
THE DETERMINATION OF ASYMPTOTIC

AND PERIODIC BEHAVIOR OF DYNAMIC

SYSTEMS ARISING IN CONTROL SYSTEM

ANA LYS IS

APRIL 1966

FINAL REPORT

ER 14229

E. Lefferts & E. Moshang

Contract No. NAS 8-20002

National Aeronautic8 and Space Administration

Martin Company
Baltimore Division

https://ntrs.nasa.gov/search.jsp?R=19660029547 2020-03-16T17:25:04+00:00Z



,t

TABLE OF CONTENTS

Summary

I

H

III

IV

V

VI

Introduction

Perturbation Method

Piecewise Linear ization

Frequency Response
Bounde due s s

Conclusions and Recommendations

Appendices

A Bibliography and References

B Automatic Synthesis Program (ASP)

C Construction of a Liapunov Function

D Transformation of Companion Form

E Application of QO 0OZ Program

F Computation of the Transition Matrix

1

8

ZO

42

83

74

76

98
100

106

110

116



Summary

The primary objective is this investigation was to determine

a technique or combination of techniques from which the asymptotic

behavior of a nonlinear control system may be predicted. The four

main approaches considered in this report lend themselves to the

determination and/or identification of limit cycles or obtaining a

bound on the solution to the system. These approaches are:

I) Small Perturbation: The perturbation method, as the name

implies, is limited to systems that are weakly nonlinear. This

approach determines the periodic solution of the system by expanding

it in a Taylor series expansion in a small parameter. The results

obtained by this approach yield precise quantitative information for

the particular nonlinearity• However, it does not give information

pertaining to the general system• This technique may be utilized to

verify the existence of periodic solutions that are predicted by other

methods.

Z) Piecewise Linearization: This technique approximates the non-

linearity by linear segments and thereby dividing the phase space by

hyperplanes. The general system is reduced to a set of linear

differential equations in sections of the phase space. In order to

obtain a periodic solution, a hyperplane is mapped into itself. This

technique is the most general procedure for determining periodic

solutions for systems with large nonlinearities. However, in order

to identify the periodic solution, a set of transendent_l equations

i



equations must be solved, and a priori knowledge of the order in

crossing the hyperplanes must be known. Both limitations are severe,

but maybe circumvented by the use of the ASP digital program. This

program may be used so that the initial state vector is continually

mapped until the solution approaches itself. This approach per£orrns

quite well when the limit cycle is stable.

3) Frequency Response Methods: The methods considered in this

approach were the standard describing function representation of the

nonlinearity, and the application of Popovts criteria. It was found that

though the describing function technique is easy to apply, and is capable

of handling high order systems, there exists the lack of assurance as

to the validity of the results of any given problem. Popovls criteria

which is also applicable to higher order systems and is easy to apply,

unfortunately, yields only sufficient conditions for the sy_stem to be

gobally asymptotically stable. However, the criteria when applicable

does include a class of nonlinearities, where as the describing function

handles only a specific one.

4) Boundedness: In the utilization of the concept of Lagrange stability

or boundedness, the techniques of Popov's criteria and Liapunov's second

method were combined to obtain bounds on the system. In general these

methods are applied individually tc determine asymptotic stability.

The advantage of this combined technique over the other is that all

previously mentioned approaches are limited to the determination and/or

ii



identification of limit cycles. This technique is capable of determining

a bound even if the solutions to the system are almost periodic or

enter a limit set. However the bounds obtained by this technique does

depend on the choice of the Liapunov function and how the norm of a

vector is defined. The construction of the Liapunov function in this

investigation applied to those systems which had the representation of

Lurds canonical form. By constructing a different V - function or

defining the norm differently, the bounds on the system may be altered,

iii
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_TRODUCTION

In order to study the behavior of a launch vehicle control system,

it is desirable to consider the effects of all nonlinearities, to be certain

no adverse effects are overlooked. Previously, the nonlinearities

which may arise from bending modes, fuei slosh modes, or ,,t--_v... ,I..._..

control system itself, has been linearized and then the system was

analyzed for stability and performance. Unfortunately, the nonlinearities

which may cause self-sustained oscillations will not be predicted by

linear analysis.

Techniques have been developed for which the nonlinearity may be

considered, or approximated, in the analysis of the system. The primary

objective of this investigation was to determine a technique or combination

of techniques which may be utilized in the prediction and identification of

a limit set and/or limit cycle. It has been found that the various approaches

that are applicable may be classified in five separate categories. Though

classified in this manner, mathematically they are related. The basic

methods are: l) Small Perturbation Techniques, 2) Piecewise

Linearization 3) Frequency Response Methods 4) Boundedness and

Lagrange Stability 5) Phase Plane and Topological Methods. In this

classification process (5) pertains primarily to graphical procedures

for obtaining a solution to second order nonlinear autonomous systems.

It was felt that this is too restrictive and was not considered. In the

development of a technique Chapters H to V discuss the remaining

methods along with their limitations. Consideration was also given to
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the ease of application, generality in use, and accuracy, in each of

the approaches.

In order to demonstrate the various techniques, the mathe-

matical model selected represented a simplified rigid body vehicle

----._- .... I..o_.._,_.I_ .,,_,_a_ ,4_rnp_ng r,_efficient reoresented the

nonlinearity of the system. A detailed description of this model is

presented in the next section of the text.



Description of Mathematical Model

The mathematical model which will be used throughout this

report to demonstrate the various techniques represents a simplified

slosh mode of a booster vehicle. The effects of bending, engine

swivel, aerodynamic forces have been neglected, since the purpose

of the model is to demonstrate various techniques for a nonlinear

system which is higher than second order. The numerical values

associated with this model are hypothetical and where furnished by

NASA, George C. Marshall, Space Flight Center.

The equations describing the system are the following:

Translatory Dynamics:

Attitude Dynamics:

¢
Sloshing Mass Dynamics:

_'_ *zf(_)_=_" =_+_=__ + _. - x,_; - (.F/m)_ = o

Control Equation:

']
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The definition of the symbols and their associated numerical

values are tabulated below:

Symbol Definition Value

ea Mass of the vehicle 6.35 x 103

Mt_ i th sloshing mass 216
F Thrust Vector 3. 175 x 104

T Control Thrust 3. 175 x I04

E_ective Moment of Inertia of the

Total Vehicle about its c.g.

Coordinate of i sloshing mass

Coordinate of swivel point

Damping of propellant

Natural frequency of oscillating

propellant
Gain Constant

Gain Constant

X

X_

XI

Q.o

Z. 1 x 10 5

5/3
6

To be defined

1.5

1.4

1.0

The following figure will indicate the system coordinates:



The above equations may be simplified, by considering one

sloshing mass, and reduced to two coupled second order equations.

which are

I-I

Numerically.

I-?-

-The nonlinearity appearing in the slosh equation, represented by

is defined in the following manner.

.o: l_'l - . 3ol= O.OOl ,j

f(_) • z_"= -l_'IC.(_oz)*o.ooI , I_'I>.501

System equations I-3, and I-4, may be transformed to Lure's canonical

form of

+ bF (or)
I-5
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where A is a 4 x 4 matrix, b and c T are real vectors.

vector is defined as

xz -- _ + ._.tlz C-ldu.

X5 =

X,= _ +c.oos3S)__'(,,.,..)clu..

The state

Numerically:

A ..

O

- z.3Zs

0

o.OOll 5

o--E, o o]

I o 0

o - _=."/.4.5 - 9.458

0 O I

o - o.g_"( - 1.285

o. o i og'TG

o

The block diagram representing the system is then

where _.T(.IS "&)'t b is the open loop transfer function and

is the integral of the nonlinearity. Numerically,



7

F(al : o,oo_ _ , 0-_1_I "-.301

--

.3oi

- h_lo (.300/z)+.oo, +.oo9

_,IIZ _ + 5,94-8 Sz + 2.8012_

_$4+I. Z853 s + 5.24"2_z+2.99_ +2.159

I-6

1-7

In the application of the various techniques, the primary

equations of interest will be eithcr I-3, I-4, or 1-5. However,

modifications will occur with the applications of each technique, and

will be noted in the individual section under "application".
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II. PERTURBATION METHOI_

A. Theory

By the term perturbation methods we mean any procedure for

finding periodic solutions to weakly nonlinear systems by the expansion

of the solution into a Taylor series in a small parameter. Such

procedures were originally due to Poincare (11) and have been gener-

alized by Hale (I0) and others. In Russia such methods are generally

known as the method of harmonic balance. The theory of such

procedures is best explained within the framework of Hale's work,

although his method may not be the easiest to apply in specific

applications.

Consider the describing equations in the canonical form

- * •F-CX. oXZ.'t,•]

where X 1 and F 1 are assumed to be P vectors while X Z and F Z are

assumed to be n-p dimensional vectors. It is assumed that both F 1

and F Z are periodic of period T. It is farther assumed that A is

such that no solution of the system

: AY II-Z

is periodic of period T except the solution

The problem posed by Hale was to find conditions on the vectors

F l and F Z sufficient to ensure the existence of a periodic solution of

II-1 which is continuous in • . In addition an algorithm is sought

to obtain such a solution if one exists. The procedure developed by



Hale is basically an iterative one. For c = O , we have the periodic

s olution
Y_,= C

Xz = 0

where C is a constant vector as yet unspecified. A natural procedure

is to start with this solution and proceed as in the Picard iterative

scheme and generate the sequence of approximations

X, : £ + e F.(.C,O,_,e)_

f'x; - _ F,(c.o,_.e)d_

* X" _., e ) ,JU.C _, c F.(x_', L.
t

ef F_(x '_.,xz,'_u..e_ du.

