106,765 research outputs found

    Stable Gaussian Process based Tracking Control of Lagrangian Systems

    Full text link
    High performance tracking control can only be achieved if a good model of the dynamics is available. However, such a model is often difficult to obtain from first order physics only. In this paper, we develop a data-driven control law that ensures closed loop stability of Lagrangian systems. For this purpose, we use Gaussian Process regression for the feed-forward compensation of the unknown dynamics of the system. The gains of the feedback part are adapted based on the uncertainty of the learned model. Thus, the feedback gains are kept low as long as the learned model describes the true system sufficiently precisely. We show how to select a suitable gain adaption law that incorporates the uncertainty of the model to guarantee a globally bounded tracking error. A simulation with a robot manipulator demonstrates the efficacy of the proposed control law.Comment: Please cite the conference paper. arXiv admin note: text overlap with arXiv:1806.0719

    Robustness and Generalization

    Full text link
    We derive generalization bounds for learning algorithms based on their robustness: the property that if a testing sample is "similar" to a training sample, then the testing error is close to the training error. This provides a novel approach, different from the complexity or stability arguments, to study generalization of learning algorithms. We further show that a weak notion of robustness is both sufficient and necessary for generalizability, which implies that robustness is a fundamental property for learning algorithms to work

    A study of the classification of low-dimensional data with supervised manifold learning

    Full text link
    Supervised manifold learning methods learn data representations by preserving the geometric structure of data while enhancing the separation between data samples from different classes. In this work, we propose a theoretical study of supervised manifold learning for classification. We consider nonlinear dimensionality reduction algorithms that yield linearly separable embeddings of training data and present generalization bounds for this type of algorithms. A necessary condition for satisfactory generalization performance is that the embedding allow the construction of a sufficiently regular interpolation function in relation with the separation margin of the embedding. We show that for supervised embeddings satisfying this condition, the classification error decays at an exponential rate with the number of training samples. Finally, we examine the separability of supervised nonlinear embeddings that aim to preserve the low-dimensional geometric structure of data based on graph representations. The proposed analysis is supported by experiments on several real data sets

    A robust machine learning method for cell-load approximation in wireless networks

    Full text link
    We propose a learning algorithm for cell-load approximation in wireless networks. The proposed algorithm is robust in the sense that it is designed to cope with the uncertainty arising from a small number of training samples. This scenario is highly relevant in wireless networks where training has to be performed on short time scales because of a fast time-varying communication environment. The first part of this work studies the set of feasible rates and shows that this set is compact. We then prove that the mapping relating a feasible rate vector to the unique fixed point of the non-linear cell-load mapping is monotone and uniformly continuous. Utilizing these properties, we apply an approximation framework that achieves the best worst-case performance. Furthermore, the approximation preserves the monotonicity and continuity properties. Simulations show that the proposed method exhibits better robustness and accuracy for small training sets in comparison with standard approximation techniques for multivariate data.Comment: Shorter version accepted at ICASSP 201

    Risk Bounds for Learning Multiple Components with Permutation-Invariant Losses

    Get PDF
    This paper proposes a simple approach to derive efficient error bounds for learning multiple components with sparsity-inducing regularization. We show that for such regularization schemes, known decompositions of the Rademacher complexity over the components can be used in a more efficient manner to result in tighter bounds without too much effort. We give examples of application to switching regression and center-based clustering/vector quantization. Then, the complete workflow is illustrated on the problem of subspace clustering, for which decomposition results were not previously available. For all these problems, the proposed approach yields risk bounds with mild dependencies on the number of components and completely removes this dependence for nonconvex regularization schemes that could not be handled by previous methods

    Asymptotic Generalization Bound of Fisher's Linear Discriminant Analysis

    Full text link
    Fisher's linear discriminant analysis (FLDA) is an important dimension reduction method in statistical pattern recognition. It has been shown that FLDA is asymptotically Bayes optimal under the homoscedastic Gaussian assumption. However, this classical result has the following two major limitations: 1) it holds only for a fixed dimensionality DD, and thus does not apply when DD and the training sample size NN are proportionally large; 2) it does not provide a quantitative description on how the generalization ability of FLDA is affected by DD and NN. In this paper, we present an asymptotic generalization analysis of FLDA based on random matrix theory, in a setting where both DD and NN increase and D/Nγ[0,1)D/N\longrightarrow\gamma\in[0,1). The obtained lower bound of the generalization discrimination power overcomes both limitations of the classical result, i.e., it is applicable when DD and NN are proportionally large and provides a quantitative description of the generalization ability of FLDA in terms of the ratio γ=D/N\gamma=D/N and the population discrimination power. Besides, the discrimination power bound also leads to an upper bound on the generalization error of binary-classification with FLDA
    corecore