoCreatelnstance(CLSID_RDoubleVectorCreator, NULL, CLSCTX_INPROC_SERVER,
IID_ R DataElementCreator, (LPVOI D *)&pCreator);

pCreator->Create(L"PrimalVariables", 1, &m_varDim, VTR8, II D1 RData Element 1,
(LPVOID*)&m_primal);

pCreator->Create(L"DualVariables", 1, &m_conDim, VT_R8, IID_IRDataElementl,
(LPVOID*)&m_dual);

pCreator->Create(L"SlackValues", 1, &m_conDim, VT_R8, IID_IRDataElementl,
(LPVOID*)&m_slack);

pCreator->Create(L"ReducedCosts", 1, &m_varDim, VT_R8, IID_IRDataElement1,
(LPVOID*)&mreduced);

pCreator->Release();

It is a simple matter to retrieve the solution from CPLEX using CPXsolution, to fill all the
values into the data elements, and delete the solution retrieved from CPLEX:

// ...Solve() continued
// Now retrieve the solutions from CPLEX
double dObjVal;
double* rgdX - new double[m_nColSpace];
double* rgdPi = new double[m_n RowSpace];
double* rgdSlack = new double[m_nRowSpace];
double* rgdRed = new double[m_nColSpace];
CPXsolution(cplex_env(), pLP, NULL, &dObjVal, rgdX, rgdPi, rgdSlack, rgdRed);

// set the vectors and scalar
m_objValue->SetScalar(CComVariant(dObjVal));
fillOutputVector(m_primal, rgdX);
fillOutputVector(m_dual, rgdPi);
fillOutputVector(m_slack, rgdSlack);
fillOutputVector(m_reduced, rgdRed);

300

delete [] rgdX;
delete [] rgdPi;
delete [] rgdSlack;
delete [] rgdRed;

The helper function fillOutputVector transfer a C array of doubles into a vector data element,

in much the same way that fillDoubleArray does the opposite. Finally, to clean up, Solve

unloads the problem, turns off the solving flag, and unlocks the inputs, so that a new

problem can be loaded:

// ...Solve() continued
if(pLP)

CPXunloadprob(cplex_env(), &pLP);
m_bSolving = false;
Unlocklnputs();
return NOERROR; //REVIEW: OUTPUT STATUS

) //End of Solve()

A.1.5 Implementing the output methods

With the outputs loaded, it is a simple matter to pass them out to clients in calls to

GetOutputData:

STDMETHODIMP CRLPSolver::GetOutputCount(UINT* pcOutputs)

if(IpcOutputs) return E_POINTER;
*pcOutputs = 5;
return NOERROR;

)

STDMETHODIMP CRLPSolver::GetOutputData(UINT uOutput, REFIID riid, LPVOID* ppVoid,
UINT* puElement)

if(!ppVoid II IpuElement) return E_POINTER;
if(uOutput > 4) return RSOLVEE_ENVALIDINDEX;
if(solving()) return RSOLVE_E_SOLVING;
if(!haveOutputs()) return RSOLVE_E_OUTPUTNOTSET;

CComQIPtr<lRDataElement, &IID_I RData Element> element;
switch(uOutput)

I
case 0: element = m_objValue; break;
case 1: element = mprimal; break;
case 2: element = mdual; break;

301

case 3: element = m_slack; break;
case 4: element = m_reduced; break;

return element->GetDataSource(riid, ppVoid, puElement);

A.1.6 Implementing the parameters

The final step in wrapping the solver is to implement the parameters. The

IRSolverParameters interface is relatively straightforward. First, the solver must return the

number of parameters, seven in this reduced example, via GetParameterCount:

STDMETHODIMP CRLPSolver::GetParameterCount(UINT* puCount)
{

if(IpuCount) return E_POINTER;
*puCount = 7;
return NOERROR;

Next, retrieving a parameter is a simple matter of calling the appropriate CPLEX parameter
function and coercing the result into the generic VARIANT structure returned to the client:

STDMETHODIMP CRLPSolver::GetParameter(UINT ulndex, VARIANT* pVar)
{

if(ulndex>6) return E_INVALIDARG;
if(IpVar) return E_POINTER;

switch(ulndex)
{
case 0: // TimeLimit

pVar->vt = VT_R8;
CPXgetdblparam(cplex_env(), CPX_PARAM_TILIM, &(pVar->dblVal));
break;

case 1: // CPUTime
int i;
pVar->vt = VT_BOOL;
CPXgetintparam(cplex_env(), CPX_PARAM_CLOCKTYPE, &i);
pVar->boolVal = (i= = 1) ? VARIANT_TRUE : VARIANT_FALSE;
break;

case 2: // DualPricing Algorithm
pVar->vt = VT_14;
CPXgetintparam(cplex_env(), CPX_PARAM_DPRIIND, (int*)&(pVar->IVal));
break;

case 3: // IterationLimit

302

pVar->vt = VT_14;
CPXgetintparam(cplex_env(), CPX_PARAM_ITLIM, (int*)&(pVar->IVal));
break;

case 4: // ObjectivelowerLimit
pVar->vt = VT_R8;
CPXgetdblparam(cplex_env(), CPX_PARAM_OBJLLIM, &(pVar->dblVal));
break;

case 5: // ObjectiveUpperimit
pVar->vt = VT_R8;
CPXgetdblparam(cplex_env(), CPX_PARAM_OBJULIM, &(pVar->dblVal));
break;

case 6: // Feasibility Tolerance
pVar->vt = VT_R8;
CPXgetdblparam(cplexenv(), CPX_PARAM_EPRHS, &(pVar->dblVal));
break;

return NOERROR;

Setting parameters is equally easy, with the coercion this time from the VARIANT to the
specific type required by CPLEX:

STDMETHODIMP CRLPSolver::SetParameter(UINT ulndex, VARIANT Parameter)
{

if(ulndex>6) return E_INVALIDARG;
switch(ulndex)
{
case 0: // TimeLimit

setDblParam(CPX_PARAM_TILIM, Parameter);
break;

case 1: // CPUTime
VARIANT v; Variantlnit(&v);
VariantChangeType(&v, &Parameter, 0, VT_BOOL);
CPXsetintparam(cplex_env(), CPX_PARAM_CLOCKTYPE, v.boolVal ? 1: 2);
VariantClear(&v);
break;

case 2: // DualPricing Algorithm
setlntParam(CPX_PARAM_DPRIIND, Parameter);
break;

case 3: // IterationLimit
setlntParam(CPX_PARAM_ITLIM, Parameter);
break;

case 4:// ObjectiveLowerLimit
setDblParam(CPX_PARAM_OBJLLIM, Parameter);
break;

303

case 5: // ObjectiveUpperLimit
setDblParam(CPX_PARAMOBJ U LIM, Parameter);
break;

case 6: // Feasibility Tolerance
setDblParam(CPX_PARAMEPRHS, Parameter);
break;

}
return NOERROR;

The functions setlntParam and setDblParam are members of CRLPSolver, and they simply

convert the VARIANT Parameter into an int or a double, respectively, and set the
appropriate parameter in CPLEX:

HRESULT CRLPSolver::setlntParam(int param, VARIANT& var)

VARIANT v;
Variantlnit(&v);
VariantChangeType(&v, &var, 0, VT_14);
CPXsetintparam(cplex_env(), param, v.lVal);
VariantClear(&v);
return NOERROR;

HRESULT CRLPSolver::setDblParam(int param, VARIANT& var)
{

VARIANT v;
Variantlnit(&v);
VariantChangeType(&v, &var, 0, VT_R8);
CPXsetdblparam(cplex_env(), param, v.dblVal);
VariantClear(&v);
return NOERROR;

The SIDL for this solver's parameter description interface had the custom attribute
GUID_RSOLVERIMPLEMENTEDINTERFACE, which means that the solver supports the
interface IRSolverParameterslnterface for accessing the parameters dispatch interface.
Handling this is slightly more complicated than the IRSolverParameters interface itself.
Because of a bug in the COM remoting layer, the dispatch interface must be implemented by
a sub-object of the solver so that it does not conflict with any dispatch interfaces
implemented by the solver.

This sub-object can be generalized into a class that can work with any parameters
dispinterface, and hence could be incorporated into the core services. Its class declaration
for the RLPWrapper solver is:

304

class ATL_NO_VTABLE CRLPWrapperParameters :
public CComObjectRootEx<CComSingleThreadModel>,
public IDispatch

{
protected:

LPRSOLVERPARAMETERS mpParameters;
LPTYPEINFO m_pTI;
void init(LPRSOLVERPARAMETERS pParameters, LPTYPEINFO pTI) {

if(pTI) pTI->AddRef();
m_pTI = pTI;
m_pParameters = pParameters;

)

CRLPWrapperParameters() : m_pParameters(O) (}

BEGIN_COM_MAP(CRLPWrapperParameters)
COM_INTERFACE_ENTRY(IDispatch)
COM_INTERFACE_ENTRYJIID(DIID_RLPWrapperParametersDisp,

CRLPWrapperParameters)
END_COM_MAP()

protected:
STDMETHOD(GetTypelnfoCount)(UINT* pctlnfo);
STDMETHOD(GetTypelnfo)(UINT itlnfo, LCID Icid, LPTYPEINFO* pplTypelnfo);
STDMETHOD(GetlDsOfNames)(REFIID riid, OLECHAR** rgszNames, UINT cNames, LCID

Icid, DISPID *rgDisplD);
STDMETHOD(Invoke)(DISPID displD, REFIID riid, LCID Icid, WORD wFlags,

DISPPARAMS* pDispParams, VARIANT* pVarResult, EXCEPINFO* pExceplnfo, UINT*
puArgErr);

public:
static HRESULT create(LPUN KNOWN pParent, LPRSOLVERPARAMETERS pParameters,

LPTYPEINFO plnfo, LPDISPATCH* ppDisp);
-CRLPWrapperParameters() {}

This is a straightforward class declaration of an object that will implement IDispatch. A sub-

object is created by the solver by calling the static member function create, which creates
and initializes the new sub-object. This function takes as its inputs a pointer to the parent

object for the sub-object, which is the solver's IUnknown implementation, the

implementation of the IRSolverParameters interface by the solver and the type info for the

parameters dispinterface in the form of its ITypelnfo pointer. This function returns the

IDispatch interface implemented by the sub-object.

305

H RESULT CRLPWrapperParameters::create(LPU N KNOWN pParent, LPRSOLVERPARAMETERS
pParams, LPTYPEINFO pinfo, LPDISPATCH* ppDisp)

{
if(IppDisp) return E_POINTER;
CRLPWrapperParameters* p = new

CComObjectChild<CRLPWrapperParameters>(pParent);
if(p) (

p->init(pParams, pinfo);
ppDisp = static_cast<lDispatch>(p);
return NOERROR;

return E_OUTOFMEMORY;

The CComObjectChild<> template is a special class that manages the lifetime of a child
object underneath a parent object, ensuring that as long as the child object is alive, the parent
object remains alive.

The implementation of IDispatch is quite simple, because the sub-object already has the
ITypelnfo of the parameters interface and the solver's IRSolverParameters interface:

STDMETHODIMP CRLPWrapperParameters::GetTypelnfoCount(UINT* pctlnfo)

if(Ipctlnfo) return E_POINTER;
*pctlnfo = 1;
return NOERROR;

STDMETHODIMP CRLPWrapperParameters::GetTypelnfo(UINT itInfo, LCID Icid, LPTYPEINFO*
pplTypelnfo)

if(IpplTypelnfo) return E_POINTER;
if(itInfo) return TYPE_E_ELEMENTNOTFOUND;
if(m_pTI) m_pTI->AddRef();
*pplTypelnfo = m_pTI;
return NOERROR;

STDMETHODIMP CRLPWrapperPorameters::GetlDsOfNames(REFIID riid, OLECHAR**
rgszNames, UINT cNames, LCID Icid, DISPID *rgDisplD)

{
if(lID_NULL 1= riid) return DISP_E_UNKNOWNINTERFACE;
LPTYPEINFO pTI = NULL;
HRESULT hr = GetTypelnfo(O, Icid, &pTI);
if(SUCCEEDED(hr))

306

hr = pTI->GetlDsOfNames(rgszNames, cNames, rgDisplD);
pTl->Release();

}
return hr;

I

STDMETHODIMP CRLPWrapperParameters::Invoke(DISPID displD, REFIID riid, LCID Icid,
WORD wFlags, DISPPARAMS* pDispParams, VARIANT* pVarResult, EXCEPINFO*
pExceplnfo, UINT* puArgErr)

(
if(riid 1= IIDNULL) return DISP_E_UNKNOWNINTERFACE;
if(NULL == m_pParameters) return E_UNEXPECTED;

// if the dispid is <0 or >6 the invalid
if(displD<0 I I displD>6) return DISP_E_MEMBERNOTFOUND;

// if a property get/method call, then get a parameter
if(wFlags & DISPATCH_PROPERTYGET I I wFlags & DISPATCH_METHOD)
{

if(NULL==pVarResult) return E_INVALIDARG;
Variantlnit(pVarResult);
m_pParameters->GetParameter(displD, pVarResult);
return NOERROR;

)

// property put. Make sure there's one argument
if(pDispParams->cArgs 1= 1) return DISP_E_BADPARAMCOUNT;
int c = pDispParams->cNamedArgs;
if(1 =c I I (1==c && DISPID_PROPERTYPUTI=pDispParams->rgdispidNamedArgs[O]))

return DISP_E_PARAMNOTOPTIONAL;

m_pParameters->SetParameter(displD, pDispParams->rgvarg[O]);
return NOERROR;

To use the sub-object, the solver implements the IRSolverParameterslnterface:: Get-
Parametersinterface member to create and cache a pointer to the sub-object
CRLPWrapperParameters. This requires loading the type info for the parameters
dispinterface, but is otherwise a straightforward implementation of a child object.