In each n th step of iteration only terms in c of the n th order will

be retained•

Under suitable hypotheses upon the functions F 1 and F Z the

convergence of the above sequence can be proven. Although the final

solution may possess all the desired periodic properties, there is no

assurance that successive approximations possess these properties•

To circumvent these difficulties Hale considers the sequence



I0

- c

x;. --0

X, = C. '_ c(I-_o) f.(.c.o.u.,c)du_
v I

_z-_} j_FzCc_ o, ,,,..c, JLi._'_'1, _ _ *"

IN_,I
e c

S"(-_:-P.) F_ (x.".x,',u.,c)a_.

II-4

where the symbol Po operating on the integral extracts the average

value. Thus

i _r_T

II-5

This sequence under suitable hypotheses upon the functions F I and F Z

converge to the solutions

X, = C ,,((_:-P,,)_F.(x,.Xz uL,()4,.

Xt -- e(.Z- P,,),_i=,Lx,,x,j u.,e) d.,,.

II-6

Observe that these are not solutions o£ the original system of differential

equations. If the initial vector C is chosen such that

F,{x,_e,u._.X_(_,--)u.,e)a_ • oPo
' 11-7

?,, ._ _._(X,Cc,-._,X,.(c,..1,w., • ) _t-. _ o

theu the solution 11-6 becomes solutions to the original equation If-I.
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The set II-7 are called the determining equations and their solution

is necessary for the existence of a periodic solution to II-l.

In practice one settles for an approximate solution given by the

k th term of II-4 where only powers up to the kth in • are retained.

For the identification of periodic s01utions of autonomous systems,

one must first transform the describing equations into the form II-1.

Consider the real system of autonomous equations

II-8
X _ Ax . F(x,)

We will assume that A is in the form A = diag (AI, AZ) where A1 is

a p x p matrix such that every solution of

- A, x m9

is periodic of a common period T.

that no solution except X_ O

_ a AaX

A Z is a n - p x n - p matrix such

of

II- 10

is periodic of period T.

Thus the matrix A 1 must be of the form

where O k is a k x k zero matrix while each C i

A, : a,...j (. o,.,¢,...c,')

is of the form

O I J_- t " with r i rational.
• t

Thus the matrix A! depends upon c_ o and may be written as AI( ._oZ)

while the period T may all be written as T (_o). If we define the true

frequency

• wL •
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where

we obtain

is to be defined, and make the transformation of variables

_A,t ',),tX. = y.

X,. = Y, II-ll

. A,£,_')t. _ A.t._t_.
_. :ee "A'tf''')'l: [:..(.e'_'('_lty,'1'...e)-ee g._)e y.

ll- 12

'_,• A_YL * oF, ( e_'_')ty,,Y_,c )

Thus we obtain a system in the form of H-I and Hale's method may now

be applied.

In general the functions F 1 and F Z in II-I are assumed to be

continuous in C , satisfy a Lipschitz condition in X I and X Z and be

integrable with respect to t. This is sufficient to ensure the validity

of the procedure providing • is sufficiently small.

In the application of such procedures to specific problems it is

not necessary to transform to Hale's canonical form, but one may

proceed directly in assuming a solution in terms of a series in the para-

meter • . Direct methods for finding periodic solutions for

autonomous systems with small nonlinearities due to Krylov and

Bogoliubov (45) are equivalent to the procedure outlined above. The

amplitude of the resulting solution is made to depend upon the average

value of the nonlinear function evaluated at the periodic solution.

where we have defined
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B. Application:

For the purpose of demonstrating the small perturbation technique

without unduly complicating the presentation with the details of computa-

tions, the nonlinearity in equations 1-30 I-4, was approximated by a

least square fit. However this technique may be applied to the existing

nonlinearity except that the equations will valid over the piecewise

segments of o _ | _' | _ • 3 and _ _| "t .3 . This would

mean repeating this technique over each region of concern and will

defeat the purpose of this example. By approximating the nonlinearity,

the region of concern is now extended to o • | _ | _.& .

The data points are tabulated below and the approximate nonlinearity

will be defined as h CX_ .

X Actual Nonlinear Values

• 1 .001

.2 .001

• 3 .001

.4 .08

.5 .20

.6 .36

h (,_ =. .ool - I.o3 x _

= c (..Q.o .to, I_ •

where c _ .oot •
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Equations I-3, I-4, may be represented as:

. I.Z&S _' * o.eJl'/y : c

II- 13

II-14

The solutions to the above equations may be represented as

Consider, for the present, only the terms up to

and II-14 may then be represented as:

• L , equations II- 13

= -5.,_.•(¢o_C, • o.,x:_., _.o.,x.x.)
3"- _.._. •'( zx, x._. • ,4.x,_,x, .,.O.o_• o.,y,.,_,)

(:_. -,,•_, .,e_,_)-i. _._,ss(,i', -,-•_ * •=,Y,')• o._,_(,Y,,•¥, .,.•w,,)

| •



By equating the coefficients in terms of powers of

the following equations:

c yields

15

_o*_,K.. 4. ¢P,74-SYo "_.45B_'_ =o II-15

z Xo +_X, + _oX,) -t &.745 Yz _- S.458 _ II- 19

The number of equations will increase as higher powers of • are

considered.

For •

X o are

raised to the zeroth power, the periodic solutions to Yo and

Xo - _¢-0S(_o._ +®)

_o = 0

Substituting these solutions into the next set of equations (11-17, II-18),

the periodic solution to _I has the form

II-20
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where

and _l _ -1.285 0(1.15ili'_
- , -1

By substituting in the know solutions Yi l _l i )_ol _i into

equation II-17 and rearranging terms, the differential equation involving

where the forcing function f_t) contains the known solutions of _= = _l •

_o i _i . Specifically, the forcing function is"

+

and the solution to the homogenous equation of X I is

In order to prevent resonance, the coefficients of the forcing function
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which has the same frequency as c0o must be set equal to zero.

This results in the following equations, which involve co, and

the amplitude A.

- _,_A - _.74s A, - _. _.s8 _o_, : o

-c..14s B, - o_.4a8 _,_ °
4

. _.,,__z_, A_o -o
8

Since the relation of A I , B I are known functions of A, the above

equations are reduced to

c_ "- $._Zc0_ + 7.75

- _ "_ .:35_ z -I
II

The amplitude Ais then 01 _- 0,_1

& -.,. _0 T o E_O _"
Since c0° s

value of _ is:
O

• -

, the approximate

By continuing this sequence of computations the complete solution

for X_ Y_ and _o may be found as accurately as one



desires. In this example, the amplitude (A) of this approximate

solution differs from the other examples, but this is due to the

approximation of the nonlinearity by the least square fit.

18
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Co

the deviation of the system from linearity is small.

procedures are restricted to nearly linear systems.

Limitations

The main premise underlying all perturbation methods is that

Thus such

For large values

of the parameter • , one can no longer be assured that any of such

procedures will converge.

In terms of the practical implernentation of these methods where

they are applicable one is confronted with the growth of the numerical

computations which expand geometrically with the dimension of the

system. In practice one generally restricts himself to obtaining at

most terms of second order in the parameter.

The second main limitation to the method is that it in general

enables one to obtain precise quantitative information about a specific

system and gives little qualitative information about general systems.

Thus one may obtain as accurately as one desires the amplitude or wave

shape and frequency of a limit cycle but not know how sensitive the

frequency' or amplitude to a parameter variations in the s_'stem.

The main utility of such procedures is to verify the existence of

periodic solutions predicted by other methods and to check the stability

of such predicted solutions. Once approximate solutions are found for

systems with large nonlinearities, they may be refined by perturbation

methods.
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III• PIECEWISE LINEARIZATION AND POINT TRANSFORMATION

A. Theory

For systems with large nonlinearities and of high dimension,

perturbation methods are of little value in determining asymptotic

behavior. _" ly " "

linearizations and describing functions. In the former method, the

nonlinearities are piecewise approximated by linear segments and

the nonlinear equations are replaced by a system of linear equations

each of which is valid in a portion of the phase space bounded by

hyperplanes• To obtain a periodic solution a hyperplane is mapped

by the system of linear equations into itself• The requirement for a

fixed point under this mapping gives rise to the existence of a periodic

solution.

For this method we may assume a system in the canonical form

=Ax +I Y

y = FCr) zn-I

¢= c.TX

where Ais annxnmatrix, B andC are nx I vectors and F_¢)

a scalar nonlinear function• It is assumed that F {.G') may be

approximated by the system of straight lines.
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In each region

_ given by q'z _'_, and _ _÷t given by G"

III-1 may be approximated by the linear set of equations

• (A* v-tBc_)x * _

The solution of III-Z in _L is given by

_. of the phase space between the hyperplanes

where
v_.

