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Abstract

Preserving or enhancing salient features whilst effectively suppressing noise-derived ar-
tifacts and extraneous detail have been two consistent yet competing objectives in volu-
metric medical image processing. Illustrative techniques (and methods inspired by them)
can help to enhance and, if desired, isolate the depiction of specific regions of interest
whilst retaining overall context. However, highlighting or enhancing specific features can
have the undesirable side-effect of highlighting noise. Second-derivative based methods
can be employed effectively in both the rendering and volume filtering stages of a visual-
isation pipeline to enhance the depiction of feature detail whilst minimising noise-based
artifacts. We develop a new 3D anisotropic-diffusion PDE for an improved balance of
feature-retention and noise reduction; furthermore, we present a feature-enhancing visu-
alisation pipeline that can be applied to multiple modalities and has been shown to be
particularly effective in the context of 3D ultrasound.
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Chapter 1

Introduction

This research project outlines the development of an illustrative rendering (and noise fil-
tering) system for the depiction of volumetric medical imaging datasets; it is designed to
preserve and enhance salient feature-detail whilst reducing the visible effects of inherent
noise more effectively than the current state-of-the art methods. Key components are a
novel feature-preserving PDE-based noise filtering method and supplementary feature-
enhancing shading using a unified curvature-based approach. Depiction of salient feature
details (and/or their enhancement) and the reduction in visible noise-based artifacts are
fundamentally competing objectives: this system provides an effective means for smooth-
ing datasets whilst preserving and enhancing features. Whilst ostensibly an illustrative
rendering system, the key novel contributions can be applied to other rendering contexts
such as global illumination to preserve and enhance feature detail with minimal visual
noise artifacts. In the field of obstetric ultrasound, the novel contributions produce visual
results which surpass current state-of-the art techniques.

The projects two fundamental objectives are:

1. The development of an illustrative rendering system with potential applications in
obstetric ultrasound, surgery planning, patient education and shape-perception test-
ing.

2. Within the context of this illustrative rendering system and more generally, the
development of a unified curvature-based approach to shading-enhancement and
volume smoothing: supplementary shading techniques and a novel data smoothing
method were developed to enhance the depiction of salient features whilst suppress-
ing visible noise artifacts and extraneous surface detail.
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1.1 Background

A major discipline within the field of medical visualisation is concerned with the presen-
tation of rendered 2D images derived from three-dimensional (volumetric) data. Datasets
are acquired via hardware scanners in the context of their respective modalities; each
modality provides its own particular insight. Magnetic Resonance Imaging (MRI) and
CT (Computed Tomography) are generally employed within the contexts of soft tissue
and skeletal imaging respectively, whilst ultrasound sonography has applications within
obstetrics, blood-flow analysis and internal organ visualisation. Three-dimensional ultra-
sound is a relatively recent development and is particularly suitable for parent-oriented
keepsake obstetric imaging.

A volumetric dataset is essentially a three-dimensional array of data-sample points known
as voxels, where a voxel can be thought of as a 3D analogue to a 2D pixel. The volumetric
dataset can be considered to be a 3D lattice with each point representing the centre of each
voxel. Volume rendering and explicit isosurface extraction are two imaging techniques
used to process volumetric data and produce an output image: the former is currently
more prevalent and will form the basis of the forthcoming discussion.

Illustrative rendering takes inspiration from the artistic styles and methodology employed
by traditional artists and medical illustrators in order to convey information effectively
with minimal extraneous detail. Such techniques aim to improve the efficiency of infor-
mation communication: they emphasise and isolate key regions or structures and reduce
unnecessary detail in areas of lower importance whilst retaining the overall context.

Generally, illustrative rendering methods have evolved directly from those used by tradi-
tional illustrators: most fundamental are low-level abstractions such as the overall shading
style (depicting lighting and surface properties) and shape-conveying crease and silhou-
ette lines. Higher-level constructs include expanded or exploded views, ghosting and
cutaways.

There are numerous applications in the field of medical imaging: surgery planning, ed-
ucation and training, and the presentation of scan-data to the patient or other layperson
are a few possibilities. The latter facilitates dialogue between the medical professional
and the patient, and can significantly help the patient’s understanding of their condition or
impending surgical procedure.

Illustrative shading can enhance the depiction of vessels or other salient structures by
juxtaposing their depiction against a traditionally-rendered surrounding context.

In addition to the fundamental shading style, illustrative or otherwise, traditional artistic
techniques for highlighting region boundaries can also be transposed to medical visual-
isation applications. Crease and silhouette lines help to delineate surface structures and
can provide a greater sense of depth and overall shape than the basic shading or light-
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ing style alone. Such lines are the simplest and most extreme abstract expression of the
highlighting of ridges and valleys, which often constitute the boundaries of features on a
given surface. A more comprehensive graduated shading of such regions extends this to
provide a greater degree of shape-cueing if required; moreover, the degree and extent of
such shading can be chosen to complement the overall chosen artistic style.

Three-dimensional foetal ultrasound imaging has become increasingly popular with par-
ents as a ‘keepsake’ or souvenir, and as means to provide a visual update on their baby’s
progress through pregnancy; such imaging can provide a tangible reassurance regarding
their baby’s wellbeing, and a visual record of the various stages of its development. Within
this context, an overall non-photorealistic rendering style may have potential as an alter-
native to global illumination (the current preferred state-of-the-art rendering method for
this application).

Overall rendering style aside, supplementary illustrative techniques such as ridge and
valley enhancement have the potential to address one pervasive issue: the problem of
indistinct feature-boundaries, such as those around the eye and mouth regions. Where
global illumination itself as a main rendering method can provide some improvement over
conventional gradient-based shading, ridge and valley enhancement can be used to sup-
plement shading of feature-boundaries for both gradient-based renderers (including the
illustrative ones discussed in the forthcoming chapters) and global illumination renderers.

However, 3D ultrasound data suffers from another major problem: a significant noise
component. Like other modalities, 3D ultrasound suffers from noise accrued through the
data acquisition process. In the case of ultrasound, a large proportion of undesirable arti-
facts are produced as a result of interference patterns set up between the probe transducer
and soft tissues; this is known as speckle.

The issues of poor feature delineation and noise are inextricably linked. Attempts to
address the former by increasing feature-boundary definition also increases the effect of
the visible noise artifacts; moreover, attempts to reduce the visual level of speckle and
other noise-based artifacts directly reduces the distinction of feature-boundaries.

Ultimately, the main objective in this context is to achieve an optimal balance of feature
preservation (or enhancement) and noise suppression. This research project has this as its
primary motivation: a flexible rendering pipeline featuring a specially developed feature-
preserving volumetric filtering stage, combined with feature-enhancing supplementary
shading for maximum feature retention with minimal noise artifacts.

Whilst particularly effective for 3D ultrasound, this approach is not limited to this appli-
cation: it can be employed across all modalities which produce volumetric voxel-based
data. Overall, this is presented within the context of an illustrative rendering framework;
this presents an alternative to traditional rendering styles and is particularly useful for ves-
sel and structure visualisation and highlighting. Moreover, the non-photorealistic styles
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are easily interchanged and can be replaced with global illumination or other traditional
renderers if required.

1.2 Project aims and scope

1.2.1 Requirements

This project seeks to develop a system for the rendering and filtering of medical images
of various modalities from their respective volumetric datasets with the following specific
requirements:

1. The ability to highlight salient features or structures; this is achieved through ei-
ther illustrative shading styles or supplementary illustrative shading based on 2nd
derivative properties (curvature).

2. Effective noise suppression with a higher level of feature preservation and noise
reduction than is available with current methods.

3. Fast execution time to allow for real-time application to streaming 4D ultrasound.

In addition, shading styles should be easily interchanged and even combined with other
rendering methods (or replaced entirely) for a highly flexible pipeline.

1.2.2 Scope

The above takes inspiration from some traditional illustrative rendering techniques: in-
deed, this thesis depicts the development of a primarily illustrative-based rendering sys-
tem; however, some of the artistic methods (e.g. detail-enhancing shading) can be applied
in the context of other rendering methods and styles (e.g. global illumination).

The fundamental thread running through the entire project is the combination of the first
two of these requirements. The specific aims are to enhance or preserve salient features
whilst removing excessive noise or unwanted detail to a greater degree than is currently
available.

The system has particular value in the context of 3D ultrasound as this modality is in-
herently noisy with poor feature delineation. Hence, a large proportion of development
time will be devoted to improving facial feature detail in obstetric ‘keepsake’ images; this
application will be studied throughout the duration of the thesis and its examples will
document the progression of the pipeline development to meet the underlying objectives.
However, the system is not limited to 3D ultrasound in application: the techniques devel-
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oped within have equal potential in the context of other modalities such as CT and MR
and examples will be outlined throughout.

1.2.3 Implementation

Balancing these competing objectives is achieved by advancing the state-of-the-art in
feature-preserving volumetric filtering in conjunction with supplementary feature enhanc-
ing shading; indeed, the development of a novel volumetric noise reduction method to fa-
cilitate the above primary requirements is one of the major contributions of this research
project; this new PDE-based method is described in §5.5.

Overall, the pipeline consists of the following:

i. A base illustrative rendering system using Style Transfer Functions (Bruckner [5]),
although this is swappable with other renderers (e.g. global illumination).

ii. Supplementary curvature-based shading for feature enhancement; employs curvature
buffer-smoothing where required for noise-artifact reduction.

iii. Improved feature-preserving volumetric filtering to allow for feature-enhancing shad-
ing without the side-effect of noise artifact amplification, using a combination of
anisotropic diffusion and mean-curvature motion.

In order to satisfy requirement 3 (from §1.2.1), all stages of the pipeline (filtering, render-
ing, compositing) are implemented on GPUs (graphics processing units) using GPGPU*

principles and libraries. Both rendering and filtering operations are highly parallelisable
(sometimes termed trivially or embarrassingly parallel: each voxel can be processed inde-
pendently with no synchronisation, dependency or write-clash issues). Hence, both map
well onto parallel processing architectures and are highly suitable for implementation on
GPUs.

Nvidia’s CUDA was the GPU framework of choice but the open standard OpenCL would
be applicable also. As the system was developed on Nvidia GPUs, and CUDA currently
offers a slight performance gain over OpenCL, the former was chosen for all project de-
velopment. Moreover, Toshiba Medical’s internal libraries make use of this framework,
so integration of new code back into the company’s main code-base is facilitated by its
adoption.

The renderer uses the open standard graphics library OpenGL for final image screen-
placement; the system is set up so that OpenGL shares internal buffers with the CUDA-
based renderer.

*GPGPU or general-purpose GPU-computing is the use of the highly parallel architecture of the GPU
to perform general computing (non-graphics API) tasks, e.g. numerical integration, raycasting etc.
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Performance is a key requirement in general but is of fundamental importance for stream-
ing 4D ultrasound, where a succession of 3D volumes are continually generated (at a rate
of 10 volumes per second† at the time of writing). The major potential bottleneck over
current 4D implementations is the volume filtering stage. However, on current GPU hard-
ware (Nvidia GTX680), a 4D ultrasound stream can be processed in real-time with the
newly-developed filter so that each 3D volume can be denoised in around 3ms.

1.3 Project contributions

Built upon a flexible illustrative-rendering framework, the fundamental overall contribu-
tion lies in the combination of an illustrative curvature-based shading stage for detail en-
hancement and an improved feature-preserving non-linear volumetric smoothing method;
the core achievement is the ability to highlight salient feature detail with minimal noise
artifact amplification. These objectives are in some sense a ‘holy grail’ of volumetric
image processing. A significant component is a newly developed method for volumetric
noise reduction which can eliminate a large proportion of rendered isosurface noise with
a minimal compromising of feature detail.

To effect the goals of feature detail enhancement with minimal noise-based artifacts, the
following methods are employed and form the basis of the novel contributions presented
in this thesis:

• Deferred curvature based shading as a post-processing step with 2D curvature-
buffer smoothing.

• An improved feature-preserving 3D volumetric filtering stage.

Overall, the contributions can be described as follows:

Volumetric filtering

The major contribution is the development of a novel PDE-based second-order filtering
method which provides an improved balance of feature retention and noise reduction over
current state-of-the-art methods. Building on work by Hossain and Möller [8], Krissian
[9] and Carmona [10], this non-linear PDE makes use of anisotropic diffusion (as de-
scribed by Hossian and Möller) for feature preservation but extends the range of local
surface topologies (local anisotropy) over which purely isotropic smoothing is applied
(through mean curvature motion). The latter is applied according to local curvature mag-
nitude, regardless of anisotropy.

†on Toshiba 4D Ultrasound ’Artida’ hardware
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Complementary to the required feature-preservation under anisotropic flow, the additional
isotropic mean-curvature motion has two effects:

• removal of residual surface noise that would otherwise remain untouched by anisotropic
diffusion methods.

• a high level of performance as isotropic flow gives the largest spatial stepsize with
fast convergence.

Hence this method allows for the retention of salient features as in the Hossain Möller
anisotropic diffusion PDE, but offers an improved level of noise-reduction and overall
performance.

Deferred and smoothed curvature shading

This is a shading post-processing step which provides the means to highlight salient fea-
ture detail with a reduction in the level of unwanted noise-enhancement. It is a supple-
mentary shading stage which can emphasise region boundaries such as ridges and valleys,
using curvature as a shading metric. Combined with the novel volume-filtering method
outlined above, it is effective for enhancing feature detail with minimal noise enhance-
ment. As a deferred shading stage, it is suitable for single rendered isosurface applications
such 3D ultrasound. Curvature data is obtained on ray termination (at the isosurface) and
is stored in a 2D curvature buffer. This buffer is then smoothed using 2D Perona-Malik or
bilateral filtering to reduce the effects of high curvature produced at noise-related surface
peaks or pits on the supplementary shading in the any given local region.

Pipeline of operations

The fundamental contributions outlined above are presented within the context of a pipeline
of operations; this is designed to facilitate the implementation of the above methods in a
multitude of rendering applications for a variety of modalities. The pipeline is presented
as a complete illustrative rendering system but the feature enhancement and noise re-
duction components can work with other rendering methods (e.g. global illumination).
A generic version of the overall system (with a non-specific renderer and general non-
specific feature-preserving volumetric filtering stage) is currently under review for US
Patent Application no 14/661,456 (Deferred and Smoothed Curvature Shading for Detail

Enhancement in Smoothed Ultrasound Volumes).
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1.4 Possible applications

As previously discussed, one major application of this new rendering pipeline is the en-
hancement of feature detail and region boundaries in 3D ‘keepsake’ obstetric ultrasound
imaging in order to better delineate regions such as the eyes, nose and mouth; this is
applicable for both fully-illustrative overall shading styles and for global illumination.

Illustrative shading styles in general can be used for surgical planning, patient educa-
tion, vessel depiction and for any application where a non-photorealistic rendering style
is appropriate; moreover the supplementary curvature-based shading stage can provide
additional detail enhancement where required. Curvature-based shading can be useful for
highlighting pathology: in the case of vessel rendering, aneurysms can be highlighted by
shading the regions of high-curvature that define their boundaries (i.e. the ‘neck’ of the
aneurysm).

The core feature-preserving volumetric noise-reduction method may be generally appli-
cable to all volumetric contexts to provide a state of the art replacement for older methods
such as the bilateral filter or Perona-Malik diffusion. The volumetric smoothing compo-
nent is effective at preserving tubular structures, so is particularly suited to vessel render-
ing or noise reduction operations on such datasets.

In addition, the illustration-inspired curvature-based shading method may be used as a
post-processing step to enhance detail within any rendering style.

In summary, potential applications for the overall system include:

• Illustrative rendering, e.g. 4D ultrasound heart valve depiction and animation

• Surgical planning

• Patient education

• Perceptual psychology studies on shape perception

• Ultrasound ‘keepsake’ imaging

• Vessel aneurysm depiction (illustrative)

• Any application where feature enhancement is required.
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Chapter 2

Literature review

2.1 Introduction

The fundamental project objective (as discussed in the previous chapter) is to develop a
high-performance volume filtering and rendering system for application to medical imag-
ing datasets, with the capacity for salient feature highlighting with minimal noise-based
artifacts. The rendering system is to take inspiration from illustrative methods for primary
shading styles and supplementary feature-enhancing shading.

What follows initially is a general overview of volume rendering, introducing key con-
cepts such as illumination models and transfer functions. Illustrative rendering techniques
for general 3D computer graphics are introduced and then discussed within a volume-
rendering context. Illustrative rendering has been the subject of a considerable body of
research overall: most work involves image-space or polygonal 3D object space methods.
However, there has been a degree of effort to transpose much of these techniques to the
context of volume rendering. Volumetric visualisation itself increases the scope of pos-
sibilities: managing occlusion is a major research area, and can derive much inspiration
from traditional artistic methods.

Volumetric noise reduction forms a major component within this research project and one
of its main contributions. In the literature, it is an area of significant research: state-of-the
art methods will be discussed here and developed in further chapters.

In order to address the fundamental criteria discussed in the previous chapter, current
literature in the following research areas will be discussed:

• general methods for rendering volumetric data

• illustrative techniques and their application in a volume-rendering context

• supplementary illustrative shading methods, e.g. ridge and valley shading; such
methods could be employed for salient-feature enhancement
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• volumetric noise reduction to minimise the effect of noise-highlighting incurred
through feature enhancing shading

Ultimately, selected methods outlined in this literature review chapter will form the basis
for further development within the scope of this research project.

2.2 Volume-rendering overview

There are several approaches to rendering volumetric data, falling generally into two dis-
tinct categories:

• Surface-reconstruction approaches, which attempt to recreate an explicit surface
mesh using an algorithm such as marching cubes [11]. More sophisticated recon-
struction techniques have since been developed [12].

• Direct volume rendering methods, where no explicit surfaces are recreated. The
final image (which may include implicit isosurfaces) is rendered directly from vol-
ume data. Examples are slice-based 2D-texture stack methods, and raycasting.

Medical imaging applications are primarily concerned with direct volume rendering. Out
of the two such methods listed, the latter raycasting approach requires more powerful
GPU hardware, but is now generally preferred [13]. Slice-based methods were previ-
ously favoured until the introduction of more capable GPUs: these have improved rapidly
in recent years. The advent of shaders, then GPGPU* libraries like Nvidia’s Cuda and
the open-source standard OpenCL, allow complex flow-control and program constructs,
although branching must be carefully considered for performance reasons.

2.2.1 Raycasting

Considering the volumetric data-set as a 3D texture, the raycasting algorithm is highly
parallelisable and thus maps easily onto GPU architectures†. The raycasting algorithm
essentially computes output pixel values in an image plane by approximating the volume

rendering integral‡ along rays fired into the volume from the image plane. This involves
accumulating intensity and opacity values according in a compositing operation at a spe-
cific sampling interval along the ray. The intensity at a particular sampling point is usu-
ally reconstructed using either trilinear or cubic-spline interpolation, since the volumetric
data-set consists of a set of discrete data points.

*General Purpose Computing on GPUs
†GPUs have large numbers of processing units (cores) and very fast thread switching. They are actually

a hybrid SIMD/MIMD model: small groups of threads known as warps operate as SIMD units, and can be
switched quickly in the event of a stall.

‡see Max (1995)[14], Krueger (1990)[15] for a comprehensive description of the volume-rendering
integral.
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GPU hardware is a perfect match for the raycasting algorithm:

• It is highly parallelisable (so called embarrassingly parallel): each output pixel
value can be computed entirely independently in parallel with others on a output-
pixel-per-thread basis, with no synchronisation, dependence or write-clash issues
between threads.

• The output image can be constructed in texture-memory, then rendered as a tex-
tured quad though an API such as OpenGL; it can thus remain in device memory,
and avoid time-consuming data copying from main-memory to the GPU. Moreover,
recent iterations of Nvidia GPU hardware (Fermi generation or newer [16]) allow
direct writing to texture memory, without any internal GPU data copies.

• The GPU texture-unit’s hardware trilinear-interpolation features can be employed.
Cubic-spline based interpolation can be implemented either via a shader or a GPGPU
kernel, although the latter is preferred if using Cuda or OpenCL as part of the
pipeline; a performance-optimized version is presented in [17], in which the tri-
linear interpolation hardware is used to affect tricubic interpolation.

2.2.2 Transfer Functions

So far, only gray-scale composited values have been considered. To model effectively
the emission and absorption of various tissue component structures within the volume, a
transfer function lookup-table is required to map volume intensity values to RGBA colour
and opacity. This is frequently stored as a texture (in its simplest form a 1D texture). This
process is essential to effectively classify the data into different tissue types for visualisa-
tion.

Transfer function construction can be a laborious process: to effectively separate different
tissue types requires extensive manual transfer function design by trial and error. Various
techniques attempt to simplify or replace this process: see [18] for a comparative overview
of transfer function design approaches.

Levoy (1988) [19] extends the basic transfer-function to two-dimensions, introducing
voxel intensity-gradient as a second input parameter. This can be used to help delineate
boundaries between adjacent tissue types, via gradient opacity-modulation. Furthermore,
it can also form the basis for illustrative techniques, such as ghosting [20].

Kniss et al. further discuss the possibilities for multidimensional transfer-functions in
[21]; Kindlmann et al. introduce curvature as an input parameter in [3]: this has particular
significance in the context of illustrative rendering (see §2.5.1).

Other recent techniques involve introducing the scale of features [22] and textural proper-
ties [23] as input parameters.
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2.3 Illumination models

Illumination can help provide a clearer depiction of isosurfaces within the volume, and
may improve user-perception of depth and spatial relationships between structures within
a volume data-set. Lighting-model approximations generally fall into two distinct cate-
gories: global and local.

Global illumination
This is a complex model, in which scattering and global reflections between sur-
faces are considered [24]. This type of model can generate subtle lighting effects
such as high-quality translucency and volumetric shadows, and is effective at com-
municating subtle detail within a volumetric data-set that may be missed by simple
local illumination [25][26]. Lindemann (2010) describes a method for simulating
advanced light-material interaction in volume rendering contexts [27].

Local illumination
These are relatively simple approximations, where only light rays emanating di-
rectly from the source are considered at the given surface point; scattering effects
are ignored. A simple example is the Blinn-Phong lighting model [28]: this is fre-
quently used in lighting implicit isosurfaces, such as the skull.

A primary concern is user-perception, and thus efficacy in information-communication.
Lindemann (2011) presents a comparative user-evaluation summary of various lighting
techniques in [29]. For a current overview of state-of-the art global illumination for gen-
eral computer graphics, see [30].

Surface-normal estimation Computation of intensity gradients also has another impor-
tant application in direct volume rendering: surface-normal approximation for illumina-
tion and shading. In direct rendering methods, no explicit isosurfaces are constructed, so
some other means of normal-construction must be utilised; in fact, the normalised voxel
intensity-gradient is equivalent to a surface-normal [19]. Several methods exist for gradi-
ent estimation:

1. simple finite difference schemes, central differences being preferred.

2. other convolution-based methods using larger filter kernels than simple finite differ-
ences, together with some form of interpolation should the continuous derivative be
required.

3. fitting methods such as splines and patches, although the former can be considered
a variant of the second type.

The second category generally produce higher quality results than simple finite-difference
schemes, but are more computationally expensive. See [31] for a general overview and
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[32][33] for a comparison of various schemes. Recent high-quality gradient-reconstruction
techniques are discussed in [34] and [35]. Belyaev discusses implicit finite-differences in
[36] for fast, high quality image derivatives.