STDMETHODIMP CRLPSolver::GetParameterslnterface(LPDISPATCH* ppDisp)
I

if(IppDisp) return E_POINTER;
*ppDisp = NULL;

307

// create the cached RLPWrapperParameters implementation if necessary
if(lm_parameter)
{

// load the parameters dispinterface typeinfo
LPTYPEINFO pTI = NULL;
LPTYPELIB plTypeLib = NULL;
LoadRegTypeLib (LIBID_RDBWrapperlnfoLib), 1, 0, LOCALE_USER_DEFAULT,
&plTypeLib);
plTypeLib->GetTypelnfoOfGuid(DIID_RLPWrapperParametersDisp, &pTI);
plTypeLib->Release();
LPDISPATCH pDisp = NULL;
CRLPWrapperParameters::create(GetUnknown(), this, pTI, &pDisp);
pTl->Release();
m_parameter = pDisp;

)
if(I Im_parameter)
{

m_parameter->AddRef();
*ppDisp - m_parameter;
return NOERROR;

return E_OUTOFMEMORY;

The solver is thus completely wrapped. Wrapping this basic functionality of the CPLEX
solver required just over 1000 lines of C++ code. Some of the items, such as the parameter
dispatch implementation and the conversion of data elements to vectors and sparse matrices
suitable for CPLEX, can be reused relatively easily, reducing future coding efforts.
Regardless, 1000 lines of code is a small price to pay to transform a subset of the CPLEX
Callable Library into a solver object that can easily be embedded in solution networks,
accessed from Visual Basic and Excel, and even the web.

A.2 CREATING A SOLVER THAT WRAPS MODEL KNOWLEDGE

Section A.1 detailed the development of a solver. This section presents only the SolverInfo
file that specifies the inputs and outputs to the Monsanto solver, described in section 4.2.1.4,
page 232, as shown here (attribute tags have been removed for readability):

library RMonsantolnfoLib

I
typedef BSTR Technical; // i
typedef BSTR Formulation; //j
typedef BSTR Package; // k
typedef BSTR RMIStorage; // I

308

typedef BSTR WIPStorage; // I
typedef BSTR FGIStorage; / I
typedef BSTR ProdResource; // m
typedef BSTR PackResource; // n
typedef long Segment; // r
typedef long Scenario; // s
typedef BSTR Time; // t

interface Inputs
{
double RMIProduction(Technical i, Time t); //P(i,t)
double RMIUsage(Technical i, RMIStorage I, Formulation j); //A(i,l,j)
double WIPUsage(Formulation j, Package k); // A(j,k)
double RMIStorage(Technical i, RMIStorage I); //S(i,I)
double WIPStorage(Formulation j, WIPStorage I); //S(j,I)
double FGIStorage(Formulation j, Package k, FGIStorage I); //S(j,k,l)
double RMICapacity(RMIStorage I, Time t); //W(l,t)
double WIPCapacity(WIPStorage I, Time t); //W(I,t)
double FGICapacity(FGIStorage I, Time t); //W(I,t)
double Demand(Formulation j, Package k, Time t, Scenario s);// D(j,k,t,s)
double ProdCapacity(Prod Resource m, Time t, Segment r); // Q(m,t,r)
double PackCapacity(PackResource n, Time t, Segment r); // Q(n,t,r)
double ProdGoeslnto(Formulation j, ProdResource m); // V(j,m)
double PackGoeslnto(Formulation j, Package k, PackResource n); // V(j,k,n)
double RMIHoldingCost(Technical i, RMIStorage I); // H(i,1)
double WIPHoldingCost(Formulation j, WIPStorage I); // H(j,l)
double FGIHoldingCost(Formulation j, Package k, FGIStorage I); //H(j,k,I)
double ProductionCost(ProdResource m, Time t, Segment r); // C(m,r,t)
double PackageCost(PackResource n, Time t, Segment r); // C(n,r,t)
double RMIDistributionCost(Technical i, RMIStorage I);// X(i,l)
double WIPDistributionCost(Formulation j, WIPStorage I); //X(j,1)
double FGIDistributionCost(Formulation j, Package k, FGIStorage I);// X(j,k,l)
double DemandCost(Formulation j, Package k, FGIStorage I); // Y(j,k,l)
double LostSalesCost(Formulation j, Package k, Time t); // U(j,k,t)
double RMIInitial(Technical i, RMIStorage I); // (i,1,0)
double WIPlnitial(Formulation j, WIPStorage I, Scenario s); / 1(j,1,O,s)
double FGllnitial(Formulation j, Package k, FGIStorage I, Scenario s); // l(j,k,l,O,s)
double RMIMinEnding(Technical i, RMIStorage I); // E(i,I)
double WIPMinEnding(Formulation j, WIPStorage I); // E(j,I)
double FGIMinEnding(Formulation j, Package k, FGIStorage I);// E(i,k,l)
double ScenarioWeight(Scenario s); // Weight(s)
};

interface Outputs

{
double ObjectiveValueo;

309

// decision variables primary values
double Demand(Formulation j, Package k, FGIStorage I, Scenario s, Time t);
double RMI(Technical i, RMIStorage I, Time t);
double FGI(Formulation j, Package k, FGIStorage I, Scenario s, Time t);
double Formulationlnventory(Formulation j, WIPStorage I, Scenario s, Time t);
double TechnicalProduction(Technical i, WIPStorage I, Time t);
double FormulationProduction(Formulation j, WIPStorage I, Time t);
double PackagingProduction(Formulation j, Package k, FGIStorage I, Scenario s, Time t);
double ProductionLevel(Prod Resource m, Time t, Segment r);
double PackagingLevel(PackResource n, Time t, Segment r);
double LostSales(Formulation j, Package k, FGIStorage I, Scenario s, Time t);

// the decision variable reduced costs
double DemandReducedCost(Formulation j, Package k, FGIStorage I, Scenario s, Time t);
// ... the other nine reduced cost variables here ...

// constraint slack values
double ProdTechSlack(Technical i, Time t);
double ProdTechBalSlack(ProdResource m, Time t);
double PackSlackSlack(PackResource n, Scenario s, Time t);
double RMIBalanceSlack(Technical i, RMIStorage I, Time t);
double RMICapacitySlack(RMIStorage I, Time t);
double WIPBalanceSlack(Formulation j, WIPStorage I, Scenario s, Time t);
double WIPCapacitySlack(WIPStorage I, Scenario s, Time t);
double FGIBalanceSlack(Formulation j, Package k, FGIStorage I, Scenario s, Time t);
double FGICapacitySlack(FGIStorage I, Scenario s, Time t);
double DemandMetSlack(Formulation j, Package k, Scenario s, Time t);

// constraint shadow prices
double ProdTechShadowPrice(Technical i, Time t);
// ... the other nine constraint shadow prices here ...

dispinterface RMonsantoParameters

properties:
[id(O)] double TimeLimit;
[id(1)] long IterationLimit;

methods:

};

This solver is an example of a solver that contains another solver, namely the CPLEX

wrapper solver. It would be a trivial task to allow specification via a parameter of which LP

engine to use, assuming that it exposes the same solver structure as the CPLEX wrapper

does.

310

A.3 CUSTOM EXTENSIONS TO THE FRAMEWORK:

A RANDOM VARIABLE SPECIFICATION

One direction in which the framework can be extended is through the specification of new
data types. Many data types are characterized by complex structures rather than simple types.
This section proposes interfaces for two complex data types: random variables and queueing
systems.

A.3.1 Specifying a data type

There are two ways to define a data type. One is to use the structure capabilities of COM
IDL to create a complex structure from simple data types. For instance, the Microsoft IDL

file for Windows types, wtypes.idl, includes a data type corresponding to a point:

typedef struct tagPOINT
{

LONG x;
LONG y;

} POINT, *PPOINT, *LPPOINT;

These data types are, like the simple data types, static objects with no functionality of their
own. A POINT is two longs, and nothing else. Using a POINT requires knowing the layout of
the POINT object in memory, which requires knowing how to interpret IDL structures. The
scripting languages VBScript and JScript cannot, so this POINT data type would be
unavailable to them.

The second way is to define interfaces that objects that implement the data type will support.
For example, an interface for a point structure might be:

interface IRPoint : IUnknown

{
HRESULT get([out] long* px, [out] long* py);
HRESULT set([in] long x, [in] long y);

};

This version, because it does not derive from IDispatch, also cannot be used by the simpler
scripting languages VBScript and JScript. However, this data type can easily be defined by a
dual interface:

interface IRPointDisp : IDispatch
i

[id(0), propget] HRESULT x([out, retval] long* retval);

311

[id(O), propput] HRESULT x([in] long newValue);
[id(1), propget] HRESULT y([out, retval] long* retval);
[id(1), propput] HRESULT y([in] long newValue);

Now, VB clients can refer to the X and Y components of the point separately, as in point.x
and point.y.

The interface versions of a data type seem like significantly more work than just using a
structure because the interfaces provide no implementation themselves. Someone would
need to create a component that implements those interfaces in order to actually use the data
type. Furthermore, the object would swell in size. The structure version of a point is eight
bytes (two longs, four bytes each). The interface version of a point would require these same
eight bytes for the point values themselves, as well as at least eight more bytes for the vtable
pointer and the reference count. That is, implementing a point as a COM object would at
least double the size of each point. In environments where hundreds of thousands of points
will be manipulated, this might be undesirable. Either using the structure version of a point
or using some container interface (something akin to the flyweight pattern of Gamma et al.
[30]) would be preferable.

Nonetheless, there are three cases where the interface definition is preferred. One case is
when the data type is volatile, in the sense that the values of the data type can change
without any directives from the client. An example is stock prices. A structure for a stock
price data type could be:

typedef tagSTOCKPRICE
{

BSTR bstrSymbol; // Like "MSFT"
double dPrice; // price of the stock at last update
DATE dtLastUpdate; // contains data and time of last update

} STOCKPRICE;

However, for a client to update the stock price, it needs a function that can query the stock
price service providers, such as:

// On input, pPrice->bstrSymbol contains symbol to look up
// On output, dPrice and dtLastUpdate contain price and time
HRESULT getStockPrice([in, out] STOCKPRICE* pPrice);

An alternative solution is to wrap the data type by an interface that queries the stock price
whenever the price is requested:

312

interface IRStockPriceDisp : IDispatch
{

[id(O), propget] HRESULT Symbol([out, retval] BSTR* retval);
[id(O), propput] HRESULT Symbol([in] BSTR newValue);
// Dynamically queries the stock price
[id(1), propget] HRESULT Price([out, retval] double* retval);
// returns time of last Price query
[id(2), propget] HRESULT Time([out, retval] DATE* retval);

Now, the query mechanism is implicitly wrapped into the data type. Furthermore, the client
can no longer set the value of the price or time. This is the second case for using interfaces.
The data type can prohibit changing values that are derived attributes, such as the stock price
(a function of the symbol and the query time) or the area of a rectangle when the length and
width can be specified. This read-only ability of properties in an interface can aid
development efforts by ensuring that clients do not misbehave by changing values they
should not.

The third case is similar to that for derived attributes. Some data types require such complex
calculations, or offer such sufficiently complex operations, that they warrant their own
interfaces. In particular, when the copy, assignment, and equality semantics are sufficiently
complex, an object might need its own interface. An example provided by Microsoft is the
font data type, wrapped by the I Font and IFontDisp interfaces. These interfaces provide
property access, comparison, and cloning capabilities for a font, as well as the ability to query
the text metrics for the font, which is computed upon request. The random variable and
queueing system data types are examples of the third case.

A.3.2 Using a custom data type in the framework

Ideally, a custom data type could be stored in a data element just as a simple data type can.
The data element interfaces make this trade-off by specifying parameters of type VARIANT,
which incurs a performance and space overhead (VARIANTs are 16 bytes and have deep
copy semantics), but permits the greatest flexibility for data flow. Fortunately, VARIANTs
can store pointers to IUnknown, which means that any object can be stored in data elements.
In particular, custom data types that are described by COM interfaces and implemented by
components can be stored in data elements under the current specification.

Complex data types based on structures are not so fortunate, as VARIANTs cannot store
structures. Using structures in the current framework would require adding new data element
interfaces that support the structure, and then clients would have to know to use that

1 For example, to clone a POINT requires a shallow copy of two longs. This is the default assignment
behavior. However, to clone a string requires a deep copy of the string data. The default assignment
behavior is not sufficient for this task (in C and C++), so a special string copy function is necessary.

313

interface specifically. This is certainly possible, but it currently limits the structure's
applicability with generic clients that are only aware of the basic data element interfaces.
Data elements containing these complex structures could certainly be passed around a
network without any client interaction, if all of the solvers know how to use the structure, so
for internal networks this could be a good solution. Structures might offer optimizations
over using VARIANTs or component implementations.

Given that a pointer to an object's lUnknown can be stored in a standard data element, it
remains to specify how the client knows that a solver input or output is a complex data type
rather than a simple type. Ideally, it should be as simple as specifying in the solver's SIDL
file (see section 3.6.1.4, page 151) the new data type. So, the original description of an input
that conceptually is a vector of points might be:

// From SIDL library block
interface Inputs
{

long LatticeX(Pointlndex i);
long LatticeY(Pointlndex i);

1;

Using a custom data type, this becomes the more logically pleasing:

// From SIDL library block
interface Inputs
{

// Takes as input a vector of points
IRPointDisp* Lattice(Pointlndex i);

1;

This works fine for generating the SITL. However, for a client to determine the type of this
data element, a new SolverInfo interface needs to be defined. Whereas previously the client
could determine the raw data type of the data element as an enumeration of the possible
VARIANT types using the GetDataType method of the IRSolverlnputlnfo,
IRSolverOutputlnfo, and IRSolverParamlnfo interfaces, now the client needs to be able to
browse the interface definition of the custom data type. That is, the client needs the
ITypelnfo* of the interface. A new SolverInfo interface might look like this:

interface I RSolverlnfoProvideTypelnfo

{
HRESULT GetTypelnfo([out] ITypelnfo* * ppTInfo);

314

This interface would be implemented by the SolverOutputInfo, SolverInputInfo, and
SolverSetInfo classes, and would be exposed by those objects that describe custom data
types. A client can determine if a particular SolverInputInfo object, for instance, has a

custom data type by checking to see if its data type is type VT_UNKNOWN or

VT_DISPATCH. If so, it can QueryInterface for IRSolverlnfoProvideTypelnfo and retrieve the

type library information for the interface that describes the custom data type.