AL --. [. A • K_c _')

III- Z

III-3

III- 4

whereThis solution may be continued until some time "_ ttet

the solution intersects one of the two hyperplanes _ t or

The time "_ K,÷ | is then given by the equation

c"x(_,_.,1• c"e_"_''-_:'_X(_:,24..)c.eAL_t,..,-'r)_B,vr
"kw. "

= _'_e, or _r L III-5

In the above equation we must account for the intersection of the

solution with the hyperplane _'_ _. -_ t or the hyperplane _ _. •

In order to obtain a periodic solution for this scheme it is

imperative to know the order of traversing the hyperplanes. For

illustrative purposes assume we start at J_ _ o on the hyperplane

H 1 and further assume the solution traverses the hyperplanes

HZ Ha H1 H-I I-I-Z H-2 H-I H1 in the given order
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In order to obtain a periodic solution we must obtain the mapping from

the hyperplanes HI through the hyperplanes in the indicated order. The

intersection of the trajectory with the given hyperplanes gives the eight

equations

:<(£_ = e _'t" Xds_ • _*_,C,,-_) G,_ dT

The unknown times t l, t Z. ,. . t 8 are given as solutions to the

eight transendental equations

III-6
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while the initial condition for the periodic solution is obtained from

a solution of the algebraic equation

Even for simple systems the solution of the above equations is

not easy. As the d/rnension of the system increases and as the number

of segments increased, the computation grows exponentially. For

higher order systems it is generally much easier to just continue

mapping through the sequence of hyperplanes until the trajectory

approaches an intersection of itself. If the resulting limit cycle is

stable such successive mappings are easier to apply if a fast inte-

gration routine is available.

Two difficulties could theoretically arise in the application of

this procedure. First the solution might enter and stay on a given

hyperplane. H the piecewise linearization is chosen such that A_,

and c _" are completely observable that is c-_r_ _&_1 "'" c." _'_

form a linearly independent set of vectors, then no solution can

remain on the _L hyperplane.

The second problem arises when one tries to solve the set of

equations for X(,o_ and the matrix of coefficients becomes singular.

This may occur when a family of periodic solutions exist and also

when no such periodic solution exists.
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Application

In the demonstration of the piecewise linearization technique,

there were two computational approaches which may be taken. The

first approach was to solve the set of transendental equations obtained

by Kovatch:s (i29, i30) technique and Lhe ...... _

ASP digital program (139)0 for successive mappings until the periodic

solution was obtained.

Since some knowledge was known about the limit cycle, the

equations approximating the nonlinearity were selected to yield compat-

ible results with the other techniques that are discussed.

These equations are:

F(.sl : ko_" j -.3 s • __ . T)

Ftcr) = k.._" *GI_ ) _'• .3

III- 8

The system I-5, then has the piecewise linear representation of:

)( - _o X -.3 -_ cTX $-5 III-9

C."¢_ _ ._ III-ll

The numerical values of A o, A I, b I , are shown in figure HI-a. The

above differential equations then determine the behavior of the system in
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the specific region of the phase space which is separated by the hyper-

planes, _"i "- _ ._5 , Since the form of the solutions to equations

III-9 to IIl-ll are known and the condition XI.Q_ z X {._ must

be satisfied, as described previously. This results in the equation:

x,_,_. [ z- e''''''_ _"''_"_" eA''*''''_e''c'*'_]"
[e &oL_a'_J) e Az(.'4:,"tt,'_ e&.t4c,-_ eA't _': _'%1_ III- I_-

_ eA-_-_'_ e_,_U__:' ( e_'u_ e-_._,)]

From the intersection of the trajectory with the hyperplanes, the resulting

equations are obtained:

¢,-._ • ¢'eA'_'Xco_ + c'¢_'t a," ( e -A'_' -I_,
III-13

- _, - -.i =

_'|" ._ •

_'reA'("k_'"e") e A°C%'t=') e A't:' Xla)

,4,, _'[e "''*'''_ e A"(¢_'%z)

. e a'*_ AF'(_A,*- _EA.*,)]h,
III- 15
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In order to solve the equations III-I2 to III-16, the closed form repre-

sentation of the transition matrix must be obtained. The derivation of

this representation along with the 1620 computer program which was

written to perform the calculations are shown in Appendix F, and no

e" - e''_ ['O.eo.l_._• Q,_,.,_._]

where the eigenvalues of A are _, • _ _, , and _I _" _ _a

and Pi, Qi are matrices whose dimension is the same as A. The

values of Pi, Gi are shown in figure III-b and c. Though the

transition matrices where computed, one can see the computational

difficulties that are encountered. This approach was abandoned at

this point and the ASP program was used to solve this problem.

The logic behind the ASP program is basically very simple,

since the solution to the linear differential equations is known to have

the general form

x_ - e'_'=x(,,._÷ _e^'_'_'__a_
.t.

and the ASP program contains this computation as one of its subroutines,

(._: _ may be computed. This subroutine is caUed EAT. Then

by computing (3" • C._rX , the switching of A o (III-9) to AI

(III-10) etc., is determined by a simple IF statement. The state

vector X(t) is printed out X T at different values of time. Thus a time
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solution is obtained for the complete state vector.

Included in the following figures (III-DI to III-D7) is a listing of

the program, the input data, and a sample of the output. The

constants from Z1 to E1 and QI ' Q_ are computational aids.

Tabulated below is the ASP representation of the input matrices and

vector s.

Mathematical

ASP Representation Definition

si (sl , Sz)

Ai

Bi

F

G

T

ND

X

Ki

' Gi

A

b

X(to)

Switching points

The slope of the linear

approximation

The constants associated with

the linear approximation

Original system matrix (I-5)

Vector of (I-5)

Iteration time

Final time

Initial State Vector

The constants used as computational aids may be explained by

an example. Consider El, this constant is used to construct an

equivalent tlgo to" statement which exists in standard Fortran language.

In ASP, the statement I F A,

or equal to B, go to HEAD 2.

IF statement to a simple "go to" statement.

B , HEAD 2 means if A is greater than

Simply by setting A equal B reduces the

If one is familiar with
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the ASP vocabulary, it can be seen from the listing that for any

switching points _'_

is computed and then compared to the

or G'_ , which are .3 and .315 respectively.

Upon determining the region, the matrix _, "- A _. _. _ :_c.'r and

t_r=_*the vector _ - uu_ are constructed. Obser,-e that the nonlinearity was

approximated by the addition equation

= A,. x - b,.

where A= = A* k_bcv and b= -_ b _=t , This was added

so that any initial state may be selected. The rest of the program is

straight forward and self-explanatory. The results are shown in

figures III-'EI and III-EZ,



m

-.31120000E-02

-•23250000E+01

-•53300000[-05

•11500000E-02

m

•lO000000E+O!

•00000000[-99

•00000000[-99

,00000000E-99

•00000000[-99

-,67450000[+01

• •00000000[-99

-•9]?O0000E+O0

t

•00000000[-99
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C. Limitations

The method of peicewise linearization remains the most general

procedure for obtaining periodic solutions of systems with large

nonlinearities. If the system under investigation possesses limit

sets other than periodic solutions, the procedure fails. Its two main

limitations appear to be the difficulty of solution of the associated

transendental equations and the need for a priori knowledge of the

order in crossing the hyperplanes. This last limitation in essence

requires one to know before hand a good estimate of the amplitude

of the oscillation.

The second procedure of continuaUy mapping an initial vector

until the solution intersects or approaches itself is very practical

for systems with stable limit cycles providing one has access to a

good computer program. A computer program such as ASP has

been demonstrated to perform quite well. Because of the speed of

computation one may start with a crude peicewise linearization and

then refine the approximation as the approximate solution is developed.

The effect of different peicewise linearizations can be easily evaluated

thus obtaining a sensitivity analysis of the resulting characteristics of

the periodic solution to the nature of the nonlinearity.
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IV. FREQUENCY RESPONSE METHODS

A. Theory

The use of frequency response method in the guise of the describ-

ing function has been the most widely used method for the analysis and

synthesis of nonlinear .systems. The method owes its popularity to its

simplicity of application and its freedom from severe computational

difficulties. A second frequency response method known as the Popov

criteria has been developed within the past few years but has not had

as yet the wide spread publicity of the describing function, In both

methods much is common and one forms a logical applied extension

of the other. Both are applicable to systems of the form

Ax +BY

IV-I

The describing function method consists of replacing the non-

linearity by an amplitude dependent characteristic and using this

characteristic in a conventional Nyquist plot.

If _' is assumed to be a pure sine wave

¢" A S,n rv-z

Then _ is given by the fourier series

where the coefficients 0._ and _ are defined as
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It

ir

"Vl.= A,_=,-,-;_;ncr _t+nrf_nn (n_" this system is defined as

H (,.A,,o'_ = o...,,(_,+.,+')+ ;..b,(X,ms, Iv-s
A

The linear transfer function f/_ is given by

+-(.,,)/,,,,¢,+.)- _,_VQ_ = e..'(_s- ^+"_, IV-6

If IV-6 is solved for _1'(.S_ and if we allow G'(t) to be

given by IV-Z we obtain

Q¢+)/+<+++l +0_ l • -_¢s) - _. . .,.____+

b,<_ + JtG%_ ,t _ -k •..

