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Summary

The primary objective is this investigation was to determine
a technique or combination of techniques from which the asymptotic
behavior of a nonlinear control system may be predicted. The four
main approaches considered in this report lend themselves t; the
determination and/or identification of limit cycles or obtaining a
bound on the solution to the system. These approaches are:
1) Small Perturbation: The perturbation method, as the name
implies, is limited to systems that are weakly nonlinear. This
approach determines the periodic solution of the system by expanding
it in a Taylor series expansion in a small parameter. The results
obtained by this approach yield precise quantitative information for
the particular nonlinearity. However, it does not give informa.xtion
pertaining to the general system. This technique may be utilized to
verify the existence of perioc.iic solutions that are predicted by other
methods.
2) Piecewise Linearization: This technique dpproximates the non-
linearity by linear segments and thereby dividing the phase space by
hyperplanes. The general system is reduced to a set of linear
differential equations in sections of the phase space. In order to
obtain a periodic solution, a hyperplane is mapped into itself. This
technique is the most general procedure for determining periodic
solutions for systems with large nonlinearities. However, in order
to identify the periodic solution, a set of transendentﬂ. equations
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equations must be solved, and a priori knowledge of the order in
crossing the hyperplanes must be known. Both limitations are severe,
but maybe circumvented by the use of the ASP digital program. This
-program may be used so that the initial state vector is continually
mapped until the solution approaches itself. This approach periorms
quite well when the limit cycle is stable.

3) Frequency Response Methods: The methods considered in this
approach were the standard describing function representation of the
nonlinearity, and the appiication of Popov's criteria. It was found that
though the describing function technique is eas-y to apply, and is capable
of handling high order systems, there exists the lack of assurance as

to the validity of the results of any given problem. Popov's criteria
which is also applicable to higher order systems and is easy to apply,
unfortunately, yields only sufficient conditions for the system fo be
gobally asymptotically stable. However, the criteria when applicable
does include a class of nonlinearities, where as the describing function
handles only a specific one.

4) Boundedness: In the utilization of the concept of Lagrange stability
or boundedness, the techniques of Popov's criteria and Liapunov's second
method were combined to obtain bounds on the system. In general these
methods are applied individually tc determine asymptotic stability.

The advantage of this combined technique over the other is that all

previously mentioned approaches are limited to the determination and/or
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identification of limit cycles. This technique is capable of determining
a bound even if the solutions to the system are almost periodic or
enter a limit set.. However the bounds obtained by this technique does
depend on the choice of the Liapunov function and how the norm of a
vector is defined. The construction of the Liapunov function in this
investigation applied to those systems which had the repr esentation of
Luréds canonical form. By constructing a different V - function or

defining the norm differently, the bounds on the systemm may be altered.
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INTRODUCTION

In order to study the behavior of a launch vehicle control system,
it is desirable to consider the effects of all nonlinearities, to be certain
no adverse effects are overlooked. Previously, the nonlinearities
which may arise from bending modes, fuei slosh modes, or
control system itself, has been linearized and then the system was
analyzed for stability and performance. Unfortunateiy, the nonlinearities
which may cause self-sustained oscillations will not be predicted by
linear analysis.

Techniques have been developed for which the nonlinearity may be
considered, or approximated, in the analysis of -the system. The primary

objective of this investigation was to determine a technique or combination

of techniques which may be utilized in the prediction and identification of

a limit set and/or limit cycle. It has been found that the various approaches

that are applicable may be classified in five separate categories. Though
classified in this manner, mathematically they are related. The basic
methods'are: 1) Small Perturbation Techniques, 2) Piecewise
Linearization 3) Frequency Response Methods 4) Boundedness and
Lagrange Stability 5) Phase Plane and Topological Methods. In this
classification process (5) pertains primarily to graphical procedures
for obtaining a solution to second order nonlineaz; autonomous systems.
It was felt that this is too restrictive and was not considered. In the
development of a technique Chapters II to V discuss the remaining

methods along with their limitations. Consideration was also given to
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the ease of application, generality in use, and accuracy, in each of
the approaches.

In order to demonstrate the various techniques, the mathe-
matical model seléctea represented a simplified rigid body vehicle
whose damping coefficient represented the

ases 6l
wila Oh 1

nonlinearity of the system. A detailed description of this model is

presented in the next section of the text.




Description of Mathematical Model

The mathematical model which will be used throughout this
report to demonstrate the various techniques represents a simplified
slosh mode of a boo.ster vehicle. The effects of bending, engine
swivel, aerpdynamic forces have been neglected, since the purpose X
of the model is to demonstrate various techniques for a nonlinear
system which is higher than second order. The numerical values
associated with this model are hypothetical and where furnished by
NASA, George C. Marshall, Space Flight Center.

The equations describing the system are the following:
Translatory Dynamics:

mz *+ Z (m,;ri_) = F¢ +TB ‘

Attitude Dynamics:

1
Ié - z("‘stxsi?i + ‘"s\.(F/m)Cg) = - TBXe ‘
‘ * ]

Sloshing Mass Dynamics:

E:. *Zf(fa)wsag"&'w:;f; + 2 - xs-.&; - (%) = O

Control Equation:

e

B = Qod’ + Q,




The definition of the symbols and their

values are tabulated below:

associated numerical

Symbol Definition - Value
m Mass of the vehicle 6.35 x 103
P ith sloshing mass 216
F Thrust Vector 3.175 x 104
T Control Thrust 3.175 x 104
I Effective Moment of Inertia of the
Total Vehicle about its c.g. 2.1 x 105

Xsi Coordinate of i sloshing mass 5/3

Xe Coordinate of swivel point 6
{0 Damping of propellant To be defined

© Natural frequency of oscillating

¢ propellant 1.5
Qe Gain Constant 1.4
oy Gain Constant 1.0

The following figure will indicate the system coordinates:
;4
}




The above equations may be simplified, by considering one
sloshing mass, and reduced to two coupled second order equations,

which are

[I(u-ms/m) -msxs’] ¢ = [msXsF/m - Iw,f] - 20 I5CE)E

. I-1
- T[ao¢ + &‘P][I/m + Xe X{l
[I(\—ms/m) -mg st]d) = ["'\s/m Cr-ms/m)F - wngXs] ¢
: I-2

- Zwsmsxs{ (€)Yt -T [Q.o ¢ Q;J:][Msxs/m + XeCi- M§/m)]

Numerically,
¢ . _z.325¢ -3.u28(8)¢ -6.7456 -9.458¢  1-3
5 = o.oust -000533§(6)¢ - 09176 - 12859  I-4

‘The nonlinearity appearing in the slosh equation, represented by

is defined in the following manner.

f¢%) =o0.00t¢ , o=l £ .301

feer s 28 - 181 C.e02) + 0,001 4 tEI> .30

System equations I-3, and I-4, may be transformed to Lure's canonical

form of

x =Ax +bF (o)
I-5

o =c"x




where A is a 4 x 4 matrix, b and cT are real vectors. The state

vector is defined as

Xy = g .

xg = € + 5.qu{-(u)du.
(-]

X3 = $

. o
Xe = ¢ +(.oos-’»3)‘s‘f(u)du.
©

Numerically:
(] ] (o] 0
-2.325 o -6745 -9.458
A =
(o) (o) O }
0.001\5 o -0.0N7 -1.285
T ad —
b = -3.112 0.0108T7¢ =0.00533 0.00688
. - -
< = t o o 0

The block diagram representing the system is then

En

i)-a@—.— CT(Is_A)-lb' g

F (o)

where c*(1s -A)"b‘ is the open loop transfer function and Feo)

is the integral of the nonlinearity. Numerically..




F(o)

0.001 O

R o:lol ¢« .301
o3 . 1-6
F(oy = 2(95 lolo (.301)/2)+ .001 + .009 .
ol ».301
and ‘
T (Ts-AY'b = 3.128> + 3,9488% +2.80128 7
S*+1.2855% + 3.2425%+2.9983 +2.139

In the application of the various techniques, the primary

equations of interest will be either I-3, I-4, or I-5. However,

modifications will occur with the applications of each technique, and

will be noted in the individual section under "application'".
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II. PERTURBATION METHODS

A. Theory

By the term perturbation methods we mean any procedure for
finding periodic solutions to weakly nonlinear systéms by the expansion
of the solution into a Taylor series in a; small parameter. Such
procedures were originally due to Poincare (11) and have been gener-
alized by Hale (10) and others. In Russia such methods are general'ly
known as the method of harmonic balance. The theory of such
procedures is best explained within the framework of Hale's work,
although his method may not be t};e easiest to apply in specific
applications.

Consider the describing equations in the canonical form

x. s € F‘ (x\,Xz,t.e) II-l
).(: s sz ¢ er(*..Xz.t.e)

where X} and F} are assumed to be P vectors while X5 and F are
assumed to be n-p dimensional vectors. It is assumed that both Fl
and Fp are periodic of périod T. It is farther assumed that A is
such that no solution of the system
Y : AY -

is periodic of period T except the solution

The problem posed by Hale was to find conditions on the vectors
F, and F sufficient to ensure the existence of a periodic solutiop of

II-1 which is continuous in € . In addition an algorithm is sought

to obtain such a solution if one exists. The procedure developed by




Hale is basically an iterative one. For

solution

€ = 0 , we have the periodic

A, c
X2 3= O

where C is a constant vector as yet unspecified. A natural procedure

is to start with this solution and proceed as in the Picard iterative

scheme and generate the sequence of approximations

Ky =
X: =
X: z
X) s
X" =
x; "=

)

In each nth step of iteration only terms in € of the nth

be retained.

o n

t
cC eS F,(e,0,«e€)d\U

- o3
GS‘ F, (¢,0,u,e)dw

L 3
¢ v el Rmom x7, w0
. _
eS' F (7, X, ue) du

order will

Under suitable hypotheses upon the functions F; and Fp the

convergence of the above sequence can be proven.

Although the final

solution may possess all the desired periodic properties, there is no

assurance that successive approximations possess these properties.