A.3.3 A random variable specification

A random variable data type, as specified by this extension, is an object that implements the

IRRandomVariable interface, defined as follows:

[
object, dual, pointer_default(unique),
uuid(69CB66AO-BF8E-1 1D1-9197-0020781 0C741),

interface IRRandomVariable : IDispatch
{

//Mean
[propget, id(O)] HRESULT Mean([out, retval] double* retval);
[propput, id(O)] HRESULT Mean([in] double Mean);
// Variance
[propget, id(1)] HRESULT Variance([out, retval] double* retval);
[propput, id(1)] HRESULT Variance([in] double Variance);

// Standard deviation
[propget, id(2)] HRESULT Stdev([out, retval] double* retval);
[propput, id(2)] HRESULT Stdev([in] double Stdev);
// Any moment
[propget, id(3)] HRESULT Moment([in] short Moment, [out, retval] double* retval);
[propput, id(3)] HRESULT Moment([in] short Moment, [in] double Value);
// Any central moment
[propget, id(4)] HRESULT CentralMoment([in] short Moment, [out, retval] double* retval);
[propput, id(4)] HRESULT CentralMoment([in] short Moment, [in] double Value);

// Calculate the PDF
[id(5)] HRESULT PDF([in] double x, [out, retval] double* retval);
// Calculate the PMF
[id(6)] HRESULT PMF([in] double x, [out, retval] double* retval);
// Calculate the CDF
[id(7)] HRESULT CDF([in] double x, [out, retval] double* retval);

// Calculate the InverseCDF
[id(8)] HRESULT InverseCDF ([in] double F, [out, retval] double* retval);

// The name of the distribution; maybe a stringified CLSID or ProglD
[propget, id(9)] HRESULT Type([out, retval] BSTR* retval);
[propput, id(9)] HRESULT Type([in] BSTR Distribution);

// Number of parameters that parameterize this random variable

315

[propget, id(l0)] HRESULT ParameterCount([out, retval] short* retval);
// Description of a parameter
[propget, id(1 1)] HRESULT ParameterDesc([in] short Parameter, [out, retval] BSTR* retval);
// The type of a parameter
[propget, id(12)] HRESULT ParameterType([in] short Parameter, [out, retval] VARTYPE* vt);
// The value of a parameter
[propget, id(13)] HRESULT Parameter([in] short Parameter, [out, retval] VARIANT* retval);
[propput, id(l 13)] HRESULT Parameter([in] short Parameter, [in] VARIANT Value);

This interface has several groups of properties and methods. The first five properties return
or set standard random variable moment-based properties. The methods PDF, PMF, CDF,
and InverseCDF calculate functions of the random variable. The Type property returns the
name of the distribution, such as "Geometric." The final four methods provide a generic
interface for parameterizing a random variable. For instance, an exponential random
variables has a single parameter of type double with the description "The rate of the
exponential process," while a normal random variable has two parameters of type double
with the descriptions "The mean of the normal random variable" and "The variance of the
normal random variable."

Note that neither the name or the parameter choice is unique for any given random variable.
Hence, it is up to the client to ensure that the correct interpretations are given. For instance,
one normal random variable implementation might use the mean and variance as two
parameters, while another might use the mean and standard deviation. Without direct
dimension semantics, it is difficult to automatically ensure the proper interpretation of the
parameters is followed.

Random variables further can support sampling from their distributions. This optional
capability is expressed and exposed by a random variable object implementing the
IRRandomSample interface, described here:

object, dual, pointerdefault(unique),
uuid(69CB66A1-BF8E-1 1 D1-9197-00207810C741),

interface IRRandomSample: IDispatch

// Returns a single sample from the distribution
[id(201)] HRESULT Sample([out, retval] double* retval);
// Returns/sets the UniformGenerator for the sampling
[propget, id(202)] HRESULT UniformGenerator([out, retval] IRRandomGenerator** retval);
[propputref, id(202)] HRESULT UniformGenerator([in] IRRandomGenerator* Generator);
// Returns a vector in a SAFEARRAY
[id(203)] HRESULT SampleVector([in] short Count, [out, retval] VARIANT* retval);

1;

316

The interface defines the property UniformGenerator, which is a reference to another object
that implements a uniform 0-1 random number generation engine. The random variable

object uses the UniformGenerator to generate a CDF value, and then can call InverseCDF to
calculate the value of the random variable. The client can specify any UniformGenerator
object, thereby giving the client complete control over the underlying random number
generator. In particular, a single UniformGenerator object, and hence a single sequence of
uniform random numbers, could be used for many random variable sampling engines. The

two methods Sample and SampleVector should use the UniformGenerator to generate a
single sample and a vector of samples, respectively.

The I RRandomGenerator interface is relatively simple:

object, dual, pointer_default(unique),
uuid(69CB66A2-BF8E-1 1 D1-9197-0020781 0C74 1),

interface IRRandomGenerator : IDispatch
{

// Returns a single sample
[id(300)] HRESULT Sample([out, retval] double* retval);
// Sets the seed for randomization
[id(301)] HRESULT Seed([in] double seed);
// Returns a sample vector in a SAFEARRAY
[id(302)] HRESULT SampleVector([in] short Count, [out, retval] VARIANT* retval);
// Randomizes the seed
[id(303)] HRESULT RandomizeSeed();

The ability to sample an entire vector enables multidimensional random variables with

correlated components. The IRRandomGenerator could also be implemented to generate
non-uniform samples or correlated sequences.

A.3.4 A queueing system specification

The queueing system specification is a pair of interfaces that define characteristics of another
custom data type, one that represents a simple single-stage queueing system. The system has
a single arrival process, any number of servers operating according to a single service
process, any maximum system size, and any population size. The interfaces use the random
variable specification defined in section A.3.3, above.

The queueing system data type is very much like a solver. It has an "input" interface,
IRQueueData, and an "output" interface, IRQueueStatistics. In fact, it would be easy for the
queueing system implementation to be a solver object rather than just a custom data type, by
exposing the solver interfaces described in section 3.5. Often, in fact, a custom data type is

317

indistinguishable from a very simple solver, and how the custom data type is used might
determine how it is interpreted.

The input side of the custom data type is described by the IRQueueData interface:

object, dual, pointer_default(unique),
uuid(69CB66A3-BF8E-1 1 D1-9197-0020781 0C741),

interface IRQueueData : IDispatch

// Interarrival process
[propget, id(401)] HRESULT Interarrival([out, retval] IRRandomVariable** retval);
[propput, id(401)] HRESULT Interarrival([in] IRRandomVariable* Process);
// Service process
[propget, id(402)] HRESULT Service([out, retval] IRRandomVariable** retval);
[propput, id(402)] HRESULT Service([in] IRRandomVariable* Process);
// Number of servers (default O=infinite)
[propget, id(403)] HRESULT ServerCount([out, retval] long* retval);
[propput, id(403)] HRESULT ServerCount([in] long Count);
// Maximum allowable in the system (default O=infinite)
[propget, id(404)] HRESULT MaxlnSystem([out, retval] long* retval);
[propput, id(404)] HRESULT MaxlnSystem([in] long Max);
// Population size (default O=infinite)
[propget, id(405)] HRESULT PopulationSize([out, retval] long* retval);
[propput, id(405)] HRESULT PopulationSize([in] long Count);

The output side of the custom data type is described by the IRQueueStatistics interface:

object, dual, pointer_default(unique),
uuid(69CB66A4-BF8E-1 1 D 1 -9197-0020781 0C74 1),

interface IRQueueStatistics : IDispatch

[propget,
[propget,
[propget,
[propget,
[propget,
[propget,
[propget,

id(101)]
id(102)]
id(1 03)]
id(104)]
id(1 05)]
id(1 06)]
id(1 07)]

HRESULT Utilization([out, retval] double* retval);
HRESULT NumberlnSystem([out, retval] IRRandomVariable** retval);
HRESULT NumberlnQueue([out, retval] IRRandomVariable* * retval);
HRESULT TimelnSystem([out, retval] IRRandomVariable* * retval);
HRESULT TimelnQueue([out, retval] IRRandomVariable* * retval);
HRESULT ProbOfWaiting([out, retval] double* retval);
HRESULT FractionOfTimeBusy([out, retval] double* retval);

318

Both interfaces derive from IDispatch, making it possible for an alternative implementation
to support only the input or output side of the queueing system data type. However, if the

implementation supports both, it should implement a version of IDispatch that exposes all of

the properties of both IRQueueData and IRQueueStatistics. That is why none of the dispatch
IDs collide in the two interfaces.

Within the context of the single arrival and single service process restrictions, the queueing
system specification is fairly powerful. As most of the queue statistics are returned as their
own random variables, a queueing system engine can provide an arbitrary degree of
complexity in its results. For instance, one particular engine might accept only exponential
arrival processes and service processes as inputs, but generate fully defined output random
variable objects that can return their PDF and CDF values. Another engine might accept
exponential arrival processes and general service processes but output random variable
objects that implement only the mean and variance properties. Exponential networks could
easily be created by tying together queueing system objects.

A.4 M/M/K QUEUE EXAMPLES

This section presents code samples associated with the M/M/k queueing analysis in
Microsoft Excel, presented in section 4.2.3, page 244.

A.4.1 VBA macros

This section presents the two macros described in section 4.2.3.3, page 246. These are the
ExpWaitMMk macro and the ServiceTimeFromWaitTimeMMk macro, and their associated
helper macros.

' Checks arrival rate and service rates
returns 0 if all okay, an error value otherwise

Function CheckRates(ArrivalRate, ServiceRate, NumServers) As Variant
CheckRates = 0
If ArrivalRate < 0 Or ServiceRate <= 0 Then

CheckRates = CVErr(xlErrNum)
Elself NumServers < 1 Then

CheckRates = CVErr(xlErrNum)
Elself ArrivalRate / (NumServers * ServiceRate) >= 1 Then

CheckRates = CVErr(xlErrNum)
End If

End Function

319

' Probability of queueing for an M/M/k queue.
' Kleinrock vol. 1 (3.40)

Function ProbOfQueueingMMk(ArrivalRate, ServiceRate, NumServers)
Dim rhoRatio As Double '= rho*k = lambda/mu
Dim K As Integer
Dim InvProbOfZeroCustomers As Double '= 1/PO
Dim UnnrmlzdPrbOfQueueing As Double '= Pq/PO
Dim UnnrmlzdPrbOfNotQueueing As Double '= (1-Pq)/PO
Dim factorial As Double
Dim rhoPower As Double
Dim rho As Double
Dim errorCode

' check parameters for errors
errorCode = CheckRates(ArrivalRate, ServiceRate, NumServers)
If IsError(errorCode) Then

ProbOfQueueingMMk = CVErr(errorCode)
Exit Function
End If

' truncate fractional part of number of servers
NumServers = Int(NumServers)

rhoRatio = ArrivalRate / ServiceRate
rho = rhoRatio / NumServers

UnnrmizdPrbOfNotQueueing = 1
factorial = 1
rhoPower = 1

For K = 1 To NumServers - 1
rhoPower = rhoPower * rhoRatio
factorial = factorial * K
UnnrmlzdPrbOfNotQueueing = UnnrmlzdPrbOfNotQueueing + rhoPower / factorial

Next K

rhoPower = rhoPower * rhoRatio
factorial = factorial * NumServers

UnnrmlzdPrbOfQueueing = rhoPower / (factorial * (1 - rho))

InvProbOfZeroCustomers = (UnnrmlzdPrbOfNotQueueing + UnnrmlzdPrbOfQueueing)
ProbOfQueueingMMk = UnnrmlzdPrbOfQueueing / InvProbOfZeroCustomers

End Function' ProbOfQueueingMMk

320

' Expected waiting time for M/M/1 queue function

= (rho/mu)/(1-rho)
= lambda/[mu*(mu-lambda)]

(which is more robust when (mu-lambda) goes to zero?

Function ExpWaitMM1 (ArrivalRate, ServiceRate)
Dim errorCode
errorCode = CheckRates(ArrivalRate, ServiceRate, 1)
If IsError(errorCode) Then

ExpWaitMM 1 = CVErr(errorCode)
Else

ExpWaitMM 1 = ArrivalRate / (ServiceRate * (ServiceRate - ArrivalRate))
End If

End Function ' ExpWaitMM 1

' Expected waiting time for M/M/k queue function
' NumServers defaults to 1 if left out.