IV-7

If we multiply IV- 7 through by S+ _ _ and allow :$ .o, $_

we obtain

O.+ t.,,_ + b+_ IV-8

Solving for the open loop transfer function we obtain as a condition

for a periodic solution the relation

0,,,,)'4' _)'_
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Solutions to IV-9 are obtained by plotting the open loop transfer

function P(_/(_.tus_ and crossplotting t// t_(j,j_ • Periodic solutions

are indicated for those values of the frequency ¢._ where intersections

occur. The amplitude of the periodic solution is found from IV-9.

The preceeding discussion is based upon the assumption that the

nonlinearity is an odd function that is _r(_-_= _ _f_q_ . If _f-¢_

is even, then the above procedure would indicate that no fundamental

is present in the fourier expansion of the output. That in this case one

assun')e8 .

Two relations are now obtained for the existence of a limit cycle. One

relates the bias level of the oscillation and the second gives the

frequency and amplitude of oscillations.

For arbitrary nonlinearities which are neither even nor odd, a

biased input should be considered for limit cycle analysis.

By means of the describing function, the nonlinear system is

replaced by an equivalent linear system, from which the deviations

may be expressed in terms of a small parameter. Thus IV-l is replaced

by

k "-Ax ÷BY

For the linear approximation, that is with #_ _ 0

a periodic solution of the form _" : A _t_n _-_ =

, we have assumed

As,n (._. * C,_+,
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The describing function has the form

IV-II

where N' (_._ is the describing function for _t6") o

.1 lJl.pd

For a

IV-IZ

If this equation is expanded about the point t_ we obtain

rearranging terms we obtain

_o

In the graphical solution for periodic solutions, the last term in IV-13

is ignored. This may account for the discrepancy between the pre-

dicted frequency of oscillations and observed frequencies. This might

also account for the occasional failure of the method to predict a limit

cycle when one actually exists.

The describing function method is generally applied heuristically

to problems without any regard to its validity or mathematical

legitimacy. Many rules of thumb have been developed by which one

either accepts or rejects its conclusions. The two primary questions

relating its validity are: 1) What additional restrictions are required

to insure that the periodic solutions of the equivalent linear system
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represents periodic solutions of the nonlinear system? Z) Is it

possible for the nonlinear system to have periodic soh_tions which

are not predicted by the describing function.

Bass (98) has given a complete mathematical answer to (1),

but his results do not lend themselves to easy verification. His

results may be stated in the following theorem

Theorem: Consider the system of the form

d • _ d_ _e

IV- 14

and its companion equivalent linear system

dO" ae _'e

IV-15

and the generating system given by

IV-16

where it is assumed that

.dx
F(.- x, _.-_) - -F(x __xx,j

F (.x,o_ _= o F(.o,o _) = o

then the periodic solutions of IV'-15 are periodic solutions of IV-14

providing a) IV-15 is regular andb) IV-16 is resonance free. X °

is given by

IV-17
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The periodic solution of IV-15 is obtained from the algebraic

equations

0

do " _t8 IVY18

"..j,,

Observe that IV-18 is the sameas IV-9. System IV-I5 is said to be

regular if the Jacobian mstrix of IV-18 evaluated at 40 , _0 , and

_ , is nonzero. This condition is easily verified, but the require-

ment that IV-16 be resonance free poses the difficulty. In essence

IV-16 is resonance free if all solutions of Iv-16 are bounded and H

there are no periodic solutions with _---o or ,_--_' .

The Popov criteria is used to determine the global asymptotic

stability of systems of the form IV-I under the additional hypothesis

a) o __ _" F_.e_ _ k._"_'

b) A is stable

Under these assumptions, Popov's theorem states

Theorem: If there exists a real number such that

_o

for all _ • o then IV-I is globally asymptotically stable.

The application of the Popov theorem is made graphically

analogous to the application of the Nyquist criteria, If the nonlinearity

F:Q_r_ was replaced by a linear characteristic

p(,.<r_ ,+. A,,.cP o • X. • _.
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Then a sufficient condition for asymptotic stability would be for the

closed loop characteristic equation

, _. _" (.:I.,- A)"B IV-19

have no roots in the right half plane.

that there exists no frequency

This is equivalent to stating

such that

"- - _S'#_.. IV-20

Solutions of this are obtained by plotting the locus of c _" (._ _'£- &_'t

in the complex plane. The graphical interpretation of the requirement

that C_:E - _'*l_ ':' - ._ is that the locus of this plot

does not cross the negative real axis to the left of the value - I/K .

To obtain conditions for arbitrary nonlinearities such that system

IV-I is asymptotically stable has been the aim of mathematicians for

the past decade. Such conditions have been found by the use of the

second method of Liapunov. Popov's theorem is the first result given

rigorously in terms of frequency plots.

If the open loop transfer function

is modified to

by a change of scale on the imaginary axis, then the Popov inequality
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may be interpreted graphicaUy as the requirement of the modified

function _'$ _._ lying to the right of the line

Y_ _ _ -_,

This line has the X intercept at

Popov criteria contains the Nyquist criteria as a special case.

. _. and slope I/_ . The
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B. Application

In the application of the frequency response techniques, the

system under consideration will have the canonical form of equation

I-5, the nonlinearity is that of I-b and the block diagram representation

is of figure I-b. Since there are two different techniques involved, the

first one considered will be the more familiar describing function

method. Equations I-5, I-0 will then be modified to satisfy the

assumptions of Popov0 and the application will foUow.

Describing Function:

By replacing the nonlinearity, F(.q_ , with a describing function,

the standard Nyquist criteria was applied. Initially, a Rough Hurwitz

test was performed on the open loop characteristic equation to ascertain

the number of open loop poles on the right half plane. In this particular

example there were two.

The fourier series representation for F(.Q') is in general,

However, since the nonlinearity, equation I-6, is an odd function,

X¢_ "- O and the describing function for F(.q_ for all

values of | %| • .3 is,

where _'ffi CpSt.g . By direct substitution, and letting 0, =S,_"(.'_p_
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Performing the integration and evaluation yields,

F_

N = 2 .) _,.-
+.3_;[{Co,'_,_,,co,o.]

"3

._.ooos_'pT + .m,e,o_, Cos O,I

Since there were no energy storage components in the nonlinearity,

_'p_ is real. As shown in figure IV-a, the intersection of the

amplitude loci with the frequency loci occurred at (r'_ = . 329 and

a frequency of I. 5Z9 rads/sec, which identifies the limit cycle.

For the purpose of demonstration, the original equations of the

system, I-3. I-4 were modified so the nonlinearity f( _ _ was now a

function of both the slosh amplitude and rate. Specifically

where _._ _'I was the original nonlinearity, and

By defining a new state vector.



and

where

x_ _. Ex, x.. x, x,'_'-

4_' t

_,'" E,o °°3, c;'- E-°'°°3

-O.0OG53]

The system has the vector-matrix representation of

'_ '-- A x _ b FC¢, ._'-,.'_

_',= c,Tx

G'I. :, C..[ X

where A is the same as I-5,

_'r = C o -,_.I.IZ O

when o _.t_l _ ,%

5Z

The block diagram of the system has the representation, of

",,-°

e t¢,,('_)

l_l • .5

The describing function for

c:,[zG

F c¢..¢_ was computed to be

- _ (.. oo,., _" cs"_,"_/+)
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for let| =' .3

11"

-, .oo (.lr/z - o,

.4 q-p Cos z 0,]

Figures IV-b, IV-c, IV-d, indicate again, that the system has a limit

cycle. However, the amplitude is now .014Z, and the frequency 1.5Z5

rads/sec. This example does demonstrate that the describing function

may be used on nonlinearities of more then one variable.

Popov's Criteria:

The system to which this technique is applied has the same

canonical form as equation I-5, however, due to the restriction that

the matrix A must be stable it was modified by replacing the non-

linearity _(.G') by,

where k is a constant gain. The system is then

_.. c.TX IV-Z1

where A = A ÷ _" _c'_" and k was selected large



enoughto stabilize A.

P

-O.051_Z

-z. _ 24.4.

A = - 5.33 (._g:b)

I. 218C_o "3)

! o O

o - 6 .'7 4.5 - 9.4-$8

o (1 t

o - o._i"/" - t.285

54

and numerically, the open loop transfer function is:

_._ = 3,11Z _S ._ i.z34.___ ÷ _._1"11_

c_¢¢) _,1. , 1.3|G _ -1. 3.g'81 _ .t 5.0Z_S _Z.138

Then for any nonlinearity _(.v_ which satisfies the condition

0 £ 4" _ t_ __ _l_ "_ , the Popov's criteria may be used.

From the figures IV-e, IV-f, any nonlinearity which satisfies the

condition imposed on _Cv_ , where _[._ _ O.t4Z8 the system

is gobally asymptotically stable, since a "q" does exist for which

for all _,_ .
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C • Limitations

The primary limitation of the describing function method is

the lack of assurance as to its validity in a given problem. The

advantage of the method more than compensate for this liability,

Ar,_nna th_ _dvanta_es are the ease of avvlication, the lack of the

requirement for advanced mathematical tools.

The preliminary approach to analyzing or synthesizing a

dynamical system is to linearize, so that the familiar methods of

linear analysis may be applied. If the linear analysis is by means

of the Nyquist criteria, then the extension to the Popov criteria,

or the addition of a describing function to the procedure requires

little additional work.