An example of the second category above is the cubic spline: these are often used for
greater reconstruction accuracy and are often referred to as ‘’texture sampling with tricu-

bic interpolation’. Sigg and Hadwiger [17] recommend that cubic splines are used for
gradient and second derivative sampling, and that simple finite differences will suffice for
data value sampling. Moreover, they present a performance-optimised implementation
using a combination of trilinear texture sampling operations (as the latter is implemented
in hardware on most modern GPUs).

Kindlmann et al. [3] investigate a selection of convolution-based filters for derivative
estimation using the Marschner-Lobb dataset [37]; they then present a visual comparison
of the results.

2.4 Illustrative techniques

Conventional approaches to rendering in computer-graphics has typically involved at-
tempting to recreate a photorealistic depiction of a scene; in effect, approximating the
real-world interaction of light with the scene’s various objects and surfaces.

Non-photorealistic rendering (NPR) attempts to simulate the styles and techniques em-
ployed by artists in traditional illustration; the emphasis is on the effective communica-
tion of information, through a degree of abstraction. Gooch and Gooch [38] provide a
comprehensive overview of illustrative techniques in both 2D (image-space) and polyg-
onal 3D (object-space) contexts, although this is limited to summarising the field up and
including the SIGGRAPH 2000 conference. The main illustrative approaches described
in [38] involve emulating pencil and ink illustration styles such as enhanced edges and
shading; cartoon or other novel lighting/shading styles are also outlined in detail.

In summary, NPR techniques involve:

• Emphasised edge lines, traditionally known as contours or silhouettes in an artistic
context. Contours delineate the transition between forward and backward-facing
surfaces; other edge-lines such as creases signify an orientation discontinuity in
forward-facing surfaces.

• Shading techniques such as hatching and stippling: these can give an enhanced
perception of shape and surface curvature, whilst remaining visually minimalist in
style.

• Other abstract lighting and shading effects, such as toon shading and Gooch shad-
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ing.

2.4.1 Lines for emphasis

Gooch and Gooch (2001) [38] describe in detail various object-space algorithms for cre-
ating contours and crease-lines. Both types of lines can help to improve shape perception:
figure (2.1) illustrates the effect on overall shape-depiction of the addition of both types of
lines. Note that the bottom left image (just the lines themselves) constitutes an illustrative
rendering in itself: the crease and contour lines are sufficient to provide a sense of overall
shape.

Figure 2.1: Renderings of nut, showing the effect of contour and crease lines on overall shape-depiction.
Clockwise from top left: no contour or crease lines; with the addition of contour lines; with the addition of
contour and crease lines; contour and crease lines only. Source: Saito (1990) [1].

2.4.2 Illustrative shading to simulate pencil and ink methods

Hatching and stippling are two major traditional pencil-and-ink shading techniques. These
have been discussed extensively by Gooch and Gooch [38] for standard object-space 3D
surfaces: see fig. 2.2; extension to a volume-rendering context is discussed in §2.5.2.

Figure 2.2: Hat and cane modelled with B-spline surfaces and shaded with stippling and hatching respec-
tively. Source: [2].
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2.5 Illustrative techniques: volumetric data

The previous section served as an introduction to general illustrative techniques; what
follows is a general overview of the methods for their application in a volume-rendering
context.

2.5.1 Contours

Contour lines present a boundary between front and back-facing surface geometry, and
thus can be constructed as a function of the dot product of the view and surface-normal
vectors. Such lines are thus based on first order differential properties of the dataset’s
embedded isosurfaces, i.e. their presentation is gradient-based. Crease-lines derived from
2nd order differential properties (curvature) will be discussed in the context of feature
enhancement in §2.7.

Contours in traditional illustration generally have a consistent stroke or thickness. How-
ever, contour lines in a volume rendering context suffer from an inconsistency in their
thickness due to variations in surface curvature along the viewing direction. Kindlmann
[3] describes a method for regulating contour thickness using curvature computed along
the view direction (see fig.(2.3)). Bruckner [5] develops a similar approach but with a
cruder approximation for the curvature computation for improved performance.

(a) standard rendered contours. Note
inconsistent thickness.

(b) rendered contours, thickness reg-
ulated by surface curvature.

Figure 2.3: Comparison of illustrative contour-rendering based on dot product of view direction and surface
normal (v and n), unregulated (a) and regulated (b). Source: Kindlmann et al. (2003) [3].

Suggestive contours, creases and general line drawing See §2.7 for a comprehensive
summary of feature-enhancing shading methods.
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2.5.2 Illustrative shading

Toon and Gooch Shading These stylised shading models are usually described in the
context of standard polygonal-mesh rendering of surfaces, but both styles can be easily
be recreated for volume-rendering algorithms in the shading of implicit isosurfaces. Toon

rendering features a highly quantized colour-table lookup, whose shade is dependent on
the relation of view angle to surface normal; it aims to replicate the illustrative style of
traditional cartoon artwork with illumination depicted by bold bands of colour. Gooch

shading or tone shading employs a cool-to-warm hue shift, coupled with rendered silhou-
ettes [39]. Both styles (see fig.(2.4)) could be effective in illustrative rendering of medical
data, as simplified shading can help to improve clarity by stripping away unnecessary
detail.

(a) Teapot rendered with toon shad-
ing. Source: Wikimedia Commons.

(b) Gooch or tone shading. Source:
Gooch (1998) [39].

Figure 2.4: Two styles of simplified illustrative shading.

Rheingans and Ebert (2001) introduce illustrative techniques such as silhouette sketching
and tone shading in a volume-rendering context in [40].

Hatching and Stippling There have been several attempts to apply fundamental illus-
trative shading techniques (such as hatching and stippling) to volumetric rendering con-
texts. Nagy et. al (2002) [41] describe a method to perform non-photorealistic hatching
for volumetric data; another major illustrative shading style, stippling, is outlined in [42]
for both volume and surface renderers (see fig.(2.5)).

Furthermore, Bruckner and Gröller present an example of stipple-rendering pencil illus-
tration as one shading style possible with their Style transfer function rendering method
[5]: this overall system is introduced briefly in §2.6 and is discussed in greater detail in
§3.
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(a) Illustrative hatching for volume
data (engine). Source: Nagy et al.
(2002) [41].

(b) Illustrative stipple rendering for
volume data (skull). Source: Lu et al.
(2003) [42].

Figure 2.5: Illustrative hatching and stipple shading of volumetric data.

Exaggerated shading Rusinkiewicz et al. (2006) [4] present a geometry-dependent
lighting method to produce an effect similar to that seen in cartographic terrain-relief [4].
The lighting direction is modulated to effectively ‘graze’ the surface: normals are suc-
cessively smoothed, and then the lighting direction is adjusted to become perpendicular
to these smoothed normals. The result is an exaggerated shading style, providing greater
contrast for surface features (see fig. 2.6).

(a) Skull rendered with cosine
shading.

(b) Skull rendered with exag-
gerated shading.

Figure 2.6: Increased detail due to exaggerated shading in skull model. Source: Rusinkiewicz et al. (2006)
[4].

Particle systems GPGPU methods can be used to render particle systems; these can
provide an flexible extension to the other illustrative shading methods previously outlined.
See Van Pelt et al. [43].
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2.6 Style Transfer Functions

In order to facilitate the quick specification and swapping of different rendering styles,
Bruckner and Gröller introduced the style transfer-function in 2007 [5]. This presents an
elegant and logical extension to the standard transfer-function concept by adding normal-
based shading maps at the control points. Contour colour and shading-style is determined
by the transfer-function itself to retain visual consistency throughout the given style.

2.6.1 The Lit Sphere

Functionally, style-transfer functions make use of a spherical lighting-map described by
Sloan, Gooch et al. as a lit-sphere [44]. This map was originally presented as a method
for capturing shading styles from real 2D artwork, but Bruckner incorporates it into the
transfer function lookup process to describe shading based on surface-normal orientation.
The lit sphere (actually one hemisphere is sufficient) represents all possible surface nor-
mals and their shading via illumination: this is mapped onto a two-dimensional circular
projection of RGB (and possibly opacity) values which can be referenced by a simple
texture lookup. As the lit-sphere map can effectively represent an overall style of shading,
it is a natural fit into the style-transfer function as a means to specify non-photorealistic
shading styles.§ Figures (2.7) and (2.8) provide some examples of the various rendering
styles that can be produced using the style transfer function method.

A given style-transfer function may have more than one lit sphere associated with it, in
the same manner as a regular transfer function specifies different intensity/opacity control-
points; transfer-function lookup requires an additional lit-sphere lookup phase . In addi-
tion, it is also possible to interpolate between different lit-sphere maps.

2.6.2 Transparency

An additional possibility is the modulation of opacity with view-direction; this simply
requires to sphere-map to include opacity in the lookup-data, i.e. RGBA instead of just
merely RGB intensities. See [5] for details of this, and implementation specifics.

2.6.3 Possible improvements

Bruckner specifies that a separation of texturing and lighting operations might be prefer-
able to the single combined spheremap model and may form the basis for future work.

§For reference, the lit sphere is also used in 3D modelling applications (such as 3ds Max in their materials
editor).
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Figure 2.7: Top: pencil illustration of beetle. Middle and Bottom: illustrative render via two different
style-transfer functions. The bottom one has two lit-spheres associated with it. Source: Bruckner et al.
(2007) [5].

Figure 2.8: Illustrative volume rendering of segmented head dataset via style transfer functions. Source:
Bruckner et al. (2007) [5].
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2.7 Feature enhancement: more on contours, lines and
shading based on surface differential properties

Figure 2.9: Feature-enhancing shading: L-R: contour outlines and ridges and valley shading using
curvature-based transfer functions for volumetric CT dataset (source: Kindlmann et al.[3]); curvature-based
deferred shading (source: Hadwiger et al.[45]); Suggestive contours and principal highlight lines on a
polygonal mesh dataset (source: DeCarlo et al.[46]).

There has been a large volume of research devoted to shape depiction or enhancement, us-
ing techniques from traditional illustration such as line-drawing or supplementary shading
to enhance the depiction of edge-boundaries (silhouettes) and contour lines (see fig.(2.9)).
Gooch [39] observes that line drawing is a significant recurring characteristic in illus-
tration and develops a technical-illustration system [47] where lines of both types (re-
spectively drawn as black and white) supplement an overall shading scheme designed for
improved shape depiction.

Hertzmann [48] attempts to frame the artistic process in scientific terms in order to ad-
dress the fundamental questions of how artists actually create imagery and how observers
respond to it. Cole et al. [49] present a study of where artists draw lines in order to ex-
amine the correlation with others; moreover they compare these results with then-current
computer-graphics methods. In a later study, Cole et al. [50] further evaluate the efficacy
of line drawings with regard to shape depiction.

Ridges and valley lines ¶ [51][52][53] are examples of crease lines that can delineate
feature boundaries and thus enhance feature-depiction. In a 3D context, they depict iso-
surface ridge-peaks and valley-troughs which often form region-boundaries on a given
isosurface; they can thus provide supplementary shading information to enhance the sense
of overall shape. Belyaev et. al. discuss ridges and valley lines on implicit surfaces in
[54]; although their work is developed within the context of polygonal models, the funda-
mental concepts are also applicable to isosurfaces embedded within a volumetric dataset.
Eberly presents a comprehensive and highly-theoretical work on ridges in the book [55].

¶a precise definition is given in §4.4.2
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Further developments include apparent ridges [56], highlight lines [46], suggestive con-

tours [57][58] and demarcating curves [59]. Each of these methods presents a different
set of metrics for producing their respective shape-enhancing lines and their results can
be considered complementary to each other. Again, these methods are mainly described
in the context of 3D polygonal meshes but can be adapted for application in volume ren-
dering contexts. Indeed, Burns et al. [60] discuss line drawing within the context of
volumetric datasets.

Essentially, these supplementary lines are indicative of some local differential property
on the given isosurface: they may depict changes in normal direction or extent at which
the direction changes, i.e. surface curvature. As previously noted, local lighting models
implicitly depict the change in normal direction, but Gooch specifically incorporates this
into the shading model described in [47]. Whilst contour lines are essentially a function
of surface normal and view direction, second-order differential properties (curvature) of
embedded isosurfaces form the basis for crease lines and the various other supplementary
line methods discussed above.

Furthermore, Kindlmann et al. [61] make use of curvature to produce a shading of ridge
and valley regions, i.e. not just the abstracted lines that form their peaks and troughs;
supplementary shading is achieved through the use of curvature transfer functions, essen-
tially two-dimensional lookup textures which map curvature values to colours. Hadwiger
et al. [45] further discuss such curvature-based ridge and valley shading in the context
of deferred shading for increased performance (an image-space process). In addition to
their presentation of demarcating curves in [59], Kolomenkin et al. add supplementary
curvature-based shading based on the metric of mean curvature.

Additionally (as previously mentioned in §2.5.1), Kindlmann et. al [61] use the isosurface
curvature along the view direction to regulate the thickness of contour lines; this is an
example of view-dependent curvature-modulated shading. Goodwin et al. [62] discuss
artistic stroke thickness and its specification via isophote distance.

2.8 Hybrid rendering methods, context and applications

Hybrid rendering methods can combine illustrative and non-illustrative local shading or
global illumination, feature-enhancing lines, volume rendering and polygonal models etc.
Tietjen et al. [63] discuss a hybrid approach for surgery education and planning. A real-
time illustrative rendering method for vascular structures is presented by Ritter et al. in
[64]. There is considerable potential for hybrid rendering systems for the highlight and
display of vessels against a background of less-salient context; the later can be rendered
in a non-illustrative or contrasting style. Bruckner [65] outlines a context-preserving il-
lustrative system for the presentation of salient features and structures whilst retaining
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overall context and further discusses this general theme in [66]. Bruckner et al. fur-
ther discuss hybrid methodologies for scientific illustration in [67]. Illustrative rendering
systems clearly have numerous applications within medical visualisation wherever it is re-
quired to weight the presentation of salient feature detail or structures over less important
background context.

2.9 Noise reduction (filtering)

The simplest noise-reduction methods or filters consist of a series of independent local
averaging operations performed over respective neighbourhoods defined around each data
point. The Gaussian filter is a linear convolution operation in which, for each pixel or
voxel and its associated neighbourhood, the intensity values are weighted according to a
Gaussian function of distance from the centre pixel or voxel. This is an isotropic operation
in which smoothing is performed equally in all directions thus compromising (by blurring)
the integrity of edges and feature-boundaries. It is highly effective at reducing noise, but
feature-detail is also lost; feature-preserving methods attempt to strike an optimal balance
between noise suppression and feature retention.

Two major categories of smoothing methods are the aforementioned neighbourhood or
local averaging filters and PDE-based diffusion models. The simple Gaussian filter can
be shown to be equivalent to the simplest case of linear isotropic diffusion as described by
Laplace’s equation. Indeed, there are often links between these two methodologies (and
others) as will be described in more detail in the forthcoming sub-sections.

Other methodologies exist, such as non-local means, wavelet-based, frequency-space, sta-
tistical and machine-learning-based methods. Indeed, it is possible to classify differing
approaches to data-smoothing in a number of other ways: linear vs nonlinear, isotropic vs
anisotropic, spectral methods vs spatial, local vs nonlocal etc.

On of the main objectives of this project is to develop a new method for the feature-
preserving denoising of 3D datasets, with particular application to high-noise|| modalities
such as 3D ultrasound. This will form a crucial component in a pipeline of operations
designed to enhance feature detail in 3D ultrasound and other modalities with minimal
noise and derived artifacts.

2.9.1 Neighbourhood filters

It is possible to formulate feature-preserving non-linear neighbourhood methods: the bi-

lateral filter (as described by Tomasi and Manduchi [7]) is arguably the most famous
||Ultrasound speckle is a quasi-random and noise-like signal degradation henceforth referred to as simply

noise.
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example. Building on previous work by Yaroslavsky [68], the bilateral filter is essen-
tially a modified (from isotropic) neighbourhood averaging filter which preserves edge
regions by penalising the influence of pixels (and voxels in 3D) within the smoothing ker-
nel neighbourhood with a large intensity gradient to (or photometric distance from) each
neighbourhood centre-pixel (or voxel); the effect is to reduce smoothing across regions of
high gradient. The most common form takes the form of the standard Gaussian filter with
an additional range component penalizer formed by a Gaussian function of photometric
distances. Initially described in a 2D context, the bilateral filter in its general form can
easily be extended to volumetric datasets. It was primarily intended to be a one-iteration
filter, trading a very large kernel radius for low iteration count; this may be problematic
for performance reasons however due to the Θ(N6) computational complexity (where N
is the length of one side in a cuboid volume) and practical implementations often truncate
the kernel size.

There have been numerous attempts to improve the performance of such filters based on
various approximation formulations. Since such neighbourhood filters are nonlinear, they
are also fundamentally non-separable; hence a basic optimisation to reduce complexity is
not possible. It should be noted however that separable approximations do exist [69], but
these are not without significant artifacts and deemed by this author to be unsuitable for
the purpose of the applications described within.

An early attempt at improving performance is described by Durand and Dorsey in the
context of high dynamic range imaging [70] and utilises fast Fourier transforms together
with subsampling. In a later work, Paris and Durand [71] make use of the representation
of a 2D image I(x, y) as a 3D surface f(x, y, I(x, y))** together with subsampling to
formulate an approximation to the bilateral filter; in this approach, the inherently nonlinear
bilateral filter is partially linearised with the additional nonlinear components considered
separately. This is expanded on by Chen, Paris and Durand in [73].

Other fast approximations have been described by Weiss (based on methods for optimisa-
tion of the median filter) [74] and Porikli [75]; the latter presents a method independent
of filter size (constant-time with respect to filter size). Building on this, Chaudhury et.
al. [76] describe a constant-time (with respect to filter size) method using trigonometric
approximations to the Gaussian components. Most of the above literature on the bilateral
filter refers to a 2D context; extending to 3D is trivial [77] yet incurs a large performance
penalty in its original form (due to being nonlinear and non-separable with the increased
scaling factor of the extra dimension).

In addition to time-performance improvements, various methods have attempted to in-
crease the quality of feature-preservation and noise suppression in neighbourhood filters,
with particular application to ridges and valley regions [69] in the context of 3D datasets.

**Note that surfaces embedded in IR3 can also be represented as hypersurfaces in IR4 [72]
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The trilateral filter as proposed by Choudhury et al. [78] makes use of a pair of bilateral
filter kernels: the first is applied to the image or dataset gradients; the second kernel, ap-
plied to the intensity values, is first tilted or skewed under an affine transformation. This
filter demonstrates improved efficacy in ridge and valley regions over the standard bilat-
eral filter in 3D contexts but has an increased computational cost [69]. The volumetric
trilateral filter results in a significant reduction in shock or staircase artifacts commonly
observed through use of the bilateral filter. Note that a similarly named but unrelated
method was previously developed by Wong et al. [79].

Buades et al. [80] documented the tendency of the bilateral filter to form staircase artifacts
by demonstrating an equivalence with a PDE-based model and performing a subsequent
analysis; their solution proposed an intermediate regression correction step to reduce the
severity of such artifacts.

Indeed, there has been a large body of work devoted to linking the bilateral filter (or
neighbourhood filters in general) with PDE-based diffusion models. The simplest case
is the equivalence of the Gaussian filter to the basic isotropic diffusion process: in this
case it can be observed that the Gaussian function is the Green’s function of the simple
isotropic diffusion PDE. Several authors have deduced equivalences between the bilateral
filter and Perona Malik diffusion process; moreover they have sought to exploit these in
order to formulate an improved neighbourhood filter equivalent to the PDE in question. In
addition to the work of Buades et al.[80], Elad is another such example [81] as is Barash
[82] and [83].

Various parallels and equivalences between neighbourhood filters and PDEs have been
studied; Buades discusses this again in [84]. The bilateral filter as a specific example has
been variously described as a summation of Perona-Malik diffusion operations at different
scales [69][85], analogous to robust statistical processes [70] and local mode filtering [69].

In a more recent development, the guided filter (He et al. [86]) attempts to improve on the
bilateral filter by using an intermediate guiding image: as with the trilateral filter, it aims
to reduce the occurrence of backward-diffusion based shock artifacts.

2.9.2 PDE-based filters

There have been numerous attempts to improve on Perona-Malik diffusion as a means to
provide effective volumetric smoothing with a greater degree of feature preservation: to
obtain positive results for both these criteria,

Weickert has performed numerous studies in the field of nonlinear diffusion; his book
[87] provides a thorough grounding in its theoretical aspects. Earlier work includes a
theoretical outline of the nonlinear diffusion process [88], expanded on in [87]. The then-
current review of methods [89] provides an early example of the application of nonlinear
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diffusion to 3D ultrasound, in an area of research mainly concerned with 2D image pro-
cessing. Whilst Weickert tends to focus on diffusion tensor-based anisotropic diffusion
(in its strictest sense), others have developed nonlinear diffusion models based on a sim-
ple decomposition of diffusion into orthogonal components, primarily using 2nd order
differential properties such as curvature. Carmona et al. develop such a system in [10];
this provides the basis for an extension to 3D systems as described by Krissian et al. in
[9] and further developed by Hossain and Möller in [8]. Curvature-based methods gener-
ally attempt to preserve feature detail and tubular structures by smoothing in the direction
of minimum principal curvature (by magnitude) to smooth along feature boundaries and
vessels, whilst limiting diffusion across them. Alvarez et al. [90] provide an important
early framework for feature-preserving nonlinear smoothing on isosurfaces, and discuss
the equivalence with the geometric motion of level sets using mean curvature.

The simplest curvature-based volumetric-smoothing PDE (and somewhat analogous to
isotropic Gaussian filtering, but not equivalent) is isotropic*mean curvature motion. There
have been numerous studies regarding the properties of the underlying PDE and its mo-
tion, both in the 2D context (where it forms the basis for active contours and self-snakes

[91] with applications in segmentation in addition to filtering) and 3D, where the mo-
tion describes that of 2D manifolds embedded in 3D volumes; for a theory-intense early
example of the mean curvature motion of surfaces, see [92]. Whitaker [93] provides a
modification to the mean curvature motion PDE to perform smoothing in the direction of
least curvature; moreover, he provides an early example of application to 3D ultrasound.
This method (albeit different in formulation) provides similar results to PDE methods de-
veloped through consideration of orthogonal components of diffusion such as [8]. The
latter method provides a PDE similar in form to that of mean curvature motion, but with
specific anisotropy-dependent coefficients for the orthogonal curvature metrics (and hence
orthogonal tangent-plane diffusion components).

Generally, the Eulerian formulation of the above PDEs [94] in the context of 3D volumes
are examples of what Osher and Sethian describe as level-set methods [95] (for a general
overview, see [96]); level sets in the context of volumetric datasets constitute embedded
isosurfaces within the volume. Mean curvature motion in a 3D dataset context describes
the motion of all level sets (isosurfaces) within the volume [97][98]: the direction of
motion is in the direction of the gradient†. By considering how the curvature itself evolves,
it can be shown that mean curvature motion is analogous to a reaction-diffusion equation
with an isotropic diffusion component in the tangent plane in addition to the orthogonal
movement of its level-sets (the reaction component) [99][100]; MCM is thus not volume-
preserving, although variations do exist that are, such as that described by Nemitz et al.
in [101]. For a comprehensive introduction and overview of geometric PDE methods, see

*isotropic in the tangent plane
†using the sign convention maintained throughout this document: see §4.4.
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[102].