To circumvent these difficulties Hale considers the sequence
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by
"
A

€
1)

)
[-)

t
X o= e+ er-n) [Fteo uerda

| .
b4 - -
X2 = €(I-R) JR(g 0, w344

4 .
X™ = ¢ ¢ €(x-0) SF. (x' x u,e) du
X = e(xr-w) S'Fz (X.", x:.\L,f) du

where the symbol Po operating on the integral extracts the average

value. Thus

<oT

. :
POS Fix,u, ddu = %S.F(x,u, )du II-5

h
This sequence under suitable hypotheses upon the functions F, and F,

converge to the solutions

X, = C « e(I-P,)SF.(&.x,. W, €)dun 5
11-6
Xy = €(X - Pa) Sﬂ(x,,x,'u.‘e)d\s

Observe that these are not solutions of the original system of differential

equations. If the initial vector C is chosen such that

Pe S‘ Fo{x (e, uw), X (c,u), &, €)du = ©
’ I1-7

Pe ( Fa(X.Ce,uy, X Ce,uy, w,€)du 2 ©

then the solution II-6 becomes solutions to the original equation II-1.
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The set II-7 are called the determining equations and their solution
is necessary for the existence of a periodic solution to II-1.
In practice one settles for an approximate solution given by the
kth term of 1I-4 where only powers up to the kth in € are retained.
For the identification of periodic solutions of autonomous systems,
one must first transform the describing equations into the form II-1.
Consider the real system of autonomous equations

. 11-8
X = Ax « F((x,) '

We will assume that A is in the form A = diag (A}, A2) where Al is

a p x p matrix such that every solution of

)2. : A, X II-9

is periodic of a common period T. Aj isan - p xn - p matrix such

that no solution except Xp0 of

Xz A, X I1-10

is periodic of period T.
Thus the matrix A must be of the form A, = A‘“'3 1§ 0y,C,, _,cm)

where Oy is a k x k zero matrix while each C; is of the form

(»] \
ey =

with r; rational.
twy o !
=W Ve

2
Thus the matrix A) depends upon ®g and may be written as Aj( %)
while the period T may all be written as T (wo). If we define the true
frequency

W= W+ €
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where B is to be defined, and make the transformation of variables

1I-11
X, = Y
we obtain
. -A .t L)t | At ()
v @™t BN e NpeMTy

1I-12
Y.zg A‘Y‘ . €F' (ehqm‘)t Y" ;,5 )

where we have defined

Ao - A (e €8) = - ATB)
Thus we obtain a system in the form of II-1 and Hale's method may now
be applied.

In general the functions F) and F, in 1I-1 are assumed to be
continuous in € , satisfy a Lipschitz condition in X} and X3 and be
integrable with respect to t. This is sufficient to ensure the validity
of the procedure providing € is sufficiently small.

In the application of such procedures to specific problems it is
not necessary to transform to Hale's canonical form, but one may
proceed directly in assuming a solution in terms of a series in the para-
meter € . Direct methods for finding periodic solutions for
autonomous systems with small nonlinearities due to Krylov and
Bogoliubov (45) are equivalent to the procedure outlined above. The
amplitude of the resulting solution is made to depend upon the average

value of the nonlinear function evaluated at the periodic solution.
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B. Application:

For the purpose of demonstrating the small perturbation technique
without unduly complicating the presentation with the details of computa-
tions, the nonlinearity in equations I-3, I-4, was approximated by a
least square fit. However this technique may be applied to the existing
nonlinearity except that the equations will valid over the piecewis.e
segmentsof o4 L&l 4 .3 and V¢l » .3 . This would
mean repeating this technique over each region of concern and will
defeat the purpose of this example. By approximating the nonlinearity,
the region of concern is now extendedto © ¢ 13 1s0.

The data points are tabulated below and the approximate nonlinearity

will be defined as  h(x) .

X Actual Nonlinear Values

.1 .001

o2 .001

.3 .001

.4 .08

5 .20

.6 .36

h(x) = .00t - wo3 %' + 3.2¢ x*

1]

€eCaa +a,%x* + a,%x') = € 9 (x)

where € = ,00\ .
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Equations I-3, I-4, may be represented as:

X 4 2.325X 40745y + 94S8Y = -3.12€9(0 % I-13

Y + 1.285Y «+0.047TY s eS""" -s.zsesu)i} II-14

The solutions to the above equations may be represented as

- XO * Ex. “G‘x!* ..‘..*E'&ﬁ

X
Y ¢t Yo t €Y, *e‘Yx"'-’E“YO
[¥%)

2 na
T2 We v €W o+ ETWL 4t E W,

Consider, for the present, only the terms upto €* , equations II-13

and II-14 may then be represented as:

(*. +* Gi * €l§t) * w‘.x. *e(u“x.-’ u: x.) 4 e‘cw:x. + wl.vx‘ * u:x‘)

+ 6145 (VaveY, +e¥2) * 9458(V, 46V, + ov, )

= -3.\\7.6(%)'(. + G..X: i. * Q;Xti.)

- 3un2 e"( 2% XeRy + AX,KiKe +QoX, + 0\XeX,)

(Yo +€Y, + &%) + 1285 (Yo + €Y + ) + 0.0 (Ye + €Y, + aY,)

S ISEX, " 10S e*[x.*4.63(g.f(,+ Q.¥:\'(° + Q.X.‘)'t.)].
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By equating the coefficients in terms of powers of € yields

the following equations:

Xo * 03X, + @T45Ye +9.458Y, =0 II-15
Ve * 1.285 Yo 402TYe = O I-16
%, + (0lx, + 0lx) + ¢T45 Y, + 9.458 YV, 1-17

= =302 (QeX, + QXS X, 4@, ¥o X,)
Y, + 1285 ¥, 001, = VS Xe 11-18

X, + (wlXe *+wiX + wlX) +e745Yz +2.458Y,  II-19

e =302 (zx.x.k, iA.x,xfi, +QoX, 2, %o ¥X,)

Ve 41285Y¥s 4017 Ye =  —1a5( x, + a.c3(acx, + 2% 40,X%,)

The number of equations will increase as higher powers of € are
consgidered.

For € raised to the zeroth power, the periodic solutions to Yo and

Xo are
Xo = ACos(uot +9)
Yo = O

Substituting these solutions into the next set of equations (II-17, 1I-18),

the periodic solution to Y, has the form

II-20
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where A. - (w’ -1) (l.\S)A
~de 4 .35w] -
and —-1.28% A\S
B, - 1.28 g(\“ A)
By substituting in the know solutions Y, ";" , %o, *. into

equation II-17 and rearranging terms, the differential equation involving

where the forcing function f{t) contains the known solutions of Y, . Y‘ »

Xo ’ X . Specifically, the forcing function is:

—otx, = =~ 0t ACos(uot +0)

~GTASY, = -c.‘ms(A.C.cs (wet +2) + B Siatwet w))
-9458Y, = 9.458u, (A. SiacCwet ) -B,Cos Cock + @))

- 312 Qg% = 3.2 moA wg Sialwet +0)
- 3.m2 Q, x,‘i, = 3.m2aq, A‘w°/4_ [Su\(wot +3) +Sin3Cuot + 0)]

L 3
- 3N AxTRez 32 0, K, /g {sm( 0ok +0) + 3 Sin 3Cudt +0)

¥ SiaS(wet + 0)]
2

and the solution to the homogenous equation of X is

X| s K\ COSng-t * o)o

In order to prevent resonance, the coefficients of the forcing function
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which has the same frequency as  w, must be set equal to zero.

This results in the following equations, which involve w, and
the amplitude A.

~wlA -c¢.745 A. - 9.458uw . B, =0

3
-6.T4s B, ~ 9.4-58A.w. *3.12 Q.koo * 3.n2a, Aw,-t 3.2 Q, Ai:o 0
4

Since the relation of Ay, Bl_ are known functions of A, the above

equations are reduced to

wt = 5.9202 + 7.75

= - 3.86
- w? 4 3502 )

A(AY - .\ca A? + s 930163 = 0o

The amplitude A is then o, * o0.331 , L.23a4
Since €Ewt , the approximate
'

value of

we * ~w[_| - 6(%)‘ ]VL

[ ' +€(\.¢.c)]y1

n

(\ ~ eu.c.c)/z]

€
°
i

\.S2683%

By continuing this sequence of computations the complete solution

for x Y Y.

and we may be found as accurately as one
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desires. In this example, the amplitude (A) of this approximate
solution differs from the other examples, but this is due to the

approximation of the nonlinearity by the least square fit.
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C. Limitations

The main premise underlying all perturbation methods is that
the deviation of the system from linearity is small. Thus such
procedures are restricted to nea rly linear systems. For large values
of the parameter € , one can no longer be assured that any of such
procedures will converge.

In terms of the practical implementation of these methods where
they are applicable one is confronted with the growth of the numerical
computations which expand geometrically with the dimension of the
system. In practice one generally restricts himself to obtaining at
most terms of second order in the parameter.

The second maiﬁ limitation to the method is that it in general
enables one to obtain precise quantitative information about a specific

system and gives little qualitative information about general systems.

Thus one may obtain as accurately as one desires the amplitude or wave

shape and frequency of a limit cycle but not know how sensitive the
frequency’ or amplitude to a parameter variations in the éystem.

The main utility of such procedures is to verify the existence of
periodic solutions predicted by other methods and to check the stability
of such predicted solutions. Once approximate solutions are found for
system's with large nonlinearities, they may be refined by perturbation

methods.
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III. PIECEWISE LINEARIZATION AND POINT TRANSFORMATION

A. Theory |
For systems with large nonlinearities and of high dimension,

perturbation methods are of little value in determining asymptotic
behavior. The only general avail
linearizations and describing functions. In the former method, the
nonlinearities are piecewise approximated by linear segments and
the nonlinear equations are replaced by a system §f linear t;quations
each of which is valid in a portion of the phase space bounded by
hyperplanes. To obtain a periodic solution a hyperplane is mapped
by the system of linear equations into itself. The requirement for a
fixed point under this mapping gives rise to the existence of a periodic
solution.

For this method we may assume a system in the canonical form

X = Ax +BY
Y= F(¢) m-1
= %

where A is an n x n matrix, B and C are n x 1 vectors and F«(<)

a scalar nonlinear function. It is assumed that F() maybe

approximated by the system of straight lines.

Fe) s Kae ¢+ Qo ‘ -q

Koy * Gy ~Gy 4t TL -0,




Ko & ~S4 L a s q : .