The Popov criteria has either an advantage or disadvantage

according to the point of view in that its results are valid for a class

of nonlinearities. Improved performance should be obtained if one

considered the nature of the specific nonlinearity, but such consider-

ations can not be treated within the framework of the method. The

describing function on the other hand is applicable to specific non-

linearities, and variations in the specification of the nonlinearity is

not easily handled.

when the Popov criteria is applied to a system one obtains

sufficient conditions for global asymptotic stability. If this criteria

is not satisfied no information about the system is obtained. In order

to apply the Popov criteria it is necessary that the open loop transfer

81
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system be asymptotically stable. H this requirement is not satisfied

then one must require that the nonlinearity be represented as

under this assumption IV-I becomes

Q" • c.'rx

_ must be chosen such that AI is stable. This restriction upon the

nonlinearity F_.¢_ is equivalent to requiring

The Popov criteria is limited primarily to nonlinearities of the

gain type. This restriction is not too undesirable since most engineering

problems are of this nature. Extensions to more complicated non-

linearities of the hysteresis type have been reported in the literature.

The use of describing functions can be extended to more compli-

cated nonlinearities, including nonlinear functions of more than one

variable. For such extensions the ease of the graphical solution for

the frequency of the limit cycles disappears. For nonlinearities of the

gain type, the describing function contains no phase shift, so that the

frequency" in the first approximation of the limit cycle is determined

solely by the linear portion of the system while the amplitude of

oscillation is determined by the particular function. For energy

storage nonlinearities such as hysteresis such easy identification is

lost since the describing function will produce phase shift. For

nonlinearities of more than one function, one generally obtains a

family of describing function curves.
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V. BOUNDEDNESS

The technique treated in the prior sections coupled with the

Liapunov direct method comprise the primary tools for the analysis

of the asymptotic behavior of control systems. These procedures

lend themselves in particular to the identification of limit cycles

whereas the direct method of Liapunov and the Popov criteria are

applicable to the determination of asymptotic stability.

In the relrn of nonlinear analysis many different phenomena

other than limit cycle behavior exists. For example one may have

solutions which are almost periodic or one may have solutions

entering limit sets which are of a complicated structure. None of

the preceeding techniques are adequate to analyze such phenomena.

In many practical problems where limit cycle behavior does

exist, it is not necessary to cornpletely identify this solution as to

frequency, amplitude, etc. In most cases it is sufficient to have a

reasonable bound upon such solutions. Such boundedness properties

or "Lagrange Stability" have been treated by Yoshizawa (134, 135),

Rekasius (136) and Szego (137).

In the application of the describing function method, the concept

of boundedness was necessary for the mathematical legitimacy as

proven by Bass. In the application of the Popov criteria one often

encounters nonlinearities which are not contained completely within

the Popov sector. What conclusions can one draw about such functions
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will be answered here.

Consider the autonomous system

:k= F(,_I

Definition 1.

there exists a positive number

then HX('_')II /" _ for all

Definition 2:

bound

7" t'o( ) such that if

V-I

The system V-I is said to be bounded if for any _ _ O

. II .. • / • II . _.

such that if II A _.'_ol II _" '_"

_e¢o .

The system V-I is said to be ultimately bounded for the

if for any o(;P 0 there exists positive numbers )_ and

II x 1,o_II(_ then II x (o II _ e for

For linear homogeneous systems, the concept of stability of the

origin and the concept of boundedness are equivalent. The two main

theorems for the determination of boundedness are given as follows:

Theorem V-l: Let ._ be the region defined by O _ _ __ oo If×If>r
If there exists a function V(x) which is positive definite in the region

._v while its derivative

= v V r;( = v V"F(x) v-z

is negative semi-definite in the interior of .C_ 4_ , then the solutions

of V- I are bounded,

Theorem V-Z: If there exist a function V(x) which is positive definite

in ._W , while its derivative V-Z is negative definite in the interior

of ._u , then the solutions of V-I are ultimately bounded.

In the definition of the set __t , r is set equal to zero, then

the above theorems reduce to the theorems on stability and asymptotic
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stability.

The main use to which we will apply the above theorems is as

follows: consider the system

R = Ax + af(_-)

E- = crx - r ,,"(m)
V-3

b) V-3 is asymptotically stable for all non-

where it is assumed that

a) A is stable and

linearities _ _'_ with

o_-: _'¢ (_-) ..."..,#,,-"

We further assume that /c'(O") can be represented as

YCe') = G ¢o') + ,/'4 (_'9

with

a) o __o-G(e'} __ .,4, _,- _

b) Z/_, O(f) "_

c) I H ¢¢) I < M

_O

When

for all ._r"

f(_') is replaced by _'_. we know that the origin is

asymptotically stable. Consider the T.iapunov function

f

V= XrO× + _ So_(u;°'u V-4

Its derivative becomes

V'= x'r(A'rO+QA_X+ x'ro8 _(_ ")+ #¢,') 8",_x + ¥Crxe(r)-Xre2(r)

Since A is stable we have

where P is positive definite and V takes the form
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:'['" o'-']f' 1
I_r a,_ .+._.-) l- r //_.(o-') IL"-" " JL J

From Kalman (140) we know that V is negative definite thus insuring

the asymptotic stability.

We now consider the same V function for system V-3. V will

now change due to the presence of the term H _o') • The new expression

for P becomes

For the Ii¥ II sufficiently large where

Yr= IX" G]
V-6 will be negative definite. Since V

that all solutions are bounded in the variable

From the condition L//n G(f) _

in the state variables X and it" .

For the Lurd problem of direct control, a similar result is

available. Consider the direct control problem in the form

is positive definite, this implies

X and 6: (iv') .

this implies boundedness
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,X = ,,qX * _f(o--)

_- = CrX
V-7

with the same hypothesis on F'(_r') as before. Once again we assume

V-7 is asymptotically stable for all nonlinearities with o-_r'_ r') _ _f'_o

As before we consider a V function of the form

v= xTo× -,-V_f',_(u.l_'u

V becomes

We nowaddand subtract _"-- ,_____.)) _('@") to

Regrouping we obtain

",/-8

where

: (._

Thus V-8 is negative definite and V-7 is asymptotically stable with

F(_') replaced by _(_') . The change in V due to the representation

of F" (.(7") as (_ (_') 4- _ _0"_ becomes
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,,_ = ,z 8"Qx/t(,-)

Thu,,_o= I Hl<r

iar ge we have i;I

solutions. The proof of the existence of the

above form will be given in Appendix C.

+ _rG(,,-)�l/F) cr8

and the norm of <1"= [XT G (_')_ sufficienLIy

i_ negative definite :---1..--.. ............

V functions of the
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B. Application:

In order to demonstrate the approach which uses a Liapunov

function to obtain bounds on the system, some results of the previous

Chapter are used. Specifically, the system IV-21 and the results

pertaining to the Popov criteria. OriginaUy, the system was defined

by I-5. In the frequency response techniques, it was modified to

IV-2I, where the nonlinearity, _ (_r-) , was not defined, but had the

properties,

a) O< o'¢(#") _Am¢_

b) L/n-, ¢(,,'_ --.- .-

By defining _ (r) --_ or" where _ -- . 0// , over the

region of interest, the original nonlinearity F (_") has the

representation

F(¢) = _r --'- ._I,/e" ÷ G (#')

where K is the gain required to stabilize the matrix A, equation IV-Z1.

Then G( _r" ) has the property that it is bounded for all _r" , numerically

IGCr) l -_ M= o.oo_"

The system under consideration is I-5, but is represented as

= + b (,-)+ G
_.= crx

V-IO

where _, b, c were numerically defined in Chapter IV. It is known that

N ae

system IV-21 satisfies Popov's criteria, i.e. , there exists a _ such
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that

" + ,e. [ _, +_,,,,_)tc"¢,;_z _')-'6 j.d'j_

for all real _J . Numerically the value selected for

were -0.5 and 0. 142857 respectively.

_'0

and -_.s

From this result a Liapunov

v= xr_x

may be constructed by applying the Kalman-Yakubovich Lemma (138).

The details of this construction is shown in Appendix C. The Lemma

basicaUy states: Given a stable matrix A, a positive definite symmetric

D, real vectors h andk, h_ 0 and scalars _-_O _O then a

necessary and sufficient condition for the existence of a matrix B and

a vector q which satisfies the conditions

a}

b)

is that is small and the relation

is satisfied for all real _ .

Numerically, the vector q was obtained to be

and the matrix _) was defined as _ _ where I is the identity

matrix, and _. -- 2. 32534 x 10 -3 • By transforming the matrices

qqT and _k, I back into the original coordinate system through the

matrix E (see Appendix D), and applying the ASP program to compute
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the steady state solution to the riccati equation

the Liapunov function was completely identified for system IV= 21.

Numerically

Q "

.3183 =4.023(10 =3) -1.716 .2547

-4.023(10 -3) .1371 .1688 -.7637

- 1•716 . 1688 561.1 Z76.4

•2547 -. 7637 276•4 Z34.8

Using the same Liapunov function for system V-10, the derivative

of the _' -function has the representation:

- qV*1-'-
where

II_ll

r • 5. 444, P, q, Q, _ ,M are defined previously.