Geometric-flow based on level set motion of embedded isosurfaces and curvature-dependent
tangent-plane isotropic diffusion are two possible interpretations of essentially the same
given PDE [103].‡ Moreover, the Laplace-Beltrami operator applied to an isosurface
and the latter’s mean curvature vector can be shown to be equal [104]. Note that the
anisotropic diffusion PDE developed in [8] can be expressed as a modified version of the
standard MCM formulation, where anisotropy controls the ratio of tangent-plane diffusion
according to each principal curvature.

Curvature-based methods which switch the overall flow-type dependent on local differ-
ential properties may provide an improvement in noise-reduction capability over standard
fixed-metric curvature flows: Sethian et al. describe a min/max curvature flow technique
in [100] with application to 3D datasets.

Curvature-based methods such as MCM or min/max curvature-flow are termed second

order geometric flow PDEs. Fourth order methods are discussed in [105]; furthermore,
a volumetric equivalent of 2D Perona-Malik diffusion with its attendant edge-sharpening
(due to backwards diffusion and shock formation) is proposed by Tasdizen et al [106] as
a fourth order geometric evolution process. Fourth order methods are further discussed in
[107], [108] and [109]. In addition, Didas and Weickert derive a curvature-based smooth-
ing method with additional edge enhancement in [110].

There have been numerous attempts to develop anisotropic curvature-based geometric
evolution processes to preserve features whilst denoising volume data, such that those
described by Clarenz et al [104], whose method may also provide a degree of feature
enhancement. Preusser and Rumpf derive their morphological multiscale method linking
anisotropic diffusion and geometric flow in [111] by proposing an anisotropic conduc-
tance tensor. Clarenz et al. discuss the development of a variational approach to geometric
surface diffusion in [112]. Nemitz et al. [101] discuss the preservation of vessel-like struc-
tures under volumetric smoothing and develop a volume-preserving anisotropic curvature
motion in this regard.

2.9.3 Other methods for feature-preserving smoothing

Variational methods, where the system is framed as a minimization problem of some
energy functional, were famously introduced in the context of image processing by Rudin,
Osher and Fatemi in 1992 [113]. Variational methods provide alternative perspectives to
the standard PDE evolution model and have been shown to be equivalent. Bertalmio et al.

‡The simplest PDE formulation (see eq.(5.35)) for curvature-based isotropic diffusion in the tangent-
plane and the mean curvature motion PDE are the same equation. The geometric interpretation explains the
normal-wise volume-reducing contraction in tangent-plane isotropic diffusion schemes.

26



outline a variational framework for PDE problems on implicit surfaces, whilst Chambolle
[114] presents an general algorithm for total variational minimization with applications in
image denoising; furthermore, the same author also discusses mean curvature motion for
general hypersurfaces in a related paper [115]. For an outline of a variational approach
in the context of Eulerian geometry processing, see [116]. Memoli et al. [117] present
a detailed exposition of a variational framework as applicable to general target manifolds
whilst Oberman et al. [118] formulate a method for anisotropic mean curvature flow
using variational principals. Overall, there exists a substantial amount of literature on
such methods but [119] presents a coherent introduction and overview.

The method of non-local means [120] attempts to exploit redundancy within the dataset
or image: it considers similar subregions or patches throughout the image or dataset when
computing average values at any given data-point (pixel or voxel), and assigns weights
accordingly. The filtered value at each data-point is an average of the values of all data-
points in the image or dataset within similar patches; overall this essentially constitutes a
weighted average of every data-point in the image [121]. Similarity between patches is
measured using a Gaussian-weighted L2 norm. Non-local means can can be accelerated
for greater performance using a blockwise approach [122].

In a different approach, machine learning methods such as codebook substitution and
computational neural networks can be used to explicitly identify specific features and are
primarily used in classification or segmentation algorithms. However, segmentation of
features can be used in conjunction with the smoothing process in order to limit or con-
strain any filtering within identifiable regions. Moreover, computational neural networks
can be trained to effectively reproduce the flow inherent in PDE-based or other filtering
methods, but this requires initial ground-truth obtained through that original smoothing
process itself.

2.9.4 Application to 3D ultrasound

Speckle [123] is a quasi-random (noise-like) signal degradation introduced into ultrasound
images at the data acquisition stage; this noise-like phenomena (henceforth referred to as
simply noise) is essentially the result of interference patterns induced via the interaction of
ultrasonic pulses with tissue structures. There are numerous publications devoted to the
development of filtering methods for the reduction of speckle, with particular attention
given to feature-preservation. Directional median filtering is outlined in [124]; statistical-
based wavelet methods such as that described by Gupta et al. in [125] have also been
explored.

Nonlinear anisotropic diffusion methods such as SRAD (Speckle-Reducing Anisotropic

Diffusion) [126]. The method proposed by Abd-Elmoniem et al. (which they term Non-
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Linear Coherent Diffusion (NCD)) [127] involves a transition of models from mean cur-
vature motion to linear diffusion to anisotropic diffusion dependent on local surface dif-
ferential properties. The formula for the mean curvature motion phase is derived via the
local structure matrix as opposed to the Hessian (see eq.(5.11)) but results in the same fa-
miliar expression to specify diffusion along isophotes or isosurfaces. Krissian et al. [128]
develop the anisotropic diffusion model further: OSRAD (Oriented Speckle-Reducing

Anisotropic Diffusion) features principal-curvature direction based diffusion for improved
feature-preservation.

Non-local means has also been investigated by Coupé et al. [129] as an effective ap-
proach for speckle reduction using a Bayesian formulation [130] more suitable for the
structure of speckle-noise. This remains a popular and effective method in the context of
ultrasound and is the basis for more recent development [131]. Other newly-developed
(2016) speckle-reduction algorithms include a feature-enhancing method based on multi-
scale analysis [132].

2.10 Conclusion

Recall the three fundamental criteria from §1.2: (i) the highlighting of salient structures
through illustrative shading (at primary and/or supplementary shading stages); (ii) effec-
tive noise suppression to permit this with minimal amplification of noise-based artifacts;
(iii) a fast overall execution time allowing realtime streaming 4D ultrasound processing.
Hence the fundamental overarching objective is to design, develop and construct a flex-
ible rendering and filtering pipeline capable of illustrative and other styles as required,
with additional feature-enhancing shading, coupled with a volumetric filtering stage that
can minimise unwanted noise whilst maximising feature detail retention. A state-of-the-
art volume filtering stage is necessary to mitigate potential noise-highlighting from the
feature-enhancing shading step.

GPU (graphics processing units) map well to the simple parallel processing tasks involved
in most rendering and filtering operations, i.e. these applications have no potential inter-
voxel write-clash issues, dependencies or other synchronisation considerations which can
complicate implementation and reduce performance. GPU-based ray casting will be used
as a basis for the overall rendering method: current GPU technology is capable of easily
providing the performance required for real-time raycasting-based renderers. Raycasting
is preferred over explicit surface construction and shear-warp renderers as it is simpler,
easier to implement, more flexible and less prone to artifacts and distortion. Simple tissue
’classification’ (i.e. without segmentation) can be achieved through the use of standard
transfer functions to map intensities to colour and opacity values, which are then inte-
grated along each ray. Note that segmentation can be added if required, but is supplemen-

28



tary to the objectives outlined for this project. GPUs will also be used for all per-voxel or
per-pixel computations in all filtering stages (both volumetric and image-plane) for high
performance.

2.10.1 Base renderer

Bruckner’s Style Transfer Functions method constitutes an ideal candidate for the base
illustrative rendering system. Shading styles based on first-order differential properties
(i.e. dependent on gradient or surface-normal) can be easily constructed and interchanged;
moreover, appropriate styles can be applied to different tissue types via a small extension
of the standard transfer function approach. The style transfer function method is thus
highly configurable and can provide a simple yet comprehensive method for specifying
normal-based shading styles, including non-photorealistic ones.

Other shading methods to be considered are those which employ curvature-dependent
transfer functions; these depend on second-order differential properties and can be spec-
ified by a variety of curvature metrics, dependent on application: i.e. ridge and valley
highlighting. Curvature-based streamline methods are not considered here for implemen-
tation but may be investigated in future work.

2.10.2 Supplementary shading for feature enhancement

Curvature-based shading (i.e. using second-order differentials properties) with a variety of
metrics will be investigated as a primary candidate for a supplementary shading method
for the enhancement of feature-boundaries and general shape depiction. Such shading
method can perform the same role as crease lines and associated shading in traditional
illustration: i.e. it can provide an increased emphasis of ridges, valleys and other regions
as applicable. This technique has the potential to improve facial-feature delineation in
’babyface’ ultrasound, both in illustrative and global-illumination contexts.

Deferred shading has some potential in the case of single isosurface rendering: originally
specified for increased performance, these methods crucially allow for image-space post-
processing operations. A potential expansion of this includes post-processing of auxiliary
data buffers (specifically curvature data) produced by the deferred rendering process.

In addition, normal-based outline contour enhancing methods (i.e. those using first order
differential properties) will also be considered as a means to improve shape-depiction.
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2.10.3 Improved volumetric noise-reduction

The anisotropic diffusion PDE specified by Hossain and Möller [8] provides an ideal
candidate for investigation and expansion. This PDE is simple in formulation, easy to im-
plement with simple explicit numerical schemes and is stable for reasonably-sized time-
steps with such methods (i.e. does not require a large iteration count and very small
timestep). Moreover, it is a curvature-based PDE, which can make use of previously com-
puted curvature values, allowing for improved performance or a high degree of code-reuse
if required: curvature computation routines can be shared between shading and filtering
operations. This PDE is formulated using a simple model: there is no explicit diffusion
tensor; this can be considered in some sense an ‘expanded’ version of the more condensed
tensor representation but is more suitable for implementation on GPU hardware.

Other PDE-based methods to be considered for comparison are mean curvature motion,
Whitaker’s motion by least curvature using a normalised product of mean and Gaussian
curvatures. Indeed the Hossain-Möller PDE has a specific relationship to mean-curvature
motion which can form the basis for development of a new method. The simple formula-
tion of the PDE allows for intuitive and efficient modifications (see §5.5).

Other methods for consideration are the bilateral filter and Perona-Malik diffusion, both
for investigation and comparison; these methods are prevalent in current medical imaging
systems. The bilateral filter has the disadvantage of larger computational complexity com-
pared to PDE-methods (due to the much larger filter support radius) and hence is expected
to perform poorly in its basic form.

2.10.4 Applications and datasets

The ‘engine’ dataset (a CT scan of a cylinder head) is often used in the literature, since
it possesses numerous sub-regions which can show the effect of a given shading or fil-
tering method on various geometric features, such as tubular components, ridges, valleys
and edges, flat homogeneous regions and convex and concave structures; it will be used
throughout this current document to demonstrate the application of various rendering and
filtering methods and their effect on its various topological features.

In addition, development of all components in this project’s rendering and filtering pipeline
is documented using an ultrasound ‘babyface’ dataset with attention being drawn to facial
features and noise. This dataset is of particularly high fidelity, and thus can demonstrate
the full potential of feature enhancing and delineation in 3D ultrasound; moreover it has
several relatively flat regions (i.e. the forehead and cheeks) where noise can be clearly
observed. The overall objective is a reduction of noise in these regions, whilst an en-
hancement of facial-feature delineation. Other datasets are of course used in addition,
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and will feature more prevalently in §6, where the complete system is demonstrated and
tested.

Vessel datasets (from a CT head-scan) will also be employed throughout to demonstrate
illustrative shading, aneurysm-highlighting and vessel-preserving noise reduction; other
CT datasets will also be tested.

The overall system will also be applied to 4D ultrasound heart-valve datasets in order to
demonstrate the effectiveness of both the rendering and filtering stages for such data: the
former to provide improved shape-depiction, and the latter to provide a feature-preserving
fast volumetric filtering stage capable of the realtime processing of streaming ultrasound
data.

2.10.5 Evaluation methods

For the rendering methods outlined above, relatively little user-evaluation has been per-
formed in the original literature; it could be argued that this is not necessarily a nega-
tive trend: the literature tends to focus on producing specific effects or rendering styles
rather than evaluating their effectiveness with regard to user perception. However, com-
parisons are usually presented with other methods. For specific user-centric research, such
as Where do people draw lines [49], user evaluation is of course the central objective and
features heavily in such papers.

In the context of the literature on novel rendering methods, it is essential to determine what
the research is attempting to demonstrate: it is often a case of specifying clearly defined
visual objectives and demonstrating them with comparisons; user perception can be used
for additional qualitative assessment in these contexts, but a study of user preference is a
fundamentally different question.

Noise-reduction methods can be subject to signal/noise analysis with artificially added
noise of specific type and the results quantified for supposed efficacy (as is demonstrated
throughout the literature), but these metrics do not always translate to what is presented
visually. Moreover, it is difficult to obtain noise-free ground truth without applying noise-
reduction: synthetic datasets suffer from aliasing artifacts produced by the voxelisation
process§. Coupé et al. [133] discuss such methods in the context of non-local means;
Hossain and Möller themselves perform a small quantatitive analysis using signal to noise
ratios in [8]. However, this project will focus on visual results obtained in conjunction
with the primary and supplementary shading steps.

In the case of an overall filtering and rendering system, it may be prudent to collate images
for comparison together with a clear and concise set of criteria defined as to what the

§For an aside on quantitative methods and their limitations in the context of this research project, see
§7.3.3.
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comparison is attempting to demonstrate. For example: image B attempts to demonstrate
improved feature delineation with reduced noise compared to image A. Taking cues from
the current literature, this would usually be presented without user evaluation (since we
are not asking if the user prefers A or B); however, an additional preference study may be
of interest, depending on research objectives.

2.10.6 Summary

The following describes an outline of the structure of the proposed rendering and filtering
system, plus the candidate methods that will be investigated as potential components of
the system, and potential candidates on which to base development of new methods:

• GPU implementation of all per-pixel and per-voxel rendering and filtering opera-
tions

• Raycasting-based rendering.

• Renderer: Style-Transfer Functions for illustrative and other applications, curvature-
based transfer functions.

• Supplementary feature-enhancing shading candidates: normal-based, curvature-based,
deferred rendering.

• Volumetric noise reduction: PDE based: Hossain-Möller anisotropic diffusion, mean
curvature motion, motion by least curvature, Perona-Malik diffusion; Neighbourhood-
based: bilateral filter, Gaussian filter.

• Data samples and derivative samples (for gradient and curvature) will be obtained
through both central differences and cubic splines for testing, using [17] for the
latter.

The system will be developed using datasets from the following sources: ultrasound
‘babyface’, CT-head-scan vessels, 4D streaming ultrasound heart-valve, the ‘engine’ dataset
and various others from both the CT and ultrasound modalities. The complete system will
be further tested with additional datasets.

Results will be presented for visual comparison with other methods or with various stages
of the system disabled; in addition, a small user evaluation will also be employed to
ascertain if consensus regarding the stated criteria is met.
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Chapter 3

A base illustrative rendering system

The intrinsic essence of any visualisation system is of course the renderer itself: it defines
the overall presentation of the selected data under study. The primary objective of this
project is to develop a system for the depiction of medical imaging data within a primar-
ily illustrative framework, with the potential to highlight or enhance salient structures or
feature detail. The rendering components must satisfy the stated requirements (1) and (3)
within the scope outlined in §1.2: i.e. in addition to these visual criteria, any rendering
components must also be time-performance oriented.

GPU hardware is ideally suited for high-performance massively data-parallel tasks such
as rendering. Such devices are not limited to the functionality of a traditional graphics-
library (e.g. OpenGL or DirectX) and complex rendering operations can be more easily
performed using a general-purpose compute library such as CUDA (for Nvidia hardware)
or OpenCL. The final output from these routines can be displayed onscreen via an inter-
action with the desired graphics API through the use of shared buffers or textures.

A ideal base rendering system for the purposes described above should possess the fol-
lowing attributes:

• a raycasting-based volume renderer

• high performance GPU implementation

• flexibility: encapsulating a range of shading styles which should be easily inter-
changeable

• tissue-specific shading via a modified standard transfer function (but extendible to
segmentation-based systems)

Most of the illustrative shading methods discussed in the previous chapter can be sub-
divided into two categories: normal-based and curvature-based methods. The former
require significantly less computation than the latter so will generally result in lower per-
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frame execution times. Complex global illumination approaches could theoretically be
used for illustrative purposes but are computationally expensive.

Illustrative stippling and hatching effects are generally based on isosurface normals and
curvature respectively (see Baer et al. [134]); there are several implementations of each of
these styles: Lu et al. [42] and Baer et al both describe methods for applying illustrative
stippling whilst Nagy et. al [41], Zander et al. [135], Gasteiger et al. [136] and Gerl and
Isenberg [137] all present methods for the emulation of artistic hatching.

Bruckner’s style transfer function method [138] is a normal-based shading system for
volume rendering applications, which employs pre-rendered lighting or shading maps in
combination with a transfer-function approach for mapping colour and opacity values to
dataset intensity ranges. Such maps [44] can be designed to represent any normal-based
shading style including contour lines, stippling, paint strokes and simple local lighting;
it is thus highly flexible and is thus preferred as a base system over more specific meth-
ods. Furthermore, it uses isosurface normals (or gradients) to reference the precomputed
shading maps and thus is computationally light. Crucially, it satisfies all of the required
criteria outlined above and thus will form the basis for the base rendering system.

Other methods, such as curvature-based transfer functions [3][45] will also be integrated
into the system as alternative renderers: this will be discussed further in the context of the
complete system in §6.

3.1 Style Transfer Functions

A significant development in the field of volumetric illustrative rendering is attributed
to Bruckner and Gröller: the 2007 paper titled Style Transfer Functions for Illustrative

Volume Rendering [5], together with Bruckner’s PhD thesis [138], describe a shading
method highly suited for non-photorealistic applications. Shading models are specified
via 2D normal-lookup maps and are easily interchangeable; the technique is essentially a
local-lighting model as described in Sloan, Gooch et al The Lit Sphere [44] adapted for
transfer-function-based volumetric applications.
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3.1.1 Spherical lighting maps

Traditional illustrators often develop shading styles on a two-dimensional representation
of a simple sphere before transposing to a more complex object [139]; in this way, all
possible local-surface orientations (i.e. viewer-facing surface normal directions) are rep-
resented. This lit sphere can thus define local shading and lighting styles that can be
subsequently implemented on more complex models (see fig.3.1); conversely, the shad-
ing styles on complex models can be encapsulated on a lit sphere. Sloan, Martin, Gooch
and Gooch [44] describe such a process, in which illustrative shading styles can be cap-
tured from sampled two-dimensional artwork; these styles can subsequently be applied to
computer graphics 3D models or structures within a volumetric rendering context.

Figure 3.1: Shading of volumetric models using the specific lit spheres or spheremaps depicted (inset).
L-R: shading applied to spherical isosurface; the same shading applied to more complex isosurface (engine
volumetric dataset); substituting shading styles with a different spheremap. These particular renderings
were produced using the software developed throughout this EngD project (Paul Ross) using the Style
Transfer Function approach described by Bruckner and Gröller [5].

The Style Transfer Function method makes use of such spherical shading maps (referred
to in [5] as spheremaps); essentially an inverse process to that described in The Lit Sphere

is performed. Surface normals (under orthographic projection) are used as lookup coor-
dinates of a particular spheremap texture (the specific texture is specified by the transfer
function): this provides the local shading (and lighting) detail at a particular sample point.
It is essentially the same process that is applied in environment or reflection mapping

[140][141] to encapsulate complex ray-traced reflections and shading in a lookup texture;
however, spheremap-based shading as an integral component of style transfer functions is
primarily concerned with surface shading styles. The spheremap-based shading approach
is an example of image-based shading.

Unit normals on a given isosurface can be parallel-translated to the centre of the unit
sphere*; the orthographic projection of this unit sphere onto the image-plane constitutes
the shading map known as a lit sphere or spheremap. The unit normals originating at

*note: parallel-translation of unit normals to the centre of the unit sphere is also used in the construction
of the Gauss Map when considering the curvature of a surface or manifold; see §A.1.1 for details.
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the centre of this sphere all correspond to points on the surface of the sphere itself, since
the latter has unit radius. In order to reference the spheremap texture, the normals are
themselves orthographically projected onto the image plane (by simply removing their
z-coordinate); these projected normal vectors then define the texture lookup coordinates
of the spheremap. Figure (3.2) depicts the various stages of this process.

u

v
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(1) (2) (3) (4)

Figure 3.2: Shading process using spheremaps: (1) 3D object in eye-space with selected unit surface
normals; (2) parallel translation of unit normals to centre of unit sphere; (3) orthographic projection of
normals onto spheremap texture: the red points indicate the texels to be sampled for the given normals; (4)
shaded 3D object. Illustration: Paul Ross.

Note that the projected sphere captures both local shading and lighting detail: these would
appear to be equivalent, but shading may incorporate texture information. This is noted
by Bruckner in [5] as a limitation; an extension to the method in order to address this issue
is suggested as a possible future research topic. This is discussed further in §4.

3.1.2 Transfer functions

Within the context of volume rendering, the transfer function is a map from sampled data
to colour and opacity values; it is usually a mapping from sample intensity values, but
other metrics can be considered, e.g. in the case of curvature transfer functions. Using the
standard transfer function, specific data sample ranges can be mapped to specific colour
and opacity combinations, thus providing a simple means to classify and depict different
structures or tissue types. The colours are specified at control points along a curve (often
piecewise-linear) within a plane defined by opacity and data-intensity axes.

In the context of transfer functions, the spheremaps replace standard solid colours at the
control points: a particular intensity region can utilise its own distinct spheremap, and
thus different structures within the volume (identifiable by intensity region) can be shaded
in an appropriate style. Moreover, interpolation between values derived from adjacent
spheremaps in the transfer function curve is possible. Essentially, the style transfer func-
tion replaces the fixed colour at each control point with a normal-based shading process
defined by referencing a pre-rendered texture. Figure (3.3) depicts the user-interface for
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the style transfer function editor (with corresponding rendered output); this editor forms
a core component of the EngD project volume-renderer. In this example, the spheremaps
can be seen at the control points of the transfer-function; for this particular implementa-
tion, the transfer function is represented by a piecewise-linear curve, but it is not generally
restricted to this form (e.g. a piecewise-cubic curve could be used).

Figure 3.3: Detail of the software system developed throughout this thesis (Paul Ross): Style transfer func-
tion with associated spheremaps and corresponding rendered output of the ‘spheres’ synthetic test dataset,
using some of the spheremaps from Bruckner and Gröller’s original paper [5]. Source: Paul Ross (EngD-
project renderer).

3.2 Selective clipping

Cutaway views are a high level construct applied by technical illustrators to reduce or
remove occluding surfaces so that salient structures beneath can be visualised in context.
See [142] for a general overview of the concept (applied to polygonal models) and [143],
[144] for a discussion within a volumetric rendering context. Such effect can be achieved
by several means: from simple clipping planes to view-dependent opacity modulation [5]
and deformable clipping membranes [145].

The base renderer for this project is augmented with a simple selective clipping plane
function: clipping regions can be visually retained or clipped dependent on sample inten-
sity value. Although clipping planes themselves are relatively crude with respect to more
advanced methods such as clipping membranes, this selective approach allows clipping to
occur within selected intensity ranges; hence the clipping can be structure or tissue-type
specific. Moreover, there is a flexible control of opacity over any clipped region: it can be
rendered totally transparent or with partial opacity for retained context if required. This
overall clipping approach was deemed to be sufficient within the context of this research
project but could be extended to incorporate more sophisticated methods for future work
if required. Figure (3.4) demonstrates this renderer’s use of clipping, together with style
transfer functions in order to isolate key salient features.

