244 research outputs found

    Speckle Reduction and Contrast Enhancement of Echocardiograms via Multiscale Nonlinear Processing

    Get PDF
    This paper presents an algorithm for speckle reduction and contrast enhancement of echocardiographic images. Within a framework of multiscale wavelet analysis, the authors apply wavelet shrinkage techniques to eliminate noise while preserving the sharpness of salient features. In addition, nonlinear processing of feature energy is carried out to enhance contrast within local structures and along object boundaries. The authors show that the algorithm is capable of not only reducing speckle, but also enhancing features of diagnostic importance, such as myocardial walls in two-dimensional echocardiograms obtained from the parasternal short-axis view. Shrinkage of wavelet coefficients via soft thresholding within finer levels of scale is carried out on coefficients of logarithmically transformed echocardiograms. Enhancement of echocardiographic features is accomplished via nonlinear stretching followed by hard thresholding of wavelet coefficients within selected (midrange) spatial-frequency levels of analysis. The authors formulate the denoising and enhancement problem, introduce a class of dyadic wavelets, and describe their implementation of a dyadic wavelet transform. Their approach for speckle reduction and contrast enhancement was shown to be less affected by pseudo-Gibbs phenomena. The authors show experimentally that this technique produced superior results both qualitatively and quantitatively when compared to results obtained from existing denoising methods alone. A study using a database of clinical echocardiographic images suggests that such denoising and enhancement may improve the overall consistency of expert observers to manually defined borders

    Lv volume quantification via spatiotemporal analysis of real-time 3-d echocardiography

    Get PDF
    Abstract—This paper presents a method of four-dimensional (4-D) (3-D + Time) space–frequency analysis for directional denoising and enhancement of real-time three-dimensional (RT3D) ultrasound and quantitative measures in diagnostic cardiac ultrasound. Expansion of echocardiographic volumes is performed with complex exponential wavelet-like basis functions called brushlets. These functions offer good localization in time and frequency and decompose a signal into distinct patterns of oriented harmonics, which are invariant to intensity and contrast range. Deformable-model segmentation is carried out on denoised data after thresholding of transform coefficients. This process attenuates speckle noise while preserving cardiac structure location. The superiority of 4-D over 3-D analysis for decorrelating additive white noise and multiplicative speckle noise on a 4-D phantom volume expanding in time is demonstrated. Quantitative validation, computed for contours and volumes, is performed on in vitro balloon phantoms. Clinical applications of this spaciotemporal analysis tool are reported for six patient cases providing measures of left ventricular volumes and ejection fraction. Index Terms—Echocardiography, LV volume, spaciotemporal analysis, speckle denoising. I

    Biomedical Image Segmentation Based on Multiple Image Features

    Get PDF

    Speckle reducing bilateral filter for cattle follicle segmentation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Ultrasound imaging technology has wide applications in cattle reproduction and has been used to monitor individual follicles and determine the patterns of follicular development. However, the speckles in ultrasound images affect the post-processing, such as follicle segmentation and finally affect the measurement of the follicles. In order to reduce the effect of speckles, a bilateral filter is developed in this paper.</p> <p>Results</p> <p>We develop a new bilateral filter for speckle reduction in ultrasound images for follicle segmentation and measurement. Different from the previous bilateral filters, the proposed bilateral filter uses normalized difference in the computation of the Gaussian intensity difference. We also present the results of follicle segmentation after speckle reduction. Experimental results on both synthetic images and real ultrasound images demonstrate the effectiveness of the proposed filter.</p> <p>Conclusions</p> <p>Compared with the previous bilateral filters, the proposed bilateral filter can reduce speckles in both high-intensity regions and low intensity regions in ultrasound images. The segmentation of the follicles in the speckle reduced images by the proposed method has higher performance than the segmentation in the original ultrasound image, and the images filtered by Gaussian filter, the conventional bilateral filter respectively.</p

    Foetal echocardiographic segmentation

    Get PDF
    Congenital heart disease affects just under one percentage of all live births [1]. Those defects that manifest themselves as changes to the cardiac chamber volumes are the motivation for the research presented in this thesis. Blood volume measurements in vivo require delineation of the cardiac chambers and manual tracing of foetal cardiac chambers is very time consuming and operator dependent. This thesis presents a multi region based level set snake deformable model applied in both 2D and 3D which can automatically adapt to some extent towards ultrasound noise such as attenuation, speckle and partial occlusion artefacts. The algorithm presented is named Mumford Shah Sarti Collision Detection (MSSCD). The level set methods presented in this thesis have an optional shape prior term for constraining the segmentation by a template registered to the image in the presence of shadowing and heavy noise. When applied to real data in the absence of the template the MSSCD algorithm is initialised from seed primitives placed at the centre of each cardiac chamber. The voxel statistics inside the chamber is determined before evolution. The MSSCD stops at open boundaries between two chambers as the two approaching level set fronts meet. This has significance when determining volumes for all cardiac compartments since cardiac indices assume that each chamber is treated in isolation. Comparison of the segmentation results from the implemented snakes including a previous level set method in the foetal cardiac literature show that in both 2D and 3D on both real and synthetic data, the MSSCD formulation is better suited to these types of data. All the algorithms tested in this thesis are within 2mm error to manually traced segmentation of the foetal cardiac datasets. This corresponds to less than 10% of the length of a foetal heart. In addition to comparison with manual tracings all the amorphous deformable model segmentations in this thesis are validated using a physical phantom. The volume estimation of the phantom by the MSSCD segmentation is to within 13% of the physically determined volume

    A volume filtering and rendering system for an improved visual balance of feature preservation and noise suppression in medical imaging

    Get PDF
    Preserving or enhancing salient features whilst effectively suppressing noise-derived artifacts and extraneous detail have been two consistent yet competing objectives in volumetric medical image processing. Illustrative techniques (and methods inspired by them) can help to enhance and, if desired, isolate the depiction of specific regions of interest whilst retaining overall context. However, highlighting or enhancing specific features can have the undesirable side-effect of highlighting noise. Second-derivative based methods can be employed effectively in both the rendering and volume filtering stages of a visualisation pipeline to enhance the depiction of feature detail whilst minimising noise-based artifacts. We develop a new 3D anisotropic-diffusion PDE for an improved balance of feature-retention and noise reduction; furthermore, we present a feature-enhancing visualisation pipeline that can be applied to multiple modalities and has been shown to be particularly effective in the context of 3D ultrasound

    Roadmap on signal processing for next generation measurement systems

    Get PDF
    Signal processing is a fundamental component of almost any sensor-enabled system, with a wide range of applications across different scientific disciplines. Time series data, images, and video sequences comprise representative forms of signals that can be enhanced and analysed for information extraction and quantification. The recent advances in artificial intelligence and machine learning are shifting the research attention towards intelligent, data-driven, signal processing. This roadmap presents a critical overview of the state-of-the-art methods and applications aiming to highlight future challenges and research opportunities towards next generation measurement systems. It covers a broad spectrum of topics ranging from basic to industrial research, organized in concise thematic sections that reflect the trends and the impacts of current and future developments per research field. Furthermore, it offers guidance to researchers and funding agencies in identifying new prospects.AerodynamicsMicrowave Sensing, Signals & System
    corecore