- 3.75 where the norm was defined as

For

• _k, 2 = .816, _" 3 = 2.7426 x 107 ,

"l_ has a minimum value of -6.34 x 10 -3.

and _t_ I • 1.0,

_k 4 : 1.688 x 106 ,

The Liapunov function ( q_" ) has a maximum value for this norm of

4. 536. Since V is positive definite and V is negative definite

_or IIxII : _ _ ,.i_.e_ioo_a.ouod_or*_e_.*om.
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C • Limitations

In the application of Liapunov Functions to the determination of

boundedness or Lagrange Stability one is faced with the usual problem

of obtaining a good choice for a Liapunov function. By good is meant

Liapunov function which is easy to generate and which gives tight

bounds on the state variables.

In the application of these methods to the Lurd type of problem

we utilized a Liapunov function whose construction was due to Kalman.

The part of this function which can be chosen arbitrarily to insure the

negative definiteness of V is decreasingly small as the Popov line

approaches tangency to the modified open loop transfer function. The

closer we approach tangency the smaller becomes the bound on the

nonlinear excursion from the Popov region. Thus one is confronted

with a compromise as to the choice of the Popov line.

In order to determine the region of boundedness one must first

find the surface lJxH = c on which V is negative. On this

surface one then examinee max V ix) . The region of boundedness
Ilxll=C

is then given by V(x) = C I= _4X _t{X} . In the practical
II ,II: c

determination of a sufficiently tight bound the proper choices for the

norm must be made. The computation of V on llx [[ = C

and the computation of max V(X_ can be prohibitive with a poor
II×jI=c

choice of the norm.

In order to simplify the carnputational requirements the norm

chosen in the above presentation is

Ilxll- Ix xxl
1
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In the construction of the Liapunov Function by means of the Kalman

procedure, one must be able to determine the roots of a polynomial

whose roots are symmetric about both the real and imaginary axes.

In such constructions by the authors, some of these roots had very

small real part and this posed difficulties in the root extraction

program.
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VI. CONCLUSIONS AND RECOMMENDATIONS

In the determination of the asymptotic behavior of control systems,

four basic procedures were examined in some detail. These procedures

were not independent but in many respects they overlapped and supported

each other. For example the describing function or equivalent lineariza-

tion is very similar to the perturbation method. Its parallels to the Popov

criteria are even more apparent. For a nonenergy storing nonlinearity,

the describing function is real and lies on the negative real axis. It

appears in this case that the describing function is identical to the

Aizerrnan conjecture.

For the analysis of high order systems all methods except the

frequency response procedures pose severe computational limitations.

Under suitable restriction these requirements may be relaxed somewhat

as for example symmetry in the nonlinear characteristic reduces the

set of equations to be solved in the piecewise linearization procedure.

Oftentimes the complete simulation of the nonlinear system is less

complicated then the solution of the equations associated with the various

analytical approaches.

For a practical approach to the analysis of a complex system the

procedures to be used should be evolutionary, that is each step should

be an extension of the previous step. Since basically the first step in

a design is to linearize and make use of a Nyquist type of analysis,

this analysis could be based upon the modified transfer function of

Popov. The addition of a describing function or the construction of the
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Popov criteria is a straightforward extension of these classical

approaches where applicable. If a limit cycle is predicted and more

precision is required in determining its wave shape and frequency, then

the perturbation procedures can be applied to extract these results.

For systems with nonlinearities of a more complex nature, one

is then forced to one or more of the more complicated procedures

such as piecewise linearization or the use of the second method to

determine either stability or boundedness properties.

Many problem areas touched upon in this report need further

resolution and extension. Adequate computational procedures for

the solution of systems of transendental equations and the extraction

of roots of high order polynomials are in need of development. Work

is needed in procedures for the generation of Liapunov functions

coupled with suitable norms to obtain tight bounds on limit sets.

At1 procedures in this report were restricted to autonomous

systems, whereas in most boost vehicles the systems under considera-

tion are nonstationary. Few if any of the discussed procedures will

extend to the non-autonomous problem. Thus the analysis of the

asymptotic behavior of time varying systems is still in need of

clarification.
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APPENDIX A

BIBLIOGRAPHY

During the first three months of this program a survey of the

literature pertaining to the a/3yrnptotic behavior of the solutions of

nonlinear differential equations was made. In particular, procedures

were sought for locating and identifying periodic solutions and limit

cycles. In this search, five general classes of methodology were

identified namely, (I)perturbation methods, (Z) topological or phase

plane methods, (3) frequency response methods or describing functions

and (4) piecewise linearizations and point transformation, (5) bounded-

ness and Lagrange stability.

These five methods are not really as distinct as we have

indicated since they are all interrelated mathematically. Thus the

methods classified under (3) are just special cases of the perturbation

methods. The approach of point transformations with fixed point

theorems form the basis of all existence theorems for periodic solutions.

Even with this overlap, the above classification seems to be a practical

point of view and they will be tabulated.

(I) Perturbation Methods: The perturbation method consists in

expressing the solution to a set of differential equations in terms

of a power series in a small parameter. The terms of this series

may be obtained in terms of solutions of a sequence of linear non-

homogeneous equations. Thus in principal the solution may be

approximated as accurately as desired by considering additional
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terms of the series. Various methods of modifying the procedure

to eliminate the so-called secular terms have been introduced and

herein lies the main difference between the various perturbation

methods.

Hale's procedure has been discussed in detail in Chapter H of

the text, since many general problems may be inbedded into this

general format including the forced nonlinear system and the auto-

nomous system.

Krylov and Bogoliubov developed a procedure which leads to a

method of averaging, when with a periodic solution of autonomous

nonlinear equations. Basically, it assumes the so|ution has the form of

x = Acoscto_ ÷_)

where the amplitude (A) and the phase shift ( _ ) are non-constant. A

set of differential equations are obtained for A and _ , by applying the

variation of parameter approach. From these resulting differential

equations _ may be expected to vary proportionally with the d.c. term,

while the periodic solution should be given by equating the average value

to zero and thereby obtaining the amplitude.

Many problems of periodic nature may be found in Russian

literature solved by the method of harmonic balance. This method

basically assumes a solution in terms of a fourier series and then

determines the coefficients by equating like harmonics. This procedure

has been successfully applied by Bass (99), Wasow (82) and others.
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For a treatment of perturbation methods, the texts by Hale (I0)

and Malkin (13) are excellent. Sections of Stoker (16) and Andronow and

Chaikin (Z) treat a number of second order systems. In these texts the

presentation is suitable for the particular problem but does not

generalize to a broader class of problems. The text by Cesari (3)

has an excellent bibliography. Presentations slanted more for the

engineer are given by Hayashi (II), Minorsky (15) and Ku (IZ).

Periodic solutions for forced nonlinear systems are given by

Elgerd (30), Plotnikov (57), Struble (7Z). Once a periodic solution of

a nonlinear system is found, its stability needs to be investigated. This

process results in the study of a linear perturbation equation with

periodic coefficients. Stability is expressed in terms of either the

characteristic rnultipliers or characteristic exponents. The linear

equation with periodic coefficients. Stability is expressed in terms

of either the characteristic multipliers or characteristic exponents.

The linear equation with periodic coefficients is treated by Hale (32, 33)

Struble (75), while the determination of characteristic exponents and

stability is given by Hale (36, 40), Nobel (50), Ruiz (66), Sandberg(67)

and Sibuya (67).

The existence of periodic solutions of autonomous systems is

complicated by the fact that the period is not known in advance and

must be treated in terms of additional perturbation terms. Methods of

determining such solutions is given by Hale (1O), Proskuriakov (59, 60),

and Loud (47).

I
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(Z) Phase Plane and Topological Methods: Phase Plane methods

are primarily graphical procedures for obtaining the totality of

solutions for autonomous nonlinear second order systems. Much of

the literature is concerned with the identification of the singular points

and their classification. For linear systems, the only type of singular

points which can occur are l) node, Z) focus, 3) saddle point, 4) center.

A center is characteristic of periodic solutions, while saddle points

always imply an unstable system. Nodes and loci may be either stable

or unstable. The topological structure of the phase portraits for nonlinear

systems is much more involved. Many singular points may exist in

contract to the existence of a single singular point for linear systems.

Isolated closed paths representing limit cycles also may exist. All

solutions may approach the limit cycles, in which case they are said to

be stable. Applications to the design of relay controls are too numerous

to list.

The main results on the existence of limit cycles is due to Poincare-

Bendixon. However, since the results are in the nature of existence

theorems and do not aid in the location of identification of limit cycles.

A procedure for determining limit cycles based upon a similar concept

is by the use of a Liapunov function to show (l) instability of the equili-

brium point and (Z) boundedness of the solution which will be discussed

later.
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Phase plane procedures may be extended to dimensions greater

than two, but in practice the geometric insight is lost. O_ course the

concepts of a phase space and its associated notation has influenced

most of modern theory where state vector notation is used almost

exclusivelyo Ku (91) uses a phase space for a third order system.

A detailed treatment of phase plane analysis may be found in the

texts by Andronow and Chaikin (2), and Minorsky (15).

Alternate methods of constructing phase portraits are given by

Buland (86) and Hsia (90).

Fixed point theorems form the basis of theorems on the existence

and uniqueness of periodic solutions.

Diliberto (88), Lakshrnikantham (93).