It should be noted that surface normals on clipped surfaces can present an issue (discussed
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in [143]) with regard to artifacts. Clipped surfaces invariably form part of larger homo-
geneous regions and are only ‘clipped’ by setting opacity values to zero. Hence gradients
on such surfaces are very small and usually do not correspond to normal vectors on the
clipped surface. The clipped section is merely rendered as transparent, but data values can
have the same intensity sample values as those within the non-clipped region on the other
side of the clipping plane. Hence, isosurface normals on clipped surfaces are set to the
clip-plane normal to avoid artifacts from near-zero gradients.

Figure 3.4: Volumetric rendering of human head and engine datasets (both CT) using style transfer func-
tions with selective clipping planes for the depiction of salient features in context. Source: Paul Ross
(EngD-project renderer).

3.3 Other shading methods

3.3.1 Curvature-based transfer functions

Curvature-based transfer functions are discussed by Kindlmann et al. [3] and Hadwiger
et al. [45] as an alternative means of shading isosurfaces or structures within a volume-
rendering context. Rather than mapping intensity values (and isosurface normals in the
case of style transfer functions) to output colours and opacity, the rendered pixel is com-
puted as some function of curvature by means of a (usually) two-dimensional lookup
texture; note that this texture itself is termed the ‘transfer function’ by Kindlmann et al.

In addition, supplementary shading methods (e.g. deferred curvature shading) can be used
to enhance the primary results produced by shading maps and style or curvature transfer
functions: these will be be discussed in §4.
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3.3.2 Combined transfer function

Kindlmann’s concept of transfer function can be considered analogous to the shading map
(spheremap) itself in Bruckner’s style transfer function method rather than the mapping
between the overall range of intensities to output colour and opacity values in the latter
method. However, such a curvature-based ‘transfer function’ or mapping could be substi-
tuted in place of a shading map within Bruckner’s overall transfer function. The result is
a curvature-based shading map (rather than normal based), applied over a range of sam-
pled intensities; i.e. specific tissue types or structures can be shaded according to their
curvature within the context of an overall style transfer function.

(a) (b) (c)

Figure 3.5: Rendering the ‘head’ dataset using combined transfer functions: (a), (b): style transfer function
(spheremap) shading of skull in conjunction with MPR (note: MPR shading is enhanced with supplementary
curvature shading, see §4); (c): style transfer function shading of both skull and skin. Source: Paul Ross

Such a transfer function can also specify other rendering methods such as global illu-

mination for given structures defined by intensity range, and thus allows for complex
hybrid rendering systems to be created. Segmentation would be ultimately preferable to
transfer-function classification, but this approach may have applications in the absence of
pre-segmented data.

3.4 Additional shading

Bruckner [5] uses a ring around the spheremap to provide shading for normal-based con-
tours: in eye-space, normal vectors at the transition point from forward to back-facing sur-
faces are coplanar (or close to being coplanar) with the image-plane, i.e. their view-axis
component or z-component is close to zero. In the context of spheremaps, the orthograph-
ically projected normals in such a scenario are at a maximum length: hence, the region at
the very edge of the spheremap corresponds to such cases. Bruckner proceeds to discuss
regularisation of contour-thickness: whereas Kindlmann et al. had previously introduced
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a computational method to achieve this, Bruckner’s method uses the spheremaps them-
selves by pushing the normal vectors close to the transition point up towards the edges of
the spheremap and into the surrounding ‘ring’.

Since the computational performance of GPU hardware has greatly increased since Bruck-
ner’s paper, it is now possible to perform such additional shading in real-time within the
GPU compute-kernel without having a significant negative effect on overall framerate.

Within the project renderer, contours or other supplementary normal-based shading ef-
fects are created by modulating (usually darkening) the output colour after principal shad-
ing via spheremap lookup; this occurs at each iteration within the volumetric raycaster to
allow for application within partial opacity contexts: a post-processing deferred approach
would limit the application to fully opaque single-isosurface renders. There is no con-
tour thickness regularisation†, but some manual control is achieved though the use of a
logarithmic formula to control the range over which the colour modulation occurs. Each
colour channel (r,g,b) is reduced in intensity by the same percentage; this has the same
effect as reducing the V-channel in an HSV colour-space by the same proportion and is
preferred for performance over explicit HSV conversion.

For each colour channel (generically denoted c):

cout = cinmin
{

max{1 + alog(b|n · v|), 0}, 1
}

; (3.1)

where cin and cout represent the channel input and output values respectively, and a and
b are parameters controlling the range over which the visual shading is applied: a and b
control the sharpness of the transition and the width of the contour respectively. n and v

are the unit normal and view vectors.

Figure 3.6: Supplementary shading in conjunction with style transfer function rendering of the foot. L-R:
style transfer functions alone; alone; with additional curvature shading (see §4); with curvature shading and
normal-based contours for context. Source: Paul Ross

†contour thickness can be regulated by considering the curvature of the isosurface along the view direc-
tion as discussed in [61] and [5]
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3.5 Implementation

The style transfer function renderer forms a basis for the illustrative volume-rendering
system developed over the course of this project. It provides an elegant and highly config-
urable means with which to produce various basic illustrative styles: these can be rapidly
swapped for prototyping, and thus the required style from a pre-determined selection
of spheremaps can be attained. This system has been extended to include support for
curvature-based shading maps in addition to Bruckner’s normal-based spheremaps; in ad-
dition, traditional MPR rendering is provided as an option. It should be noted that all
volumetric data is filtered to reduce noise: for the images produced in this chapter, the
filtering consisted of dual stages of Gaussian and bilateral filtering. An improved volume
filtering method forms the basis of the forthcoming discussion in §5.

To summarise, the base rendering system consists of:

• Raycasting-based illustrative renderer based on Bruckner’s style transfer functions

• Clipping planes with intensity-based selective clipping and adjustable opacity.

• Extension of Bruckner’s style transfer function to accommodate curvature transfer
functions and MPR for hybrid rendering.

• Additional normal-based shading for contour and silhouette illustration. Curvature-
based methods for crease lines will be discussed in the following chapter, §4.

• Optional post processing of output image data: edge-preserving smoothing (via
Perona-Malik diffusion) can provide toon-shaded illustrative effects. Additional
post-processing filters include special effects such as bloom and gloom‡. Such
image-space post-processing operations won’t be considered until later chapters.

All per-pixel or per-voxel operations are implemented in CUDA for Nvidia GPU hard-
ware: this includes the core raycasting operation and all data filtering and post-processing
tasks. The entire application is constructed using C++ and the cross-platform Qt libraries,
with CUDA for GPU-specific core rendering and filtering operations.

3.5.1 User interface

Early prototypes of the application were initially constructed using Objective-C and C++,
together with Apple’s Cocoa framework on the macOS platform (Apple Macintosh hard-
ware). This environment allows easy and rapid prototyping, particularly of UI elements.
Subsequent versions were implemented using a cross-platform approach: C++ together

‡these effects filters are based on combining thresholded and blurred highlights with the original ren-
dered output image
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with the Qt toolkit, allowed development to proceed across multiple platforms (macOS,
Windows). In addition, the use of Qt allows additional deployment or development on
Linux or other Unix-based systems if required.

The main user interface element for controlling overall rendered appearance is the trans-

fer function editor window (see fig. (3.3)). This presents a visual representation of the
transfer function itself, including the control points for shading map specification. Other
UI elements control noise-reduction and supplementary shading and will be discussed in
§6, when the overall final system is described.

Shading maps are loaded into the system by dragging them to a ‘shelf’ within the transfer-
function editor. The transfer-function curve itself (currently limited to a piecewise-linear
form) is formed by clicking within the editing region to create individual control points.
Each control point is automatically connected to the previous one by a straight line.
Spheremaps can be allocated to control points by simply dragging them from the shelf
to the required control point.

3.5.2 Renderer

The basic renderer is a direct volume rendering raycaster implemented as a GPGPU-based
CUDA kernel. A GPU-based approach has numerous advantages in this context:

• The raycaster is highly parallelisable. Large performance gains can be achieved by
making use of the multiple processing units resident on a GPU.

• Texture hardware in the GPU provides trilinear interpolation; tricubic sampling can
be implemented using CUDA and a succession of trilinear samples [146]. Addi-
tionally, data-set boundaries are automatically clamped or zeroed by the texture
unit if required. This again removes the requirement for explicit handling of these
boundary cases.

• Easy integration and inter-operation with rendering libraries such as OpenGL.

The raycaster itself is not highly optimised: it features early ray termination for opaque
isosurfaces and rudimentary single-pass empty space skipping; the latter could be im-
proved with a multi-pass approach for future work to enhance performance.

Renderer output

The raycaster renders its colour output to an OpenGL texture, which is then displayed
on screen either directly or after additional post-processing steps (post-processing will
be discussed in later chapters). Additional polygon-domain rendering can be performed
if required, e.g. boundary boxes, clipping planes. Furthermore, the raycaster produces
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additional depth data: depth on ray termination is stored in a texture and can be used in
any additional polygon-rendering stages.

Spheremap textures

In this implementation of style transfer functions, the unique shading maps (spheremaps)
are stored in a layered texture and accessed according to layer number: the spheremap ID
corresponds directly to its layer number within the texture. The use of layered textures
was discussed in Bruckner’s implementation in [5] and was implemented here using the
following rationale:

• texture references in early versions of CUDA are limited; using layered textures
requires only one texture reference.

• grouping all spheremaps under one texture reference is self-contained and concise
and intuitively translates Bruckner’s original concept to a CUDA texture context.

• having all spheremaps contained within one (small) texture avoids the possibility
of individual spheremaps being repeatedly purged from and reloaded into texture
cache.

3.6 Results and examples

3.6.1 Blinn-Phong and other procedural local lighting models

Procedural local lighting methods such as Blinn-Phong lighting can be easily emulated
using a style transfer function with the appropriate spheremap; the spheremap itself is
a 2D rendering of a 3D modelled sphere with applied Blinn-Phong lighting, and can be
created using a number of possible 3D modelling tools. The spheremap encapsulates
all required shading information: in this case, a red diffuse material and one specular
highlight. Bruckner provides an example: this and several other examples from [5] will
be used here for demonstration purposes.

3.6.2 Stippling

Illustrative stippling effects are essentially dependent on surface-normal direction (as op-
posed to hatching, which are substantially curvature-based). A stippling shading style can
thus be implemented via the use of normal-based shading maps (spheremaps) as part of
Bruckner’s style transfer function method. Indeed, Bruckner presents examples together
with the associated spheremap in both [138] and [5].
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Setting the transfer function to display only bone-structures and applying this map to
the ‘head’ CT-dataset produced some mixed results (see fig.(3.7)). In certain regions,
the shading effect is a convincing facsimile of a style commonly observed in traditional
anatomical illustrations of the human skull; shading of the maxillofacial region is consis-
tent and well-defined, particularly around the eye-sockets. However, significant shading
artifacts can be observed on the dome of the skull. This is more pronounced at higher ren-
dering resolutions (lower row, fig.(3.7)); furthermore, the artifacts become progressively
worse with the degree of Gaussian volumetric smoothing performed on the dataset prior
to the rendering stage.

Applying the same shading map to the ‘sphere’ dataset gives an insight as to why these ar-
tifacts occur at specific levels of smoothing. Figure (3.8) depicts a style-transfer-function
rendering of this dataset with the stippling pattern applied; for comparison, the lower row
uses a different shading map to show the changing scale of surface facets as the level of
smoothing is increased. As smoothing increases, the remaining surface facets become
larger in overall scale (smaller in magnitude) as higher frequencies are removed. At spe-
cific scales, the mapping of spheremap texels to the isosurface disrupts and distorts the
shading pattern sufficiently to produce noticeable artifacts. Small scale bumps produce
a larger degree of light-scattering, whereas larger facets that have a similar scale to the
stipple pattern granularity on the spheremap result in a distorted pattern on the output im-
age: shaded texels on the spheremap are stretched under mapping to the isosurface by the
slight change in direction of normals on facet edges or ridges and valleys.

Hence, rough surfaces map well to this shading style, as do exceptionally smooth surfaces;
partially smoothed isosurfaces may however have small facets or surface features that at
a specific scale and rendering resolution, produce a distortion in the stipple pattern: in
addition to surface smoothness (and hence scale of surface facets), this distortion is a
function of both the spheremap pattern granularity and the rendering resolution.
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(a) σ = 0.25 (b) σ = 0.50 (c) σ = 0.75

Figure 3.7: Stipple shading effect applied to human skull via Bruckner’s style transfer function method
and associated spheremap, rendered at both low resolution (256x256 pixels, top row) and high resolution
(1024x1024 pixels, bottom row), for the ‘head’ dataset smoothed with varying degrees of Gaussian vol-
umetric filtering (1 iteration, varying σ, constant radius). Note the increased artifacts as the smoothing
increases for high resolutions; low resolution rendering is almost unaffected due to texel-sizes of the stipple
pattern relative to the smaller rendering buffer. Source: Paul Ross.

(a) no smoothing (b) σ = 0.50 (c) σ = 1.20 (d) σ = 2.50

Figure 3.8: Shading applied to sphere using style transfer functions for varying levels of dataset smoothness
(smoothed using one iteration of a volumetric Gaussian filter of fixed radius and specified σ). Top row:
stipple shading using Bruckner’s own spheremap; bottom row: corresponding renderings using alternative
lighting map to demonstrate surface roughness and faceting. All renderings are 1024x1024 resolution. Note
the distortion of stippling pattern in (c). Source: Paul Ross.
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3.6.3 Layering

Layered effects can be produced using combination of appropriate spheremaps and trans-
fer function, paying particular attention to opacity of overlying isosurfaces. As real-world
example, automotive spray paint is usually applied in multiple layers: a solid base-coat,
and a transparent clearcoat. The former provides the solid colour base, and the latter both
seals and applies a glossy finishing layer. The clearcoat layer can be tinted to achieve
special effects (known as ‘candy’).

This can be replicated using style transfer functions (see fig.(3.9)): a thin low-opacity
isosurface directly above the main body of the model can be shaded to approximate the
clearcoat layer; tint is provided by means of the appropriate spheremap. The base-layer is
specified using an opaque isosurface, together with an appropriately coloured ‘basecoat’
spheremap. Bruckner demonstrates a similar layering effect in [5], seen here in figure 2.7.
Note that the example illustrated here in fig.3.9 is similar to what can be achieved using
materials property effects featured in polygonal 3D modelling software such as 3D Studio

Max.

Figure 3.9: Layering effect using style transfer functions: a thin, coloured low-opacity layer around an
opaque surface can increase the perception of glossiness of the underlying surface. This is essentially an
analogue of the pervasive two-stage paint process used in the automotive industry: an opaque layer with an
overlying application of transparent ‘clearcoat’. If the latter is coloured, it is termed a candy paint. Source:
Paul Ross.
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3.6.4 Highlighting salient structures

Figure 3.10: Illustrative cutaways and salient-feature highlighting using the ‘engine’ dataset using selective
clipping, partial opacity and style transfer function rendering. Source: Paul Ross.

Style Transfer Functions can also be used to effectively highlight certain structures of
interest. Figures 3.10 shows the engine model using selective clipping, partial opacity and
region-specific spheremaps to highlight particular features in the ‘engine’ CT dataset.

3.7 Application to medical imaging

Volumetric raycasting in conjunction with style transfer functions can produce high qual-
ity rendering across a wide variety of styles: the spheremap shading method can be em-
ployed to perform both illustrative and near-photorealistic shading§. This technique is
capable of reproducing most normal-based procedural local lighting models by essen-
tially replacing normal-based local lighting computations with references to pre-shaded
two-dimensional textures.

Bruckner discusses the concept of context-preserving illustrative rendering in [65] and
demonstrates (with Gröller) the application of style transfer functions to CT datasets in
[5]. Context-aware rendering with style transfer functions for CT data will be consid-
ered here also; furthermore, the application of style transfer functions will be extended to
encompass additional modalities: namely 3D and streaming 4D ultrasound.

A discussion regarding the limitations of such local shading methods (and even global il-
lumination, particularly in the context of noisy modalities such as 3D ultrasound) and how
these limitations can be ultimately mitigated form the basis for the scope and fundamental
motivation of this research project.

§as close to photorealistic as can be achieved through strictly local lighting models; subsurface-scattering
and multiple reflection effects displayed by global illumination are not possible directly
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3.7.1 CT imaging

Style transfer functions are particularly suitable for CT medical imaging applications:
the noise level within the dataset is typically low and the imaging process penetrates
through the entire body, creating the possibility for rendering with multiple layers of tis-
sue structure of varying opacity. Context-preserving artistic techniques such as illustra-
tive cutaways and other forms of occlusion management (e.g. view-dependent opacity),
together with highly contrasting rendering styles can reduce visual complexity and em-
phasise salient features whilst retaining overall context.

Figure 3.11: Style transfer function rendering of the ‘foot’ dataset: normal-based silhouette rendering to
provide added context can be seen in the leftmost and rightmost images. The addition of a highly specular
spheremap for flesh rendering has an additional effect on the shading of the bones due to the former’s
translucency: their overall rendering style has an appearance similar to that of oil paint in traditional artwork.
Source: Paul Ross.

Figure (3.11) depicts the ‘foot’ dataset rendered with style transfer functions (using three
spheremaps: for bone, flesh and skin). Additional normal-based shading is used to pro-
vide silhouettes around the toes for context. Note that the red spheremap has a highly
specular: this overlays the underlying shading of the bone (in a layering effect similar
to that discussed in §3.6.3 to produce an artistic ‘oil paint’ effect for the skeletal struc-
tures. A more exaggerated illustrative style can be seen in figure (3.12); the rightmost
image has additional contours which contribute largely to the non-photorealistic appear-
ance. Enhancement via contour shading helps to isolate each distinct structure and thus
improves the depiction of overall shape; however, regions of high curvature (e.g. at the
joints between the bones on each toe) are lacking in definition.
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Figure 3.12: Style transfer function rendering of the ‘foot’ dataset: the rightmost image has additional
normal-based shading applied to form illustrative contours, resulting in a more cartoon-like appearance.
Note that there is a lack of delineation between the bones that form each toe; additional curvature-based
crease lines would help in this instance. Source: Paul Ross.

Technical illustrators often make use of devices to manage occlusion, such as partial opac-
ity and cutaway views; such techniques aim to emphasise structures of interest within
context. Figure (3.13) depicts the ‘head’ dataset, rendered using style transfer functions:
the intention is to visualise the skull as a feature of interest within the overall context of
the head. Contour lines help to improve shape depiction of the components of the skull.
Note that the additional shading is applied to all structures using the procedural method
outlined in §3.4: this can be restricted the just the skull (see fig.(3.14) by using a specially
constructed spheremap instead, where the contour is drawn around the edge as described
in [5]; such a ‘ringed’ spheremap would be applied to the skull only in this case.

In figure (3.15), selective clipping is again applied to the same dataset in order to depict
the skull in context; in this instance, contrasting shading styles are employed to maximise
visual impact and contrast between structures. Also shown are the use of contours, applied
to the whole head and skull only for comparison. The use of contours improves the depic-
tion of edges but does not shade regions with high curvature on a given isosurface. The
surface of the skull is relatively free of texture detail: brush-strokes from the spheremap
are visible, but surface detail such as ridges and valleys are not emphasised; this may of
course be desired within certain flatter rendering styles.
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(a) (b) (c)

Figure 3.13: Style transfer function rendering of the ‘head’ dataset: (a) partial opacity to place the skull in
context; (b) with additional cutaway for skull detail, using selective clipping; (c) with added contour lines
for improved shape depiction, particularly around the edges of the skull. Source: Paul Ross.

(a) (b) (c)

Figure 3.14: Applying contours to individual structures via spheremaps with an integral contour ring can
improve the depiction of partially occluded features (in this case, the skull), without reducing the opacity of
the outer layer of the skin. (a) no contour lines; (b) contour lines applied to the skull only; (c) contour lines
applied universally. Source: Paul Ross.

(a) (b) (c)

Figure 3.15: Highly contrasting shading styles, selective clipping and structure-specific contours can help
isolate areas of key importance: (a) no contour lines; (b) contour lines on the skull only; (c) contours
universally applied. Source: Paul Ross.
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Figure 3.16: Style transfer function renders of the ‘head’ dataset with various combinations of spheremaps
with selective clipping; a range of illustrative and photorealistic shading styles (or a combination thereof)
can be used for enhanced contrast between structures. Note that shading of the valley regions that constitute
joins between plates of the skull is entirely dependent on the choice of shading map with their intrinsic
lighting direction. Source: Paul Ross.

Figure 3.17: Style transfer function renderings of the ‘head’ dataset with selective clipping for context
preservation: (a) fully transparent ‘traditional’ clipping (b) partial opacity clipping. Source: Paul Ross.

Figure (3.16) depicts the use of different shading styles to render the same scene for
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various effects: note that depiction of surface ridges and valleys on the skull is entirely
dependent on the choice of spheremap with associated lighting direction.

Lighting-independent ridge and valley enhancement through curvature shading can im-
prove the depiction of such regions. Curvature transfer functions [3] map a specific iso-
surface curvature metric or metrics to colour (or opacity) in an analogue to the normal-
based spheremap. Ridges and valley regions (as regions of high curvature) can thus be
highlighted using the desired colour scheme. Curvature-transfer functions have been inte-
grated into the renderer: these can replace normal-based spheremaps for primary shading
if desired. Figure (3.18) depicts a combined transfer function with both shading methods
employed: the skull is rendered using the same spheremap as before, whilst a curvature
transfer function is applied to the skin. Note the shading of ridges and valleys on the
surface, particularly the ear region.

One caveat with curvature transfer functions is that they are an alternative to normal-
based spheremap shading, rather than being complementary to it; they are also more dif-
ficult to design than standard spheremaps. Curvature-shading can however be employed
as a secondary procedural shading method together with the primary spheremap shading
style. Lighting-independent ridge and valley enhancement through supplementary curva-
ture shading will be introduced in the next chapter to improve ridge and valley depiction
in the context of a given spheremap-based shading style.

Figure 3.18: Hybrid rendering using a combined transfer function to depict the skull and spine within
the context of the whole head: a curvature-transfer function is applied to the skin; the skull and flesh are
rendered using two normal-based spheremaps. Overall, additional normal-based contour shading is also
applied. Source: Paul Ross.

3.7.2 Ultrasound keepsake imaging

3D ultrasound presents a particular set of challenges: sound-waves cannot penetrate tis-
sues to the extent that (X-ray based) CT-scanning can and it is currently confined to rel-
atively low resolutions; moreover, it suffers from a high degree of noise or speckle, as
a result of interference patterns formed by the interaction of ultrasonic pulses with body
tissue. At present, the main consumers of such images are soon-to-be parents; hence, this
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imaging field is often termed keepsake imaging.

The datasets used for the images in figures (3.19), (3.20) and (3.21) will be used through-
out this project to demonstrate the limitations of specific filtering and rendering methods
for the depiction of facial features with minimal noise in the context of 3D ultrasound;
furthermore, they will be used to document the development of the main contributions of
this research work.