&
K, G, T, & TLew
st' A \E L T &Gy

" In each region Si of the phase space between the hyperplanes

Wi givenby @ & and Hisr givenby « T T ey

III-1 may be approximated by the linear set of equations

x « (A+WBCTIX + GiB ' III-2
Thev solution of III-2 in Sty is given by | i
X = eA;L{--th“u) - *eht(*""’ .Bdr W3
where . , -
Ac= (A« K.BC") | II-4
This sol‘ution may be contim;ed until some time t Kt where i‘ ‘

the solution intersects one of the two hyperplanes H{ or Wiey -

The time t et is then given by the equation

Atwes

Wt -t ) 2 -
Aﬂ( | 3 x(t") + ‘)tc't.e“t(tx" 1) GiBéT

Cx(t,.) = Cé€

= G'-\‘.. or “':. 1II-5 i

In the above equation we must account for the intersection of the

solution with the hyperplane Ni4v  or the hyperplane Hy .

In order to obtain a periodic solution for this scheme it is
imperative to know the order of traversing the hyperplanes., For
illustrative purposes assume we start at 4 = o on the hyperplane
H] and furthgr assume the solution traverses the hyperplanes

H2 Ha H1 H-1 H-2 H-2 H-1 Hl in the given order
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In order to obtain a periodic solution we must obtain the mapping from
the hyperplanes Hl through the hyperplanes in the indicated order. The

intersection of the trajectory with the given hyperplanes gives the eight
equations .

X (k) : e""“ X{e) 4 e““"“’" Q. Bd7v

x(t) e eMEWxny v SE““*““qu a7

XUy = eu.(t;-mxlt“ ' S“‘é«.(t..-ﬂ G, BT

X (ty) = @ttty g

Xt « @f bty gy S;““L*"“

Aalbetd o 2 G- Bav

XChy = @0 Xit) ¢ et Mg pdr
xety) = €W x4 LR

1 Xl Le G- BdT

X (a) - eAthc-tt) XCdy)

The unknown times ty, t2« .. . tg are given as solutions to the

eight transendental equations

e t) = G C¥ Xtg) = G
C'xCty = & Tt = T
ARIC A SR Oy 11-6
CTxlty) * T < xCg) * T,
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while the initial condition for the periodic solution is obtained from

a solution of the algebraic equation

X(teg) = X(o) -7

Even for simple systems the solution of the above equations is
not easy. As the dimension of the system increases and as the number
of segments increased, the computation grows exponentially. For
higher order systems it is generally much easier to just continue
mapping through the sequence of hyperplanes until the trajectory
approaches an intersection of itself. If the resulting limit cycle is
stable such successive mappings are easier to apply if a fast inte-
gration routine is available. |

Two difficulties couyld theoretically aris.e in the application of
this procedure. First the solution might enter and stay on a given
hyperplane. If the piecewise linearization is chosen such that AL
and CT are completely observable that is c’, < A.i o S A:“
form a linearly independent set of vectors, then no solution can
remain on the Hi hyperplane.

The second problem arises when one tries to solve the set of
equations for IX(;\ and the matrix of coefficients becomes singular.’

This may occur when a family of periodic solutions exist and also

when no such periodic solution exists.
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Application
In the demonstration of the piecewise linearization technique,

there were two computational approaches which may be taken. The

first approach was to solve the set of transendental equations obtained !

ASP digital program (139), for successive mappings until the bperiodic
solution was obtained.

Since some knowledge was known about the limit cycle, the
equations approximating the nonlinearity were selected to yield compat-

ible results with the other techniques that are discussed.

These equations are:

FLG\ s Kg@ ‘G' ’ G‘ -3
III-8
FCo) - Ko® ) -3£0& .3 ‘ |
Fo) = RS +G, y - &> .3 |
where. Ko = ©.00% N K,z 0.001066C and G‘ = O, 00007%
The éystem I-5, then has the piecewise linear representation of:
X = Aox -3¢ X .3 I-9
5( = A\ x "'b| —-3 < Q'x III-10
X = A\ X + bt <Y > .38 1I1-11

where Ao= A*Kobﬁf ’ A.: h-tk.bcv ’ b.:bﬂ.
The numerical values of Ay, A], by, are shown in figure IlI-a. The

above differential equations then determine the behavior of the system in



” @

the specific region of the phase space which is separated by the hyper-

planes, €, = .3, Since the form of the solutions to equations
III-9 to 1II-11 are known and the condition XCe) 2 X L'tf) must

be satisfied, as described previously. This results in the equation:

-\
“°(t‘°t3) A.kﬁs ~*|,‘ e A. k*‘ - I!l\ e “Q({!‘ ]

| “o Lt ] -" “‘ h t ’ - Alt\ 1 '“ltu III lz

- - - '“it\
_ el gAlty p o (o-AE g )]b

From the intersection of the trajectory with the hyperplanes, the resulting .

III-13 ‘

equations are obtained:

A.t\

G: 3« ceMtxecertp’ (e M Lx)b,

ol.t;’to) . - -
-6, t-3: CF e“ et i + c'."e“‘u" *"eM‘A.'(éA'Eﬂb. II-14

- G. s -.3 : c‘e A‘(t;'.tl.) eAG(*g‘tl‘ eA‘t‘ X(Q)

+ < [QM*"*“ ehetrtd pdlt N A't“n III-15 i
- eMBAM (e gt )], |

Gz .3 = c-reAeL'h-fz) eh«tt;-t;)eA.L{-,.t‘) e

ot
A X (o)

- i - - h ] 2 ail 1) -
P [ea.u. <, eA.( 3-€1) e&(t‘ t) el\.t.A.. (e.“- 1) III-16

k- - - lall
_ eA.(.w +3) et A.' (e Ay _o “*‘)}b.
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In order to solve the equations III-12 to III-16, the closed form repre-
sentation of the transition matrix must be obtained. The derivation of
this representation along with the 1620 computer program which was

written to perform the calculations are shown in Appendix ¥, and no

Q“ . evt [‘P.Cos B.t Q.sma.t]
+ e“‘t [‘P,Ccs Sg‘t + Q2Sia B;t]

where the eigenvalues of A are o, ¢ 13. »and o, ¢ 35‘
and Pi, Qi are matrices whose dimension is the same as A. The
values of Pi, Qi are shown in figure III-b and c. Though the
transition matrices where computed, one can see the computational
difficulties that are encoﬁntered. This approach was abandoned at
this point and the ASP program was used to solve this problem.
The logic behind the ASP program is basically vex;y simple,

since the solution to the linear differential equations is known to have

the general form

At Y ALt
X)) = € X(te) + Se““’ m BdT
e
and the ASP program contains this computation as one of its subroutines,
XLt) may be computed. This subroutine is called EAT. Then
by computing G:C' X » the switching of Ag (III-9) to A]
(III-10) etc., is determined by a simple IF statement. The state

vector X(t) is printed out XT at different values of time. Thus a time
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solution is obtained for the complete state vector,

Included in the following figures (Iﬁ-Dl to III-D7) is a listing of
the program, the input data, and a sample of the output. The
constants from Z1 to E1 and Q) , Q; are computational aids.

Tabulated below is the ASP representation of the input matrices and

vectors.
Mathematical

ASP Representation Definition
Si (S} » S2) G, (e , &) | Switching points
Ai ‘ Ki The slope of the linear

*  approximation
Bi " Gi ' The constants associated with
the linear approximation

F A Original system matrix (I-5)
G b Vector of (I-5)
T Iteration timev
ND Final time
X X(to) Initial State Vector

The constants used as computational aids may be explained by
an example. Consider E1l, this constant is used to construct an
equivalent ''go to" statement which exists in standard Fortran language.
In ASP, the statement I F A, B, HEAD 2 means if A is greater than
or equal to B, go to HEAD 2. Simply by setting A equal B reduces the

IF statement to a simple ''go to' statement. If one is familiar with
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the ASP vocabulary, it can be seen from the listing that for any
X Lty Ga + CX(8) is computed and then compared to the

switching points G, or Gj , which are .3 and .315 respectively.

Upon determining the region, the matrix A. = A v W bcT and

the vector B = bGi are comsir » nonlinearity was

approximated by the addition equation
X = A.x+b, > .55
X = A;X('b'- S <~ .3\

where Az = A+ ¥ be' and b, = bGz . This was added

so that any initial state may be selected. The rest of the program is
straight forward and self-explanatory. The results are shown in

figures III- E1 and II-E2,
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C. Limitations

The method of peicewise linearization remains the most general
procedure for obtaining periodic solutions of systems with large
nonlinearities. If the system under investigation possesses limit
sets other than periodic solutions, the procedure fails. Its two main
limitations appear to be the difficulty of solution of the associated
transendental equations and the need for a priori knowledge of the
order in crossing the hyperplanes. This last limitation in essence
requires one to know before hand a good estimate of the amplitude
of the oscillation.

The second procedure of continually mapping an initial vector
until the solution intersects or approaches itself is very practical
for systems with stable limit cycles providing one has access to a
good compufer program. A computer program such as ASP has
been demonstrated to perform quite well. Because of the sp;ed of
computation one may start with a crude peicewise linearization and
then refine the approximation as the approximate solution is developed.
The effect of different peicewise linearizations can be easily evaluated
thus obtaining a sensitivity analysis of the resulting characteristics of

the periodic solution to the nature of the nonlinearity.
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IV. FREQUENCY RESPONSE METHODS

A. Theory
The use of frequency response method in the guise of the describ-
ing function has been the most widely used method for the analysis and
synthesis of nonlinear systems. The method owes its popularity to its
simplicity of application and its freedom from severe computational
difficulties. A second frequency response method known as the Popov
criteria has been developed within the past few years but has not had
as yet the wide spread publicity of the describing function. In both
methods much is common and one forms a lbgical applied extension
of the other. Both are applicable to systems of the form
X = Ax +BY
Y = F) V-1
c = ¢c'X
The describing function method consists of replacing the non-
linearity by an amplitude dependent characteristic and using this
characteristic in a conventional Nyquist plot.

If & is assumed to be a pure sine wave

Ts: ASinwt V-2

Then Y is given by the fourier series

Y s ZO.“ Sininwt) ¥ b Cos(nwt) « 5_2 Iv-3
2

st

where the coefficients On and bn are defined as




e e e e 10

Qa = 2 F(AS wt) Siatnutidt
ba = L F(ASiawt)Cogtawt)dt
The describing function for this system is defined as

N(A L) = O, (Av®) + L b(A,W)
A

The linear transfer function /v is given by

TGy = PEY/QW : c*(xs-AV B

If IV-6 is solved for Y(S) and if we allow G(t)
given by IV-2 we obtain

aw/?cs)[_aﬁ s YDz g, aw
s't 28 "'§3 gt

bS L 2@ L T
== 0. 4 S
¥ e St n STt

Iv-4

IV-5

IV-6

to be

If we multiply IV-7 through by s$'+&' andallow S-= 3w

we obtain

Qe /pom (@) = aw +bw

IvV-8

Solving for the open loop transfer function we obtain as a condition

for a periodic solution the relation

PLW/QL) = A . vNpw

Qo+

Iv-9

43
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Solutions to IV-9 are obtained by plotting the open loop transfer
function ?(‘“")/GC\@) and crossplotting

‘/ N(AWY | Periodic solutions

are indicated for those values of the frequency

& where intersections

occur. The amplitude of the periodic solution is found from IV-9.