(3) Frequency Response Methods:

Such results are given by Benes(85),

The frequency response techniques

for analyzing nonlinear systems has been justifiably popular with engineers.

The popularity stems from the simplicity of application and that it extends

techniques with which he is familiar. However no explanation of either

technique wiU be given since Chapter IV of the text was devoted to this

subject, along with an example.

A detailed treatment of describing function and Nyquist analysis

may be found in most texts on Control Systems. The texts by Gibson (8)

and Truxel (17) are particularly outstanding. Popov's criteria may be

found in detail in Aizerman and Gantmacher (I).
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Applications of such methods to practical control problems

abounds in the technical literature starting with the results of

Kochenburger (112, 113). Bass (98, 99) in particular has examined

the validity of this method and gives complete results for odd types

Of nonlinearities. Choksy (104) gives criteria for the stability of the

postulated limit cycles by an examination of the tangents to the

describing function. Gibson (I06) gives a detailed treatment of the

computational aspects and tabulates many describing functions for

often occurring nonlinearities.

(4) Piecewise Linearization and Point Transformation: For systems

with large nonlinearities and of dimension greater than two, the

perturbation and phase plane methods are of little value in determining

periodic solutions. The point transformation, or piecewise linearization

method has been previously discussed and shown that theoretically this

is one technique which is applicable. However due to computational

difficulties the ASP (Automatic Synthesis Program) digital program was

used to obtain a periodic solution, which is still a piecewise linearization

technique.

The problem was solving the set of transendental for the unknown

times t i. Kovatch (129, 130) has applied this approach to systems with

one or more nonlinearities to determine symmetric limit cycles. A

similar approach to finding the transendental equations for the unknown

times but using a single differential equation of high order is given by

Gusev. Grayson and Mishkin (IZ7) combine phase plane procedures
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with piecewise linearizations to analyze third order systems. Stability

of piecewise linear systems is given by Belya (123). The work of

Andrd and Siebert (1ZZ) is concerned with behavior of solutions at

switching planes and in the switching surfaces.

(5) Boundedness and hagrange Stability-: The eyAstence of limit

cycles or limit sets may be determined by showing instability of the

origin and Lagrange stability or boundedness. A procedure for the

construction of a Liapunov function which will yield this information

is given by Szego (95). However as shown in the boundedness section

of the text, Kalman's (IZ8) construction of a Liapunov function may be

utilized in obtaining boundedness results.
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APPENDIX B

AUTOMATIC SYNTHESIS PROGRAM (ASP)

The ASP (139) digital - computer program was written by

Messrs. R. Kalman and T. Englar', for the specific purpose of solving

the linear optimization problem with a quadratic loss function. Though

this program was written for a specific purpose, it has proven to be

versatile in its capabilities. The number of subroutines which were

developed in order to solve the linear optimization problem may be

used for other purposes. The ability to manipulate vector-matrix

algebra allows one to work in state space notation, the solution to the

matrix riccati equations permits one to construct a Liapunov function

and there are other uses.

The program is written in YAP, but to use it requires very little

knowledge of computer languages. A dictionary of the mathematical

capabilities is clearly presented in (139) along with examples and error

statements. The ease in which ASP may be used is best demonstrated

by an example. Specifically, in constructing a Liapunov function.

Assume that the Liapunov function is of the form V = XTQX

• and the matrix Q must satisfy the following relation:

A'Q *a_ = -P

where A, is a stable n x n matrix and P is a positive definite n x n matrix.

Normally the matrix is defined by

i
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However, the linear matrix riccati equation has the form:

_& = A"Q÷QA

which is what the ASP programs is capable of solving. Observe that

the stead), state solution of the riccati equation will also Field the

matrix Q which defines the V - function. A listing is shown of

the construction of the matrix (E) which transforms system I-4 into

companion form, and the solution to the steady state linear riccati

equation, along with the inputs, and the output at the end of

Appendix D.
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APPENDIX C

CONSTRUCTION OF A LIAPUNOV FUNCTION

In order to construct the Liapunov function of interest and obtain

n,,__m_erical values, the Kalman-Yakubovich Lernma (138), is applied.

The proof of this Lemma may be found Lefschetz (138) and will be

presented verbatim because of its clarity and since it is essential in

the actual construction of the Liapunov function.

Consider the system

where A is a stable

are real vectors, the pair

nonlinearity satisfies

O_-

_ Ax

A,b

- bF_a)

matrix, C_ b_

completely controllable, and the

oF(.a I a. l(._ 2

In fact, let the system C-I satisfy Popov's criteria.

exists a _ such that:

That is, there

y_. .,. Re i(.I,c_o)')Cc'T l_I -Ag'b) _' 0

for all real _0 •

A Liapunov function of the form

4"

V = XTGL x _ riFt'la_'

is desired, and has the property that its total derivative

negative definite. By adding and subtracting

C-I

ill

from



, the derivative may be expressed as:

_/ - x T_A_*QA_x -z Ft_

I01

- (._-- w/v._F.

By defining

ATQ "t QA = -p

r : Yl,. + vcTb
C-Z

is expressed as

,_= - x_Ce-%_,_lx-C_FC_ _1,_x)_ - (.¢-%_

To insure that _ is negative definite, 1_ - qqT must be _ _ .

If the matrix P and the vector q may be found, the construction will be

completed. In the proof of the Kalman-Yakubovich Lemma the matrix

P is defined, and the vector q is constructed.

Kalrn an- Y akubovi ch Lemma:

Given a stable matrix A, a positive definite symmetric matrix D, real

vectors h andk. hl/ o and scalars "T _O I G _,a , then a necessary

_ t,';, '."-;.'c.

and sufficient condition for the existence of a Matrix B and a vector q

which satisfies the conditions

a)

b)

A_"_ _-Bp, -- - %_ - f,'_



i
IOZ

is that f.. is sZnall and the relation

C-3

is satisfied f/_r all real w. For simplicity, let (iwl-A) = A w and *

indicates the conjvgate transpose.

Proof of Necessity: Equation C-3 is represented as

•'r. • (.A:h) ° >o

S lnce

this by

A_ _ * _A- " - _A'B * _A_ by premultiplying

(A,_ t _I)" and post multiplying by A;'_ yields

Substituting in for Bh from condition (b) yields the identity:

Consider D a hermitian matrix, and the fact that

then 7 O

Since

equation C-3 is

which proves the necessity. In fact, this is equivalent to Popovts

criteria. Prior to providing the sufficiency of the lemma, it is

assumed without loss of generality that the matrix A is in companion

form. the vector _'e =. [OO...0 I] and _-_':[bo _.... _,.,]

when A. h are completely controllable. (See Appendix D for the

transformation matrix which will transform A. h. k into their proper



forms). In order to prove the sufficiency portion Lefschetz (138)

proves a short theorem.

Theorem: Huis a real vector suchthat "_.e C uI'TA_] ` O

whatever w, then u - o. This was shown by contradiction, but will

not be shown at the present.

Let _ (._ :
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where f(w), g(w) are real rational functions of w with the numerator

of degree _ n-I and the denominator of degree n. Then f, g --_o

as _ _ 4- oo and are continuous for finite w. By noting that

f, and g possess upper and lower bounds, and that

(Aa h)*D , o , ,
may be selected so that

Let "_ l,i,_ • IA_| , then

C-4

for all real w. NL_'_ is a real polynomial of degree 2n with a

leading coefficient of I" , and has no real roots. It may be repre-

sented as
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C-5

where ¢'_1', .% -" ..... • --1 .......

and is of degree n.

Vt_._ : et.;.,+_, - J'T' "L"I+.,,.)IThen, C-6

and V(_) is of degree n-l, whose coefficients are _ ,Vz_V$ -.

The vector qis then defined as _T = [-V, °V z -V, • .. ]

From this the matrix B may be obtained by the application of condition (a)o

To complete the proof of the sufficiency condition,

.T. ,.R, (,.,,'.+,.:,'+,'_. G(A:.'),?_)CP,.:,'_

and

Then

=

By condition (b),

Since ]_t - _- _'_ % is a real vector, and the application of
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Lefschetz's theorem, _%% - %(. -- _'_ _ "- O , which completes the

proof.

By properly identifying equations C-Z with those required in the

lemma one can construct the vector q by determining the roots of the

polynomial C-5, and then form the polynomial V_ , equation C-6.
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APPENDIX D

GENERAL TRANSFORMATION MATRIX E

Previously it was stated in the proof of the Kalman-Yakubovich

Lemma that for the given system

= Ax • bF(.¢)
D-I

_-= CTX

that A, b0 have a specific representation without loss of generality

when the pair A, b are completely controllable. It will be shown that

a matrix E may be defined as that under the transformation X = EY,

the system will be in companion form and that the transfer function

is preserved.

Define the transformation E to be, Lefschetz (138).

_. .... en ] , where e i are column vectors= [' e, e_, e_

e_ _b

e,_-, ; Ab

en-z =

8

+ O..., b

A Ib • _-i hb + O..-zb

e_. _.-i_" An-` b 0..-_ A_'z b * o._,-th_'sb ,.-.* _,,-L,.,b

or simply: e,_ *b

e.-_ - h (.e,,.,} • o..-a _n

*
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where -_ -_. | _ ?.. _ . , . _-l and the scalars (l-

are the coefficients of _ 3: s - J_ I = _:)_ _S

The transformed system, for X - EY

l F E"AE

K : E"bI

d _ = C_ '

D-Z

and the transfer function of system D-I is preserved,

_-'(._s-A_''b = a "t (,+_E._ -F)"V,.

