5,559 research outputs found

    The determination of asymptotic and periodic behavior of dynamic systems arising in control system analysis Final report

    Get PDF
    Asymptotic and periodic behavior prediction for nonlinear control system with mathematical model of rigid body vehicl

    Eliminating flutter for clamped von Karman plates immersed in subsonic flows

    Full text link
    We address the long-time behavior of a non-rotational von Karman plate in an inviscid potential flow. The model arises in aeroelasticity and models the interaction between a thin, nonlinear panel and a flow of gas in which it is immersed [6, 21, 23]. Recent results in [16, 18] show that the plate component of the dynamics (in the presence of a physical plate nonlinearity) converge to a global compact attracting set of finite dimension; these results were obtained in the absence of mechanical damping of any type. Here we show that, by incorporating mechanical damping the full flow-plate system, full trajectories---both plate and flow---converge strongly to (the set of) stationary states. Weak convergence results require "minimal" interior damping, and strong convergence of the dynamics are shown with sufficiently large damping. We require the existence of a "good" energy balance equation, which is only available when the flows are subsonic. Our proof is based on first showing the convergence properties for regular solutions, which in turn requires propagation of initial regularity on the infinite horizon. Then, we utilize the exponential decay of the difference of two plate trajectories to show that full flow-plate trajectories are uniform-in-time Hadamard continuous. This allows us to pass convergence properties of smooth initial data to finite energy type initial data. Physically, our results imply that flutter (a non-static end behavior) does not occur in subsonic dynamics. While such results were known for rotational (compact/regular) plate dynamics [14] (and references therein), the result presented herein is the first such result obtained for non-regularized---the most physically relevant---models

    Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients

    Get PDF
    We are interested in the strong convergence and almost sure stability of Euler-Maruyama (EM) type approximations to the solutions of stochastic differential equations (SDEs) with non-linear and non-Lipschitzian coefficients. Motivation comes from finance and biology where many widely applied models do not satisfy the standard assumptions required for the strong convergence. In addition we examine the globally almost surely asymptotic stability in this non-linear setting for EM type schemes. In particular, we present a stochastic counterpart of the discrete LaSalle principle from which we deduce stability properties for numerical methods

    Initial-boundary value problems for discrete evolution equations: discrete linear Schrodinger and integrable discrete nonlinear Schrodinger equations

    Full text link
    We present a method to solve initial-boundary value problems for linear and integrable nonlinear differential-difference evolution equations. The method is the discrete version of the one developed by A. S. Fokas to solve initial-boundary value problems for linear and integrable nonlinear partial differential equations via an extension of the inverse scattering transform. The method takes advantage of the Lax pair formulation for both linear and nonlinear equations, and is based on the simultaneous spectral analysis of both parts of the Lax pair. A key role is also played by the global algebraic relation that couples all known and unknown boundary values. Even though additional technical complications arise in discrete problems compared to continuum ones, we show that a similar approach can also solve initial-boundary value problems for linear and integrable nonlinear differential-difference equations. We demonstrate the method by solving initial-boundary value problems for the discrete analogue of both the linear and the nonlinear Schrodinger equations, comparing the solution to those of the corresponding continuum problems. In the linear case we also explicitly discuss Robin-type boundary conditions not solvable by Fourier series. In the nonlinear case we also identify the linearizable boundary conditions, we discuss the elimination of the unknown boundary datum, we obtain explicitly the linear and continuum limit of the solution, and we write down the soliton solutions.Comment: 41 pages, 3 figures, to appear in Inverse Problem

    Asymptotic behavior and existence of solutions for singular elliptic equations

    Get PDF
    We study the asymptotic behavior, as γ\gamma tends to infinity, of solutions for the homogeneous Dirichlet problem associated to singular semilinear elliptic equations whose model is −Δu=f(x)uγ  in Ω, -\Delta u=\frac{f(x)}{u^\gamma}\,\text{ in }\Omega, where Ω\Omega is an open, bounded subset of \RN and ff is a bounded function. We deal with the existence of a limit equation under two different assumptions on ff: either strictly positive on every compactly contained subset of Ω\Omega or only nonnegative. Through this study we deduce optimal existence results of positive solutions for the homogeneous Dirichlet problem associated to −Δv+∣∇v∣2v=f  in Ω. -\Delta v + \frac{|\nabla v|^2}{v} = f\,\text{ in }\Omega. Comment: 31 page
    • …
    corecore