Function ExpWaitMMk(ArrivalRate, ServiceRate, Optional NumServers)
Dim ProbOfQueueing

' for one server, use the one-server routine
If IsMissing(NumServers) Or NumServers = 1 Then

ExpWaitMMk = ExpWaitMM 1 (ArrivalRate, ServiceRate)
Exit Function

End If

' truncate fractional part of number of servers
NumServers = Int(NumServers)

' ProbOfQueueing is an external routine, so does its own error checking
' of parameters.
ProbOfQueueing = ProbOfQueueingMMk(ArrivalRate, ServiceRate, NumServers)
If IsError(ProbOfQueueing) Then

ExpWaitMMk = ProbOfQueueing
Exit Function

End If

ExpWaitMMk = ProbOfQueueing / (NumServers * ServiceRate - ArrivalRate)
End Function ' ExpWaitMMk

321

Function ServiceRateFromWaitTimeMMk(ArrivalRate As Double, NumServers As Integer,_
DesiredWait As Double, Optional Tolerance)

Dim ServiceRate As Double mu
Dim stepsize As Double
Dim CurrWait As Double
Dim Currlteration As Integer

' do some error checking
If DesiredWait <= 0 Then

ServiceRateFromWaitTimeMMk = [#NUM!]
Exit Function

End If
If NumServers <= 0 Then

ServiceRateFromWaitTimeMMk = [#NUMI]
Exit Function

End If
If ArrivalRate <= 0 Then

ServiceRateFromWaitTimeMMk = [#NUMI]
Exit Function

End If

'initialize Tolerance if left out
If IsMissing(Tolerance) Then

Tolerance = 0.0000001
End If

' initial service rate set to minimum to satisfy (rho < 1
ServiceRate = ArrivalRate / NumServers

' initial step size value and iteration number
stepsize = 1
Currlteration = 0

' iterate through, increasing service rate until wait time satisfied
CurrWait = ExpWaitMMk(ArrivalRate, ServiceRate + stepsize, NumServers)
While (Abs(DesiredWait - CurrWait) / DesiredWait) > Tolerance

CurrWait = ExpWaitMMk(ArrivalRate, ServiceRate + stepsize, NumServers)
If CurrWait >= Desired Wait Then
ServiceRate = ServiceRate + stepsize
Currlteration = Currlteration + 1

' if too many iterations at same step size, take larger steps
If Currlteration = 10 Then

stepsize = stepsize * 10
Currlteration = 0

322

End If
Else

current step would be too large, so make it smaller and reset counter
stepsize = stepsize / 10
Currlteration = 0

End If
Wend

' output final correct value
ServiceRateFromWaitTimeMMk = ServiceRate

End Function

The macro ServiceRateFromWaitTimeMMk initializes the service rate to its minimum value
to ensure that the utilization equals one. Then it repeatedly increases the service rate, in
varying step sizes depending on progress, until the desired waiting time is found (within the
specified tolerance). In particular, for each iteration the service time is increased by the step
size, which decreases the current waiting time. If the current waiting time is decreased ten
times without becoming less than the desired waiting time, then the step size is presumed to
be too small and it is increased by a factor of ten. Once the service level is so high that the
current waiting time is less than the desired waiting time, then the algorithm backs up a step
and then decreases the step size by a factor of ten.

A.4.2 Framework solver

This section presents the VBA macro necessary to invoke the framework solver version of
the M/M/k queue, as described in section 4.2.3.5, page 247. The framework solver uses the
random variable and queueing system extensions from section A.3.4, page 317, for M/M/k
queueing systems. The VBA code to use this calculation looks like this:

' Expected waiting time for M/M/k queue function
' NumServers defaults to 1 if left out.

Function FrameExpWaitMMk(ArrivalRate, ServiceRate, Optional NumServers)
Dim QueueSystem As MMQueue
Dim QueueStats As IRQueueStatistics
Dim interarrival As IRRandomVariable
Dim service As IRRandomVariable

If IsMissing(NumServers) Then
NumServers = 1

End If

323

Set interarrival = CreateObject("RANDVAR.Exponential. 1")

Set service = CreateObject("RANDVAR.Exponential. 1 ")
Set QueueSystem = CreateObject("MMQU EUE.Queue. 1")

interarrival.Parameter(1) = ArrivalRate
service.Parameter(1) = ServiceRate
Set QueueSystem.interarrival = interarrival
Set QueueSystem.service = service
QueueSystem.ServerCount = NumServers

Set QueueStats = QueueSystem
FrameExpWaitMMk = QueueStats.TimelnQueue.Mean

End Function

This code seems longer than it might otherwise need to be, but that is the trade-off for the

flexibility provided by a queueing system that allows arbitrary interarrival and service

processes as inputs and generates arbitrary random variables as outputs. Furthermore, the

savvy developer can include an Excel Add-in that hides this code, thereby making the solver

as easy to use now as in the Add-in case while also leaving the solver in a separate executable

and thereby making it available to all clients that understand the framework.

324

BIBLIOGRAPHY

1. Adler, R.M., "Emerging Standards for Component Software," IEEE Computer, 28:3 (1995), 68-
77.

2. Banerjee, S., and A. Basu, "A Knowledge Based Framework for Selecting Management Science
Models," Proceedings of the Twenty-Third Annual Hawaii International Conference on System Sciences, Vol.
III, IEEE Computer Society Press, Los Alamitos, CA, (1990), 484-493.

3. Banerjee, S., and A. Basu, "Model type selection in an integrated DSS environment," Decision
Support Systems, 9:1 (1993), 75-89.

4. Bhargava, H.K., S.O. Kimbrough, and R. Krishnan, "Unique Names Violations, a Problem for
Model Integration or You Say Tomato, I Say Tomahto," ORSA Journal on Computing, 3:2 (1991),
107-120.

5. Bhargava, H.K., and R. Krishnan, "A Formal Approach for Model Formulation in a Model
Management System," Proceedings of the Twenty-Third Annual Hawaii International Conference on System
Sciences, Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1990), 453-462.

6. Blanning, R.W., "Model management systems: An overview," Decision Support Systems, 9:1 (1993),
9-18.

7. Booch, G., Object-OrientedAnalysis and Design With Applications, 2nd ed., Addison-Wesley, Reading,
MA, 1994.

8. Box, D., "Q&A: ActiveX/COM," Microsoft Systems Journal, 12:5 (1997), 95-110.

9. Box, D., Essential COM, Addison-Wesley, Reading, MA, 1998.

10. Bradley, G.H., and R.D. Clemence, Jr., "Model Integration With a Typed Executable Modeling
Language," Proceedings of the Twenty-First Annual Hawaii International Conference on System Sciences,
Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1988), 403-410.

325

11. Brockschmidt, K., Inside OLE, 2nd ed., Microsoft Programming Series, Microsoft Press,
Redmond, WA, 1995.

12. Brown, K., "VB can leverage iid_is and GUIDs - here's how!" 1997,
<http://microsoft.ease.lsoft.com/scripts /wa.exe?A2=ind971Oa&L=dcom&D=O&P=21462>
(4 March 1998).

13. Brown, S., "The Fall of Software's Aristocracy: Realizing the Potential of Development," in The

Future of Software, The MIT Press, Cambridge, MA, (1995), 157-175.

14. Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern-Oriented Software

Architecture: A System of Patterns, John Wiley & Sons, West Sussex, England, 1996.

15. Chappell, D., Understanding ActiveX and OLE, Microsoft Press, Redmond, WA, 1996.

16. Coffee, P., "JVM: Is It Living Up to Java's Potential?" PC Week, 15:11 (1998), 25, 32.

17. CPLEX Optimization, Inc., Using the CPLEX Callable Libray, including Using the CPLEX Base

System, with CPLEX Barrier and Mixed Integer Solver Options, version 4.0, 1995.

18. De, S., and A.B. Whinston, "A Framework for Integrated Problem Solving in Manufacturing,"
IIE Transactions, 18:3 (1986), 286-297.

19. Deger, R., "Worldwide effort cracks DES," PC Week Online, 19 June 1997,
<http://www.zdnet.com/pcweek/news/0616/19mdes.html> (26 January 1998).

20. Dellarocas, C.N., "A Coordination Perspective on Software Architecture: Towards a Design
Handbook for Integrating Software Components," Ph.D. thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering and Computer Science, 1996.

21. Dellarocas, C.N., "Toward a Design Handbook for Integrating Software Components,"
presented at the Fifth International Symposium on Assessment of Software Tools and
Technologies, 1997.

22. Digital Equipment Corporation, "DIGITAL Demonstrates Commitment to Microsoft COM,"
26 January 1998, <http://www.digital.com/PRW03Q/> (19 April 1998).

23. Dolk, D.R., "An introduction to model integration and integrated modeling environments,"
Dedision Support Systems, 10:3 (1993), 249-254.

24. Dolk, D.R., and J.E. Kottemann, "Model integration and a theory of models," Decision Support
Systems, 9:1 (1993), 51-63.

25. Dyck, T., "OLE DB: A Worthy Successor to ODBC," PC Week, 14:3 (1997), 69.

26. Eck, R.D., A. Philippakis, and R.G. Ramirez, "Solver Representation for Model Management
Systems," Proceedings of the Twenty-Third Annual Hawaii International Conference on System Sciences, Vol.
III, IEEE Computer Society Press, Los Alamitos, CA, (1990), 474-483.

27. Finkelberg, H., and S.C. Graves, "Franz Edelman Award for Management Science
Achievement," Interfaces, 27:1 (1997), 1-6.

28. Fourer, R., "Software Survey: Linear Programming," OR/MS Today, 24:2 (1997), 54-63.

326

29. Fowler, M., and K. Scott, UML Distilled: Applying the Standard Object Modeling Language, Addison-
Wesley, Reading, MA, 1997.

30. Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, Reading, MA, 1995.

31. Gates, W.H., III, The RoadAhead, 2nd ed., Penguin Books, London, England, 1996.

32. Geoffrion, A.M., "An Introduction to Structured Modeling," Management Science, 33:5 (1987),
547-588.

33. Geoffrion, A.M., "Computer-based Modeling environments," European Journal of Operations
Research, 41:1 (1989), 33-43.

34. Geoffrion, A.M., "Reusing Structured Models via Model Integration," Proceedings of the Twenty-
Second Annual Hawaii International Conference on System Sciences, Vol. III, IEEE Computer Society
Press, Los Alamitos, CA, (1989), 601-611.

35. Geoffrion, A.M., "The Formal Aspects of Structured Modeling," Operations Research, 37:1 (1989),
30-51.

36. Geoffrion, A.M., "A Taxonomy of Indexing Structures for Mathematical Programming
Modeling Languages," Proceedings of the Twenty-Third Annual Hawaii International Conference on System
Sciences, Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1990), 463-473.

37. Geoffrion, A.M., "Structured Modeling: Survey and Future Research Directions," Interactive
Transactions of ORIMS, 1:1 (1996), <http://catt.bus.okstate.edu:80/itorms/currvol/voll /
papers/geoffrion/docs/csts/index.htm> (22 April 1998).

38. Goldberg, A.V., "Andrew Goldberg's Network Optimization Library,"
<http:/ //www.neci.nj.nec.com/homepages/avg/soft/soft.html> (19 May 1998).

39. Gonsalves, A., and M. Moeller, "IONA Out to Bridge Gap," PC Week, 14:52 (1997), 6.

40. Goul, M., C. Kuo, and T.E. Sandman, "Towards Synergizing the Active Object, Software
Maintenance, and Algorithm Synthesis Metaphors for Integrated Modeling Environments,"
Proceedings of the Twenty-Fflth Annual Hawaii International Conference on System Sciences, Vol. III, IEEE
Computer Society Press, Los Alamitos, CA, (1992), 437-448.

41. Grau, R., and J. Barcelo, "GETRAM: A Generic Environment for Traffic Analysis and
Modeling," IFAC Transportation Systems: Theory and Application of Advanced Technology, Vol. 2,
Elsevier Science, Oxford, UK, (1995), 701-706.

42. Graves, S.C., C. Gutierrez, M. Pulwer, H. Sidhu, and G. Weihs, "Optimizing Monsanto's Supply
Chain Under Uncertain Demand," Annual Conference Proceedngs-Council of Logistics Management,
Orlando, FL (1996), 501-516.

43. Graves, S.C., and S.P. Willems, "Strategic Safety Stock Placement in Supply Chains," Proceedings
of the 1996 MSOM Conference, Dartmouth College, Hanover, NH, (1998), 299-304.

44. Gutierrez, C.J., "Development and Application of a Linear Programming Model to Optimize
Production and Distribution of a Manufacturing Company," M.S. thesis, Massachusetts Institute
of Technology, Department of Civil and Environmental Engineering, 1996.

327

45. Huh, S., "Modelbase Constructions with Object-Oriented Constructs," Decision Sciences, 24:2
(1993), 409-434.

46. Huhns, M.N., N. Jacobs, T. Ksiezyk, W. Shen, M.P. Singh, and P.E. Cannata, "Enterprise
Information Modeling and Model Integration in Carnot," Enterprise Integration Modeling: Proceedings
of the First International Conference, The MIT Press, Cambridge, MA, (1992), 290-299.

47. IBM Corporation, Inc., Optimization Subroutine Library: Guide and Reference, Release 2, 3rd ed., 1991.

48. Islam, N., and R.H. Campbell, "Latest Developments in Operating Systems," Communications of
the ACM, 39:9 (1996), 38-40.

49. Jones, C.V., "An Integrated Modeling Environment Based on Attributed Graph and Graph-
Grammars," Decision Support Systems, 10:3 (1993), 255-275.

50. Jones, C.V., "Attributed Graphs, Graph-Grammars, and Structured Modeling," Annals of
Operations Research, 38 (1992), 281-324. (Special volume on Model Management in Operations
Research, edited by B. Shetty, H. Bhargava, and R. Krishnan.)

51. Jones, C.V., "Visualization and Optimization," ORSA Journal on Computing, 6:3 (1994), 221-257.

52. Jordan, W.C., and S.C. Graves, "Principles on the Benefits of Manufacturing Process
Flexibility," Management Science, 41:4 (1995), 577-594.

53. Jorgenson, B.R., "Model Repository Technology for Model Integration," Enterprise Integration
Modeling: Proceedings of the First International Conference, The MIT Press, Cambridge, MA, (1992),
419-429.

