1,134 research outputs found

    Quantum Synchronizable Codes From Finite Geometries

    Get PDF
    Quantum synchronizable error-correcting codes are special quantum error-correcting codes that are designed to correct both the effect of quantum noise on qubits and misalignment in block synchronization. It is known that, in principle, such a code can be constructed through a combination of a classical linear code and its subcode if the two are both cyclic and dual-containing. However, finding such classical codes that lead to promising quantum synchronizable error-correcting codes is not a trivial task. In fact, although there are two families of classical codes that are proved to produce quantum synchronizable codes with good minimum distances and highest possible tolerance against misalignment, their code lengths have been restricted to primes and Mersenne numbers. In this paper, examining the incidence vectors of projective spaces over the finite fields of characteristic 2, we give quantum synchronizable codes from cyclic codes whose lengths are not primes or Mersenne numbers. These projective geometric codes achieve good performance in quantum error correction and possess the best possible ability to recover synchronization, thereby enriching the variety of good quantum synchronizable codes. We also extend the current knowledge of cyclic codes in classical coding theory by explicitly giving generator polynomials of the finite geometric codes and completely characterizing the minimum weight nonzero codewords. In addition to the codes based on projective spaces, we carry out a similar analysis on the well-known cyclic codes from Euclidean spaces that are known to be majority logic decodable and determine their exact minimum distances

    Decoding Cyclic Codes up to a New Bound on the Minimum Distance

    Full text link
    A new lower bound on the minimum distance of q-ary cyclic codes is proposed. This bound improves upon the Bose-Chaudhuri-Hocquenghem (BCH) bound and, for some codes, upon the Hartmann-Tzeng (HT) bound. Several Boston bounds are special cases of our bound. For some classes of codes the bound on the minimum distance is refined. Furthermore, a quadratic-time decoding algorithm up to this new bound is developed. The determination of the error locations is based on the Euclidean Algorithm and a modified Chien search. The error evaluation is done by solving a generalization of Forney's formula

    Almost-Fisher families

    Full text link
    A classic theorem in combinatorial design theory is Fisher's inequality, which states that a family F\mathcal F of subsets of [n][n] with all pairwise intersections of size λ\lambda can have at most nn non-empty sets. One may weaken the condition by requiring that for every set in F\mathcal F, all but at most kk of its pairwise intersections have size λ\lambda. We call such families kk-almost λ\lambda-Fisher. Vu was the first to study the maximum size of such families, proving that for k=1k=1 the largest family has 2n22n-2 sets, and characterising when equality is attained. We substantially refine his result, showing how the size of the maximum family depends on λ\lambda. In particular we prove that for small λ\lambda one essentially recovers Fisher's bound. We also solve the next open case of k=2k=2 and obtain the first non-trivial upper bound for general kk.Comment: 27 pages (incluiding one appendix

    Generalizing Bounds on the Minimum Distance of Cyclic Codes Using Cyclic Product Codes

    Get PDF
    Two generalizations of the Hartmann-Tzeng (HT) bound on the minimum distance of q-ary cyclic codes are proposed. The first one is proven by embedding the given cyclic code into a cyclic product code. Furthermore, we show that unique decoding up to this bound is always possible and outline a quadratic-time syndrome-based error decoding algorithm. The second bound is stronger and the proof is more involved. Our technique of embedding the code into a cyclic product code can be applied to other bounds, too and therefore generalizes them
    corecore