Figure (3.19) depicts the ‘babyface’ dataset, rendered using a style transfer function and
associated spheremap; also shown is the effect of additional normal-based shading as
described in §3.4. Note that the data volume was prefiltered using one iteration of a vol-
umetric Gaussian filter with σ = 0.9, radius 3. In the left-most image (a), there is some
feature-delineation around the nose and mouth but this is largely dependent on the light-
ing direction as specified by the chosen spheremap. Additional normal-based shading can
help to improve overall shape depiction in such regions: differing degrees of such shading
can be achieved, from a subtle enhancement of feature boundaries to illustrative contour
lines depicted in (b) and (c) respectively. Similarly, figure (3.20) depicts the same render-
ing processes applied to the ‘hand’ dataset: feature-delineation with additional normal-
based shading and contour lines is slightly improved over style transfer function shading
alone, but the images still lack detail in the palm and finger-joint regions.

In both cases, the additional normal-based shading steps can compensate for the limi-
tations inherent in certain shading spheremaps (with respect to lighting direction, shad-
ing style or colour choice), but is an intrinsically view-dependent process. The following
chapter (§4) will discuss view-independent curvature-based supplementary shading meth-
ods for improved feature delineation.

Figure 3.21 depicts style transfer function renderings of the ‘babyface’ dataset with a
higher degree of Gaussian filtering. Feature detail is reduced drastically; this is exasper-
ated by the particular lighting direction specified by the chosen spheremap. This particular
case will be revisited in the following chapter.

Overall, style transfer functions offer high performance and flexibility regarding the cho-
sen rendering style; caveats can be mitigated when coupled with an effective supplemen-
tary shading method for enhanced shape depiction and feature delineation.
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(a) (b) (c)

Figure 3.19: Improving facial feature depiction for style transfer function (STF) rendering of ‘babyface’
dataset: L-R: (a) STF only; (b) STF with a small amount of additional normal-based shading for improved
shape depiction in the mouth and nose regions; (c) STF with normal based shading to produce contour
lines. Note that the eye-regions are relatively unaffected by the additional shading and lack definition
overall. Source: Paul Ross.

Figure 3.20: Style transfer function (STF) and additional normal-based shading applied to the ‘hand
dataset’; the same approach as in fig.(3.19) was applied. L-R: STF only; STF with a small amount of
additional normal-based shading for improved shape depiction; STF with normal based shading to produce
contour lines. Overall, fingers and general shape are subtly highlighted through the use of the additional
shading but there remains a lack of detail in the palm region and some of the finger joints. Source: Paul
Ross.
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Figure 3.21: ‘Babyface’ ultrasound data rendered using the style transfer function method with associated
shading/lighting spheremap. The lighting angle produced by this spheremap results in a significant loss
of facial feature delineation. This dataset is smoothed using a higher degree of volumetric Gaussian filter
(σ = 1.6) than used in fig. (3.19) to reduce visible isosurface noise: this results in a further loss of facial
feature detail. Source: Paul Ross.

3.7.3 4D Ultrasound

3D volumetric ultrasound data can be streamed from its point of acquisition via the scan-
ner hardware in a series of updates at a particular frequency: in this 4D ultrasound, a
temporal dimension is added as a succession of 3D data volumes are acquired, processed
and rendered in real-time. Realtime streaming of volume data introduces a new set of
constraints: all volumetric filtering and rendering operations must complete in limited
time. Hence, at the time of writing, 4D ultrasound rendering is currently performed us-
ing monochrome MPR; volume-smoothing is commonly performed using either isotropic
Gaussian or Perona-Malik feature-preserving filtering.

Application of alternative high-performance rendering methods for high quality images in
this context was specified as a potential area of interest by Toshiba Medical Visualisation
Systems. Initial results using style transfer functions were considered superior (by the
internal research supervisors) to those produced by current MPR methods. The prototype
renderer developed for this project has been developed to process pre-packed 4D datasets
and produce an animated rendering as a final result in this context; it has not yet been
tested running on 4D scanner hardware in realtime, but this remains an objective for future
hardware iterations. Timing results can be obtained with regard to the overall filtering and
rendering processes (per volume), so this can be used to evaluate suitability for given
scanner hardware capabilities. This will be covered in greater detail in §6.

Style transfer functions can be applied to individual 3D subvolumes within a 4D ultra-
sound dataset: figure (3.22) depicts various shading maps (with a variety of lighting po-
sitions) applied to a heart-valve 3D ultrasound volume (a subvolume of a 4D series). The
bottom row renderings feature an additional normal-based shading step to provide illus-
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trative contour lines.

Renderings using style transfer functions alone feature the same benefits and issues as
discussed in the context of keepsake ultrasound images: shading style is highly flexible but
shape depiction is largely dependent on lighting direction (spheremap selection); contour
lines help provide extra emphasis of internal ridge-like structures and thus provide an
improvement in overall shape depiction, but this is fairly limited (see fig.(3.23)).

While contour lines can give the renderings an additional illustrative style, they are view-
dependent; moreover, they are ineffective for shape depiction in valley regions of high
curvature. Curvature-based methods for enhanced shape depiction will be discussed in
the forthcoming chapter, with application to this particular dataset for comparison.

Figure 3.22: Style transfer rendering of heart-valve 4D ultrasound dataset with various shading maps
(spheremaps). Bottom row: with additional contour lines. Source: Paul Ross.

Figure 3.23: Style transfer function rendering of heart-valve 4D ultrasound dataset, showing illustrative
effect of additional contour lines for improved (but limited) shape depiction. Source: Paul Ross.
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3.8 Performance

Per-frame rendering timings were taken using the following hardware: Nvidia GTX680
(with 4GB memory) running on a Xeon workstation (2.4GHz processors, 2 sockets, 4
physical cores, 8 virtual ‘cores’ with hyperthreading) with 16GB RAM. The datasets
were all rendered using the same transfer function with one spheremap, at identical z-
distance with no partial opacity and clipping planes deactivated. As expected, style trans-
fer functions performed comparably with Blinn-Phong lighting: a simple procedural local
lighting method. Style transfer functions were slightly slower due to the texture handling
overhead: modern GPUs are now very fast at simple procedural computation.

Shading method

Dataset Blinn-Phong STF STF + contours

3D US Babyface (197x126x200, 16 bit) 13.01ms 18.00ms 18.50ms
CT Engine (256x256x256, 8 bit) 14.42ms 19.90ms 20.10ms
CT Head (128x256x256, 8 bit) 21.10ms 33.95ms 34.65ms

Table 3.1: Per-frame rendering time at 512x512 output resolution: comparison of local-lighting
models.

For comparison, the overall render time for one frame using global illumination is 110ms
for a 512x512 resolution using the same hardware; the style transfer function equivalent
is 18ms (18.5ms with contours). Global illumination (GI) was, as expected, slower due
to the multiple complex lighting computations required: STF is a local model. On lim-
ited hardware where realtime GI is not feasible, style transfer functions present a viable
alternative to simple procedural lighting, and offer more stylistic choice.

3.9 Conclusion

Style Transfer Functions provide an elegant extension to the standard one-dimensional
transfer function in direct volume rendering applications; this method provide a means
by which local gradient/normal-based lighting and shading models can be easily incorpo-
rated into the transfer function itself. They facilitate rapid swapping of rendering styles,
and thus are highly suited to both prototyping and implementing a large variety of illus-
trative rendering shading styles for various structures and isosurfaces within the context
of different modalities. For ultrasound keepsake imaging, this method can provide an fast
alternative rendering system to global illumination where performance is limited by older
scanner hardware. Style transfer functions have similar performance (in terms of speed)
to simple lighting models such as Blinn-Phong but offer a much greater flexibility in terms
of rendering style.
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The method is not without caveats however: shading in areas of high curvature (e.g. crease
lines) isn’t particularly pronounced for certain shading maps; it is highly-dependent on
the light direction that forms an intrinsic part of the spheremap. Such high-curvature
regions often form the boundaries of important structures; a lack of distinct shading in
these areas can manifest as a lack of feature detail or a lack of delineation from their
immediate surroundings. Emphasising these region boundaries helps to visually separate
these structures from their wider context. For example: crease lines around facial features
are not well represented by style transfer functions (or other local lighting methods) alone.
Additional complementary shading methods, such as curvature shading can be employed
to address this issue: these will be discussed in the following chapter.

Bruckner [138] notes that a further limitation of the single spheremap approach is that
lighting and texturing are combined within the same shading map: this can result in
‘moving textures’ when the view-orientation changes. It is particularly prevalent with
spheremaps that feature fine texture detail, such as the ‘stipple’ map discussed in §3.6.2.
Bruckner suggests that an extended method featuring a separation of lighting and texturing
may form the basis for future work.

Giving consideration to all of the above, the Style Transfer Function approach was consid-
ered on balance most suited to form the base illustrative rendering method for the duration
of the project. Its various limitations will be addressed in forthcoming chapters: the full
rendering pipeline will make use of this base system plus the enhancements and additions
described henceforth.

3.9.1 Summary

In summary, style transfer functions offer several advantages over procedural local light-
ing models but are not without caveat; such properties can be summarised thus:

Advantages

• Easy specification of complex shading and lighting models.

• Allows multiple maps to be combined or swapped easily.

• Highly suitable to illustrative rendering styles.

• Allows complex shading/lighting effects not possible otherwise.

• Effective means of highlighting salient structures through contrasting shading styles.

• Has potential as a high-performance flexible alternative to global illumination for
3D keepsake ultrasound imaging (particulary when combined with supplementary
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shading methods for feature enhancement; this will form the basis of discussion in
subsequent chapters.)

Limitations

• Map construction is time-consuming and not adjustable in the renderer.

• Not easy to change lighting position: entire map must be changed.

• Sheremaps should ideally be designed by an artist.

• Finely detailed spheremap textures can become visually distorted under certain cir-
cumstances.

• Unified lighting and surface-texture combined in one spheremap can result in ‘mov-
ing’ texture in the rendered output; moreover, specular highlights should ideally
be processed separately to allow intermediate deferred shading (see §4.7) or post-
processing to be applied prior to the specular components.

• Detail is lacking in regions of high curvature (see §4); this is particularly apparent
in the context of 3D keepsake ultrasound imaging.

As a fundamental component of a basic rendering system, style transfer functions fulfil
the requirements for flexibility and speed within an illustrative context; together with sup-
plementary shading methods they will form the basis of a system which will be developed
over the course of the forthcoming discussion in an attempt to satisfy the fundamental
criteria of enhanced feature depiction with minimal visual noise amplification.

59



Chapter 4

Improving detail: additional
curvature-based shading

4.1 Introduction

As demonstrated in chapter 3, a major limitation of the style transfer function method is a
failure to accentuate certain feature details that could significantly improve the depiction
of overall shape in the final rendered image; indeed, this is an issue with local lighting
models in general. The primary motivation of this chapter is therefore to develop a method
which improves depiction of these salient features whilst minimising any noise-based
artifacts.

Traditional illustration provides some inspiration as to how this may be addressed: through
the use of contour and crease lines and/or shading cues based on surface orientation [47].
Ridges and valley regions in general provide a good match for the type of features preva-
lent in medical images that may lack definition: e.g. facial or other anatomical features
on obstetric ultrasound scans. These regions can be enhanced by the use of appropriate
shading: Gooch et al. [47] adopt the convention of darkening and lightening respectively.
In addition, local surrounding areas may also be shaded in accordance to the differential
properties of the surface in that local region. In the context of obstetric ultrasound, valley
regions generally correspond to facial feature boundaries (e.g. eyes, lips, nose): enhance-
ment of valley regions should therefore provide increased definition and help delineate
the features themselves. This provides the motivation for the methods described in this
chapter.

Ridges, valleys and other surface topology can be identified by considering the curvature
of the surface at a given point (essentially a measure of change in direction of the surface
normal); this is easily computable in real-time for GPU renderers at the time of writing.
The method developed in this chapter applies additional shading to the whole visible
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surface based on these local differential properties.

Unfortunately, curvature based shading methods can also highlight any noise inherent
in the dataset: possible solutions involve performing the additional shading as a post-
processing step using smoothed curvature data, and improving the volumetric filtering.
The optimal approach will use both: a deferred and smoothed curvature shading step
will be discussed later in this chapter, whilst improvements to volumetric filtering will be
discussed in chapter 4.

Curvature-based shading methods are considered in the literature mainly in the context of
non-photorealistic rendering; this is a major motivation here, but curvature-based shading
can also be used to enhance feature depiction in other rendering contexts (e.g. global
illumination).

4.2 Motivation: traditional illustrative methods for en-
hanced shape depiction

Traditional illustration often places emphasis on crease and contour lines in order to en-
hance topologically significant features; these provide the viewer with visual cues which
can induce a greater intuitive impression of the surface topology. Moreover, an illustration
can be reduced to a minimal representation of the object or surface using such features
alone. In a sense, they represent the essential elements by which the object’s shape can be
conveyed: the salient features by which the viewer can recognise the object.

Generally:

• Contour lines or silhouettes describe the points in which the surface normal direc-
tion changes from a front-facing direction to rear facing with respect to the viewer
or camera; they represent the boundary between front and back-facing surface ge-
ometry [3][47].

• Crease lines are found in feature-boundary regions (e.g. the outline of the eyes or
nose); these are areas of high local curvature magnitude with respect to the sur-
rounding region [54].

Figure (4.1) presents two illustrations of a human hand constructed with contour lines
only (left image) and additional creases (right image) to demonstrate the contribution of
each to overall shape-depiction.
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Figure 4.1: Contributions of contours and creases to overall shape depiction of illustrated hand. Left:
contour lines only; right: contours and crease-lines. Original illustration source: Tom Richmond [6].

4.3 Curvature-based shading methods

One of the main limitations of local lighting models such as the style transfer function

is lack of feature delineation: the areas that can be highlighted with contour and crease
lines. In the case of contour lines, this can be mitigated by the use of additional normal-
based shading (using a function of v · n, where v is the view-vector directed from a given
point towards the viewer and n is the surface normal at that point). In the case of style
transfer functions, a similar effect can be achieved through the use of a spheremap with
a surrounding contour ring [5]. For a more comprehensive description, see §3. However,
contour lines are not sufficient to address the issue of low feature-detail. Crease lines
occur in areas of high surface curvature with respect to surrounding regions; additional
shading (using a curvature-based metric) in these areas can significantly enhance feature
detail (see fig.(4.2)).
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(a) Style-transfer function render using single
spheremap.

(b) Style transfer function as in (a) with additional
curvature-based shading.

Figure 4.2: Effect of curvature shading on ultrasound foetal image showing enhanced feature detail.
Source: Paul Ross.

4.4 Curvature

The concept of isosurface curvature in a scalar field f in IR3 refers to the change in ori-
entation of the normal of an implicit embedded isosurface (alternatively, the change in its
tangent plane) in a local neighbourhood around a given point: it provides a metric with
which to describe the amount the surface ‘bends’. Curvature metrics are 2nd derivative
measures, and can be computed using the Hessian matrix H of 2nd partial derivatives
along with the gradient∇f .

The Hessian matrix H is defined as follows:

H =


fxx fxy fxz

fyx fyy fyz

fzx fzy fzz

 (4.1)

where the notation fxy denotes ∂2f
∂x∂y

.

Note that H is symmetric, since the order of derivative computation for the mixed partials
is (analytically) equivalent; different orders of computation may produce slightly different
results numerically, but this will be ignored here. *

*A computationally more expensive method for numerical evaluation of the Hessian involves computing
the off-diagonal elements using both possible orderings of partial derivatives and taking the average to
preserve the symmetry of H.
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Sign conventions

Kindlmann et al. [3] use the following:

• Isosurface normal n = − ∇f
‖∇f‖ , where f is the intensity of the scalar field at a given

point. Hence, n is the normalized gradient vector with its direction reversed.

• Concave surfaces are considered to possess negative curvature; positive curvature
denotes convexity.

These sign conventions will be adopted here.

4.4.1 Principal curvatures: an informal introduction

At any given point on an isosurface embedded in three-dimensional space, there are an
infinite number of directions in which curvature (the change in normal vector) can be
considered. Given a direction tangential to the surface at the point, the change in normal
in the given direction is known as the normal curvature associated with the given tangent
vector; it is analogous to a directional derivative.

It can be shown that at a given point, there exist minimum and maximum values for normal
curvature: these are known as principal curvatures and their associated direction vectors
form an orthogonal basis for the tangent plane at that point (see fig.(4.3).

-"12+0%< "3 ="2$",Figure 4.3: Change in normal direction on a curved surface; the blue lines indicate the loci of points traced
out by the principal curvature directions. Source: Kindlmann.

The maximum principal curvature is denoted by κ1 and the minimum by κ2, with κ1 > κ2

by convention†; note that both κ1 and κ2 can have positive or negative values. It is these
principal curvatures that will constitute the curvature metrics used in the shading method:
as can be seen from figure 4.4, distinct isosurfaces features can be highlighted effectively.
This provides the motivation for possible application to medical imaging in the context of
improving feature detail.

†Kindlmann adopts this convention, but an alternative would be to define κ1, κ2 such that |κ1| > |κ2|;
this will not be used here.
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(a) Metric: minimum principal curvature (b) Metric: maximum principal curvature

Figure 4.4: Volumetric renders of synthetic test cuboid dataset, using principal curvatures as shading
metrics. Areas of negative and positive curvature are shaded purple and green respectively. Source: Paul
Ross, after Kindlmann et al. [3]

For a more in-depth coverage of the background theory and an outline of the curvature
computation methods used in this research project, see §A.1

4.4.2 Ridges and Valleys

Ohtake, Belyaev and Seidel [147] provide a concise definition of surface crease lines:
the loci of points where the largest in absolute value principal curvature takes a positive

maximum or negative minimum along its corresponding curvature line. The crease line
is traced by this line of curvature: this is orthogonal to the respective principal curvature
direction; e.g. in the case of a valley, the valley floor cross-section curvature is essentially
described by the local minimum value of the minimum principal curvature κ2, both in
value and direction: the crease-line path of the valley floor is the corresponding line of
curvature.

A valley crease line is therefore described by the loci of points (corresponding to local
minima of κ2) along the line of curvature orthogonal to the corresponding direction vector
of κ2. Generally, valley regions (not just their minima) can be defined as regions where
κ2 < −|κ1| [147].

A ridge crease line can be similarly described as the loci of points (corresponding to
local maxima of κ1) along the line of curvature orthogonal to the corresponding direction
vector of κ1; generally, ridge regions (not just their maxima) can be defined as regions
where κ1 > |κ2|

Figure 4.5 illustrates a simplified valley where the curvature in one principal direction is
zero.
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Figure 4.5: Simple valley example showing selected surface normals. In this case, κ1 = 0, κ2 ≤ 0 at
every point on the surface. At the indicated point (red), the principal curvature direction vectors are shown
in yellow and blue (associated with κ1, κ2 respectively). Note the loci of minima for κ2 that trace out the
valley floor (in green). The bending of surface normal vectors in both principal curvature directions clearly
demonstrates negative curvature for κ2 and zero curvature for κ1. Gaussian curvature κ1κ2 is equal to zero
everywhere on the surface. Illustration: Paul Ross.

A simple example of a surface with both ridges and valley regions (an extruded sinusoid)
is shown in figure 4.6; figure 4.7 represents a planar cross section though this surface and
illustrates how the principal curvatures change with cross-sectional position.

Figure 4.6: Simplified example of ridges and valley regions, showing surface normals. In this case, at each
point there is always at least one principal curvature value equal to zero; hence the Gaussian curvature κ1κ2
equals zero everywhere. The green lines mark the loci of maxima and minima of κ1 and κ2 respectively as
described above: these trace out the ridge peaks and valley floor respectively. Illustration: Paul Ross.

(a) Cross section through plane of ridges and
valley scene depicted in 4.6.

principal curvatures

position

(b) Corresponding values for κ1 and κ2. Note
that κ1κ2 = 0 everywhere.

Figure 4.7: Cross section of sinusoidal ridges and valley as depicted in 4.6, with associated principal
curvature values κ1, κ2. Illustration: Paul Ross.
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4.5 Curvature-based shading

Kindlmann [3], Hadwiger [45] and Bruckner [5] suggest using a curvature metric (or
combination of metrics) together with a transfer function to provide the appropriate shad-
ing; the transfer function can be one-dimensional or multi-dimensional depending on the
chosen metrics. The flexibility afforded by curvature-based transfer functions (in terms of
being able to create essentially arbitrary effects with an artistically-designed transfer func-
tion) can be exploited effectively for illustrative applications. Indeed, illustrative applica-
tions applied to medical imaging data was the initial experimental remit for this project.
Through experimenting with real medical datasets (acquired through various modalities),
it has become repeatedly apparent that there is a fundamental requirement for a subtle
increase in feature detail; as a result, the focus has shifted somewhat to providing a subtle
enhancement of feature detail in an attempt to address the limitations of local illumina-
tion/shading methods such as the style-transfer function.

The curvature-based transfer function approach may not be required in this context as
the additional shading can be achieved using a simple colour modulation. Valley regions
can be highlighted by a slight darkening of colour shade with respect to the surrounding
regions; similarly, ridges can be enhanced using a subtle lightening of shade. This can be
easily achieved programmatically using CUDA in a final shading compute-kernel, without
the need for a dedicated transfer function.

Of course, this effect can also be obtained through the use of a two-dimensional transfer
function as demonstrated in [3]. Given a large increase in GPU power since the publi-
cation of the transfer-function methods, the CUDA (or OpenCL) approach offers several
advantages:

• A simple modulation operation is well suited to the GPU and doesn’t require the
intermediate steps of texture creation.

• It is easily integrated into an already GPU-compute (CUDA or OpenCL) based
renderer; no separate texture handling is required.

• It is relatively simple to modify and combine curvature metrics (simple arithmetic
operations) for different shading effects; this would require the manual creation of
a new transfer function texture each time.

• It may offer a performance advantage on modern hardware, since a few simple
compute operations are relatively fast compared to texture handling and associated
memory accesses.

• Note that that procedural supplementary shading methods are complementary to the
primary shading stage; this allows for a high degree of flexibility.

As previously mentioned, the primary goal of curvature shading in this project is to pro-
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vide a subtle enhancement of feature detail. An effective shading method by which to em-
phasize crease lines and other high-curvature regions is to simply modulate each colour
channel using the desired curvature metric. The minimum-principal curvature κ2 is mainly
used in this regard, as features are delineated by valley regions. The following describes
the processes involved using this metric alone and together with κ1, the maximum princi-
pal curvature.

4.5.1 Minimum principal curvature

To emphasize concave valley-type structures such as facial creases, the minimum principal
curvature k2 is most appropriate as a shading control metric. Note that in this example,
the same modulation operation is performed on each of the colour channels (R,G,B). In an
HSV colour model, this is equivalent to modulating the V channel in the same proportion.

Iout = Iin + cκ2Iin (4.2)

where c is a scalar multiplier controlling sensitivity and κ2 is the minimum principal
curvature; Iout is of course clamped to the permitted output range (colour channel values
are normalised, i.e. Iin, Iout ∈ [0, 1].

The shading produced from using κ2 as a colour channel modulator is mainly charac-
terised by a darkening of concave creases (since κ2 is negative in these areas). However,
κ2 may be positive: the resulting effect is to lighten and highlight certain regions around
the valley. This can give a better sense of the surface topology than just restricting κ2 to
negative values.

4.5.2 Strict valleys

To strictly restrict curvature shading to valley regions (as defined in section 4.4.2), the
following operation can be performed (again on all colour channels R,G,B):

Iout = (1 +m)Iin where m =

cκ2 if κ2 < −|κ1|
0 if κ2 ≥ −|κ1|

(4.3)

Colour channel values for Iout are again clamped to the permitted range.