54. Karsai, G., "A Configurable Visual Programming Environment," Computer, 28:3 (1995), 36-44.

55. Klein, M., and R. Traunmiiller, "Architecture and User Interface of KB-DSS Development
Environment," Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System
Sciences, Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1993), 108-118.

56. Kleinrock, L., Queueing Systems, Volume 1: Theory, John Wiley & Sons, New York, 1975.

57. Kottemann, J.E., and D.R. Dolk, "Model Integration and Modeling Languages: A Process
Perspective," Information Systems Research, 3:1 (1992), 1-16.

58. Lakos, J., Large Scale C++ Software Design, Addison-Wesley, Reading, MA, 1996.

59. Larson, R.C., "Perspectives on Queues: Social Justice and the Psychology of Queueing,"
Operations Research, 35:6 (1987), 895-905.

60. Lazimy, R., "Object-Oriented Modeling Support System: Model Representation and
Incremental Modeling," Proceedings of the Twenty-Sixth Annual Hawaii International Conference on
System Sciences, Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1993), 445-459.

61. Leebaert, D., editor, The Future ofSoftware, The MIT Press, Cambridge, MA, 1995.

62. Lenard, M.L., "An object-oriented approach to model management," Decision Support Systems, 9:1
(1993), 67-73.

328

63. Liang, T., "Integrating Model Management with Data Management in Decision Support
Systems," Decision Support Systems, 1:3 (1985), 221-232.

64. Ma, P., F.H. Murphy, and E.A. Stohr, "An Implementation of LPFORM," ORSA Journal on
Computing, 8:4 (1996), 383-401.

65. McCright, J., "OLAP Council Readies Interoperability Standard," ZDNet, 16 January 1998,
<http://www.zdnet.com/zdnn/content/pcwk/1503/270779.html> (21 March 1998).

66. McKay, K.N., D.B. Kletter, and S.C. Graves, "OMAC: A System for Operations Modeling and
Analysis," Annals of Operations Research, 72 (1997), 241-264. (Special volume on Interface
between IS and OR, Part II: Systems for Models, edited by R. Ramesh and H.R. Rao.)

67. McLaren, B.M., P.M. Neuss, and 0. De Groote, "The Integrated Modeling Package (IMP): An
Object Oriented Module for Manufacturing Simulation," Simulation Environments and Symbol and
Number Processing on Multi and Array Processors: Proceedings of the European Simulation Multiconference,
Society for Computer Simulation, Ghent, Belgium, (1988), 231-236.

68. Mertins, K., W. Siissenguth, and R. Jochem, "An Object Oriented Method for Integrated
Enterprise Modeling as a Basis for Enterprise Coordination," Enterprise Integration Modeling:
Proceedings of the First International Conference, The MIT Press, Cambridge, MA, (1992), 249-258.

69. Meyer, B., Object-Oriented Software Construction, 2nd ed., Prentice Hall PTR, Upper Saddle River,
NJ, 1997.

70. Microsoft Corporation, "Microsoft Scripting Technologies: Hosting Information," 1998,
<http://www.microsoft.com/scripting/hosting/hosting.htm> (23 March 1998).

71. Microsoft Corporation, "Microsoft Visual Basic Advances RAD Industry Leadership Position,"
28 January 1998, <http://www.microsoft.com/corpinfo/press/1998/Jan98/vb5mompr.htm>
(29 March 1998).

72. Microsoft Corporation, "OLE DB for OLAP," <http://www.microsoft.com/data/
oledb/olap/> (19 April 1998).

73. Microsoft Corporation, "OLE Industry Solutions," 1997, <http://www.microsoft.com/
oledev/olemkt/olesol.htm> (15 April 1998).

74. Mili, F., and F.A. Cioch, "Documenting Decision Models for Informed and Confident
Decisions," Proceedings of the Twenty-Third Annual Hawaii International Conference on System Sciences,
Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1990), 494-503.

75. Milli, F., and I. Szoke, "Assisted Model Selection Evaluation and Comparison," Proceedings of the
Tweny-Fifth Annual Hawaii International Conference on System Sciences, Vol. III, IEEE Computer
Society Press, Los Alamitos, CA, (1992), 485-493.

76. Mowbray, T.J., and W.A. Ruh, Inside CORBA: Distribution Object Standards and Applications,
Addison-Wesley, Reading, MA, 1997.

77. Muhanna, W.A., "An object-oriented framework for model management and DSS
development," Decision Support Systems, 9:2 (1993), 217-339.

78. Myers, W., "Taligent's CommonPoint: The Promise of Objects," Computer, 28:3 (1995), 78-83.

329

79. Nahmias, S., Production and Operations Analysis, Richard D. Irwin, Inc., Homewood, IL, 1989.

80. Object Management Group, "Object Management Group Adopts Unified Modeling Language
and Meta Object Facility Specifications," 1997, <http://www.omg.org/news/
pr97/umlpr.htm> (17 February 1998).

81. Park, S.J., and H.D. Kim, "Constraint-based metaview approach for modeling environment
generation," Decision Support Systems, 9:4 (1993), 325-348.

82. Piela, P., R. McKelvey, and A. Westerberg, "An Introduction to ASCEND: Its Language and
Interactive Environment," Proceedings of the Tweny-Fifth Annual Hawaii International Conference on
System Sciences, Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1992), 449-461.

83. Pietrek, M., WindowsV 95 System Programming SECRETS", IDG Books Worldwide, Inc., Foster
City, CA, 1995.

84. Raghunathan, S., "Towards Computer-assisted Qualitative Analysis for Model Development:
Theory and Algorithms," Proceedings of the Twenty-Fifth Annual Hawaii International Conference on
System Sciences, Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1992), 473-484.

85. Ramirez, R.G., and E. Lin, "Subscript-Free Indexing in a Mathematical Programming
Language," Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences,
Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1993), 424-433.

86. Ramirez, R.G., C. Ching, and R.D. St. Louis, "Independence and mappings in model-based
decision support systems," Decision Support Systems, 10:3 (1993), 341-358.

87. Rational Software Corporation, "UML resource center," 1998, <http:/ /www.rational.com/
uml/index.shtml> (17 February 1998).

88. Raymond, E., comp., "Jargon Dictionary - daemon," The Jargon Dictionary, 24 July 1996,
<http://www.netmeg.net/jargon/terms/d/daemon.html> (17 February 1998).

89. Richter, J., Advanced Windows~: The Developer's Guide to the Win320 API for Windows NT"M 3.5 and
Windows 95, Microsoft Press, Redmond, WA, 1995.

90. Rogerson, D., Inside COM, Microsoft Press, Redmond, WA, 1997.

91. Ruark, J., "Using the Monsanto Software," Operations Research Center working paper
OR 325-98, Massachusetts Institute of Technology, 1998.

92. Ruark, J., "Reference Guide to the Framework Presented in 'Implementing Reusable Solvers:
An Object-Oriented Framework for Operations Research Algorithms'," Operations Research
Center working paper OR 328-98, Massachusetts Institute of Technology, 1998.

93. Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented Modeling and
Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

94. Savage, S., "Weighing the PROS and CONS of Decision Technology in Spreadsheets," OR/MS
Today, 24:1 (1997), 42-48.

95. Smith, T.R., J. Su, A.E. Abbadi, D. Agrawal, G. Alonso, and A. Saran, "Computational
Modeling Systems," Information Systems, 20:2 (1995), 127-153.

330

96. Steiger, D., R. Sharda, and B. Leclaire, "Graphical Interfaces for Network Modeling: A Model
Management System Perspective," ORSA Journal on Computing, 5:3 (1993), 275-291.

97. Sun Microsystems, Inc., "JavaBeans: The Only Component Architecture for Java TM," 1997,
<http://www.javasoft.com/beans/> (17 February 1998).

98. Sventek, J., "The Distributed Application Architecture," Enterprise Integration Modeling: Proceedings
of the First International Conference, The MIT Press, Cambridge, MA, (1992), 481-492.

99. Tolvanen, J., P. Marttiin, and K. Smolander, "An Integrated Model for Information Systems
Modeling," Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System Sciences,
Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1993), 470-479.

100.Tung, L., R.G. Ramirez, and R.D. St. Louis, "Model Integration In An Object-Oriented Model
Management System," Proceedings of the Twenty-Fourth Annual Hawaii International Conference on
System Sciences, Vol. III, IEEE Computer Society Press, Los Alamitos, CA, (1991), 284-290.

101.Varhol, P.D., "Trends in Operating System Design," Dr. Dobb'sJournal, 19:5 (1994), 18-20, 22,
26-27.

102.Weston, R., "The Fifth Generation," PC Week, 14:1 (1997), 103.

103.Wilkes, M.V., "The Long-Term Future of Operating Systems," Communications of the ACM, 35:11
(1992), 23-24, 112.

104.Wolfram von Eschenbach, Parival, translated by A.T. Hatto, Penguin Books, London, England,
1980.

331

Intentionally blank, this page left.

332

BIBLIOGRAPHY OF APPLIED SOLUTIONS

[AAASAS]
Vasquez-Marquez, A., "American Airlines Arrival Slot Allocation System (ASAS),"
Interfaces, 21:1 (1991), 42-61.

[AACREW]
Anbil, R., E. Gelman, B. Patty, and R. Tanga, "Recent Advances in Crew-Pairing
Optimization at American Airlines," Interfaces, 21:1 (1991), 62-74.

[AAYIELD]
Smith, B.C., J.F. Leimkuhler, and R.M. Darrow, "Yield Management at American Airlines,"
Interfaces, 22:1 (1992), 8-31.

[ABB]
Gensch, D.H., N. Aversa, and S.P. Moore, "A Choice-Modeling Market Information
System That Enabled ABB Electric to Expand Its Market Share," Interfaces, 20:1 (1990), 6-
25.

[AT&T]
Spencer, T., III, A.J. Brigandi, D.R. Dargon, and M.J. Sheehan, "AT&T's Telemarketing
Site Selection System Offers Customer Support," Intefaces, 20:1 (1990), 83-96.

[AT&TCAPS]
Brigandi, A.J., D.R. Dargon, M.J. Sheehan, and T. Spencer III, "AT&T's Call Processing
Simulator (CAPS) Operational Design for Inbound Call Centers," Interfaces, 24:1 (1994), 6-
28.

[AT&TCLS]
Curnow, G., G. Kochman, S. Meester, D. Sarkar, and K. Wilton, "Automating Credit and
Collections Decisions at AT&T Capital Corporation," Interfaces, 27:1 (1997), 29-52.

333

[BELLCORE]
Hoadley, B., P. Katz, and A. Sadrian, "Improving the Utility of the Bellcore Consortium,"
Interfaces, 23:1 (1993), 27-43.

[BELLCOREPDSS]
Katz, P., A. Sadrian, and P. Tendick, "Telephone Companies Analyze Price Quotations
with Bellcore's PDSS Software," Interfaces, 24:1 (1994), 50-63.

[BETHLEHEM]
Vasko, F.J., F.E. Wolf, K.L. Stott, J.W. Scheirer, "Selecting Optimal Ingot Sizes for
Bethlehem Steel," Interfaces, 19:1 (1989), 68-84.

[CAROLINA]
Secton, T.R., S. Sleeper, and R.E. Taggart, Jr., "Improving Pupil Transportation in North
Carolina," Interfaces, 24:1 (1994), 87-103.

[CHINA]
Kuby, M., S. Qingqi, T. Watanatada, S. Xufei, X. Zhijun, C. Wei, Z. Chuntai, Z. Dadi, Y.
Xiaodong, P. Cook, T. Friesz, S. Neuman, L. Fatang, R Qiang, W. Xusheng, and G.
Shenhuai, "Planning China's Coal and Electricity Delivery System," Interfaces, 25:1 (1995),
41-68.

[CITGO]
Klingman, D., N. Phillips, D. Steiger, and W. Young, "The Successful Deployment of
Management Science through Citgo Petroleum Corporation," Interfaces, 17:1 (1987), 4-25.

[DELTA]
Subramanian, R., R.P. Scheff, Jr., J.D. Quillinan, D.S. Wiper, and R.E. Marsten, "Coldstart:
Fleet Assignment at Delta Air Lines," Interfaces, 24:1 (1994), 104-120.

[DESERTSTORM]
Hilliard, M.R., R.S. Solanki, C. Liu, I.K. Busch, G. Harrison, and R.D. Kraemer,
"Scheduling the Operation Desert Storm Airlift: An Advanced Automated Scheduling
Support System," Interfaces, 22:1 (1992), 131-146.

[DIGITAL]
Arntzen, B.C., G.G. Brown, T.P. Harrison, and L.L. Trafton, "Global Supply Chain
Management at Digital Equipment Corporation," Interfaces, 25:1 (1995), 69-93.

[DRG]
Fetter, R.B., "Diagnosis Related Groups: Understanding Hospital Performance," Interfaces,
21:1 (1991), 6-26.

[EGYPT]
El Sherif, H., "Managing Institutionalization of Strategic Decision Support for the
Egyptian Cabinet," Interfaces, 20:1 (1990), 97-114.

[ENGLAND]
Carr-Hill, R.A., G. Hardman, S. Martin, S. Peacock, T.A. Sheldon, and P.C. Smith, "A New
Formula for Distributing Hospital Funds in England," Interfaces, 27:1 (1997), 53-70.

[EPRI]
Chao, H., S.W. Chapel, C.E. Clark, Jr., P.A. Morris, M.J. Sandling, and R.C. Grimes, "EPRI
Reduces Fuel Inventory Costs in the Electric Utility Industry," Interfaces, 19:1 (1989), 48-
67.

334

[GECAPITAL]
Makuch, W.M., J.L. Dodge, J.G. Ecker, D.C. Granfors, and G.J. Hahn, "Managing
Consumer Credit Delinquency in the U.S. Economy: A Multi-Billion Dollar Management
Science Application," Interfaces, 22:1 (1992), 90-109.