The preceeding discussion is based upon the assumption that the

nonlinearity is an odd function that is Feo) = - Fle) i W)

is even, then the above procedure would indicate that no fundamental

is present in the fourier expansion of the output. That in this case one
assumes.

Gz Ao + AiSinut
Two relations are now obtained for the existence of a limit cycle. One

relates the bias level of the oscillation and the second gives the

frequency and amplitude of oécillations.

For arbitrary nonlinearities which are neither even nor odd, a
biased input should be considered for limit cycle analysis.
By means of the describing function, the nonlinear system is

replaced by an equivalent linear system, from which the deviations

may be expressed in terms of a small parameter. Thus IV-1 is replaced
by

X *Ax +BY
Y = FGO) = Y& + ;) IV-10
g » cT x

For the linear approximation, that is with A 20

, we have assumed
s As‘n Q"E 13 ASH\(@.*G‘*:

a periodic solution of the form S
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The describing function has the form

NCAW) = ¥V + 4 N (A, w) | v-11

where N'(Aaﬁ\ is the describing function for @(‘) . Fora

QLiw)/PGiwy T NCALY = v 4+ 4 N'CA W) Iv-12

If this equation is expanded about the point ®e ' we obtain

QUaD (iogulE = {p(-...,.n LR S }N(A,u\ + O3

D3y 9 Wy

rearranging terms we obtain

. e ANy -
N(Aw) = Qlind +i Qi) @ 2 Q (i) 1.9 = _
Plias) L PG00 P T laal)3, s

In the graphical solution for periodic solutions, the last term in IV-13
is ignored. This may account for the discrepancy between the pre-
dicted frequency of oscillations and observed frequencies. This might
also account for the occasional failure of the method to predict a limit
cycle when one actually exists,

The describing function method is generally applied heuristically
to problems without any regard to its validity or mathematical
legitimacy. Many rules of thumb have been developed by which one
either accepts or rejects its conclusions. The two primary questions
relating its validity are: 1) What additional restrictions are fequired

to insure that the periodic solutions of the equivalent linear system
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represents periodic solutions of the nonlinear system? 2) Is it
possible for the nonlinear system to have periodic solutions which
are not predicted by the describing function.

Bass (98) has given a complete mathematical answer to (1),
but his results do not lend themselves to easy verification. His

results may be stated in the following theorem

Theorem: Consider the system of the form

S 4 wAdx 4 Bx = F(x,0dX) Iv-14
ae a° Y

and its companion equivalent linear system

@ di ¢ wAdx 4 Bx = Fl¥e,wike) v-15

ma—

de de d

and the generating system given by

SEx 4 wALE 4 Bx = Fllax + G k), toopdn catrmdsy] V-6

where it is assumed that
F(- X,‘ :—5 F(x, d \
F(x,0) %0 F(o,0) =0
then the periodic solutions of IV-15 are periodic solutions of IvV-14

providing a) IV-15 is regular and b) IV-16 is resonance free. X

is given by

1 N
x. (@) = {% SXLO‘)Coscc\G'}c"‘o +{ Sxms‘nn\cl Swn® Iv-17
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The periodic solution of IV-15 is obtained from the algebraic

equations

(1]
(]

.
(LI-B)3 - SAB 43 (rox wimicesodo
o ' e IV18

t

1- °

gl 3%
Ve, + 2 J(:F (e, wiS) sia0do
Observe that IV-18 is the same as IV-9. System IV-15 is said to be
regular if the Jacobian matrix of IV-18 evaluated at w. , &, , and
3‘ , is nonzero. This condition is easily verified, but the require-
ment that IV-16 be resonance free poses the difficulty. In essence
IV-16 is resonance free if all solutions of IV-16 are bounded and if
there are no periodic solutions with «=0 or W e,
The Popov criteria is used to determine the global asymptotic
stability of systems of the form IV-1 under the additional hypothesis
a) 0¢ & FW) & ket
b) A is stable
Under these assumptions, Popov's theorem states
Theorem: If there exists a real number A such that
Real { '!i « (1 *"‘“‘m“(’"ﬂl . A).'B‘ 7 [
for all w>o then IV-1 is globally asymptotically stable.
The application of th;—: Popov theorem is made graphically »
analogous to the application of the Nyquist criteria. If the nonlinearity

F(c) was replaced by a linear characteristic

F() = AT o< N4k
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Then a sufficient condition for asymptotic stability would be for the

closed loop characteristic equation
L+ Ac(Is-AY'B ' IvV-19

fxave no roots in the right half plane. This is equivalent to stating

that there exists no frequency «3 such that
-
c*(inwI-AY'D = - Yn IV-20

Solutions of this are obtained by plotting the locus of <cT(iwI- AY'B
in the complex plane. The graphical interpretation of the requirement
that C(hwI-AY'BR > - '/)\ is that the locus of this plot
does not cross the negative real axis to the left of the value - Y .

To obtain conditions for arbitrary nonlinearities such that system
IV-1 is asymptotically stable haé been the aim of mathematicians for
the past decade. Such conditions have been found by the use of the
second method of Liapunov. Popov's theorem is the first result given
rigorously in terms of frequency plots.

If the open loop transfer functign

Qliw) = o (w) + iﬁ.(.‘d\ = <7 (lwI - AY‘B
is modified to v
G¥ (iw) = &lw) + & wflw)

by a change of scale on the imaginary axis, then the Popov inequality

Ve » ?e{ (y ﬁiwp)(c'(zwI-MAB{} 7o

By

®
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may be interpreted graphically as the requirement of the modified
function Q* (iw) lying to the right of the line

N t kT ARA

This line has the X intercept at - % and slope ‘/p . The

Popov criteria contains the Nyquist criteria as a special case.
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B. Application

In the application of the frequency response techniques, the
system under consideration will have the canonical form of equation
I-5, the nonlinearity is that of I-6 and the block diagram representation
is of figure I-b. Since there are two different techniques involved, the
first one considered will be the more familiar describing function
method. Equations I-5, I-6 will then be modified to satisfy the
assumptions of Popov, and the application will follow.

Des cribing Function:

By replacing the nonlinearity, F) vwith a describing function,
the standard Nyquist criteria was applied. Initially, a Rough Hurwitz
test was performed on the open loop characteristic equation to ascertain
the number of open loop poles on the right half plane. In this particular

example there were two.

The fourier series representation for ) is in general,

E(s) = 2‘(’“3\'0 (n®) + XnCos(nd)

nst

However, since the nonlinearity, equation I-6, is an odd function,
Xa =0 and the describing function for FCa) for all
values of | ¢p\ >.3 s,
)
N\T',\-b\ 2 Z_ S F(s)SnB4d6
1‘ f' ()

g3
where G =%pSin® . By direct substitution, and letting 0.:3.»\' (?,)
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-8,

°, :
N = 2 { S(.oo\\(f?s\ﬁ‘edﬁ + SZ(‘:S_‘_'\"O - -.%G':S-«'Q\Su\@&o
() 3, 3

wWep

-8,

+ S'(;oet)fpsane-».oog)s.:“ede

+ S'(.OO\)Q‘PSU\'QC!O

-9

Performing the integration and evaluation yields,
3 ‘
-2} G -38 + 25w28, - 1 Sin4e,]
Wepp { &6 L 2 A
+ -3@9‘{% Cos’ 9. ..2 Cos 9|]

+ 0008 Gp“‘ + 0\806 Cos 9.

Since there were no energy storage components in the nonlinearity,
N(G'.\ is real. As shown in figure IV-a, the intersection of the
amplitude loci with the frequency loci occurred at Gp = .329 and

a frequency of 1.529 rads/sec, which identifies the limit cycle.
For the purpose of demonstration, the original equations of the
system, I-3, I-.4 were modified so the nonlinearity f( £ ) was now a

function of both the slosh amplitude and rate. Specifically

feedy = fcey ¢ £LCD)

where -9‘( t) was the original nonlinearity and
£, (€Y = &%, foran ¢

By defining a new state vector,
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X’:.[X. Xa X,¥43=£§ é ] 6]

and C‘: X - G-‘ ' C\f X = ¢‘

where

C.‘ir_uooo]‘ c,:s Losoo:]

The system has the vector-matrix representation of

x = Ax 4+ b F(q ,a)
§.= Sl x

Grz CLK
where A is the same as I-5,
4
b = [ o -3m2 o -0.00553]

and F(Q‘\,‘t)t .Q0\ G, + 0'3 when o ¢e\@V¢ D

Fe,0Y e 0 (2 (ot - 181K(3)]4.009 + 1) when 1®\>.3

Thé block diagram of the system has the representation, of

&wz0 S,

Y ¢l xs-AY'b

Y

Bl%,4)

The describing function for F (5,8) was computed to be

N(Wp,uﬂ S é; *3& s d*iB
P Sy
for © <lap) £.3
o 20

@ * w ( -oo -»m‘c‘,‘s/.‘,)
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2 .coy @ R riy
"l'“ 18 4 &5 (%’ﬂ" _%SNZQ,_‘_\‘S\N46.)

LA 4 “lc' 11 ‘.‘é‘)

Figures IV-b, IV-c, IV-d, indicate again, that the system has a limit

cycle. However, the amplitude is now .0142, and the frequency 1.525
rads/sec. This example does demonstrate that the describing function
may be used on nonlinearities of more then one variable.