4.5.3 Maximum principal curvature

In an analogous process to that used above to shade valley regions, ridge-like structures
can be emphasised using κ1 as a shading control metric: each colour channel (R,G,B) is
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again modulated identically,
Iout = Iin + cκ1Iin (4.4)

In contrast to κ2-based shading for concave regions, convex regions are shaded by light-
ening these with respect to the surrounding areas (κ1 is positive).

There may be areas where κ1 < 0: the resulting effect is to darken the surrounding area.
Similarly to 4.5.1 above, this may help to portray surface topology more effectively than
restricting κ1 to positive values.

4.5.4 Strict ridges

Curvature shading can be restricted to strict ridge-like regions (where κ1 > |κ2| as defined
in 4.4.2):

Iout = (1 +m)Iin where m =

cκ1 if κ1 > |κ2|
0 if κ1 ≤ |κ2|

(4.5)

4.5.5 Summary

Figure (4.8) depicts a style transfer function rendering of the ‘engine’ dataset with curva-
ture shading applied using various metrics.

Figure 4.8: Style transfer function rendering of the ‘engine’ dataset with supplementary curvature shading
(various metrics): L-R: no curvature shading; minimum principal curvature; maximum principal curvature;
both minimum and maximum. Source: Paul Ross.

4.6 Application to medical imaging

As previously seen in the context of curvature transfer functions (see §3.7, fig.(3.18)),
curvature based shading can enhance the depiction of facial features that are often poorly
defined; this can of course be applied in general whenever detail enhancement is required.
Formulating a curvature-based shading step as an additional supplementary process to the
primary lighting and shading model in lieu of a purely transfer function based approach al-
lows for the positive attributes of the primary shading method to be retained. In the case of
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style transfer functions, their performance, interchangeability and flexibility with regard
to multiple potential shading styles is maintained whilst allowing for some shortcomings
to be addressed.

4.6.1 CT imaging

One shortcoming of such local lighting methods (and to some extent, global illumination)
is a lack of feature detail within regions of high curvature, such as ridges and valleys.
Curvature-based shading can address this issue by virtue of its definition: it seeks to apply
a degree of local shading, whose measure is controlled by local isosurface curvature. It can
highlight small undulations on an isosurface, giving added texture and depth; the effect
is to generally increase the level of shape depiction within the renderer. However, it has
the undesirable caveat of also highlighting small surface imperfections due to noise. CT
imaging (certainly compared to ultrasound) typically has an inherently low level of noise,
so this is not a major concern for curvature shading within the context of this modality.

Figure 4.9: Curvature shading for the CT ‘foot’ dataset: this supplementary shading can provide an in-
creased the level of quasi-photorealism by shading the joints between bones in the toes. L-R: style transfer
functions; with additional normal-based contours, with normal-based contours and curvature shading (min-
imum principal curvature). Source: Paul Ross.

Figure (4.9) illustrates an effective use of curvature shading to supplement the overall
shading style and increase detail in specific regions. Note how the joints in the fingers have
low definition for the first two images: curvature shading is applied in the third image to
shade the valley regions at each joint. Such shading is also effective in highly illustrative
contexts. Figure (4.10) shows a more stylised rendering of the same dataset: both the
normal-based contours and curvature-based crease lines (third image) are fundamental to
the overall rendering style but also provide an enhanced depiction of overall shape.
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Figure 4.10: Effect of curvature shading for shape depiction (specifically the joints) in illustrative rendering
of CT ‘foot’ dataset: L-R: style transfer function rendering; with additional normal-based contours; with
contours and curvature shading (minimum principal curvature).

Both examples have used minimum principal curvature to emphasise valley regions; two
variants of this metric are (1) its restriction to strictly negative values, and (2) strict val-
leys as defined in §4.5.2. Figure (4.11) depicts the somewhat subtle difference between
them: note how small surface undulations are more pronounced using minimum princi-
pal curvature alone with no restrictions. In the context of CT imaging, the highlighting
of small-scale surface features can be beneficial or detrimental depending on the level of
realism, texture and rendering style required; in noisier modalities such as 3D ultrasound,
it constitutes a significant problem as such imperfections are usually derived from speckle
noise.

Figure 4.11: Subtle difference in shading using variants of minimum principal curvature: L-R: minimum
principal curvature; minimum principal curvature restricted to negative values; strict valleys. Note the
shading of small undulations within the flatter regions of the bones: this may or may not be desirable
depending on context. Source: Paul Ross.

Curvature shading can be used to create illustrative exaggerated crease lines but can ap-
plied in a more subtle form to enhance the overall shape or provide an increased sense of
surface texture. Figure (4.12) shows the effect of applying minimum principal curvature
shading to the ‘head’ CT dataset to enhance both facial features and skull surface texture.
Together with normal-based contours, curvature shading (using both minimum and max-
imum principal curvatures) is applied in figure (4.13): note that the skull surface-detail,
general shape depiction and contrast with overall context is increased.
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Figure 4.12: Enhancement of isosurface detail via curvature shading within the context of style transfer
function rendering of CT ‘head’ dataset. L-R: style transfer function shading alone; with additional curva-
ture shading (minimum principal curvature); with curvature shading and normal-derived contours. Source:
Paul Ross.

Figure 4.13: Enhancing shape and surface depiction of the skull using curvature shading (minimum
and maximum principal curvatures), together with normal-based contours. Left: style transfer function
(spheremap) shading only; right: with both supplementary shading steps. Source: Paul Ross.

Facial features can also be enhanced using a subtle application of curvature shading: fig-
ure (4.14) shows how subtle curvature-based shading (not just explicit crease lines) and
contours can give an increased sense of realism and depth to an otherwise flat rendering
and improve the depiction of overall shape.
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Figure 4.14: Using a small amount of curvature-based shading (both minimum and maximum principal
curvatures) to provide a subtle enhancement in shape depiction, using the ‘head’ dataset. L-R: style transfer
function rendering only; with the addition of curvature shading; with the addition of curvature shading and
normal-based contours. Source: Paul Ross.

4.6.2 Ultrasound keepsake imaging

As previously discussed in §3.7.2, 3D ultrasound suffers from a high degree of inherent
speckle noise; moreover, it has comparatively low tissue penetration with respect to other
modalities. In the context of volume rendering, the fidelity of output images using such
data is therefore significantly less than that of rendered output obtained with CT data.

Figure 4.15 depicts the ‘babyface’ dataset rendered using style transfer functions: the first
two images are produced using the same normal-based shading methods seen previously
in fig.(3.19); the third image introduces curvature shading using minimum principal cur-
vature to darken the valleys which form feature boundaries around the nose, mouth and
eye regions. As can be observed, the depiction of these feature boundaries is improved;
however, the major caveat is that speckle-derived surface bumps and undulations (partic-
ularly in the forehead region) are also enhanced. Increasing the level of curvature shading
to highlight feature boundaries cannot be performed (using this method alone) without
also similarly enhancing the visible manifestation of speckle noise.

In figure (4.17), an alternative shading spheremap is used: the lighting direction results in
a further loss of feature detail in the rendered output compared with fig.(4.15). The appli-
cation of curvature shading (using minimum principal curvature) significantly improves
the delineation of facial features; again, however, the effect of visible-noise amplification
is apparent, particularly in the forehead region.

What is required is a means by which to allow an increase of highlighting where required,
whilst preventing or minimising highlighting of isosurface noise or speckle-derived arti-
facts. In theory, this can potentially be achieved using three approaches: (1) threshold-
ing or restricting shading to regions of higher curvature using a power transform in the
curvature-shading process; (2) performing the curvature shading step as a deferred pro-
cess and smoothing the resultant curvature data using an edge-preserving method such
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as a Perona-Malik filter; (3) remove as much noise as possible from the dataset volume
(whilst preserving feature detail) by developing an improved volume filtering method.

Feature highlighting using this method of curvature-based shading is independent of both
lighting and view direction: this can be advantageous for its consistency in depicting fea-
tures outlines yet can suffer from over-darkening in regions where the primary shading
method produces specular highlights. It is a consequence of applying the curvature shad-
ing after the primary shading step and is a limitation of the style transfer function approach
where illumination and texturing are combined in the same shading map (as discussed by
Bruckner in [138]).

Figure 4.15: Style transfer function renderings with supplementary shading applied to an obstetric ultra-
sound dataset (‘babyface’ dataset). L-R: Style transfer function shading only; with an additional normal-
based shading step for contours and enhanced shape depiction; with additional normal and curvature-based
shading (minimum principal curvature). Source: Paul Ross.

Figure 4.16: The noise-highlighting effect of varying degrees of curvature-based shading (minimum prin-
cipal curvature). L-R: style transfer function shading only; curvature shading with multiplier c = 0.33;
curvature shading with c = 0.66. Source: Paul Ross.
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Figure 4.17: Curvature shading (minimum principal curvature) with undesirable noise-highlighting using
style transfer functions with an alternative spheremap. L-R: style transfer function shading only; with
additional curvature shading (c = 0.66); with a higher degree of curvature shading (c = 1.00). Source:
Paul Ross.

4.6.3 4D ultrasound

4D ultrasound essentially consists of a temporal series of 3D subvolumes; such subvol-
umes are similar to the datasets previously discussed in the context of obstetric ultrasound
in §4.6.2 above. The limitations of using style transfer functions to render output images
from such subvolumes can be observed in §3.7.3, fig.(3.22) in the context of a heart-valve
dataset: even with additional contours, the depiction of isosurface topology is indistinct.
The use of additional curvature shading allows structures to be depicted with a much
greater sense of surface geometry, as can be see in fig.(4.18); note that minimum princi-
pal curvature for was used as a shading metric (for valley enhancement) for the images
within this section, as with the previous obstetric ultrasound images. Figures 4.19 and
4.20 show two more examples using the same dataset; note that in 4.19, the volume data
has a greater degree of Gaussian filtering applied for smoother surfaces. However, both
images illustrate the extent by which curvature shading can improve shape depiction for
volumes of varying degrees of smoothness.

Figure 4.21 is a time-series depiction of rendered images from a series of 3D subvolumes:
on the left of each image, the valve can be clearly seen transitioning to an open state.
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Figure 4.18: Curvature shading to enhance shape depiction for a 4D ultrasound sub-volume (heart-valve)
rendered using style transfer functions. Left: style transfer function (STF) shading; Right: with additional
curvature shading (minimum principal curvature). Surface detail is low for STF shading alone (partly due
to the inherent lighting direction of the shading spheremap); curvature-based shading provides an increased
level of isosurface detail independent of light direction. Source: Paul Ross.

Figure 4.19: Style transfer function rendering with curvature shading, using the same dataset subvolume
(heart-valve) and view as in fig.(4.18) but with a higher degree of Gaussian volume smoothing for the input
data. Left: style transfer function shading only; Right: with the addition of curvature shading (minimum
principal curvature). Source: Paul Ross.

Figure 4.20: Style transfer function rendering with curvature shading, using the same heart-valve subvol-
ume as in fig.(4.18) but with a different view and clip-plane orientation. Left: style transfer function shading
only; Right: with the addition of curvature shading (using minimum principal curvature). Curvature shading
in this instance can be seen to greatly increase the depiction of shape and texture within the heart. Source:
Paul Ross.
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Figure 4.21: Sequence of rendered images from successive sub-volumes in the temporal 4D series (heart-
valve dataset). Source: Paul Ross.

4.6.4 Limitations

Noise enhancement

Ultrasound data often possesses a large noise component: this imposes limitations on what
can be achieved with curvature-based shading methods. Noise manifests itself as bumps
and craters across isosurfaces: these possess high curvature and are thus shaded alongside
the desired data by the curvature-shading process. Curvature-based shading essentially
amplifies the appearance of any noise present in the dataset.

Solution:

• Improve volumetric filtering for more effective noise suppression, whilst maintain-
ing feature detail.

• Perform curvature shading as a deferred post-processing step: this allows smoothing
of the curvature data, helping to minimize the highlighting of noise.

This chapter will focus on the latter of the two methods.

4.7 Deferred curvature shading

Computation of curvature values at each sample point along a given ray can impede per-
formance for simple raycasting-based renderers. One solution is to defer the curvature
computation and shading and perform this as an image-space post-processing operation.
This has image-space time complexity and is suitable for single-isosurface shading. Had-
wiger et al. describe such a method in [45].

Crucially, performing the curvature computation and shading as a post-processing step
has an additional advantage: it allows for further processing of the curvature data before
applying to the final image render. This can be exploited for the objective of reducing
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the effect of curvature shading on any residual noise in the dataset. Smoothing the 2D
curvature data using an edge-preserving smoothing step has proved effective in this regard;
this will be discussed in the following section.

In summary, the deferred curvature shading approach is characterised by the following:

• Allows for post processing of curvature data, i.e. smoothing or some other oper-
ation, prior to final rendering. This is the prime motivation in the context of this
chapter.

• Limited to single opaque isosurface: this is ideal for ultrasound applications.

For single opaque isosurfaces, the result is visually identical to that obtained through
volumetric curvature computation along each ray since only one sample value is used for
the final colour output per ray in each case. In naive raycaster implementations (without
empty-space skipping), these values are discarded and constitute wasted computational
effort.

4.7.1 Method

Method (in addition to the standard volume rendering pipeline):

1. Compute the required curvature metric on termination of the ray (i.e. when the ray
intersects with the opaque isosurface).

2. Store the curvature information in one or more two-dimensional floating-point data
buffers (of the same dimension as the output image).

3. Smooth the curvature data. In this application, an edge-preserving filter is used:
specifically a Perona-Malik PDE-based filter, but a bilateral or other nonlinear fil-
ter could be substituted. Possible future research could evaluate more modern 2D
filtering methods such as the domain transform filter [148].

4. Composite the curvature data with the image-space volume-render image output.
There are multiple methods that can be employed here: curvature transfer functions,
direct colour-channel modulation are two possibilities. The latter approach is the
main method used for this particular application.

Figure 4.22 depicts an overview of the deferred and smoothed curvature shading pipeline.

4.7.2 Results

In noisy datasets (with a low amount of volumetric smoothing), the smoothed curvature
data offers a slight improvement only (over the standard case), as can be seen in figure
(4.23).
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Figure 4.22: Overview of deferred shading pipeline with smoothing stages for 2D curvature and colour
buffers. The initial volume smoothing stage is also shown as a pre-processing step: at this stage of develop-
ment, this is restricted to a simple Gaussian 3D filter. Subsequent chapters will focus on improving this for
an optimal balance of feature detail and noise reduction in the output image.

.

Figure 4.23: Deferred and smoothed curvature shading for keepsake 3D ultrasound: L-R: style transfer
function rendering only; with the addition of curvature shading; smoothing the curvature buffer before
applying to final colour image buffer. Source: Paul Ross.

Applying in conjunction with a smoother input dataset, the deferred and smoothed curva-
ture shading step is significantly more effective in enhancing features whilst minimising
visual noise amplification. Figures (4.24) and (4.25) depict much greater definition in
the facial feature boundaries (particularly the mouth); the effect of noise is reduced (see
fig.(4.25) for details). This shading approach can also be employed in conjunction with
global illumination as shown in figure (4.26).
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Figure 4.24: Application of deferred and smoothed curvature shading to an ultrasound volume with a
higher degree of volumetric Gaussian smoothing applied. Left: style transfer function rendering alone;
right: with the addition of the deferred and smoothed shading step. Source: Paul Ross.

Figure 4.25: The effect of 2D curvature and colour buffer-smoothing on reducing the appearance of noise.
L-R: style transfer function render with no additional shading; with the addition of deferred curvature shad-
ing using the κ2 metric; with smoothing of the 2D curvature buffer. Source: Paul Ross.

Figure 4.26: Application of deferred and smoothed curvature shading as a post-processing step on a global
illumination babyface ultrasound rendering. L-R: unsmoothed volume; Gaussian-smoothed volume; with
the addition of deferred curvature shading. Note that there is much detail lost after the initial volume
smoothing stage; the deferred curvature shading step (with 2D curvature buffer smoothing) attempts to
restore some feature delineation in the final output render, whilst minimising the shading and apparent
amplification of surface noise. Source: Paul Ross.
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4.7.3 Summary

Shading limitations

As previously mentioned, this method is limited to single opaque isosurfaces. It is not ap-
plicable when there are any transparent regions; this is usually not an issue with ultrasound
data, as a single opaque isosurface rendering is desirable in most cases.

In addition, a post-processing shading method may not always produce the required re-
sults by virtue of its position in the rendering pipeline. Full integration with the main
lighting or shading model is not possible: curvature shading is applied after the main
volume render process is complete. For full integration into the chosen lighting model,
ideally curvature shading should be applied to the base or diffuse colour components, be-

fore any specular highlights are added. The deferred method adds further shading after

any specular components have been incorporated into the rendering. This can produce
unnatural and potentially undesirable effects: shading across specular highlights produces
grey bands in valley regions (if the specular highlights are white).

In a purely illustrative context, this may be acceptable, i.e. if the objective is to highlight
specific surface features with less regard for a realistic lighting model. In addition, the
deferred and smoothed curvature shading method is only really effective when there is a
low amount of residual noise from the initial volumetric smoothing stage.

4.8 Performance

As in the performance section of the previous chapter (§3.8), the hardware system and
testing conditions consisted of the following: Nvidia GTX680 (with 4GB memory) run-
ning on a Xeon workstation (2.4GHz processors, 4 physical cores, 8 virtual ‘cores’ with
hyperthreading) with 16GB RAM. The datasets were all rendered using the same transfer
function with one spheremap, at identical z-distance with no partial opacity and clipping
planes deactivated. All resulting timing data is on a per-frame basis.

Table (4.1) depicts timing data for various shading methods (in the context of several
datasets): style transfer functions alone; with the addition of curvature shading, applied
at each sample point along each ray; with the addition of curvature shading as a deferred
shading operation.

Note the significant increase in performance of the deferred shading method over the vol-
umetric equivalent; this is one clear benefit of taking the deferred approach, even if its
application has somewhat limited value in the context of noise suppression in 3D ultra-
sound.
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Shading method

Dataset STF STF + CS STF + deferred CS

3D US Babyface (197x126x200, 16 bit) 18.50ms 56.88ms 19.37ms
CT Engine (256x256x256, 8 bit) 19.90ms 42.25ms 20.88ms
CT Head (128x256x256, 8 bit) 33.95ms 100.144ms 34.69ms

Table 4.1: Per-frame rendering time at 512x512 output resolution: comparison of shading methods
(STF: style transfer function, normal-based spheremap shading; CS: procedural curvature shad-
ing).

4.9 Conclusion

Initially inspired by traditional artistic illustration techniques, curvature-shading methods
can effectively simulate shape-depicting lines or artistic shading, and hence are useful
in improving the depiction of overall shape; in medical imaging contexts, this can be
particularly useful for enhancing the depiction of salient features as these are usually
delineated by regions of high isosurface curvature.

It has been demonstrated that curvature-based shading can clearly improve feature delin-
eation in keepsake ultrasound images, both for illustrative styles (via the Style Transfer
Function renderer) and in the context of global illumination (GI), over normal/gradient-
based/GI shading alone. There are of course, other medical imaging contexts in which
curvature-based methods can be applied, but ultrasound presents a particularly difficult
problem due to its high inherent noise component. An effective means of reducing noise
whilst preserving feature detail is highly desirable in this context; hence keepsake ‘baby-
face’ images will be used throughout to demonstrate the efficacy of various improvements
and additions to the overall rendering pipeline.

Note that the shading methods outlined in this chapter are independent of lighting and
view direction; this is primarily an advantage when used in a feature-enhancing context,
as overall shape-depiction is improved regardless and is not a function of either parameter.

However, there is a disadvantage to decoupling entirely from the initial shading or lighting
stage: curvature shading is applied (either volumetrically along a ray or as a deferred post-
processing step) after all lighting computations. Ideally, the curvature-shading step should
be performed before any specular components are added to avoid shading over them (this
produces a greying effect which is often undesirable).

It should be noted that view-dependent curvature-shading also has applications: regular-
ization of normal-based contours [3][5], and apparent ridges [56] are two examples.

Whilst effective at feature-demarcation, an undesirable side-effect of curvature-based shad-
ing methods is the highlighting of noise. To a certain degree the effect of noise on the final
image can be mitigated by performing the curvature shading as a post-processing step: this
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allows the curvature data to be collected on ray-termination, and smoothed before the final
image composition. Together with colour image-buffer smoothing, this can greatly reduce
the highlighted-noise component in the final image.

Deferred curvature shading clearly offers a performance improvement over a volumet-
ric variant, although its application is limited to renderings with full opacity throughout.
The ultimate project goal is to maximize feature detail whilst minimizing the shading
of noise (or visible noise in the output image). Deferring the curvature shading stage
and smoothing the curvature data buffer is effective in this regard, but the end-result
could still be improved upon. A more effective means of volumetric filtering of the input
dataset is required; currently, Gaussian filtering or feature-preserving Perona-Malik (sim-
ple anisotropic diffusion, [149][150]) or bilateral filters [69] are employed to reduce noise.
The former is poor at preserving features; the latter two methods result in the retention
of feature detail at the expense of effective noise-reduction. A more effective curvature-

based volumetric filter, which provides the optimal balance between noise reduction and
feature-preservation will be discussed in the following chapter; this allows for a much
greater fidelity of output image.
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Chapter 5

Further reduction of noise: effective
volumetric filtering

Curvature-based shading methods have been shown to be effective for increasing defini-
tion around salient features, with particular effectiveness when applied in the context of
ultrasound keepsake images. Unfortunately, this shading is also effective at highlighting
any residual noise inherent in the dataset. As mentioned in the previous chapter, a major
topic of interest for this research project is the maximisation of detail for salient features
whilst minimising the effect of noise: in practice, these are competing requirements. As
the research progresses, this goal has become increasingly apparent in its significance;
indeed, whether considering illustrative rendering styles or not, its pursuit has become a
primary objective. The use of curvature-based shading methods, involving a smoothing
of curvature data prior to final shading, can provide a good solution but is far from opti-
mal. In order to pursue this objective even further, a more effective method for volumetric

filtering is required: this is the initial noise reduction process performed on the 3D raw

dataset* prior to any visualisation steps.

In the context of this project, volume filtering has been limited so far to simple Gaussian
smoothing or the feature-preserving Perona-Malik and bilateral filters. These latter two
methods employ functions of first derivatives (the bilateral filter implicitly) to control
the amount of local smoothing in a given neighbourhood: this is a simple extension of
their 2D application in image processing, where features are delineated by edge-lines
(areas of high gradient). In volumetric contexts, features are delineated by regions of
high curvature: this would suggest that an effective volumetric feature-preserving filtering
approach could make use of second derivatives. Indeed, curvature in a 3D context is the
natural analogue of gradient in 2D for feature demarcation.

*In practice, certain ultrasound scanners may perform a small and often undocumented noise reduction
step after initial data acquisition and reconstruction: this step results in what will be considered to be the
raw dataset for purposes of further processing or visualisation.
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Mean-curvature-motion [87] is a simple curvature-based PDE filter, but isn’t particularly
effective with regard to feature-preservation. Extending the concept of anisotropic diffu-
sion to volume data, more sophisticated feature-preserving PDE-based schemes include
those described by Krissian in [9], Carmona in [10]. Hossain and Möller build upon these
latter two methods in [8]; their approach will be discussed further in this chapter. Other
methods include guided filtering (He et al.) [86] and anisotropic diffusion of surface nor-

mals (Tasdizen et al.) [106].