[GM]
Blumenfeld, D.E., L.D. Burns, C.F. Daganzo, M.C. Frick, and R.W. Hall, "Reducing
Logistics Costs at General Motors," Interfaces, 17:1 (1987), 26-47.

[GRI]
Burnett, W.M., D.J. Monetta, and B.G. Silverman, "How the Gas Research Institute (GRI)
Helped Transform the U.S. Natural Gas Industry," Interfaces, 23:1 (1993), 44-58.

[GTE]

Jack, C., S. Kai, and A. Shulman, "NETCAP-An Interactive Optimization System for
GTE Telephone Network Planning," Interfaces, 22:1 (1992), 72-89.

[HANSHIN]
Yoshino, T., T. Sasaki, T. Hasegawa, "The Traffic-Control System on the Hanshin
Expressway," Interfaces, 25:1 (1995), 94-108.

[HARRIS]
Leachman, R.C., R.F. Benson, C. Liu, and D.J. Raar, "IMPReSS: An Automated
Production-Planning and Delivery-Quotation System at Harris Corporation-
Semiconductor Sector," Interfaces, 26:1 (1996), 6-37.

[HASTUS]
Blais, J., J. Lamont, and J. Rousseau, "The HASTUS Vehicle and Manpower Scheduling
System at the Societe de transport de la Communaute urbaine de Montreal," Interfaces, 20:1
(1990), 26-42.

[HOMART]
Bean, J.C., C.E. Noon, and G.J. Salton, "Asset Divestiture at Homart Development
Company," Interfaces, 17:1 (1987), 48-64.

[IBMLMS]
Sullivan, G., and K. Fordyce, "IBM Burlington's Logistics Management System," Interfaces,
20:1 (1990), 43-64.

[IBMOPT]
Cohen, M., P.V. Kamesam, P. Kleindorfer, H. Lee, and A. Tekerian, "Optimizer: IBM's
Multi-Echelon Inventory System for Managing Service Logistics," Interfaces, 20:1 (1990),
65-82.

[ISRAEL]
Spector, Y., and L. Marom, "SQOM-2: The Israeli Air Force's Air Power Multiplier,"
Interfaces, 26:1 (1996), 75-84.

[KEYCORP]
Kotha, S.K., M.P. Barnum, and D.A. Bowen, "KeyCorp Service Excellence Management
System," Interfaces, 26:1 (1996), 54-74.

[KODAK]
Farley, A.A., "Planning the Cutting of Photographic Color Paper Rolls for Kodak
(Australasia) Pty. Ltd.," Interfaces, 21:1 (1991), 92-106.

335

[KUWAIT]
Elimam, A.A., M. Girgis, and S. Kotob, "A Solution to Post Crash Debt Entanglements in
Kuwait's al-Manakh Stock Market," Interfaces, 27:1 (1997), 89-106.

[LLBEAN]
Quinn, P., B. Andrews, and H. Parsons, "Allocating Telecommunications Resources at L.
L. Bean, Inc.," Interfaces, 21:1 (1991), 75-91.

[LTVSTEEL]
Box, R.E., and D.G. Herbe, Jr., "A Scheduling Model for LTV Steel's Cleveland Works'
Twin Strand Continuous Slab Caster," Interfaces, 18:1 (1988), 42-56.

[MARRIOTTl
Wind, J., P.E. Green, D. Shifflet, and M. Scarbrough, "Courtyard by Marriott: Designing a
Hotel Facility with Consumer-Based Marketing Models," Interfaces, 19:1 (1989), 25-47.

[MERIT]
Flowers, A.D., "The Modernization of Merit Brass," Interfaces, 23:1 (1993), 97-108.

[METRON]
Stone, L.D., "Search for the SS CentralAmerica: Mathematical Treasure Hunting," Interfaces,
22:1 (1992), 32-54.

[MOBIL]
Brown, G.G., C.J. Ellis, G.W. Graves, and D. Ronen, "Real-Time, Wide Area Dispatch of
Mobil Tank Trucks," Interfaces, 17:1 (1987), 107-120.

[MONSANTO]
Graves, S.C., C. Gutierrez, M. Pulwer, H. Sidhu, and G. Weihs, "Optimizing Monsanto's
Supply Chain Under Uncertain Demand," Annual Conference Proceedings-Council of Logistics
Management, Orlando, FL (1996), 501-516.

[MOSLS]
Eiger, A., J.M. Jacobs, D.B. Chung, and J.L. Selsor, "The U.S. Army's Occupational
Specialty Manpower Decision Support System," Interfaces, 18:1 (1988), 57-73.

[NATIONAL]
Geraghty, M.K., and E. Johnson, "Revenue Management Saves National Car Rental,"
Interfaces, 27:1 (1997), 107-127.

[NAVANLINES]
Powell, W.B., Y. Sheffi, K.S. Nickerson, K. Butterbaugh, and S. Atherton, "Maximizing
Profits for North American Van Lines' Truckload Division: A New Framework for Pricing
and Operations," Interfaces, 18:1 (1988), 21-41.

[NEWHAVEN]
Kaplan, E.H., and E. O'Keefe, "Let the Needles Do the Talking! Evaluating the New
Haven Needle Exchange," Interfaces, 23:1 (1993), 7-26.

[NHFIRE]
Swersey, A.J., L. Goldring, and E.D. Geyer, Sr., "Improving Fire Department Productivity:
Merging Fire and Emergency Medical Units in New Haven," Interfaces, 23:1 (1993), 109-
129.

336

[NYC]
Larson, R.C., M.F. Cahn, and M.C. Shell, "Improving the New York City Arrest-to-

Arraignment System," Interfaces, 23:1 (1993), 76-96.

[NYNEX]
Barnea, T., D. Benanav, K. Dutta, I. Eisenberg, J. Euchner, E. Gilbert, A. Goodarzi, E.

Lee, Y. Lin, J. Martin, J. Peterson, R. Pope, R. Salgame, S. Sardana, and G. Sevitsky,
"Arache: Planning the Interoffice Facilities Network at NYNEX," Interfaces, 26:1 (1996),
85-101.

[P&G]
Camm, J.D., T.E. Chorman, F.A. Dill, J.R. Evans, D.J. Sweeney, and G.W. Wegryn,
"Blending OR/MS, Judgment, and GIS: Restructuring P&G's Supply Chain," Interfaces,
27:1 (1997), 128-142.

[PLANETS]
Breitman, R.L., and J.M. Lucas, "PLANETS: A Modeling System for Business Planning,"
Interfaces, 17:1 (1987), 94-106.

[PONTIS]
Golabi, K., and R. Shepard, "Pontis: A System for Maintenance Optimization and
Improvement of U.S. Bridge Networks," Interfaces, 27:1 (1997), 71-88.

[PRUDENTIAL]
Ben-Dov, Y., L. Hayre, and V. Pica, "Mortgage Valuation Models at Prudential Securities,"
Interfaces, 22:1 (1992), 55-71.

[REYNOLDS]
Moore, Jr., E.W., J.M. Warmke, and L.R. Gorban, "The Indispensable Role of
Management Science in Centralizing Freight Operations at Reynolds Metals Company,"
Interfaces, 21:1 (1991), 107-129.

[SADIA]
Taube-Netto, M., "Integrated Planning for Poultry Production at Sadia," Interfaces, 26:1
(1996), 38-53.

[SAINSBURYS]
Ormerod, R.J., "Information Systems Strategy Development at Sainsbury's Supermarkets
Using 'Soft' OR," Interfaces, 26:1 (1996), 102-130.

[SANDF]
Botha, S., I. Gryffenberg, F.R. Hofmeyr, J.L. Lausberg, R.P. Nicolay, W.J. Smit, S. Uys,
W.L. van der Merwe, and G.J. Wessels, "Guns or Butter: Decision Support for
Determining the Size and Shape of the South African National Defense Force," Interfaces,
27:1 (1997), 7-28.

[SANFRAN]
Taylor, P.E., and S.J. Huxley, "A Break from Tradition for the San Francisco Police: Patrol
Officer Scheduling Using an Optimization-Based Decision Support System," Interfaces, 19:1
(1989), 4-24.

[SANTOS]
Dougherty, E.L., D. Dare, P. Hutchison, and E. Lombardino, "Optimizing SANTOS's
Gas Production and Processing Operations in Central Australia Using the Decomposition
Method," Interfaces, 17:1 (1987), 65-93.

337

[SHUTTLE]
Pat&-Cornell, M., and P.S. Fischbeck, "Risk Management for the Tiles of the Space
Shuttle," Interfaces, 24:1 (1994), 64-86.

[SIPMODEL]
Graves, S.C., and S.P. Willems, "Strategic Safety Stock Placement in Supply Chains,"
Proceedings of the 1996 MSOM Conference, Dartmouth College, Hanover, NH, (1998), 299-
304.

[SO]
Erwin, S.R., J.S. Griffith, J.T. Wood, K.D. Le, J.T. Day, and C.K. Yin, "Using an
Optimization Software to Lower Overall Electric Production Costs for Southern
Company," Interfaces, 21:1 (1991), 27-41.

[SONETI
Cosares, S., D.N. Deutsch, I. Saniee, and O.J. Wasem, "SONET Toolkit: A Decision
Support System for Designing Robust and Cost-Effective Fiber-Optic Networks,"
Interfaces, 25:1 (1995), 20-40.

[SPAIN]
Dembo, R.S., A. Chiarri, J.G. Martin, and L. Paradina, "Managing Hidroel&trica Espafiola's
Hydroelectric Power System," Interfaces, 20:1 (1990), 115-135.

[SYNTEX]
Lodish, L.M., E. Curtis, M. Ness, and M.K. Simpson, "Sales Force Sizing and Deployment
Using a Decision Calculus Model at Syntex Laboratories," Intefaces, 18:1 (1988), 5-20.

[T'ATA]
Sinha, G.P., B.S. Chandrasekaran, N. Mitter, G. Dutta, S.B. Singh, A.R. Choudhury, and
P.N. Roy, "Strategic and Operational Management with Optimization at Tata Steel,"
Interfaces, 25:1 (1995), 6-19.

[TEXACO]
DeWitt, C.W., L.S. Lasdon, A.D. Waren, D.A. Brenner, and S.A. Melhem, "OMEGA: An
Improved Gasoline Blending System for Texaco," Interfaces, 19:1 (1989), 85-101.

[TINKERAFB]
Ravindran, A., B.L. Foote, A.B. Badiru, L.M. Leemis, and L. Williams, "An Application of
Simulation and Network Analysis to Capacity Planning and Material Handling Systems at
Tinker Air Force Base," Intefaces, 19:1 (1989), 102-115.

[USARMY]
Durso, A., and S.F. Donahue, "An Analytical Approach to Reshaping the United States
Army," Interfaces, 25:1 (1995), 109-133.

[USPOSTAL]
Cebry, M.E., A.H. deSilva, and [.J. diLisio, "Management Science in Automating Postal
Operations: Facility and Equipment Planning in the United States Postal Service," Interfaces,
22:1 (1992), 110-130.

[VILPAq
Nufio, J.P., D.L. Shunk, J.M. Padillo, and B. Beltrin, "Mexico's Vilpac Truck Company
Uses a CIM Implementation to Become a World Class Manufacturer," Interfaces, 23:1
(1993), 59-75.

338

[YASUDA]
Carifio, D.R., T. Kent, D.H. Myers, C. Stacy, M. Sylvanus, A.L. Turner, K. Watanabe, and
W.T. Ziemba, "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese
Insurance Company Using Multistage Stochastic Programming," Interfaces, 24:1 (1994), 29-
49.

[YELLOW]
Braklow, J.W., W.W. Graham, S.M. Hassler, K.E. Peck, and W.B. Powell, "Interactive
Optimization Improves Service and Performance for Yellow Freight System," Interfaces,
22:1 (1992), 147-172.

339

This left page blank intentionally.

340

INDEX OF AUTHORS

Adams, S., 85
Banerjee, S., 44
Basu, A., 44
Bhargava, H.K., 42, 47,

48, 85
Blanning, R.W., 41
Booch, G., 70, 107
Box, D., 115, 151, 168,

216, 281
Bradley, G.H., 47, 48, 87
Brockschmidt, K., 156,

168, 277
Brown, K., 116
Buschmann, F., 100
Chappell, D., 216, 281
Ching, C., 46, 284
Cioch, F.A., 44
Clemence, Jr., R.D., 47,

48, 87
Coffee, P., 267
Dellarocas, C.N., 46, 212,

279
Dolk, D.R., 45, 46, 48, 58
Dyck, T., 119
Eck, R.D., 43, 44, 284
Finkelberg, H., 52
Gamma, E., 98, 169, 312

Gates, III, W.H., 18
Geoffrion, A.M., 35, 41,

42, 45, 47, 56
Goldberg, A.V., 224
Graves, S.C., 52, 229,

239, 249, 251
Gutierrez, C.J., 229
Hatto, A.T., 287
Huh, S., 28, 44, 45

Jones, C.V., 27, 42, 286

Jordan, W.C., 239
Kant, I., 51
Kimbrough, S.O., 47, 48,

85
Kottemann, J.E., 46, 48,

58
Krishnan, R., 42, 47, 48,

85
Larson, R.C., 82
Lazimv, R., 28
Lenard, M.L., 28, 44
Ma, P., 27
McCright, J., 119
McKay, K.N., 239, 240
McKelvey, R., 27
Meyer, B., 263
Mili, F., 44

Mowbray, T.J., 36
Muhanna, W.A., 28, 47,

56
Murphy, F.H., 27
Nahmias, S., 61
Philippakis, A., 43, 44,

284
Piela, P., 27
Pietrek, M., 75
Ramirez, R.G., 43, 44, 46,

47, 48, 284
Richter, J., 97
Rogerson, D., 97
Ruark, J.D., 25, 115, 229
Ruh, W.A., 36
Rumbaugh, J., 51
St. Louis, R.D., 46, 47,

48, 284
Stohr, E.A., 27
Szoke, I., 44
Tung, L., 47, 48
Westerberg, A., 27
Willems, S.P., 249, 251
Wolfram von

Eschenbach, 286-
87

341

Blank, this page left intentionally.