Popov's Criteria:

The system to which this technique is applied has the same
canonical form as equation I-5, however, due to the restriction that
the matrix A must be stable it was modified by replacing the non-
linearity F(S) by,

F) = ko + $o)

where k is a constant gain. The system is then

~
x = Ax +b5bt)
¢ 2 'x Iv-21

where A=z A+ woc’ and k was selected large
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~
enough to stabilize A,

o -

-0.03112 ' o o
-2.3244 o -6.745 -9.458
N -
A= -5.33016%) ° a \
1.218003) o -O0NT -1.285
. -

and numerically, the open loop transfer function is:

s . 3m28° « 2343 4 2.€177S
¢eo) S* + 131693 4 32818 + 3.0258 +2.138

Then for any nonlinearity Gb(.ﬂ which satisfies the condition

ot @LQ\ ‘_-‘ K, , the Popov's criteria may be used.
From the figures IV-e, IV-f, any nonlinearity which satisfies the
condition imposed on b(ﬂ , where W,= 0.1428 the system

is gobally asymptotically stable, since a ''q" does exist for which

Y, + ?ei (\-t-i.ucs\(C"'(i.@I,-A)"b)} 70

for all wWw>o .,
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C. Limitations

The prima'ry.limitation of the describing function method is
the lack of assurance as to its validity in a given problem. The
advantage of the method more than compensate for this liability.
Among these advantages are the ease of application, the lack of the
requirement for advanced mathematical tools.

The preliminary approach to analyzing or _synthesizing a
dynamical system is to linearize, so that the familiar methods of
linear analysis may be applied. If the linear an'alysi.s is by means
of the Nyquist criteria, then the extension to the Popov criteria,
or the addition of a describing function to the procedure requires
little additional work. . L

The Popov criteria has either an advantage or disadvantage
accox;ding to the point of view in that its results are valid for a class
of nonlinearities. Improved performance should be obtained if one
considered the nature of the specific nonlinearity, but such consider-
ations can not be treated within the framework of the method. The
describing function on the other hand is apﬁlicable to specific non-
linearities, and variations in the specifig:ation.of the nonlinearity is -
not easily h#ndled.

When tl;e Popov criteria is applied to a system one obtains
sufficient conditions for global asymptotic stability. If this criteria

is not satisfied no information about the system is obtained. In order

to apply the Popov criteria it is necessary that the open loop transfer
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system be asymptotically stable. If this requirement is not satisfied
then one must require that the nonlinearity be represented as
Fls) = LT <« G(s)

under this assumption IV-1 becomes

%x = (A+4BC)IX + BGL) = AX + BGW)

Ta C'X

/¢ must be chosen such that Al is stable. This restriction upon the
nonlinearity F(S) is equivalent to requiring
AQ e cFL) ¢ kot

The Popov criteria is limited primarily to nonlinearities of the
gain type. This restriction is not too undesirable since most engineering
problems are of this nature. Extensions to more complicated non-
linearities of the hysteresis type have been reported in the literature.

The use of describing functions can be extended to more compli-
cated nonlinearities, including nonlinear functions of more than one
variable. For such extensions the ease of the graphical solution for
the frequency of the limit cycles disappears. For nonlinearities of the
gain type, the describing function contains no phase shift, so that the
frequency in the first approximation of the limit cycle is determined
solely by the linear portion of the system while the amplitude of
oscillation is determined by the particular function. For energy
storage nonlinearities such as hysteresis such easy identification is
lost since the describing function will produce phase shift. For
nonlinearities of more than one function, one generally obtains a

family of describing function curves.
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V. BOUNDEDNESS

The technique treated in the prior sections coupled with the
Liapunov direct method comprisé the primary tools for the analysis
of the asymptotic behavior of control systems. These procedures
lend themselves in particular to the identification of limit cycles
whereas the direct method of Liapunov and the Popov criteria are
applicable to the determination of asymptotic stability.

In the relm of nonlinear analysis many different phenomena
other than limit cycle behavior exists. For example one may have
solutions which are almost periodic or one may have solutions
entering limit sets which are of a complicated structure. None of
the preceeding techniques are adequate to analyze such phenomena.

In many practical problems where limit cycle behavior does
exist, it is not necessary to completely identify this solution as to
frequency, amplitude, etc. In most cases it is sufficient to have a
reasonable bound upon such solutions. Such boundedness properties
or "Lagrange Stability'" have been treated by Yoshizawa (134, 135),
Rekasius (136) and Szego (137).

In the application of the describing function method, the concept
of boundedness wa‘s necessary for the mathematical legitimacy as
proven by Bass. In the application of the Popov criteria one often
encounters nonlinearities which are not contained completely within

the Popov sector. What conclusions can one draw about such functions
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will be answered here.

Consider the autonomous system

X = F(x) V-1
Definition 1. The system V-1 is said to be bounded if for ény ot D>0
there exists a positive number & such that if “ X (1‘..,) “ L oL

then "x (t)" < )g foranl ¢ 2 to .

Definition 2: The system V-1 is said to be ultimately bounded for the

bound & if for any o > O there exists positive numbers ¥ and

7 (x) such that if " X (+,) " {o( then “ X (t) " < B for
€D ¢, + 7.

For linear homogeneous systems, the concept of stability of the
origin and the concept of boundedness are equivalent. The two main
theorems for the determination of boux;dedness are given as follows:
Theorem V-1: Let (2™ be the region defined by o0 < # ¢ o, "X “) r.
If there exists a function V(x) which is positive definite in the region
..(_2“ while its derivative

dV_vvixXx = vwTF(x) V-2
gt

is negative semi-definite in the interior of _()_* , then the solutions
of V-1 are bounded.
Theorem V-2: If there exist a function V(x) which is positive definite
in (2% , while its derivative V-2 is negative definite in the interior

»* . .
of .Q , then the solutions of V-1 are ultimately bounded.

. csas »* .

In the definition of the set {L° , r is set equal to zero, then

the above theorems reduce to the theorems on stability and asymptotic

et T et A o o gt S il
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stability.
The main use to which we will apply the above theorems is as

follows: consider the system

X =AX + 8F (o)
. v-3
o =CX-rFlr)
where it is assumed that
a) A is stable and b) V-3 is asymptotically stable for all non-

linearities ﬂ(f, with
0 ogp(vr) £ A2

We further assume that F(r) can be represented as

Flr) = G(7) + H ()

with

a) o0 < og6G(r) s bor®
b)Y L GfF) —— °° |

r—*”

c) |H() | < M for all o

When F(F‘) is replaced by & (), we know that the origin is

asymptotically stable. Consider the Liapunov function
- o
V= XTQ@ X + xSG(a)du V-4
o

Its derivative becomes
V= XT(NQ+QAX + XQB6(T) + ¢(s) 870X + YCTX6(7)~¥ré*(r)
Since A is stable we have

ATp+9A = - P

where P is positive definite and V takes the form
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= —-yx7
= -X kx +X7(QB+§2£)6-(V) +6() (87p+ ICT)X-¥r6*) y g

-'[x" e(r):l P —(QB+19.) X
‘ -1
‘ \

87g + XC7) r 6 (<)

i

L

From Kalman (140') we know that \7’ is negative definite thus insuring
the asymptotic stability.

We now consider the same V function for system V-3. \.f will

now change due to the presence of the term 'H (o-) . The new expression-

for \./ becomes

v=-E;*c;(w)] P —(qeric)|| x +[x’ G(r)] 2¢8|H(v)
"(Q&f%) ir |6 = 14 v-6

For the “ Y " sufficiently large where

T T
Y= [x" &]
V-6 will be negative definite, Since V is positive definite, this implies

that all solutions are bounded in the variable X and G(¢&r) .

From the condition L/m G (5) —= o° this implies boundedness
T oe
in the state variables X and o~ .

For the Lurd problem of direct control, a similar result is

available. Consider the direct control problem in the form
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X=AX + BF(r)
= C7X
with the same hypothesis on A4({¢) as before. Once again we assume

V-7 is asymptotically stable for all nonlinearities with oL rp@) £ for?,

As before we consider a V function of the form V-4,

V= X7@ox + Xgrs(a.) du
(-]

\7 becomes

V= XT(Arq+QA)X + ZG(r)(&”?i- Xg’ﬁ)x + ¥C'8 F¥(r)
We now add and subtract (r -G (d‘)) G () to V
: K

Regrouping we obtain
V= -x7Px - (V¥ G- 9!"x)’L o Cae GK(r)) G(r) V-8

where

A9 +@r=-P-g287
B89+ !Crzz—f ¢’ = f}—’-ir

r (_:? -xcfa) ry>o0

Thus V-8 is negative definite and V-7 is asymptotically stable with
F (r) replaced by G(7) . The change in V due to the representation

of F (&) as G(r)+H () becomes
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AV = 2B@QX H(r) + ¥G(r)H(r)C78

T
Thus for IHI <Yy and the normof Y = [XT G(ﬂ')] sufficiently

»
iarge we have V in negative defiai

solutions. The proof of the existence of the \' functions of the:

above form will be given in Appendix C.
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In order to demonstrate the approach which uses a Liapunov

function to obtain bounds on the system, some results of the previous

Chapter are used. Specifically, the system IV-21 and the results

pertaining to the Popov criteria. Originally, the system was

defined

by I-5. In the frequency response techniques, it was modified to

IV-21, where the nonlinearity, ¢ () . was not defined, but had the

properties,

a) 0< rP@) < ppor?

b) Lim @(r) —=

&> o0

By defining d(r) =/ﬁd‘ where 46 = ,o// , over the

region of interest, the original nonlinearity F (o ) has the

representation

Flr) = He +~ Ao + G(7)

where K is the gain required to stabilize the matrix A, equation Iv-21.

Then G{ ¢~ ) has the property that it is bounded for all ¢~

le(@)| € M= 0.0065

The system under consideration is I-5, but is represented as

N

x + b (&) +6()

X=A
og=C"X

»

, numerically

vV-10

where X, b, c were numerically defined in Chapter IV. It is known that

» ]
system IV-21 satisfies Popov's criteria, i.e., there exists a b1 ' such
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that
A -+ i . r . o Sl 4
H e | (1+iwY)(CT (wl-A) b >0
for all real @ . Numerically the value selected for ¥ and 2

were -0.5 and 0.142857 respectively. From this result a Liapunov

.
function of the form

Ve XxTpx + XS:¢(u)'a’a

may be constructed by applying the Kalman-Yakubovich Lemma (138).

The details of this construction is shown in Appendix C. The Lemma

basically states: Given a stable matrix A, a positive definite symmetric

D, real vectors h and k, h3# 0 and scalars 9 Z 0O , €>0O thena
necessary and sufficient condition for the existence of a matrix B and
a vector q which satisfies the conditions
sy 478 + BA= —(gg7+ €D)
v Bh- 4=V7g
is that € is small and the relation
7+ 2R {#7({wT-A)"h] >0
is satisfied for all real W .
Numerically, the vector q was obtained to be
g7=[-5865 .+366 .60/2 - w1562]
and the matrix €D was definedas A L where I is the identity
matrix, and A = 2.32534x 10-3. By transforming the matrices
qu and A I back into the original coordinate system through the

matrix E (see Appendix D), and applying the ASP program to compute
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the steady state solution to the riccati equation '
- Q=ATQ+PA+P

the Liapunov function was completely identified for system IV-21.