Volumetric smoothing methods can essentially be subdivided as such:

• Neighbourhood-based averaging methods: these include linear convolution-based
filters such as the standard Gaussian, in addition to nonlinear methods such as the
bilateral filter.

• PDE-based methods: these include simple gradient-based Perona-Malik implemen-
tations in addition to anisotropic geometric flows of order two and higher.

• Other methods, including nonlocal means and machine learning based techniques.

Several attempts have been made to illustrate how these first two fundamental approaches
are linked [82][84][151][83][69].

This chapter will focus on the two essential criteria required for an optimal noise-reduction
solution: the preservation of features, and the maximal suppression of surface noise.
Time-performance is an additional concern: a fast method is a requirement for 4D real-
time streaming ultrasound applications. The solution developed in this chapter will meet
the two essential criteria, whilst offering very high performance.

What follows is a brief description of the basic Perona-Malik and bilateral filters with
respective results (as used up to this point in this research project), expanding to curvature-
based anisotropic diffusion filters, in particular that which is described by Hossain and
Möller in [8]. Results from the latter PDE-based method are presented, and through
discussion of its inherent limitations, a novel PDE-based method is developed which aims
to optimally satisfy the fundamental criteria described above.

5.1 The Gaussian filter and inherent limitations

A naive approach to volume filtering might consider a simple Gaussian smoothing filter:
this is usually implemented as a neighbourhood filter, where each pixel or voxel is pro-
cessed by considering a weighted average of a local neighbourhood of a given size. The
pixel or voxel in the same spatial position in the output dataset is effectively replaced with
that weighted average from the input, in what is essentially a convolution operation with
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a kernel of Gaussian-derived multiplier weights.† A Gaussian filter specifies weighting
multipliers as a Gaussian function of distance from the input pixel or voxel: hence dataset
values further from the input pixel have correspondingly less influence. It is possible to
specify other functions of distance, but the Gaussian function has some special properties:
it is an eigenfunction under the Fourier Transform, and a Green’s function of the diffu-
sion equation. In addition, repeated iterations of the filter with a kernel of small radius is
equivalent to fewer iterations with a larger kernel.

The convolution operation can be described as:

p(x) =
1

W

∑
xi∈Ω

f(xi)g(‖xi − x‖) (5.1)

for every data point f(x) at position x in the input dataset. Ω is the local neighbourhood
around each input data point f(x), and is defined by the radius of the Gaussian filter
kernel. p(x) is the position-equivalent data point in the processed dataset. g represents the
Gaussian function, and 1

W
is the normalisation factor, where W =

∑
xi∈Ω g(‖xi − x‖).

It should be noted that constructing a filtered dataset using the above convolution is equiv-
alent to numerically solving the diffusion PDE:

∂f

∂t
= c∇2f (5.2)

where f represents the input dataset, and c is a scalar constant. Note that∇2f is rotation-
ally invariant and the diffusion is isotropic.

The convolution method will be used throughout this section to obtain results; for 3D
volume data, an O(N3n3) operation‡ can be replaced an O(N3n) one by splitting it into
three separate convolutions with a one-dimensional kernel.

5.1.1 Limitations

In the context of 2D image processing, simple neighbourhood-averaging linear filters
(such as the standard Gaussian filter) perform isotropic smoothing: at a given centre pixel,
the amount of smoothing performed is equal in all directions, regardless of local differen-
tial features. Smoothing is thus performed across edges (areas of high gradient). Whilst
such methods are effective at reducing noise, they have the additional consequence of
reducing feature boundary detail, which may be undesirable (see fig.(5.1)).

†Strictly speaking, the correct term is a correlation; however, since the Gaussian filter kernel is symmet-
ric, this is equivalent to a convolution.

‡assuming a cuboid volume of size N3 voxels with a convolution kernel of diameter n.
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(a) unfiltered. (b) σr = 1.4. (c) σr = 2.35.

Figure 5.1: Gaussian-smoothed obstetric ultrasound dataset rendered with style transfer functions and
supplementary curvature shading: increasing the level of noise reduction results in a loss of feature detail.
Source: Paul Ross.

5.2 Feature-preserving smoothing

Numerous methods had been devised as a means of restricting smoothing into distinct
piecewise near-homogeneous regions delineated by edges, thus preserving image feature
detail. PDE-based nonlinear-diffusion filters such as Perona-Malik [149] attempt to limit
smoothing across edges; this and more sophisticated examples will be discussed in this
chapter.

Neighbourhood filters such as the bilateral filter attempt to perform edge-preserving smooth-
ing using a different approach: attenuating a standard isotropic Gaussian filter with an
penalizing range component, based on the pixel intensities themselves. This is essentially
an additional multiplier weighted according to a Gaussian function of the difference in
intensity from the centre pixel. Hence smoothing is constrained across edges, since these
are regions of high gradient. The effect is similar to that of Perona-Malik diffusion; indeed
the two seemingly fundamentally different approaches are in fact related: the bilateral fil-
ter is a special case of Perona-Malik diffusion [82]. Bilateral filtering with large support
kernels can be considered to be equivalent to a sum of Perona-Malik diffusion operations
at separate scales; furthermore, other links have been observed (see §2.9).

5.2.1 Nonlinear and anisotropic diffusion

Perona Malik

Recall the case of isotropic diffusion (equivalent to convolution-based Gaussian smooth-
ing):

87



∂f

∂t
= c∇2f = div(c∇f) (5.3)

where c is a scalar constant.

Replacing the constant term with a function g(x, y, f,∇f) of the gradient magnitude,
g(‖∇f‖) gives:

∂f

∂t
= div(g(‖∇f‖)∇f) (5.4)

expanding via the product and chain rules:

∂f

∂t
= g(‖∇f‖)∇2f +∇

(
g(‖∇f‖)

)
· ∇f

= g(‖∇f‖)∇2f +
(
g′(‖∇f‖)∇(‖∇f‖)

)
· ∇f (5.5)

Since ∇(‖∇f‖) = H∇f/‖∇f‖ (see §A.5.1), further expansion of eq. (5.5) gives an
expression in terms of the Hessian matrix H, gradient∇f and Laplacian∇2f :

∂f

∂t
= g(‖∇f‖)∇2f +

(
g′(‖∇f‖)H∇f‖∇f‖

)
· ∇f

= g(‖∇f‖)∇2f + g′(‖∇f‖)∇f
TH∇f
‖∇f‖ (5.6)

Let η be a unit vector in the direction of the gradient ∇f . Note that ∇fTH∇f/‖∇f‖2 is
the directional 2nd derivative of f in the direction of η, denoted by fηη. Hence eq. (5.6)
can be re-written as:

∂f

∂t
= g(‖∇f‖)∇2f + g′(‖∇f‖)‖∇f‖fηη (5.7)

The first term can be considered the isotropic diffusion component and the latter the shock

component of the flow [91]. Further decompositions are indeed possible and will be dis-
cussed in §5.2.1.

The g′ term also allows for backward diffusion, where edges are effectively sharpened
[110]; in the continuous case, this would result in an ill-posed system with a high sensitiv-
ity to gradient [152]. However, the commonly used finite-difference spatial-discretisation
scheme (proposed in [149]) provides a degree of regularisation [102][87], resulting in a
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well-posed system with stable edges within the stability constraints of the chosen temporal
discretisation.

The function g (known as a stopping function or diffusivity function) takes the form of a
monotonically decreasing function between 0 and 1, and is employed to control the over-
all amount of diffusion as a function of gradient magnitude: diffusion is attenuated in
high-gradient (edge) regions. In the strict terminology of Weickert [87], this constitutes
a locally-constrained isotropic diffusion, rather than pure anisotropic, since g is a scalar
function and not a diffusion tensor. For the purposes of this document, the term nonlinear

diffusion will be used to generally refer to Perona-Malik and other nonlinear diffusion
PDE-based systems. Diffusion tensor-based and orthogonal-component 2nd order geo-
metric flows will be termed anisotropic diffusion.

Details of stopping function g

The requirements for g(‖∇f‖) are such that is should:

• Allow isotropic smoothing in near-homogeneous or intra-feature regions (low gra-
dient).

• Constrain smoothing in edge or feature-boundary regions (high gradient).

• Consist of a smooth monotonically decreasing step-like function with g(0) = 1.

Perona and Malik proposed two possible forms for g:

g(‖∇f‖) = e−(‖∇f‖/|K)2 (5.8)

and
g(‖∇f‖) =

1

1 +
(‖∇f‖

K

)2 (5.9)

where K in both cases is a parameter, with K > 0.

Figure (5.2) depict the two variants of g as specified by Perona and Malik; figure (5.3)
shows how the derivatives of both forms have a large negative minimum for a specific
input of ‖∇f‖: this can result in shocks via backward diffusion (consider eq.(5.7)) and
is responsible for the edge-sharpening/enhancing effects and stairstep artifacts seen in the
evolution of the Perona-Malik PDE.
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Figure 5.2: Stopping functions g(‖∇f‖) for various values of parameter K. Left and right subfigures
represent equations (5.8) and (5.9) respectively.
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Figure 5.3: g′(‖∇f‖) for both variants of stopping function; large negative values can result in reverse
diffusion and shock formation.

A comparison of results produced by 2D Perona-Malik diffusion and isotropic Gaussian
smoothing can be seen in figure (5.4): note how the edge-regions in the Perona-Malik
case are not only preserved, but undergo a degree of sharpening due to the g′ component.
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Figure 5.4: Comparison of Perona-Malik diffusion (with stopping function defined in eq.(5.8)) and stan-
dard Gaussian smoothing in the context of a 2D CT-slice image. Left to right: original, Gaussian-smoothed,
Perona-Malik smoothed. Source: Paul Ross.

Decomposition of diffusion into orthogonal components

Consider eq.(5.7) again: Alvarez et al. [153] (also Carmona et al. [10] and Didas, We-
ickert [110]) further expand on this by decomposing the Perona-Malik diffusion into two
orthogonal directions: in the direction of the gradient, and its perpendicular, by consider-
ing directional second derivatives fηη and fξξ respectively:

fηη =
∇fTH∇f
‖∇f‖2

(5.10)

fξξ =
(∇f⊥)TH∇f⊥
‖∇f‖2

(5.11)

Expanding eqs. (5.10) and (5.11) gives:

fηη =
fxxf

2
y + 2fxfyfxy + fyyf

2
x

f 2
x + f 2

y

(5.12)

fξξ =
fxxf

2
y − 2fxfyfxy + fyyf

2
x

f 2
x + f 2

y

(5.13)

Adding eqs. (5.12) and (5.13):

fξξ + fηη =
fxx(f

2
x + f 2

y ) + fyy(f
2
x + f 2

y )

f 2
x + f 2

y

= fxx + fyy

= ∇2f (5.14)
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i.e. the sum of these orthogonal directional second derivatives is equal to the Laplacian§.

Hence, eq. (5.7) can be expressed as:

∂f

∂t
= g(‖∇f‖)(fηη + fξξ) + g′(‖∇f‖)‖∇f‖fηη

= g(‖∇f‖)fξξ +
(
g(‖∇f‖) + g′(‖∇f‖)‖∇f‖

)
fηη (5.15)

Generalised adaptive smoothing using orthogonal components: towards an effective
3D filter formulation

Considering eq. (5.14), isotropic diffusion (eq.(5.3)) can be expressed as:

∂f

∂t
= c(fηη + fξξ) (5.16)

where c is a scalar constant.

The anisotropic extension of eq.(5.16) allows for separate control of diffusion in both
gradient and isophote directions; this forms the basis for the general case of orthogonal-
component diffusion for adaptive smoothing, as described by Carmona et. al [10]. This
PDE (eq.(5.17)) is no longer of the Perona-Malik type and is considered a more general
class of nonlinear diffusion equation; indeed, it is potentially (given suitable parameters)
truly anisotropic (using Weickert’s definition)[87] for a 6= b, albeit without explicit use of
a diffusion tensor.

∂f

∂t
= c(afηη + bfξξ) (5.17)

where c, a and b are scalar-valued functions.

5.2.2 Nonlinear diffusion: extension to 3D

Perona-Malik

Gerig et al. [150] demonstrated that the Perona-Malik diffusion process can be extended
to 3D datasets; the practicalities of implementing such an extension are relatively trivial.

The Perona-Malik equation (5.7) is applicable to both 2D and 3D scalar fields: this equa-
tion specifies an isotropic diffusion component in terms of the Laplacian∇2f and a shock

§More generally, it can be shown that for f : IRn 7→ IR, the sum of any nmutually-orthogonal directional
second derivatives forming a basis for IRn is equal to∇2f , i.e. the Laplacian is rotationally invariant.
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component in terms of the second derivative fηη in the direction of the gradient vector
[91].

For f : IR3 7→ IR:

∂f

∂t
= g(‖∇f‖)∇2f + g′(‖∇f‖)‖∇f‖fηη

= g(‖∇f‖)(fxx + fyy + fzz) + g′(‖∇f‖)‖∇f‖fηη (5.18)

Note that the sum of the second derivatives in the direction of any set of mutually or-
thogonal basis vectors in IR3 is equal to the Laplacian (due to its property of rotational
invariance). Hence:

∂f

∂t
= g(‖∇f‖)(fe1e1 + fe2e2 + fηη) + g′(‖∇f‖)‖∇f‖fηη (5.19)

where vectors e1 and e2 are any two orthogonal basis vectors spanning the tangent plane,
and fe1e1 and fe2e2 are the 2nd derivatives in their respective directions. Since η is orthog-
onal to the tangent plane, {e1, e2, η} forms a basis for IR3.

Rearranging (similar to eq.(5.15) for the 2D case):

∂f

∂t
= g(‖∇f‖)(fe1e1 + fe2e2) +

(
g(‖∇f‖) + g′(‖∇f‖)‖∇f‖

)
fηη (5.20)

From eq.(5.20), it can be observed that smoothing is performed isotropically in the tangent
plane, with an additional shock component in the direction of the gradient vector.

Limitations

Isophote-direction smoothing in the 2D case of Perona-Malik diffusion is effective at
preserving features, since the features boundaries tend to be defined by isophotes. In
the 3D case, the equivalent component of the Perona Malik equation was shown to per-
form isotropic smoothing across the tangent-plane at points on any given isosurface (see
eq.(5.20)). Furthermore, as with the 2D case, the Perona-Malik has a diffusion component
in the gradient direction (see eq.(5.7)); i.e. it is not strictly confined to directions orthog-
onal to it. Indeed, an additional potential consequence is the tendency to form stepping
artifacts (see figs.(5.5), (5.6)): these are a result of the g′ term in the decomposition seen
in eq.(5.7). Large negative values for g′ can produce a shock effect through reverse diffu-
sion (via negative values for the normal component: see eq.(5.20) and fig.(5.3)). See also
[153][84][154].

In the context of 2D images, edge regions (regions of high gradient) constitute feature
boundaries. In 3D datasets however, feature delineation is often defined by regions of
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high curvature within a given isosurface [106][155], rather than at high-gradient bound-
aries across isosurfaces (although both may be a factor in certain cases). Hence Perona-
Malik diffusion may not be sufficient to effectively preserve feature detail in 3D; true
feature-preserving smoothing will require diffusion along lines of curvature on any given
isosurface. Indeed, Tasdizen et al. [106] describe a method which may be considered a
true volumetric analogue of Perona-Malik diffusion with its inherent feature-enhancing
properties: they utilise 4th order geometric flows. However, 2nd order geometric flows
are sufficient to address the issue of feature preservation; this is the approach taken by
Krissian et al. [9] by way of Carmona et al. [10] and is further explored by Hossain and
Möller in [8].

Hence, the directional orthogonal-component formulation in [10](see eq.(5.15)) suggests
one possible solution to these issues: extend this 2D diffusion PDE to the 3D case with
diffusion performed along three separately controllable orthogonal directions. This is
indeed the approach taken by Hossain and Möller in [8] and will be discussed further in
§5.4.

Results

Two datasets were volumetrically filtered using 3D Perona-Malik diffusion for ten iter-
ations (with K = 0.37): the project-reference ultrasound ‘babyface’ dataset, and the
standard engine cylinder-head CT dataset. The results were rendered using Style Transfer
Functions, using a shading map chosen for maximum noise and artifact highlighting, and
appropriate rendering style. Moreover, note that curvature-based shading is employed
throughout: this greatly amplifies the visual presence of any artifacts or noise. In both
examples, stopping function g(‖∇f‖) = 1/(1 + (‖∇f‖

K
)2) was used.

The Perona-Malik results are presented in comparison to those achieved using standard
isotropic Gaussian smoothing. In both Perona-Malik cases, there is less smoothing across
feature boundaries, but clear stepping artifacts can be observed.

Figure 5.5: Pronounced step artifacts from 10 iterations of the 3D Perona-Malik diffusion process in
an obstetric ultrasound volumetric dataset. Left-Right: original unfiltered volume; Gaussian-smoothed
volume; Perona-Malik smoothed volume. Source: Paul Ross.
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Figure 5.6: Pronounced step artifacts from 10 iterations of the 3D Perona-Malik diffusion process in
the engine test dataset. Left-Right: original unfiltered volume; Gaussian-smoothed volume; Perona-Malik
smoothed volume. Source: Paul Ross.

3D Anisotropic diffusion

Tasdizen et al. [106][155] stipulate a minimum requirement of 2nd order differential
properties for geometric flows for effective feature preservation in a volumetric filtering
context: geometric flows using curvature will be discussed in §5.3 and will form the basis
for an improved filtering method developed from a 3D extension to the directional 2nd
derivatives form of the general anisotropic diffusion equation (eq.(5.17)).

5.2.3 Bilateral filtering (neighbourhood filter)

An alternative non-iterative methodology for performing feature-preserving smoothing
can be formulated by imposing constraints on an otherwise isotropic neighbourhood-
averaging filter. Tomasi and Manduchi describe such an approach in [7], and term their
method a Bilateral filter, due to its two components: the isotropic smoothing function, and
a penalising function which attenuates the action of the isotropic filter where required.

The most common implementation consists of a standard isotropic Gaussian smoothing
filter (effectively a Gaussian function of the difference in position in the local neigh-
bourhood from the current pixel being averaged, and thus known as the domain compo-

nent), penalised by a second Gaussian function of the difference in intensity from the
current pixel (the range component). Thus isotropic smoothing can be limited to near-
homogeneous regions; smoothing is thus not performed across edges, i.e. areas of high
intensity difference (gradient).

Generally, (in n-dimensions) for each pixel position x in input image (or scalar field) f
and output fout, with filter-kernel spatial-domain Ω:

fout(x) =
1

W

∑
xi∈Ω

f(xi)gσd(‖xi − x‖)gσr(‖f(xi)− f(x)‖) (5.21)
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where

gσd(‖xi − x‖) = e
− ‖xi−x‖2

2σ2
d (5.22)

gσr(‖f(xi)− f(x)‖) = e
− ‖f(xi)−f(x)‖

2σ2r (5.23)

are Gaussian functions of standard-deviation σd and σr respectively. 1
W

is the normalisa-
tion factor, with

W =
∑
xi∈Ω

gσd(‖xi − x‖)gσr(‖f(xi)− f(x)‖) (5.24)

‖xi−x‖ represents the Euclidean distance (denote by d1) between the centre sample point
and those in the local neighbourhood (filter kernel); gσd(d1) is the domain component.

‖f(xi) − f(x)‖ is the photometric distance (denote by d2) between the centre sample
point and those in the local neighbourhood (filter kernel), i.e. the difference in intensity.
gσr(d2) is the range component of the bilateral filter.

The bilateral filter kernel can be visualised as a truncated isotropic kernel, where at-
tenuation occurs across a region of high gradient (an edge). Figure (5.7) illustrates the
process of applying a neighbourhood weighted-averaging filtering operation using a bi-
lateral filter-kernel on a noisy step-function defined over a 2D domain (represented as a
heightmap). Note that the middle image depicts the kernel as computed and applied over
the upper part of the step function, such that the original function values on the lower step
have little influence on the filtered values in the upper step. When computing filtered val-
ues on the lower step, the kernel would appear flipped across the step line (with reference
to the middle image). Thus the filtering operation can produce piecewise-homogeneous
regions delineated by high-gradient edges (see fig.(5.8)).

(a) (b) (c)

Figure 1: (a) A 100-gray-level step perturbed by Gaussian noise with gray levels. (b) Combined similarity weights x f f x for a
neighborhood centered two pixels to the right of the step in (a). The range component effectively suppresses the pixels on the dark side. (c) The

step in (a) after bilateral filtering with gray levels and pixels.

2.1 Example: the Gaussian Case
A simple and important case of bilateral filtering is

shift-invariant Gaussian filtering, in which both the close-
ness function x and the similarity function f are
Gaussian functions of the Euclidean distance between their
arguments. More specifically, is radially symmetric

x

where
x x x

is the Euclidean distance between and x. The similarity
function is perfectly analogous to :

x

where
f f f

is a suitable measure of distance between the two intensity
values and f. In the scalar case, this may be simply the
absolute difference of the pixel difference or, since noise
increases with image intensity, an intensity-dependent ver-
sion of it. A particularly interesting example for the vector
case is given in section 5.
The geometric spread in the domain is chosen based

on the desired amount of low-pass filtering. A large
blurs more, that is, it combines values from more distant
image locations. Also, if an image is scaled up or down,
must be adjusted accordingly in order to obtain equivalent
results. Similarly, the photometric spread in the image
range is set to achieve the desired amount of combination
of pixel values. Loosely speaking, pixels with values much
closer to each other than are mixed together and values
much more distant than are not. If the image is amplified
or attenuated, must be adjusted accordingly in order to
leave the results unchanged.
Just as this form of domain filtering is shift-invariant,

the Gaussian range filter introduced above is insensitive to
overall additive changes of image intensity, and is therefore

unbiased: if filtering f x producesh x , then the samefilter
applied to f x a yields h x a, since f a f x
a f a f x a f f x . Of course,
the range filter is shift-invariant as well, as can be easily
verified from expressions (3) and (4).

3 Range Versus Bilateral Filtering
In the previous sectionwe combined range filteringwith

domain filtering to produce bilateral filters. We now show
that this combination is essential. For notational simplicity,
we limit our discussion to black-and-white images, but
analogous results apply to multiband images as well. The
main point of this section is that range filtering by itself
merely modifies the gray map of the image it is applied to.
This is a direct consequence of the fact that a range filter
has no notion of space.
Let be the frequency distribution of gray levels in

the input image. In the discrete case, is the gray level
histogram: is typically an integer between and , and

is the fraction of image pixels that have a gray value
of . In the continuous case, is the fraction of
image area whose gray values are between and .
For notational consistency, we continue our discussion in
the continuous case, as in the previous section.
Simple manipulation, omitted for lack of space, shows

that expressions (3) and (4) for the range filter can be com-
bined into the following:

(7)

where

independently of the position x. Equation (7) shows range
filtering to be a simple transformation of gray levels. The
mapping kernel is a density function, in the sense
that it is nonnegative and has unit integral. It is equal
to the histogram weighted by the similarity function
centered at and normalized to unit area. Since is

Figure 5.7: Bilateral filter kernel (centre): essentially an attenuated Gaussian kernel. L-R: step function
with added noise; bilateral filter kernel, filtered output. Figure from Tomasi,Manduchi [7].