342

56-bit key, 96
911, 60
acquiring running solver, 175-76
acquiring SolverDescription, 168
acquiring SolverInfo, 161-62
Active Scripting, 203
Active Server Pages, 270
Active Template Library, 220, 291
ActiveX control containers, 184
ActiveX controls, 116, 118, 222, 258, 277
ActiveX interfaces, 220
actors, 70
Ada, 76
add-ins. See Microsoft Excel add-ins
advise, 99
advise helpers, 102
ALCOA, 253-58
al-Manakh stock market, 62, 66
AMPL, 26, 27, 28, 70, 222, 230, 271
Anfortas, 287
Antigua, 5
apartment, 213
API, 38
Apple MacOS, 20, 24, 241, 250
application programming interface, 38
application-centric computing, 20
applications

ALCOA, 253-58
FlexCap, 224, 239-44, 258, 264

M/M/k queue, 244-49, 264, 265, 289-
324

Monsanto, 62, 67, 229-39, 255, 258, 262,
308

SIPModel, 67, 224, 250-53, 270
asynchronous call, 97
Athena, 74
ATL. See Active Template Library
Autodesk AutoCAD, 228, 274
automation-compatible, 116, 222, 244, 274,

283
AvgGapPerlteration, 82
AvgTimePerlteration, 82
batch solution, 64
BeanInfo, 141
beef jerky, 138
benefits, 261-72
blue screen of death, 85
Borland Delphi, 35, 76
Business Object Framework Facility, 36
C++, 76, 228
CanMaintainSolverData, 201
cat stalking bird, 81
CATID, 216
CBT hooks, 89-90, 109, 276-77
Chretien de Troyes, 287
CLSCTX, 192
CLSIDFromProglD, 193
CLSIDFromString, 158

343

INDEX

CoCreateinstance, 135, 171, 192, 215, 216,
280

COleControl, 118
COM, 31, 36-37, 38, 40, 76, 97, 112, 115,

116-17, 217, 267
Active Scripting, 203
circular reference counts, 191
COM+, 275
component categories, 258. See

component categories
CORBA bridges, 273
CORBA, and, 273
custom marshaling, 213
DCOM, 272
dispatching, 229
framework, 107, 273
IDL, 151, 311
integration with Visual C++, 252
interface pointers, 200
interfaces, 118
marshaling, 97, 213
OLE. See Object Linking and Embedding
Querylnterface, 168
running object table, 175
smart pointers, 242
standard marshaling, 213
type libraries, 151
use of GUIDs, 278

COM+, 117
comma separated value file, 231, 234
common dialogs library, 102
component categories, 23, 216
Component Object Model. See COM
component-based modeling environments,

27-30
components of solution archetypes, 53-67
compound documents, 104

container, 23
evolution, 20-24
future, 23-24
in-place activation, 22-23
out-of-place editing, 21-22
pasting a picture, 20-21

connection points, 277
control flows, 71
CORBA, 36-37, 76, 244, 273

COM, and, 273
CORBAfacilities, 36
core services, 101-4, 214-17, 286

advise helpers, 102, 216
DataAdviseHolder, 216
dimension and type support, 102, 104
dispatch wrappers, 216
running solver table, 176, 217
solver database, 102, 103-4, 109, 215-16
SolverAdviseHolder, 216, 291
SolverDescription helpers, 167-68
SolverInfo helpers, 160-61
SolverInfo, generic implementation, 216
SolverRegistrar, 160, 216, 277

Corel WordPerfect, 33
CPLEX, 26, 27, 54, 55, 56, 70, 77, 230, 271,

295
Callable Library, 24, 28, 220, 226-29, 230,

270, 289, 308
wrapping into framework. See

RLPWrapper solver
CPXIoadlp, 289
CPXoptimize, 289
CPXsolution, 289, 300
CSV file, 231, 234
Ctrl-Alt-Delete, 84
Ctrl-Command-Reset, 84
custom() attribute, 152
customization, 74
daemons, 58
DAMS. See Data and Algebraic Management

System
DAO, 119
Data and Algebraic Management System, 46
data corruption, 85
data elements, 120-32

change notifications, 135
creating and acquiring, 131-32
data sources, and, 132
dimensions, 123-24
example code for iteration, 297-98
generic interfaces, 124-28
properties, 129-31
sets, 121-23
special interfaces, 128-29
VARIANT storage type, 313

Data Encryption Standard, 96
data flow, 71, 110, 118-37, 278-79

data element properties, 129-31
data elements, 120-32
data sources, 120, 132-37
dimensions, 123-24

344

sets, 121-23
data integrity, 91-96
data source maintains data, 200, 207-8
data sources, 120, 132-37

change notifications, 135
DataAdviseHolder, 135-37

DataAdviseHolder, 135-37, 216
database requirements, 105
datamart, 43, 85
datastore, 43, 79
DCOM, 272
decision-based directed graph architecture,

57-59
Delta, 66
DES. See Data Encryption Standard
description property IDs, 164-66
DescriptionPropManager, 164, 165
Dilbert, 85
dimension and type support, 102, 104
dimension manipulators, 87, 104, 108, 275
dimensions, 123-24
dimensions and typing, 85-88, 108-9, 275-

76
manipulation, 87

directed acyclic graph architecture, 55-57
dispatch wrappers, 216
dispinterface, 156-58, 156, 203, 274, 304,

305
distribution, 96-97
DLL. See dynamic-link library
DIIRegisterServer, 161
DIlUnregisterServer, 161
documentation, 76-81, 87, 141

automating through introspection, 81
reducing complexity, 80
selecting a solver, 78-79
suitability of the algorithm, 78
suitability of the solver, 79
using a solver, 80

documentation framework, 44
document-centric computing, 20
domain analysis, 52-69

actors, 70
control flows, 71
data flow, 71
participants, 70-72
solvers, 70
stores, 70

DSS, 18, 119

dual interface, 203
dynamic-link library, 74, 115
ease of integration, 17, 28
Edelman papers, 52, 67-68
elevators, 81
enumeration, solvers, 103
enumeration, to crack code, 96
estimated time remaining, 82
evolution of application implementation,

31-37
evolution of compound documents, 20-24
executable, 115. See executable file

requirement, 73-75
executable file, 74
execution periodicity, 53, 61-65

one-shot solution, 62
operational solutions, 64, 279
strategic solutions, 61-62
tactical solutions, 63

finite first fit, 256
finite next fit, 256
finite state machine, 179
first-order logic, 42
Fisher King, the, 287
FlexCap, 224, 239-44, 258, 264
flyweight pattern, 312
framework

benefits, 261-72
core services, 214-17
data flow, 110, 118-37, 278-79
data integrity, 211-12
dimensions and typing, 108-9
distribution, 213-14
entities, 111-12
example extension, 311-19
global/local control, 212
interfaces, 112-15
introspection, 109, 141-68
issues, 272-81
life cycle control. See life cycle control
networking solvers, 178-214
organization, 107-15
progress updates. See progress updates
queueing system specification, 317-19
reference, 115
specifying a data type, 311-13
synchronization, 214
target audience, 19
using a custom data type, 313-15

345

framework interfaces, 116-18
Framework IV, 42
Franz Edelman finalists. See Edelman papers
future of modeling environments, 30-31
FW/SM, 42
FX!32, 273
GAMS, 28
global control, 178-79
global workflow manager, 58
global/local control, 99-101, 110
Goal Seek, 246
Grail, the, 287
Gral, the, 287
graphical modeling environments, 27, 282
GUID, 118, 284
Hanshin Expressway, 61, 66
homonyms, 47, 285
Howzat!, 288
IClassFactory, 116, 123
IClassFactory2, 123
IConnectionPointContainer, 277
ICreateTypelnfo, 154
ICreateTypeib, 154
I DataAdviseHolder, 216
IDataObject::DAdvise, 135, 170
IDataObject::DUnadvise, 135, 170
IDispatch, 116, 117, 158, 216, 222, 229, 274,

280, 305, 311, 319

IEnumCLSID, 215
IEnumRDESCRIPTIONPROPERTY, 164
IEnumRREGSOLVERINFO, 215
IFont, 313
IFontDisp, 313
IMarshal, 213, 214
inbound solver sites, 185, 189-93

creating and destroying solvers, 191-93
executing solvers, 190-91
managing mappings, 190

informal scheduler, 63
in-process server, 115
Insignia Solutions SoftWindows 95, 273
integrated modeling, 56
integrated modeling environments, 27
Integrated Supply Chain Management

Consortium, MIT, 229
integrity of data. See data integrity
interface-based programming, 217, 284
interfaces, 112-15

Interfaces, 52
interfaces, framework, 116-18
International System, 86
introspection, 76-81, 109, 141-68

Querylnterface, 168
requirements, 76-81
SolverDescription, 142
SolverDescription, 162-68. See

SolverDescription
SolverInfo, 141, 142-62. See SolverInfo

InverseCDF, 316, 317
InverseNormalCDF, 223
InverseNormalPDF, 223
Invoke, 229
invoking from different applications, 75-76
IOleClientSite, 184
IOleControl, 116, 118
IOleControlSite, 184
IOlelnPlaceSite, 184
Iowa, 253
IPersist, 116, 123
I PersistStream, 220
IProvideClasslnfo2, 277
IRDataAdvise, 133, 134, 135, 136
I RDataAdviseHolder, 133, 135-37
IRDataElement, 118, 124, 125-26, 127, 134,

279

IRDataElement1, 128-29
IRDataElement2, 129
IRDataElementAccess, 124, 126-28
IRDataElementClone, 124, 126, 127
IRDataElementCreator, 124, 128
IRDataElementProperties, 130
IRDataElementPropertiesChange, 130, 131
IRDataElementScalar, 128
IRDataSource, 133-34, 135, 136
IRDescription PropEnumeration, 164, 165-66
IRDescriptionPropRegistration, 164-65
IRDimension, 124
IRDimensionCreator, 123, 124
IRMappingAdvise, 191
IRQueueData, 247, 318, 319
IRQueueStatistics, 318, 319
IRRandomGenerator, 317
IRRandomSample, 316
IRRandomVariable, 315-17

346

IRSet, 121-22, 124
IRSetCreator, 121, 122, 123, 124
IRSetModifier, 121, 122-23
IRSolver, 137, 139-40, 170, 228
IRSolverAdvise, 169, 173-75
IRSolverAdviseHolder, 170-72

IRSolverAsynchSolve, 140, 145, 228
IRSolverBaselnfo, 144-45, 158
IRSolverControl, 169, 177
IRSolverDescription, 162-63, 164, 166
I RSolverDescription Properties, 162, 163-64,

166
IRSolverDimlnfo, 147, 148, 149
IRSolverEnumeration, 215-16, 277
IRSolverinfo, 145-46, 166
IRSolverlnfoProvideTypelnfo, 314

IRSolverlnputlnfo, 146-47, 314
IRSolverlnputs, 137, 140, 147, 189-90, 199,

217, 228, 289

IRSolverMapping, 199-200, 201
IRSolverMappingMechanism, 199, 202
IRSolverOutputlnfo, 146, 148, 314
IRSolverOutputs, 137, 140-41, 190, 193, 199,

228

IRSolverParameters, 137, 141, 157, 276, 302,
304, 305

IRSolverParametersinterface, 156-58, 304
IRSolverParamlnfo, 146, 148-49, 314
IRSolverProvideinfo, 149, 151, 161, 166, 167,

168
IRSolverRegistration, 215, 216, 277
IRSolverSetinfo, 146, 148
IRSolverSiteln, 189-90, 193
IRSolverSiteinMappings, 189, 190
IRSolverSitelnSolverFactory, 189, 191-93,

204, 211
IRSolverSiteOut, 193
IRSolverStatistics, 276
IRSolverStatus, 175, 176-77
IRunningObjectTable, 176
ITypelnfo, 152, 305, 314
ITypeLib, 152
IUnknown, 116, 155, 168, 220, 280, 305, 313,

314

IUnknown::Querylnterface. See
Querylnterface

IViewObject, 116

Java, 267, 273
SDK, 77
virtual machines, 36, 74, 221, 244, 267

Java Virtual Machine
see Java virtual machines, 36

JavaBeans, 22, 81
introspection, 141

javadoc, 77
JavaScript, 117, 203
JDBC, 119
JDK, 77
JNI, 244
JScript, 117, 267, 311
JVM. See Java virtual machines
killer application, 18, 28, 281
knapsack, 72, 78, 86, 138, 143, 154, 155-56
knowledgebase, 44, 79
Kuwait al-Manakh stock market, 62, 66
Leaders for Manufacturing, MIT, 41
LFM, 41
life cycle control, 84, 111, 177
LINDO, 26, 54, 230, 231, 232, 238
linear programming solver, 53
listener. See observer
live solution, 64
Liz, 126
LoadRegTypeLib, 160
LoadTypeLib, 160
local control, 180-84
local procedure calls, 97
local server. See executable
LockRequired, 202
lockstep flows, 279
Lotus 1-2-3, 18, 76
M/M/k queue model, 244-49, 264, 265,

289-324

MaintainPreference, 200, 201-2
make it so, 73
mapping data, 199
mapping maintains data, 200, 208-10
mappings, 184-89, 199-203

aggregating mapping, 203
data source maintains data, 200, 207-8
extensions and versatility of, 203, 285
MaintainPreference, 200, 201-2
mapping data, 200-202
mapping maintains data, 200, 208-10
solver maintains data, 201, 210-11