Numerically,
B 3 ]
.3183 -4.023(10-3)  -1.716 .2547
-4.023(10°3)  .1371 .1688 -.7637
Q =
-1.716 1688 561.1 276.4
. 2547 -.7637 276.4 234.8

Using the same Liapunov function for system V-10, the derivative

of the V -function has the representation:

V= [x’ds(ﬂ] P -J?g, X |+|XT¢n)|]|2pb]|M
_W?r r {léew) [ :l r ‘

where r =5.444, P, q, Q, ¥ .M are defined previously. For

"x" = 3.75 where the norm was defined as
” x ” = max
i

and A, =10, A,=.816, A 3=2.7426x 107,

x;x,;l

A 4= 1.688x 106, Y has a minimum value of -6.34 x 10”3,
The Liapunov function ( Vv ) has a maximum value for this norm of
LA

4.536. Since VY s positive definite and V s negative definite

for “ x “ = 3.75, this defines a bound for the systems.
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C. Limitations

In the application of Liapunov Functions to the determination of
boundedness or Lagrange Stability one is faced with the usual problem
of obtaining a good choice for a Liapunov function. By good is meant
2 Liapunov function which is easy to generate and which gives tight
bounds on the state variables.

In the application of these methods to the Luré type of problem
we utilized a Liapunov function whose construction was due to Kalman.
The part of this function which can be chosen arbitrarily to insure the
negative definiteness of V is decreasingly small as the Popov line
approaches tangency to the modified open loop transfer function. The
closer we approach tangency the smaller becomes the bound on the

nonlinear excursion from the Popov region. Thus one is confronted

with a compromise as to the choice of the Popov line.

In order to determine the region of boundedness one must first

find the surface "x” z ¢ on which V is negative. On this

surface one then examines ﬁ;a“xc V(x) . The region of boundedness

is then given by V&) = C,= lr'“do\é V(x) . In the practical
: Xl =

determination of a sufficiently tight bound the proper choices for the
norm must be made. The computation of V on "x" =C
and the computation othx;)‘?}c V(x) can be prohibitive with a poor
choice of the norm.

In order to simplify the computational requirements the norm

chosen in the above presentation is

lIx1l=max |n; ]
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In the construction of the Liapunov Function by means of the Kalman
procedure, one must be able to determine the roots of a polynomial
whose roots are symmetric about both the real and imaginary axes.
In such constructions by the authors, some of these roots had very
small real part and this posed difficulties in the root extraction

program.
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VI. CONCLUSIONS AND RECOMMENDATIONS

In the determination of the asymptotic behavior of control systems,
four basic procedures were examined in some detail. These procedures
were not independent but in many respects they overlapped and supported
each other. For example the describing function or equivalent lineariza-
tion is very similar to the perturbation method. Its parallels to the Popov
criteria are even more apparent. For.a nonenergy storing nonlinearity,
the describing function is real and lies on tﬁe negative real axis. It
appears in this case that the describing function is identical to the
Aizerman conjecture,

For the analysis of high order systems all methods except the
frequency response procedures pose severe computational limitations.
Under suitable restriction these requirements may be relaxed somewhat
as for example symmetry in the nonlinear characteristic reduces the
set of equations to be solved in the piecewise linearization procedure.
Oftentimes the complete simulation of the nonlinear system is less
complicated then the solution of the equations associated with the various
analytiqal approaches.

For a practical approach to the analysis of a complex system the
procedures to be used should be evolutionary, that is each step should
be an extension of the previous step. Sinée basically the first step in
a design is to linearize and make use of a Nyquist type of analysis,

this analysis could be based upon the modified transfer function of

Popov. The addition of a describing function or the construction of the
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Popov criteria is a straightforward extension of these classical
approaches where applicable. If a limit cycle is predicted and more
precision is required in determining its wave shape and frequency, then
the perturbation procedures can be applied to extract these results.

For systems with nonlinearities of a more complex nature, one
is then forced to one or more of the more complicated procedures
such as piecewise linearization or the use of the second method to
determine either stability or boundedness properties.

Many problem. areas touched upon in this report need further
resolution and extension. Adequate computational procedures for
the solution of systems of transendental equations and the extraction
of roots of high order polynomials are in need of development. Work
is needed in procedures for the generation of Liapunov functions
coupled with suitable norms to obtain tight bounds on limit sets.

All procedures in this report were restricted to autonomous
systems, whereas in most boost vehicles the systems under considera-
tion are nonstationary. Few if any of the discussed procedures will
extend to the non-autonomous problem. Thus the analysis of the
asymptotic behavior of time varying systems is still in need of

clarification.
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APPENDIX A

BIBLIOGRAPHY

During the first three months of this program a survey of tixe
literature pertaining to th; asymptotic behavior of the solutions of
nonlinear differential equations was made. In particular, procedures
were sought for locating and identifying periodic solutions and limit
cycles. In this search, five general classes of methodology were
identified namely, (1) perturbation methods, (2) topoiogical or phase
plane methods, (3) frequency reéponse methods or describing functions
and (4) piecewise linearizations and point traﬁsformation, (5) bounded-
ness and Lagrange stability.

These five methods are not really as distinct as we have
indicated since they are all interrelated mathematically. Thus the
methods classified under (3) are just special cases of the perturbation
methods. The approach of point transformations with fixed point
theorems form the basis of all existence theorems for periodic solutions.
Even with this overlap, the above classification seems to be a practical
point of view and they will be tabulated.

{1) Perturbation Methods: The perturbation method consists in
expressing the solution to a set of differential equations in terms
of a power series in a small parameter. The terms of this series
may be obtained in terms of solutions of a sequence of linear non-

homogeneous equations. Thus in principal the solution may be

approximated as accurately as desired by considering additional
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terms of the series. Various methods of modifying the procedure
to eliminate the so-called secular terms have been introduced and
herein lies the main difference between the various perturbation
methods.

Hale's procedure.has been discussed in detail in Chapter II of
the text, since many general problems may be inbedded into this
general format including the forced nonlinear system and the auto-
nomous system.

Krylov and Bogoliubov developed a procedure which leads to a
method of averaging, when with a periodic solution of autonomous
nonlinear equations. Basically, it assumes the solution hvas the form of

x = Acoscwt +¢)
where the amplitude (4) and the phase shift ( ¢ ) are non- constant, A
set of differential equations are obtained for A and (b , by applying the
variation of parameter approach. From these resulting differential
equations 4) may be expected to vary proportionally with the d.c. term,
while the periodic solution should be given by equating the average value
to zero and thereby obtaining the amplitude.

Many problems of periodic nature may be found in Russian
literature solved by the method of harmonic balance. This method
basically assumes a solution in terms of a fourier séries and then
determines the coefficients by equating like harmonics. This procedure

has been successfully applied by Bass (99), Wasow (82) and others.,
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For a treatment of perturbation methods, the texts by Hale (10)
and Malkin (13) are excellent. Sections of Stoker (16) and Andronow and
Chaikin'(Z) treat a number of second order systems. In these texts the
presentation is suitable for ‘the particular problem but does not
generalize to a broader class of problems. The text by Cesari (3)
has an excellent bibliography. Presentations slanted more for the
engineer are given by Hayashi (11), Minorsky (15) and Ku (12).

Periodic solutions for forced nonlinear systems are giveh by
Elgerd (30), Plotnikov (57), Struble (72). Once a periodic solution of
a nonlinear system is found, its stability needs to be investigated. This
process results in the study of a linear perturbation equation with
periodic coefficients. Stability is expressed in terms of either the
characteristic multipliers or characteristic exponents. The linear
equation with periodic coefficients. Stability is expressed in terms
of either the characteristic multipliers or characteristic exponents.
The linear equation with periodic coefficients is treated by Hale (32, 33)
Struble (75), while the determination of characteristic exponents and
stability is given by Hale (36, 40), Nohel (50), Ruiz (66), Sandberg(67)
and Sibuya (69).

The existence of periodic solutions of autonomous systems is
complicated by the fact that the period is not known in advance and
must be treated in ter;ns of additional perturbation terms. Methods of
determining such solutions is given by Hale (10), ‘Proskuria.kov (59, 60),

and Loud (47).
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(2) Phase Plane and Topological Methods: Phase Plane methods

are primarily graphical procedures for obtaining the totality of

solutions for autonomous nonlinear second order systems. Much of

the literature is concerned with the identification of the singular points
and their classification. For linear systems, the only type of singular
points which can occur are 1) node, 2) focus, 3) saddle point, 4) center.
A center is characteristic of periodic solutions, while saddle points
always imply an unstable system. Nodes and foci may be either stable
or unstable. The topological structure of the phase portraits for nonlinear
systems is much more involved. Many singular points may exist in
contract to the existence of a single singular point for linear systems.
Isolated closed paths representing limit cycles also may exist. All
solutions may approach the limit cycles in which case they are said to
be stable. Applications to the design of relay controls are too numerous
to list.

The main results on the existence of limit cycles is due to Poincare-"
Bendixon. However, since the results are in the nature of existence
theorems and do not aid in the location of identification of limit cycles.
A procedure for determining limit cycles based upon a similar concept
is by the use of a Liapunov function to show (1) instability of the equili-
brium point and (2) boundedness of the solution which will be discussed

later.
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Phase plane procedures may be extended to dimensions greater

than two, but in practice the geometric insight is lost. Of course the

concepts of a phase space and its associated notation has influenced
most of modern theory where state vector notation is used almost
exclusively. Ku (91) uses a phase space for a third ofder system.

A detailed treatment of phase plane analysis may Se found in the
texts by Andronow and Chaikin (2), and Minorsky (15).

Alternate methods of constructing phase portraits are given by
Buland (86) and Hsia (90).

Fixed point theorems form the basis of theorems on the existence
and uniqueness of periodic solutions. Such results are given by Benes(85),
Diliberto (88), Lakshmikantham (93).