Since <+'(._s -r)"". - c.'_ _,:t:s-_"A_"C_"b'_

: ¢'m

: C _ (T.s -At"' b

In order to show that system D-Z is of the companion form,

0 t Q

0 0 t

0

_3 • • ° 0

i

• I

°° 0

°° I

..... G,_,. t
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Since E - [e. e, .. e.l

A_ = [ Ae, hez Ae_

Ae. = A '_ e,_ , o.,,., A'_"e,_

". _4_-i = - O.o e.

A et = _, - a,e,,,

Let

ms

K.

e

e

• where k_ are row vectors

Since t

It follows that li" A F.., _,Pq,

A,,.t

q,

,,'%_

C -o.t_ Q. " Q.e. ".. e_-.'at-_e*1
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and

F'--

O t ID • 0

0 O |

• 0
I

I

o * •

o o (_ "L
--O.e -&,e -a.I, ..... 4LIt-I

Similiarly, the vector k may be shown under the transformation to

have the specified form of _.'r -- C O (:3 0 "- 01_ .
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APPENDIX E

APPLICATION OF QO00Z PROGRAM

J,

The QOOOZ digital program was written by Martin-Orlando

personnel and used in this investigation because d its versatility,

This program has the capability of manipulating po1_-nomi=ts to

form a transfer function, extract the roots of both the numerator

and denominator polynomials, obtain a frequency response in various

manners and more. Since the manipulation, root extraction and

frequency response subroutines were of primary interest, the

programming of these features will be discussed briefly.

To explain the use of this program, in a limited fashion, it is

best to illustrate by an example. However, prior to this, two basic

limitations must be considered.

I) The input polynomials must be of degree not greater than Z0.

Z) The degree of the computed transfer function must not

exceed 50.

Application:

Assume that the following polynomials will be manipulated to

form a single transfer function:

P. = '=a _ 25-_t

P4. = _= 4.3'

.4. z_ _
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The desired transfer function has the form

LP,)Lp ) * (P,)
and a frequency response, along with the roots of both the numerator

and denominator are also desired. The frequency response may be

obtained in any or all of three options. The first option is a frequency

response which is determined by the phase shift, The successive

points are controlled between specified tolerances on the phase, The

second option varies the frequency in discrete steps over the range of

interest, and finally, the response a specific points.

Figure E-I is a sample input sheet for the four polynomials

previously defined. The first card contains a zero (0) or a one in

Column 4, this defines whether or not a plot tape will be prepared.

If a one is present, the tape will be prepared. The title card must

contain the J'T" in Column I and the alphanumeric data in Columns 13-

7Z. The comment card must contain a "C" in Column 1. In Column

two, fix point numbers from one to seven indicate the total number of

comment cards. The first comment card containsalphanumeric data

in Columns 13-72, other succeeding cards contain alpha numeric data

in columns 1-72. Both the title card and comment card are optional.

The 'tM3" run control card defines the number of sets of polynomials=

and the number of polynomials in each set. This run control card

simply enters the input polynomials. Columns 1 and Z contains "IV[3 *_,

columns 4, 5 define the number of sets of polynomials, right adjusted,
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and in columns 6 to 8, the number of polynomials per set, also right

adjusted. The polynomials are then entered in succeeding cards.

Columns I and Z defined the number of coefficients in the polynomial,

right adjusted and the coefficients are entered in ascending order in a

10-coluznn field, starting in column 3. A maximum of two cards for

each polynomial is allowed, If a decimal point is not present, a power

of I0 must be present, and a decimal point will be assumed between

the 5th and 6th column ahead of the sign of the exponent. Again a zero

or one card must appear after the polynomials are entered. The "M4"

control card defines what the program is going to do. As in M3, M4

must appear in columns I and Z, and in columns 4 and 5, right adjusted.

identifies which set of polynomials. An "A" appearing in column II

indicates that an "Algebra" card will be entered. A "D" in Column 12

indicates that all previous instructions shall be disregarded. The

"RTS', left adjusted, in columns 13-18 indicate beth the numerator

and denominator roots will be extracted. An tIRTSD" in the same

columns will indicate that the denominator roots are to be extracted

only. In columns Z5=30, left adjusted, defined the various combinations

in which the frequency response will be obtained.

When "A" appears in column 11 of the M4 control card, an

algebra card is required and the manipulation of the polynomials to

form the transfer function is defined. The algebra card contains the

word algebra in columns I=7, and in columns 13-15, right adjusted,

defines the number of control characters. Previously the algebra
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J

I

was defined to form the transfer function. The control characters

indicate the desired manipulation. A sequence of consecutive positive

integers indicates that the polynomial represented by that integer are

to be multiplied together. Each sequence must be preceded by a

zero (0) or one (I) which indicates the product is to be multiplied by

a 4- or - respectively. A -2 indicates the end of a numerator, and

a -3 indicates the end of the denominator. Any number of control

character cards may be used.

In columns 25-30 of the /vi4 control card any one of the following

may appear:

FREQI, FREQZ, FREG3, FREQ4, FREQ5, FREG6, FREQ7, which

define the various combinations of obtaining a frequency response.

FREQI to FREQ3 indicate only one of the three options. FREQ4

indicates FREQI and FREQZ. FREQ5 gives FREQI and FREQ3; FREQ6

gives FREQ2 and FREQ3; FREQ7 gives all three options. The FREQI

data card has FREQI entered in columns 1-5, columns 13-22 indicate

the lower frequency limit and columns 23-32 the upper limit. The lower

phase tolerance is indicated in 33-4Z and the upper phase tolerance is

43-5Z. The FREQZ data card is the same as FREQI except for the

designation in columns I-5 and that the frequency increment is entered

in columns 33-42. Since FREQ3 evaluates the transfer function at

specific points, the total number of points is indicated in columns 13-

15, right adjusted, and the specified points indicated on a second card.
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The discrete frequencies are entered as decimal numbers in successive

lO column field starting in column 3 to 7Z. As many cards may be used.

A listing of this program may be obtained through the Martin

Orlando Computer Section.
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APPENDIX F

COMPUTATION OF THE TRANSITION MATRIX

During the investigation which utilized the piecewise linearization

techmque, the closed form representation of the transition matrix

e &_ was required. The derivation of this closed form solution

was based on the following theorem.

Theorem: If F( _. ) is an analytic function and if the n x n matrix A

has distinct eigenvalues _k., , kt , _ ..... k_ then

F[.A =
W'W

Proof: From the Cayley - Hamilton Theorem F(A) can be written in

the form

n n

La ! {,st

L4t

The problem is to determine the unknown coe_icients

Substituting _t_t¢ I for A gives

which reduces to

tl

£-., {.81

j_ i.,I
_.Wl.
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Since

then

Therefore

and it follows

Since the transition matrix considered in this problem does

fulfill these requirements

127

(_&4: _ (_k_.t_ .'_ I (:A - k._ ]:_

In fact, it was observed that for eigenbalues which are all complex,

this representation may be simplified further by separating the real

and complex portions. Then,

where Ini and Qi are real matrices, and _i. J_ _. , {._.t ,t,..- fl/&

are the eigenvalues. A 1620 computer program was written to compute

the matrices Pi and Qi when A is a 4 x 4 matrix with distinct, complex

eigenvalues. A listing of the program is given in the figure below.
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DIMENSION A(4o4},B(4o4)oC(4,4),D(4_4}QE(414),F(4_4)tG(4t4)IP(4_4)

READ l,((A(IoJ)oJ=l.4)el=l,4)

READ 2o((B(IQJ}oJ=li4)oI=l,A) ....

FORMAT(4EISeB)

FORMAT(AEIBoB)

READ 3QXIQYI

READ 4tX2tY2

FORMAT(2EISeS}

FORMAT(2EISeS) ........

SI=YI*((Xt-X2}**2+(YI-Y2)**2)*((X1-X2)**2+(YI+Y2)t*2)

S3=2.*(XI-X2)*YI

DO 5 I=l,4

DO 5 J=lo4

C(IQJ)=A(I,J)

P(It.I)=B(I,J)-2e*X2*A(IeJ)

DO 6 K=I,4

C(K_K}=C(KoK,)-X|

P(KoK):P(K,K)+((X2)**2+(Y2)**2)

DO ? I=1,4

O0 ? J=1,4 ....................

D(IqJ)=-S3*C(I,J)

E(I,J)=S2*C(IoJ)

DO 8 K=lo4

O(K,K)=S2*YI+D(K_K)

E(K,K)=E(K,K)+S3*YI

DO g I=1,4 .........

DO 9 J=I,4

so=q.

SE=O,

DO 10 K=1o4

SO=SD+P(I,K}*O(KeJ}

SE=SE÷P(IoK)*E(KtJ)

F(IIJ)=SD/SI

G(I_J}=SE/SI

PUNCH ll,((F(IiJ)IJ=I,4)$I=I,4)

PUNCH 129((G(I_J)IJ=Ii4)iI=I$4I

FORMAT{aE18,8)

FORMAT(4EIBe8}

GO TO 20

END
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