347

SolverInputNum, 202
Mathematica, 39, 222
Matlab, 222
matrix multiplication, 82
MBTA, 81
MCSS, 34-36
metafile, 21
Microsoft Access, 72, 76, 196, 230, 254
Microsoft Developer Network Library, 77
Microsoft Excel, 35, 39, 40, 56, 72, 76, 222,

228, 230, 231, 252, 270, 274, 308, 319
add-ins, 75, 228, 247, 265, 324
Goal Seek, 246

Microsoft Internet Explorer, 102
Microsoft Java Virtual Machine, 76, 152
Microsoft Office, 75, 117
Microsoft Query, 72
Microsoft Visual Basic, 76, 116, 152, 154,

239, 241-42, 281, 308
Microsoft Visual C++, 220, 242, 252, 291
Microsoft Visual Studio, 76
Microsoft Windows, 20, 36, 38, 39, 74, 102,

116
logo program, 24
Windows 95, 75

Microsoft Word, 33, 103, 268
MIDL, 151, 154, 161
MINOS, 26
MIPS, 74
MIT Athena, 74
MMQueue solver, 228, 247-48, 264
model integration, 45-49
model selection, 43, 78
model selectors, 278
modelbase, 43, 44
model-centric computing, 25
model-data independence, 46
ModelInfo, 257
modeling component services system. See

MCSS
modeling languages, 26-27
modelstore, 43, 44
monikers, 123, 176
Monsanto, 62, 67, 229-39, 255, 258, 262,

308
Monsanto solver, 308-10
Mosaic, 18
Mountain View, 121
MPL, 222

MPS, 26, 27, 28, 236, 269
MSDN Library. See Microsoft Developer

Network Library
multiple-use solutions, 66-67
Munsalvesche, 287
Muswell Hill, 121
naming and typing, 48-49
National Car Rental, 66
NCSA Mosaic, 18
NetLib, 223
network flow algorithms, 90
networking solvers, 178-214

component interactions, 207-11
creating and wiring the network, 204-7
data integrity, 91-96, 211-12
destroying the network, 211
distribution, 96-97, 213-14
fulfilling requirements, 211
global control, 178-79
global/local control, 99-101, 110, 212
inbound solver sites. See inbound solver

sites
interaction diagrams, 207-11
limitations, 279
local control, 180-84
mappings. See mappings
notifications, 98-99, 276-77
outbound solver sites. See outbound

solver sites
requirements, 211
sample code, 203-11
synchronization, 96-97, 110, 214
transparency, 97
wiring the network, 189

networks of solvers, 90-101
Networks/SM, 42
NormalICDF, 223
NormalPDF, 223
notifications, 98-99, 110, 276-77

advise, 99
unadvise, 99

Object Linking and Embedding, 22, 24, 32,
36

structured storage, 32
Object Management Group, 36
observer, 98
Observer pattern, 98, 169
ODBC, 26, 28, 71, 105, 119
ODBMS, 45, 47

348

ODEs, 54
oil of bergamot, 73
OLAP, 119, 120

OLE DB for, 120, 278
OLE. See Object Linking and Embedding
OLE Automation, 116
OLE DB, 36, 105, 119, 134, 231
OLE DB for OLAP, 120, 278
OMAC, 241
OMEGA project, Texaco, 63
OMG, 36
one-shot solution, 62
online help, 76
Open dialog, 102
OpenDoc, 22, 23, 24
operational solutions, 64, 279

batch, 64
live, 64
responsive, 64

OSF DCE RPC IDL, 151
OSL, 24, 26, 70, 77
outbound solver sites, 186, 193-98

exposing outputs, 195
locking solver, 193-95
making decisions, 195-97
resetting the solver, 195
state diagram, 197-98

packaging solvers, 220-23
parameterization, 74
participants in solutions, 70-72
ParZival, 287
Penny, 126
Penster, 5
percentage complete, 82
persistent flows, 279
per-solver implementation, SolverInfo, 151
plug-and-play modeling, 29
polymorphism, 47
postconditions, 43
process, 97
process homicide, 84
Procter & Gamble, 56
production-environment scheduler, 63
progress bar, 83
progress updates, 81-84, 98, 109, 169-77

acquiring running solver, 175-76
assumptions during push notifications,

175
presentation, 83

progress bar, 83
pull queries, 175-77
push notifications, 169-75
registering for notifications, 170-72
sending and receiving notifications, 173-

75
SolverAdviseHolder, 170-72

Prolegomena to Any Future Metaphysics, 51
proof of concept, 40-41
publisher, 98
QueryInterface, 120, 142, 168, 175, 176,

216, 277, 315
queueing system specification, 317-19
quiddity, 48, 85
random variable specification, 311-19
RandVar module, 223-24, 240, 248, 264,

270
RBinPack module, 256-57
RDBElements module, 234-36, 256
RDBLoad solver, 159, 231, 234-36, 238
RDBStore solver, 231, 234-36
RDESCPROPID, 162, 163, 164-66, 164
RDESCPROPIDINFO, 165
RDESCRIPTIONPROPERTY, 164
readme, 77
real-time directed graph architecture, 60-61,

279
receiving progress updates, 173-75
reference manual, 115
registering for progress updates, 170-72
registration, solvers, 103
registry settings for SolverInfo, 160
remote procedure calls, 97
replicator, 73
requirements, 17-106

CBT hooks, 89-90, 109, 276-77
client, 105
core services, 101-4
data integrity, 91-96, 211-12
database, 105
dimension and type support, 102, 104
dimensions and typing, 85-88, 275-76
distribution, 96-97, 213-14
documentation, 76-81, 78-79, 80
domain analysis, 52-69
executable, 73-75
global/local control, 99-101, 212
introspection, 76-81

349

invoking from different applications, 75-
76

life cycle control, 84
networks, 90-101
notifications, 98-99, 110, 276-77
progress updates, 81-84, 98
solver database, 102, 103-4
solvers, 72-90
synchronization, 96-97, 214
testing and validation, 88-89, 276

residual networks, 90
responsive solution, 64
rewards, 18
RGUID_ANSWERTOLIFETHEUNIVERSE-

ANDEVERYTHING, 152
RKnapAlg solver, 257
RLoadRegSolverlnfo, 160, 161, 167
RLoadSolverlnfo, 160, 162, 167
RLoadSolverlnfoClsid, 160, 161, 167
RLookuplnfoGuid, 160
RLPWrapper solver, 226-29, 232, 233, 238,

258, 270, 289-308
RNetOpt module, 224-26, 240, 257, 258,

263, 270
rowset, 119, 234, 235, 236
RPC. See remote procedure calls
RREGSOLVERINFO, 215
RSML solver, 236-37, 258
RTFM, 77, 81
run time, 78
running object table, 175, 217
running solver table, 176, 217
sandbox, 97
SANTOS, Ltd., 59
Scudder, Stevens, and Clark, Inc., 14, 244
sending progress updates, 173-75
separation of orthogonal functionality, 17,

28, 224
service, 107
sets, 121-23
SIDL. See SolverInfo Definition Language
simplex algorithm solver, 53
simplex method, 90
simplicity of interface, 17, 28
single-stage architecture, 54-55
single-use solutions, 66
SIPEng solver, 252
SIPModel, 67, 224, 250-53, 270
SITL. See SolverInfo Type Library

slogging, 14
SML. See Structured Modeling Language
solar eclipse, 5
Solaris, 39
solution archetypes, 52

categorization of samples, 67-68
components, 53-67
decision-based directed graph

architecture, 57-59
directed acyclic graph architecture, 55-57
execution periodicity, 53, 61-65
multiple-use solutions, 66-67
operational solutions, 64, 279
real-time directed graph architecture, 60-

61, 279
single-stage architecture, 54-55
single-use solutions, 66
solution architecture, 53
solution reuse, 53, 65-67
strategic solutions, 61-62
tactical solutions, 63

solution architecture, 53-61
decision-based directed graph

architecture, 57-59
directed acyclic graph architecture, 55-57
real-time directed graph architecture, 60-

61,279
single-stage architecture, 54-55

solution reuse, 53, 65-67
multiple-use solutions, 66-67
single-use solutions, 66

solutions
participants, 70-72

SolveAdvise, 170
solver database, 102, 103-4
solver interaction, 112
solver maintains data, 201, 210-11
solver representation language, 43
solver selectors, 278
solver sites, 184-89. See also inbound solver

sites and outbound solver sites
solver structure, 137-39
SolverAdviseHolder, 216, 291
SolverAdviseHolder object, 170-72
SolverDescription, 142, 162-68

acquiring, 168
description property IDs, 164-66
generic implementation, 166-67
per-solver implementation, 166, 167

350

RDESCPROPID, 164-66
registry entries, 165
solvers, adding to, 167-68

SolverDispatch, 217
SolverInfo, 141, 142-62, 168, 189, 215

acquiring, 161-62
Definition Language. See SolverInfo

Definition Language
example use, 150
example, generating, 289-91
generic implementation, 151-61, 216
per-solver implementation, 151
registry settings, 160
solvers, adding to, 160-61
Type Library. See SolverInfo Type Library

SolverInfo Definition Language, 151-61,
285, 289, 304

custom attributes, 158-59
custom data types, 314
custom() attribute, 152
including SolverDescription, 166-67
input and output interfaces, 155-56
knapsack example, 155-56
parameter interface, 156-58
set typedefs, 154
specifying flags on elements, 158

SolverInfo Type Library, 151-61, 285
custom attributes, 158-59
including SolverDescription, 166-67
input and output interfaces, 155-56
parameter interface, 156-58
set typedefs, 154
specifying flags on elements, 158

SolverInputNum, 202
SolverRegistrar, 160, 216, 277
solvers

acquiring running solver, 175-76
CBT hooks, 89-90, 109, 276-77
customers, 185
customization and parameterization, 74
data integrity, 91-96
database of, 215-16
dimensions and typing, 85-88, 108-9
distribution, 96-97
documentation, 87, 141
documentation, for selecting, 78-79
documentation, for using, 80
documentation, suitability, 79
domain analysis, in, 70

executable, 73-75, 115
global/local control, 99-101
implementing inputs, 295-98
implementing outputs, 301-2
implementing parameters, 302-8
interaction, 112
interfaces, 116-18
introspection, 76-81, 109, 141-68
invoking, 75-76

Java development, 221-22
life cycle control, 84, 111. see life cycle

control
locking mechanism, 193
MMQueue, 228, 247-48, 264
networking. See networking solvers
networks, 90-101
packaging, 220-23
primary interfaces, 137-41
progress updates, 81-84, 98, 109. See

progress updates
QueryInterface, discovering capabilities

with, 168
RandVar module, 223-24, 240, 248, 264,

270
RBinPack module, 256-57
RDBElements module, 234-36, 256
RDBLoad, 159, 231,234-36, 238
RDBStore, 231, 234-36
registration, 102, 103-4
requirements, 72-101
RKnapAlg, 257
RLPWrapper, 226-29, 232, 233, 238, 258,

270, 289-308
RNetOpt module, 224-26, 240, 257, 258,

263, 270
RSML, 236-37, 258
run time, 78
running solver table, 176
SIPEng, 252, 270
solver interaction, 137-41
SolverAdviseHolder, 170-72
SolverDescription, 142, 162-68
SolverDescription, acquiring, 168
SolverDescription, adding, 167-68
SolverInfo, 141, 142--62
SolverInfo Definition Language, 151-61
SolverInfo registry settings, 160
SolverInfo, acquiring, 161-62
SolverInfo, adding, 160-61

351

source code, importance of, 75
state diagram, 91
structure, 137-39
suppliers, 185
synchronization, 96-97
testing and validation, 88-89
using, 228-29
validity of outputs, 193
Visual Basic development, 221-22
wrapping CPLEX. See RLPWrapper

solver
SolveUnadvise, 170
Somerville, 120
source code, 75
specification, 107
specifying a data type, 311-13
splash screens, 82
Sporkinator, 5
spreadsheets, 70, 89

modeling, 55
SQL, 26, 28, 71, 72, 105, 119, 196
SS CentralAmerica, 66
Star Trek, 31
stochasticity, 42
stores, 70
strategic solutions, 61-62

one-shot solution, 62
structured modeling, 41-43
Structured Modeling Language, 28, 35, 41-

43, 42, 43, 45, 70, 236
structured storage, 32
subject. See publisher
subproblem, 52, 53-54, 65
SunSoft, 76
Sybase PowerBuilder, 76
synchronization, 96-97, 110
synonyms, 47, 285
T, the, 81
tactical solutions, 63

informal scheduler, 63
production-environment scheduler, 63

target audience, 19

task-centric computing, 24
Tea, Earl Grey, hot, 73
testing and validation, 88-89, 276
TeX, 163
Texaco OMEGA project, 63
Thalia, 126
trade-offs, 75
transient flows, 279
transparency, 97
type libraries, 151
typing. See dimensions and typing. See

dimensions and typing
UML. See Unified Modeling Language
unadvise, 99
Underground, London, 81
Unified Method. See Unified Modeling

Language
Unified Modeling Language, 43
United States customary units, 86
UNIX, 74, 267
URL, 163
Use the source, Luke, 77
using a custom data type, 313-15
using solvers, 228-29
UTSL, 77
validation. See testing and validation
VARIANT, 125, 147, 148, 149, 274, 304, 307,

313
VBScript, 117, 203, 267, 274, 283, 311
Visio Corp. Visio, 228
Visual Basic for Applications, 72, 117, 228,

230, 247, 267, 270, 274
voter registration, 103
WebBrowser control, 102
Winl 6Mutex, 75
Windows Scripting Host, 117
with events keywords, 277
Wolfe-Dantzig method, 59
Wolfram von Eschenbach, 287
wtypes.idl, 311

352

7K.