(3) Frequency Response Methods: The frequency response techniques
for analyzing nonlinear systems has been justifiably popular with engineers.
The popularity stems from the simplicity of application and that it extends
techniques with which he is familiar. However no explanation of either
technique will be given since Chapter IV of the text was devoted to this
subject, along with an example.

A detailed treatment of describing function and Nyquist analysis
may be found in most texts on Control Systems. The texts by Gibson (8)
and Truxel (17) are particularly outstanding. Popov's criteria may be

found in detail in Aizerman and Gantmacher (1).
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Applications of such methods to practical control problems
abounds in the technical literature starting with the results of
Kochenburger (112, 113). Bass (98, 99) in particular has examined
the validity of this method and gives complete results for odd types
of nonlinearities. Choksy (104) gives criteria for the stability of the
postulated limit cycles by an examination of the tangents to the
describing function. Gibson (106) gives a detailed treatment of the
computational aspects and tabulates many describing functions for
often occurring nonlinearities.

(4) Piecewise Linearization and Point Transformation: For systems
with large nonlinearities and of dimension greater than two, the
perturbation and phase plane methods are of little value in determining
periodic solutions. The point transformation, or piecewise linearization
method has been previously discussed and shown that theoretically this

is one technique which is applicable. However due to computational
difficulties the ASP (Automatic Synthesis Program) digital program was
used to obtain a periodic solution, which is still a piecewise linearization
technique.

The problem was solving the set of transendental for the unknown
times t;. Kovatch (129, 130) has applied this approach to systems with
one or more nonlinearities to determine symmetric limit cycles. A
similar approach to finding the transendental equations for the unknown
times but using a single differential equation of high order is given by

Gusev. Grayson and Mishkin (127) combine phase plane procedures
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with piecewise linearizations to analyze third order systems. Stability
of piecewise linear systems is givén by Belya (123). The work of
André and Siebert (122) is concerned with behavior of solutions at

switching planes and in the switching surfaces.

(Y
pt

!.
b
(14

(5) Boundedﬁess and Lagrange Stability: The exisience o
cycles or limit sets may be determined by showing instability of the
origin and Lagrange stability or boundedness. A procedure for the
construction of a Liapunov function which will yield this information

is given by Szego (95). Hc;wever as shown in the boundedness section
qf the text, Kalman's ( 128) construction of a Liapunov function may be

utilized in obtaining boundedness results.
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APPENDIX B

AUTOMATIC SYNTHESIS PROGRAM (ASP)

The ASP (139) digital - computer program was written by
Messrs. R. Kalman and T. Englar’, for th;: specific purpose of solving
the linear optimization problem with a quadratic loss function. Though
this program was written for a specific purpose, it has proven to be
versatile in its capabilities. The number of subroutines which were
developed in order to solve the linear optimization problem may be
used for other purposes. The ability to manipulate vector-matrix
algebra allows one to work in state space notation, the solution to the
matrix riccati equations permits one to construct a Liapunov function
and there are other uses.

The prbgram is written in FAP, but to use it requires very little
knowledge of computer languages. A dictionary of the mathematical
capabilities is clearly presented in (139) along with examples and error
statements. The ease in which ASP may be used is best demonstrated
by an example. Specifically, in constructing a Liapunov function.

Assume that the Liapunov function is of the form V = x‘ax

. and the matrix Q must satisfy the following relation:

AQ +QA = -P

where A, is a stable n x n matrix and P is a positive definite n x n matrix.

Normally the matrix is defined by

Q = i.e“"‘ Peftat
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However, the linear matrix riccati equation has the form:

QA = ATQA+QA +P
which is what the ASP programs is capable of solving. Observe that
the steady state solution of the riccati equation will also yield the
matrix Q which defines the V - function. A listing is shown of
the construction of the matrix (E) which transforms system I-4 into
companion form, and the solution to the steady state linear riccati
equation, along with the inputs, and the output. at the end of

Appendix D.
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APPENDIX C

CONSTRUCTION OF A LIAPUNOV FUNCTION

In order to construct the Liapunov function of interest and obtain
'nu_fnericjal values, the Kalman-Yakubovich Lemma (138), is applied.
The proof of this Lemma may be found Lefschetz (138) and will be
presented verbatim because of its clarity and since it is essential in
the é.ctual construction of the Liapunov function.

Consider the system

= c'x
where A is a stable Nx N matrix, ¢, b,

are real vectors, the pair A N b completely controllable, and the

nonlinearity satisfies

0« OF() « Kot
In fact, let the system C-1 satisfy Popov's criteria. That is, there

exists a ¥ such that:

Ve + Re[listanCe LLwI-A)"b)}>o

for all real w .

A Liapunov function of the form
| <
VvV X'Qx = vSFtuNw
(]

is desired, and has the property that its total derivative v is

negative definite. By adding and subtracting (G- Ff/u)F from
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v . the derivative may be expressed as:
vV oz xT(ATQ +QA)x -2 F) [b'Q - (vJAAC)|x
2

— (Mt ¥TB) FU) - o- FANF,

By defining

AfQ +t QA = -?
v = YN+ vch

J.Pcf‘.: bTQ - (\'CTA'!'Q")
2

V is expressed as

Vo= - xTCP-qg )X - (FF@+x)" - (¢- %)e

To insure that \V4 is negative definite, P - qu must be 70 .
If the matrix P and the vector q may be found, the construction will be
completed. In the proof of' the Kalman-Yakubovich Lemma the matrix
P is defined, and the vector q is constructed.

Kalman- Yakubovich Lemma:

Given a stable matrix A, a positive definite symmetric matrix D, real

vectors h andk, h# o and scalars Y»0 , €>o , then anecessary
' 3R

! .
oot

and sufficient condition for the existence of a Matrix B and a vector q

which satisfies the conditions

n

-4’ - <D
%

a) A'B + BA

"

b) Bh - K
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L e A e

is that € is small and the relation
T +« 2?2{“' (iwX -A)-‘h} vo c-3

is satisfied for all real w. For simplicity, let (iwl-A) = A, and *
indicates the conjugate transpose.
Proof of Necessity: [Equation C-3 is represented as
b -l ‘
T+ A h + CAGhY k o

s
since Ao B + BAw = - (A'B ¢+ PA) by premultiplying

- -l
this by (AS' W) and post multiplying by Aw ) yields

( J -l )‘ b - ety ¥ L4 -t d -t
Axs h) Bh + WwB(A, h)‘ (As h) (“‘ 4+ 6(Aa "\)DW"\)

Substituting in for Bh from condition (b) yields the identity:

2 Re{ &'A.S'h} = | A hi"- 257 Re(TATH) + e(AIHD(AIN)
Consider D a hermitian matrix, and the fact that
then Y = e (A: “\T‘ D (Au.)' \‘\\ 70
Since QTAS;h * a s jA
equation C-3 is ‘ _

T+ ZRQ( K'A.;'h} : («- 7)o pl+ 3 o
which proves the necessity. In fact, this is equivalent to Pf)pov's
criteria. Prior to providing the sufficiency of the lemma, it is
assumed without loss of generality that the matrix A is in companion
form, the vector "\" = [00 ce .0 l] and “.13[\;, b, --- b....]
when A, h are completely controllable. (See Appendix D for the

transformation matrix which will transform A, h, k into their proper
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L
forms). In order to prove the sufficiency portion Lefschetz (138)

proves a short theorem.

' -\
Theorem: If u is a real vector such that Re { LL‘A“) h} = 0
whatever w, then u = 0. This was shown by contradiction, but will

not be shown at the present.

Let fwy = (A ky‘k + K (Ag h)

g = (AJ'W) D (AS W)

where f(w), g(w) are real rational functions of w with the numerator
of degree & n-1 and the denominator of degree n. Thenf, g —»o0
as W - 4 00 and are continuous for finite w. By noting that
f, and g possess upper and lower bounds, and that

(As W)Y D (ASh) 70 , ¢
may be selected so that

T + 2 Re{ K Ao h} -e(AS W) D (AJ W) >0

Let N4 tiw) = VAWl , then

T + z?eiK'A;‘h\ _e (AW DA W) - M_“."_L\ c4
W

for all real w. N (w*) is a real polynomial of degree 2n with a

leading coefficient of T , and has no real roots. It may be repre-

sented as
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NG®) = 8lw) 8(-ia) c-5

where is a re
J_'F and is of degree n.

Then, Vi) = BLiw) - VT + Liw) Cc-6

and V(iw) is of degree n-1, whose coefficients are VN, V2 ,V, .

The vector q is then defined as Cc 2 0-v, -vp - A |

From this the matrix B may be obtained by the application of condition (a).

To complete the proof of the sufficiency condition,

T +2Re(WASK) - €(AIWD (AS W)
= (V( &uﬂ/*.(io) - ﬁ)(V(-io)/.‘_‘_;_d) __ﬁ)

and
VGal/ g Giw) : - g A
Then 2 Re{WAIh] {(M nY q - F“}(quh ;—]
= (AW (AT - 7 (T (ATW) + (A3 }
< - [(AIN"Bh + WBATK) -canTp (AdW)
T (AR + (ATWR)

By condition (b),

ASWY (Bh-k- /TQ) + (Bh-k-F7 Q) (1Y
2 Re (Bh-w-7q) (AZh) =0

Since Bh-k-{* Q  is a real vector, and the application of
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Lefschetz's. theorem, DY - K= /% %: O , which completes the
proof.

By properly identifying equations C-2 with those required in the
lemma one can construct the vector q by determining the roots of the

polynomial C-5, and then form the polynomial V(iw) , equation C-6.
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APPENDIX D

GENERAL TRANSFORMATION MATRIX E

Previously it was stated in the proof of the Kalman-Yakubovich

Lemma that for the given system

.

X = Ax + bF)

D-1
¢ =X

that A, b, have a specific representation without loss of generality
when the pair A, b are completely controllable. It will be shown that
a matrix E may be defined as that under the transformation X = EY,

the system will be in companion form and that the transfer function

‘ is preserved.

Define the transformation E to be, ‘Lefschetz {138).
E = [ e €, g, ... en] » where e, are column vectors

€n = b
€n-r A b + d.nel b
€nzz A'b + Qa- Ab « Qan-2b

€n.¢n-11? A“_. b + Qn-y A“.zb + Qn-2 A"'sb 4.4 Qn-tanb

or simply: €n 2 b

€n-vz Aen + Qax@n
Et\.-‘! -'°' A (en-u) +*+Qn.2€n

.

‘ C'\-3 = A(en-q-n) + &n-')ev\

e A eieea AR
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where -1 = L, 2, ... N=) and the scalars O §

are the coefficients of \ s - A\ = Pa (8)

Pan(s) » Qo + Q.S + Qasl et Oy ™ 4"

The transformed system, for X = EY

Vv = FY + RF)
g = A'Y

Q.
]
[
L,
m

and the transfer function of system D-1 is preserved,
- -
c'(xs-AY'b = d7T(xs -F) &

Since d‘ (Is -F)-‘K = ¢'e (Is - ﬁ"AEY'(E-‘b)

ce(e'els - E"AEY‘ (e”'b)

ce(e'(Is-aA)e) (&)

= Ce(e")(ITs-A)"E (E"b)
cT(xs-AV"'0

In order to show that system D-2 is of the companion form,

ovo.... o

0O QO O+« .+ . Q

F °

o o RN
L-QQ ‘Q‘ DS ..Q,,..
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Since E = [e. e, .. eu]
AE = [Ae. Aeg Ae, o . Aeﬂ]
Ae| = A“ e'\ “* Qn-n A“.'e'\ * ML ] Aale'\
Goga +'Ae, = [ A 4 a0 A™ 4aa A% .. iAa 20)en
7
AQ| - hand Q. ef\

Ae" = e\ - QCn v

Ae'\ = e“‘\ - aﬂ.\ e“
Let £ - [ A, ] , where R{ are row vectors
; r
An

Since e'e = 1 , Ny = S“l = {I 3={
° 3 #¢&

-t - i
It follows that € AE = R. (-0e8n © -a,0a -.. 9...“«.-&.]
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and L) \ © . . o
(-] 0 1 .

. : °o . ‘

F= ' ) . . .

. : <5

° o (o) )
L —-Be =04 =Qyg ¢ ¢ -Bpet

Similiarly, the vector k may be shown under the transformation to

T
have the specified formof WK = c o OO - OI—J .
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APPENDIX E

APPLICATION OF Q0002 PROGRAM

The QO002 digital program was written by Martin-Orlando
personnel and used in this investigation because d its versatility.
This program has the capability of manipulating polynomials to
form a transfer function, e.xtract the roots of both the numerator
and denominator polynomials, obtain a frequency response in various
manners and more. Since the manipulation, root extraction and
frequency response subroutines were of primary interest, the
programming of these features will be discussed briefly.

To explain the use éf this program, in a limited fashion, it is
best to illustrate by an example. However, prior to this, two basi;:
limitations must be considered.

1) The input polynomials must be of degree not grea;,ter than 20.

2) The degree of the computed transfer function must not

exceed 50.

Application:
Assume that the following polynomials will be manipulated to
form a single transfer function:
P. = s + 28 +1
P2
Pa = S+
pq. 2 S‘ +7

s3 , 3sS! 4+ 23 45




The desired transfer function has the form

G = (RY(ps) +(B)
EYP) + (Pa)

and a frequency response, along with the roots of both the numerator

and denominator are also desired. The frequency response may be
obtained in any or all of tilree options. The first option is a frequency
response which is determined by the phase shift. The successive
points are controlled between specified tolerances on the phase. The
second option \(aries the frequency in discrete steps over the range of
interest, and finally, the response a specific points.

Figure E-lis a sample input sheet. for the four polynomidils
previously defined. The first card contains a zero (0) or a one in
Column 4, this defines whether or not a plot tape will be prepared.

If a one is present, the tape will be prepared. The title card must
contain the "T" in Column 1 and the alphanumeric data in Columns 13-
72. The comment card must contain a ""C" in Column 1. In Column
two, fix point numbers from one to seven indicate the total number of
comment cards. The first comment card cont_ains'alphanumeric data
in Columns 13-72, other succeeding cards contain alpha numeric data
in columns 1-72. Both the title card and comment card are optional.
The "M3'" run control card defines the number of sets of polynomials.
and the number of polynomials in each set. This run control card
simply enters the input polynomials. Columns 1 and 2 contains "M3",

columns 4, 5 define the number of sets of polynomials, right adjusted,
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and in columixs 6 to 8, the number of polynomials pei set, also right
adjusted. The polynomials are then entered in succeeding cards.
Columns 1 and 2 defined the number of coefficients in the polynomial,
right adjusted and the coefficients are entered in ascending order in a
10-column field, starting in column 3. A maximum of two cards for
each polynomial is allowed. If a decimal point is not present, a power
of 10 must be present, and a decimal point will be assumed between

the 5th and 6th_column ahead of the sign of the exponent. Again a zero
or one card must appear after the polynomi#ls are entered. The "M 4"
control card defines what the program is going to do. As in M3, M4
must appear in columns 1 and 2, and in columns 4 and 5, right adjusted,
identifies which set of polynomials. An "A" appearing in column 11
indicates that an "Algebra" card will be entered. A "D" in Column 12
indicates that all previous instructions shall be disregarded. The
"RTS", left adjusted, in columns 13-18 indicate both the numerator

and denominator roots will be extracted. An "RTSD" in the same
columns will indicate that the denominator roots are to be extracted
only. In columns 25-30, left adjusted, defined the various combinations
in which the fréquency response will be obtained.

When "'A" appears in column 11 of the M4 control card, an
algebra card is required and the manipulation of the polynomials to
form the transfer function is defined. The algebra card contains the
word algebra in columns 1-7, and in columns 13-15, right adjusted,

defines the number of control characters. Previously the algebra
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was defined to form the transfer function. The co’ntrol _characters
indicate the desired manipulation. A sequence of consecutive positive
integers indicates that the polynomial represented by that integer are
to be multiplied together. Each sequence must be preceded by a
zero (0) or one (1) which indicates the product is to be multiplied by
a + or - respectively. A -2 indicates the end of a numerator, and
a -3 indicates the end of the denominator. Any number of control
character cards may be used.

In columns 25-30 of the M4 control card any one of the following
may appear:
FREQ1, FREQ2, FREQ3, FREQ4, FREQS, FREQ6, FREQ7, which
define the various combinations of obtaining a frvequency response.
FREQ! to FREQ3 indicate only one of the three options. FREQ4
indicates FREQ] and FREQ2. FREQS5 gives FREQ! and FREQ3; FREQ6
gives FREQ2 and FREQ3; FREQ7 gives all three options. The FREQ1
data card has FREQ! entered in columns 1-5, columns 13-22 indicate
the lower frequency limit and columns 23-32 the upper limit. The lower
phase tolerance is indicated in 33-42 and the upper phase tolerance is
43-52. The FREQ?2 data card is the same as FREQ! except for the
designation in columns 1-5 and that the frequency increment is entered
in columns 33-42. Since FREQ3 evaluates the transfer function at
specific points, the total number of points is indicated in columns 13-

15, right adjusted, and the specified points indicated on a second card.
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The discrete frequencies are entered as decimal numbers in successive
10 column field starting in column 3 to 72. As many cards may be used.
A listing of this program may be obtainedthrough the Martin

Orlando Computer Section.
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APPENDIX F

| COMPUTATION OF THE TRANSITION MATRIX

During the investigation which utilized the giecewise linearization
technique, the clesed form representation of the transition matrix
Q“t was required. The derivation of this closed form solution
was based on the following theorem.
Theorem: If F( A ) is an analytic function and if the n x n matrix A

has distinct eigenvalues A, | % ’ X; vee . .An then

fa) = 3 F O Al

"t iy} (Kﬂ R\‘
[LA8
‘ Proof: From the Cayley - Hamilton Theorem F(A) can be written in

the form

F(A) 2%1\ (A- MI)

JEL Las
: it

The problem is to determine the unknown coefficients Gy .

Substituting X‘J, for A gives

F(ALI) = Zugn ( AI-AT)

(€3}

(8%

which reduces to

| F ) = Z“lll (Aw- )“)

(S}

‘ Y
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simce AT (A=) = for Wil
iL
then ' /!\\_'
FOA) = a] (A -X)
- Y
Therefore
- FOA)
F AN
and it follows \:‘*‘ |
Fla) - ZF(&)W%%’%

L%
Since the transition matrix considered in this problem does

fulfill these requirements

et . eut ' (A-\T)
) )

<2y
Koo ‘_
i

In fact, it was observed that for eigenbalues which are all complex,

this representation may be simplified further by separating the real

and complex portions. Then,

A & .t ‘
eft = ) € (RCospit + QS Ait)

[T
where Pi and Qi are real matrices, and ot tj LR , L2t ,2,. N

are the eigenvalues. A 1620 computer program was written to compute

the matrices Pi and Qi when A is a 4 x 4 matrix with distinct, complex

eigenvalues. A listing of the program is given in the figure below.
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10

11
12

DIMENS I ON A(4o4)oB(4.4)oC(4o4)00(404)oE(Qoa)oF(404)06(404)0P(404)

READ 1e((A(IsJ)eJ=10e4)01=144)
READ 20((B(TeJ)ed=1048)01=1448)
FORMAT(4E1848)

FORMAT(4E18.8)

READ 3¢X1leYl

READ 4¢X2:Y2

FORMAT(2E188)

FORMAT(2E1848)

Sl= Yl*((Xl—XZ)**2+(Y1—Y2)**2)*((XI-XZ)**2+(Y1+Y2)**2)
§2= (X1 =X2) ¥%2=( Y1) X X2+ (Y2) #¥2
S§3=2e#(X1=X2)*Y1

DO S I=1.4

DO S J=1+4

CltleJ)=A(10J) o
P(ls)=B(1s J)-2.*X2*A(10J)

DO 6 K=144

C(KeK)=C(KKI)=X1
PIKsKI=P(KIK)+( (X2) #¥2+(Y2) #%#2)
DO 7 I=1.4

DO 7 J=1.4

D(14J)==S3*%C(1+J)
E(l1sJ)=S2%#C(14J)

DO 8 K=14+4

DI(KesK)I=S2%Y1+D (K sK)
E(K«KIZE(KKI+S3*Y1

DO 9 1=1.+4

DO 9 J=1+4

SD=0+

SE=0e

DO 10 K=1+4

SD=SD+P (1 sKI*D(KeJ)
SE=SE+P (1 sKIXE(K e J)
F(lesJ)=SD/SI

G(l1+J)=SE/SI

PUNCH 114 ((F(1sJ)sJ=148)41=104)
PUNCH 12, ((G(TeJ)eJ=104)91=144)
FORMAT(4E1848)

FORMAT(4E18.8)

GO TO 20

END
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