Most discussions of the bilateral filter in the current literature focus on a 2D image-
processing context. A component-explicit form of (5.21) that can be translated directly to
code can be expressed as:
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fout =
1

W

r∑
i=−r

r∑
j=−r

f(xi, yj)gσd(d1)gσr(d2) (5.25)

with

gσd(d1) = e−
‖xi−x‖

2+‖yj−y‖
2

2σ2 (5.26)

gσr(d2) = e−
‖f(xi,yj)−f(x,y)‖

2

2σ2 (5.27)

Figure 5.8: Comparison of bilateral-filter and standard Gaussian smoothing in the context of a 2D CT-slice
image. Left to right: original, Gaussian-smoothed, bilateral-filtered image. Source: Paul Ross.

Possible advantages

The bilateral filter was conceived as a non-iterative method: a large spatial support re-
places the requirement for multiple iterations of a PDE with a five-point stencil for 2D
spatial discretisation ¶

This may offer advantages over iterative PDE-based method in some circumstances, albeit
with some caveats:

• A bilateral filter with a large kernel has a larger spatial support than a PDE stencil:
PDE’s cannot diffuse across edges whilst keeping the edges intact [69]. This can
provide a more reliable solution for some applications (e.g. HDR lighting [70]),
but may be of less consequence for noise reduction applications. Moreover, filter
kernels with a large radius replace the requirement for multiple iterations at radius 1
(as in the case of PDE-based diffusion); due to the time-complexity of full-support
non-separable filters (O(N4) for an N2 image), there may be a poorer performance
overall with regards to execution time unless an optimised approximation is used.

¶Note: a 2D nine-point stencil can be considered equivalent to a neighbourhood averaging filter of radius
one with a specific set of weights.
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• Bilateral filters are less prone to stairstep artifacts than Perona-Malik-based PDE
methods [70]. Results in fig.(5.10) concur with this; multiple iterations however
can result in the formation of such artifacts (see fig.(5.11)).

• Whilst the full-support one-iteration bilateral filter is relatively slow, there is the
potential for a performance gain over iterative methods using an optimised approx-
imation. Examples of different approaches can be found in [156],[73],[75],[76].
Note that simple truncation of the filter kernel (i.e. reduction of the radius) will
significantly reduce the execution time: this will reduce the spatial support but is
usually sufficient for noise-reduction purposes [69].

Disadvantages

The primary disadvantage of the bilateral filter is its poor performance with regard to
speed of execution. Since the filter kernels are nonlinear and shift-invariant, it is not
possible to employ the same optimisation methods that are appropriate for the Gaussian
smoothing (separable kernels without resultant artifacts, frequency-domain processing).
This is of particular significance when extending the bilateral filter to a 3D volumetric
context (O(N6) for an N3 volume). However, as mentioned above, it should be noted that
several optimised approximations do exist.

Extension to 3D

Extending the bilateral filter to 3D is a simple process [77]. Equation (5.28) is a component-
explicit depiction of eq.(5.21) which translates directly to a triple-loop construction when
realised in code. For a filter kernel of radius r from the

fout =
1

W

r∑
i=−r

r∑
j=−r

r∑
k=−r

f(xi, yj, zk)gσd(d1)gσr(d2) (5.28)

where,

gσd(d1) = e
−
‖xi−x‖

2+‖yj−y‖
2+‖zk−z‖

2

2σ2
d (5.29)

gσr(d2) = e
−
‖f(xi,yj ,zk)−f(x,y,z)‖

2

2σ2r (5.30)

(5.31)

1
W

is the normalizing factor, with:

W =
r∑

i=−r

r∑
j=−r

r∑
k=−r

gσd(d1)gσr(d2) (5.32)
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For cubic datasets of size N3 voxels with cubic kernels of size n3 (or radius r, such that
n = 2r+1, where n is the per-dimension size), the computational complexity isO(N3n3).

Method

The obstetric ultrasound ‘babyface’ dataset was again used for a series of tests using the
bilateral filter in order to evaluate the balance of noise reduction and feature preservation
for a given set of parameters. The eye region (specifically the eyelid line) provides a
good visual indicator of the feature-preserving properties of the filter. The forehead area
is particularly troublesome for noise: a filter which offers greater preservation of features
such as the eyelid line tends to suffer from greater noise in the forehead region; conversely,
greater noise suppression in the forehead region usually results in a degradation of feature-
preservation in the eyelid region. The ultimate goal of filter construction seeks to maintain
features such as the eyelid line whilst maximally suppressing noise in large areas such as
the forehead.

There are three distinct objectives in this section:

• To evaluate the effect of the range function on feature preservation and noise sup-
pression. Moreover, a comparison with Perona-Malik diffusion is performed.

• To observe the filter’s efficacy and any potential artifacts when the iteration count
is greater than one.

• To determine an optimum filter radius for a truncated kernel; optimised approxima-
tions of the bilateral filter are not considered at this stage.

Results

For the first objective above, one iteration of the bilateral filter (with σd = 1.6, radius 3)
was performed for various values of σr in the range function; the effect of the attenuating
range function can be observed in fig.(5.9).
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(a) Gaussian σ = 1.6 (b) Bilateral σd = 1.6, σr = 0.6. (c) Bilateral σd = 1.6, σr = 0.4.

Figure 5.9: Effect of the attenuating range-component of the bilateral filter on feature-preservation. All
images feature volumetric filters with a spatial Gaussian component of σd = 1.6 (the first is a standard
Gaussian filter). The bilateral-filtered images (middle and right) introduce the attenuating range component
with various values for σr. Note the increasing detail in the eyelid region at the expense of some noise
reduction in the forehead area. Source: Paul Ross.

According to Durand and Dorsey [70], the one-iteration bilateral filter is less prone to step
artifacts than the (multi-iteration) Perona-Malik diffusion process. This can be observed in
figure (5.10), where several degrees of filtering using each method are presented together:
the parameters for each were chosen to produce a similar level of feature-preservation
across the two different methods. Stair-step artifacts can clearly be seen in the Perona-
Malik case as the level of feature-preservation increases; the bilateral filter has much less
pronounced stepping for a given feature-preservation level.

The bilateral filter was originally suggested as a one-iteration method, where a similar
level of smoothing to multi-iteration diffusion PDEs is achieved through one iteration with
increased filter support, rather than a large iteration count; however, the shock-derived
edge-enhancement effects are visibly reduced in comparison with Perona-Malik diffusion
(compare figures (5.8) and (5.4)).

In addition, the bilateral filter can be used with multiple iterations (and smaller support) as
described in [69]. However, increasing the iteration count of the bilateral filter can produce
severe stepping artifacts, as can be observed in fig.(5.11); in this case, two iterations were
performed for a range of σr values. Truncation of the spatial support for kernels with
smaller σd is a trivial optimisation step for the one-iteration case and produces results with
very little difference visually from full-support kernels (for obvious reasons); moreover,
restricting to one iteration minimises the potential to form stepping artifacts.
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Figure 5.10: Comparison of Perona-Malik anisotropic diffusion and the bilateral filter for similar levels of
feature-preservation (see eyelid line). Top row: Perona-Malik for 15 iterations, λ = 1

6 . L-R:k = 0.7,k =
0.5,k = 0.3. Bottom row: bilateral filter with σd = 1.6. L-R:σr = 0.6, σr = 0.4, σr = 0.2. Note the
stair-step artifacts in the Perona-Malik examples. Source: Paul Ross.

(a) σr = 0.4. (b) σr = 0.3. (c) σr = 0.2.

Figure 5.11: Two iterations of the bilateral filter with σd = 1.6; note that stair-step artifacts are much more
prominent here than with one iteration. Source: Paul Ross.

Conclusion

The one-iteration bilateral filter offers an improvement over Perona-Malik diffusion for
volumetric smoothing as it is significantly less prone to stepping artifacts for a given level
of feature preservation. However, it is significantly slower for large filter radii (supports),
due to a time-complexity of O(N3n3): a trivial appropriate truncation of the spatial sup-
port (e.g. for kernels with σd 1.5, truncate to a radius of 3) offers significant speedup
whilst maintaining a visually near-identical level of efficacy. Large kernel supports (with
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large σd values) are not practical in a 3D context from a performance perspective unless
an optimised approximation approx is used.

Overall the bilateral filter, whilst suffering from less artifacts than the Perona-Malik pro-
cess, still produces an unsatisfactory tradeoff between noise suppression and feature-
preservation. In the ‘babyface’ dataset, there remains significant noise in the forehead
area for a reasonable level of feature preservation (where the eyelid line can still be
seen). Hence, whilst time-performance optimised versions do exist [156][73][75][76],
they won’t be considered further here; an alternative filtering approach will be developed
instead.

5.3 Curvature-based PDE filters

As previously noted in §5.2.2, true feature-preserving smoothing in a volumetric context
will require consideration of 2nd order differential features [155], as feature boundaries
are delineated by regions of high curvature within an isosurface. One of the simplest
forms of a second order geometric flow is mean curvature flow or mean curvature motion

(MCM) [157][110] (see eq.(5.33)). Whilst MCM can effectively smooth isosurfaces (it is
a locally tangent-plane-isotropic nonlinear diffusion process), it has the additional prop-
erty of shrinking isosurfaces within the volume by minimisation of surface area. Convex
shapes are reduced to spherical structures as the flow evolves; these decrease in volume in
the evolving system. For such features, the effect is similar to Gaussian smoothing [104],
but non-convex features may split apart [157]. Thus MCM as a stand-alone approach
is not effective for feature preservation; it should be noted however that it is equivalent
to the general component-wise diffusion PDE (eq.(5.38)) with a specific setting of pa-
rameters [110]. This is of some significance when attempting to formulate an improved
feature-preserving PDE-based method. Such an anisotropy-dependent modified-MCM
PDE forms the basis for the method introduced by Hossain and Möller [8] and will be dis-
cussed in §5.4; further constraints will add conditional isotropic mean curvature motion
for a greater range of local isosurface-feature anisotropies: this will be crucial in the de-
velopment of a novel PDE-based smoothing method which attempts to optimally balance
feature preservation and noise suppression.

5.3.1 Mean curvature motion

Mean curvature motion is arguably the simplest case with which to introduce 2nd order
geometric flows. Volumes are isotropically smoothed tangentially to their isosurfaces and
contract in the direction of the gradient.
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Considering mean curvature at a given point on an isosurface as a measure of the diver-
gence of the surface normal, the motion can be described by:

∂f

∂t
= ‖∇f‖div(n) (5.33)

Using the sign convention detailed in §4.4:

∂f

∂t
= −‖∇f‖div

(
∇f
‖∇f‖

)
(5.34)

Expressed in terms of curvature (ignoring a scalar factor of 0.5):

∂f

∂t
= −‖∇f‖(κ1 + κ2) (5.35)

This form is of particular importance when considering local-anisotropy-aware diffusion
processes in §5.4.

5.3.2 Weighted curvature motion

Whitaker [93] describes a method for smoothing isosurfaces based on a weighted sum
of principal curvatures (essentially the normalised product of the Gaussian and mean
curvatures). The aim is to smooth in the direction of least curvature in order to pre-
serve anisotropic features such as tubular structures (e.g. vessels) or isosurface feature-
boundaries (e.g. around the eye and nose in foetal ultrasound imaging).

Replacing the mean curvature κ1 + κ2 with κw:

∂f

∂t
= −‖∇f‖κw (5.36)

with κw defined as:

κw =
(κ1 + κ2)κ1κ2

κ2
1 + κ2

2

(5.37)

for κ2
1 + κ2

2 6= 0.

This method is highly effective at preserving anisotropic feature detail (and thus features
delineated by anisotropic boundaries) and tubular structures: see figure (5.12) for a com-
parison with mean curvature motion; however, some residual noise remains in the form of
anisotropic bumps and creases. The results are similar to those produced by Hossain and
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Figure 5.12: Left-Right:Gaussian smoothing, mean-curvature motion, weighted curvature motion. Note
that the weighted example has a small degree of Gaussian pre-smoothing regularization. Source: Paul Ross.

Möller’s curvature-based anisotropic diffusion method [8] discussed in the forthcoming
§5.4.

Since surface noise tends to be less defined and of lower curvature than the distinctive
feature-boundary regions, this suggests a potential solution to the problem of residual
noise: smoothing regions of lower curvature isotropically using a selective mean curvature
motion based on curvature magnitude. Indeed, such a method is proposed in §5.5 as an
extension to [8].

5.3.3 Other curvature flows

Malladi and Sethian [100] describe flows using other curvature metrics, such as minimum
and maximum principal curvatures themselves, or a combination thereof. Their method
involves selecting either a minimum or maximum curvature flow dependent on local sur-
face properties, in order to smooth out local perturbations whilst preserving overall shape.
This objective is concurrent with those here; indeed a similar thresholding approach will
form a crucial component of the new method described in the forthcoming §5.5.1.

As previously mentioned in §5.2.2, Tasdizen et. al [106] describe a method which extends
the feature-sharpening characteristics of the 2D Perona-Malik nonlinear diffusion process
into a 3D context using 4th order geometric flows (via a system of two 2nd order PDEs);
it is in effect a true generalisation of Perona-malik to 3D volumes. Clarenz et al. [104] use
a diffusion tensor derived from the shape operator in their implementation of anisotropic
diffusion using geometric flows.

Consideration of 2nd order geometric flows via a 3D extension to the generalised orthog-
onal directional-derivatives component-wise anisotropic diffusion equation (eq.(5.17)) is
the approach taken by Hossain and Möller in their formulation of a 3D anisotropic diffu-
sion PDE [8].
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5.4 The Hossain-Möller anisotropic diffusion filter

Anisotropic features such as salient-feature boundaries on isosurfaces and tubular struc-
tures can be preserved by smoothing along the direction of least curvature (by magnitude):
an early example was proposed by Whitaker [93] (see eqs.(5.36,5.37)).

For the purposes of describing the anisotropy of isosurface features, the absolute values
of the principal curvatures are required, since these do not change with respect to orien-
tation. Both convex and concave features will be equivalent in this regard: it is only their
anisotropy that is of interest in the context of smoothing. Note that this differs from the
shading context where minimum and maximum principal curvatures are used directly for
shading modulation, and thus a distinction made for convex and concave features.

The direction of least curvature (by magnitude) is along the direction of κmin, where
κmin = min{‖κ1‖, ‖κ2‖}, with κ1, κ2 the principal curvatures, defined (as before in §4.4)
with κ1 ≥ κ2. Similarly, κmax = max{‖κ1‖, ‖κ2‖}. Note that ‖κmin‖ ≤ ‖κmax‖ always.

The generalised anisotropic diffusion equation (5.17) as described by Carmona et al. can
be extended to 3D scalar fields.

∂f

∂t
= d(afηη + bfe1e1 + cfe2e2) (5.38)

with {η, e1, e2} forming an orthonormal basis in IR3, and fηη, fe1e1 and fe2e2 the 2nd
derivatives in the respective directions.

This allows control of diffusion in separate orthogonal directions: choosing a suitable ba-
sis is fundamental to obtaining an optimal diffusion scheme for salient feature preservation
on embedded isosurfaces in IR3. Recall from §4.4 that the principal curvature direction
vectors and surface normal at any given point on the isosurface are mutually orthogonal:
selecting this as the basis for the general anisotropic diffusion scheme allows for control
of diffusion along curvature directions. Moreover, it allows diffusion to be directed pri-
marily along the direction of minimum (by magnitude) principal curvature; this is a key
requirement for feature-preservation on isosurfaces in 3D (e.g. tubular structures, facial
feature-boundaries).

Krissian et al. [9] discuss such a method. Generally, these anisotropic diffusion schemes
can be described by:

∂f

∂t
= d(afnn + bfrminrmin + cfrmaxrmax) (5.39)

where a, b, c and d represent scalar-valued functions or constants. Note that {n, rmin, rmax}
forms an orthonormal basis in IR3, where n, rmin and rmax represent the unit surface
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normal, minimum and maximum principal curvature (by magnitude) direction vectors re-
spectively. Furthermore, observe that n = −η, following the sign convention outlined in
§4.4.

Hossain and Möller [8] present such a diffusion scheme, in which diffusion is always per-
formed along the direction of minimum curvature by magnitude. In addition, they propose
an overall stopping function based on one of the Perona Malik diffusivity functions, but
using the second derivative in the normal direction in lieu of gradient magnitude. Zero-
crossings of fnn denote boundaries between homogeneous regions in the volume (similar
to edges in the 2D case), and thus overall diffusion can be limited around these regions.

The properties of their PDE can be summarised thus:

1. control of overall diffusion through use of a Perona-Malik stopping function of fnn
to constrain flow near homogeneous-region boundaries.

2. performing smoothing on embedded isosurfaces along the direction (rmin) of least
curvature by magnitude (κmin), based on local anisotropy (computed using the ratio
of κmin to κmax); note that isotropic features (including isotropic noise-based arti-
facts) are thus smoothed isotropically. Smoothing is always performed along the
direction of rmin; smoothing is performed in the direction of rmax in proportion to
local anisotropy.

3. limiting smoothing across isosurfaces (i.e. smoothing in the direction of the surface
normal).

The 2nd and 3rd properties are of fundamental importance to feature-preservation whilst
maximising the suppression of noise; however, the 1st is of less significance in the case
of single-isosurface rendering such as obstetric ultrasound, since features tend to be de-
fined and delineated by lines of curvature on isosurfaces (i.e. feature boundaries are often
regions of high anisotropy and curvature such as ridges and valleys) rather than by inter-
volume region boundaries in this context [106]. However, some surface feature detail may
be lost if surfaces contract under a locally isotropic flow, so careful adjustment of overall
diffusion on isosurface boundaries via property 1 is often desirable: note that too much
restriction will limit any anisotropic smoothing specified by property 2.

The Hossain-Möller PDE is thus given by:

∂f

∂t
= h(fnn)(ζfnn + frminrmin + τfrmaxrmax) (5.40)

with h(fnn) ∈ [0, 1], τ ∈ [0, 1] and ζ = 0 to fulfil properties 1, 2 and 3 above respectively.

Recall that the curvature along direction v is the normalised directional 2nd derivative in
that direction (see §4.4, also [9]).
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κv = − 1

‖∇f‖fvv (5.41)

Note that the negative sign is a consequence of the convention outlined in §4.4 previously.

Hence eq.5.40 (with parameter ζ set to zero) can be expressed in terms of curvature:

∂f

∂t
= −h(fnn)‖∇f‖(κmin + τκmax) (5.42)

Compare with mean curvature motion:

∂f

∂t
= −‖∇f‖(κ1 + κ2) = −‖∇f‖(κmin + κmax) (5.43)

using the definitions of κmin, κmax above.

The Hossain-Möller anisotropic diffusion process is essentially an local-anisotropy-dependent
curvature motion with an overall Perona-Malik-style stopping function (but utilising 2nd
directional derivatives).

Stopping function

Hossain and Möller specified an overall stopping function based on the Perona-Malik
exponential variant (eq.5.8), modified to produce low outputs for input values of fnn close
to zero, i.e. zero-crossings of the 2nd derivative of f in the direction of the isosurface
normal. They argue (in [8]) that low values for fnn can signify isosurface boundaries
irrespective of gradient magnitude, and thus this measure is more appropriate than the
latter in the context of volumetric embedded-isosurfaces. It should be noted that the value
of fnn will also be close to zero in near-homogeneous regions within the volume. For
homogeneous regions this is inconsequential, since no further diffusion is required; for
near-homogeneous regions, the sensitivity parameter σh can be adjusted to obtain the
desired degree of smoothing.

The stopping function h(fnn) is given by:

h(fnn) = 1− e−s(fnn/σh)2 (5.44)

where σh is a parameter controlling the smoothing-attenuation effect of h, such that
h(fnn) ∈ [0, 1]; s is a scaling factor which Hossain and Möller set to ln(0.9).

Thus eq.(5.44) can be re-written as:
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h(fnn) = 1− 0.9(fnn/σh)2 (5.45)

Although not specified in [8], the alternative Perona-Malik stopping-function can be sub-
stituted when similarly modified:

h(fnn) = 1− 1

1 + s
(
fnn
σh

)2 (5.46)

Again, the parameter σh controls the attenuating effect of h on overall smoothing, and s
is a chosen scaling factor.

Figure (5.13) depicts stopping functions h(fnn) for equations (5.44) and (5.46) respec-
tively for various values of parameter σh.
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Figure 5.13: Stopping functions h(fnn) for various values of parameter σ. Left and right subfigures
represent equations (5.44) and (5.46) respectively with s = 1.

The original exponential variant of h (eq.(5.45) as presented in [8]) will be used exclu-
sively for all implementations of the PDE in this document.

Anisotropy function

The anisotropy function, denoted by τ is fundamental to the feature-preserving charac-
teristics of Hossain-Möller diffusion. In the absence of stopping function h, the sole
difference between mean curvature motion and Hossain-Möller’s PDE is the inclusion of
τ as a coefficient of the κmax flow component. τ is a curvature-based measure of local
anisotropy (within a small neighbourhood) and is used to direct flow accordingly. Note
that overall, τ ∈ [0, 1]. Setting τ to zero corresponds to minimum-curvature flow; τ = 1

corresponds to isotropic mean curvature motion.
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τ is defined as follows:

τ =


(
κmin
κmax

)2λ

if κmax 6= 0

1 if κmax = 0
(5.47)

where λ is a non-negative integer controlling overall scaling. The factor of two is to ensure
a positive value for τ . Note that τ ∈ [0, 1], since κmin ≥ κmax by definition.

For the purposes of this project, the restriction on λ will be relaxed, so that λ ∈ {IR+ ∪
{0}}, and τ specified as:

τ =


∥∥∥ κminκmax

∥∥∥2λ

if κmax 6= 0

1 if κmax = 0
(5.48)

This allows a much finer control of the anisotropy function, and hence the transition to
full isotropic smoothing; the factor of 2 will be kept for consistency with the original
literature.

Implementation

Volume data samples are obtained using central differences, whilst 1st and 2nd deriva-
tives are computed using cubic splines (using the fast GPU implementation method de-
scribed by Sigg and Hadwiger in [146]). The PDE time-solution f at iteration n + 1 is
approximated using the standard forward-Euler numerical integration method depicted in
eq.(5.49).

fn+1 = fn + ∆t
∂f

∂t

n

(5.49)

In the context of this PDE, the numerical process becomes:

fn+1 = fn −∆t

(
h(fnnn)‖∇fn‖(κnmin + τnκnmax)

)
(5.50)

For implementation specifics (i.e. the relevant GPU compute-kernels), see §A.4. For
stability, ∆t is limited to a value of 0.4 [8]; for the practical implementation here, ∆t is
set to a constant value of 0.3 (small enough to remain accurate and stable with all tested
datasets, yet large enough to allow for good performance. Although allowing larger values
for ∆t, implicit numerical schemes were disregarded for performance reasons due to the
additional complexity of solving a nonlinear system at each iteration.

For higher accuracy, a 4th-order Runge-Kutta (RK4) variant was also implemented. This
improves the solution accuracy at each iteration step but as an explicit method won’t re-
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duce the stability constraints on the timestep ∆t; moreover, the RK4 method requires
more samples, an increase in GPU memory consumption (to hold intermediate volume
data) and a more complicated implementation from a code perspective. Hence perfor-
mance is both slower and requires more GPU-memory than the standard forward-Euler
approach. Visible results were near identical to those obtained by forward-Euler, so the
latter method was used throughout for performance reasons.

Regularisation

In a similar approach to that taken by Catté (in that case, with respect to Perona-Malik
diffusion), Hossain and Möller specify that second derivatives should be computed on a
Gaussian-smoothed version of the original dataset to provide a small amount of regular-
isation. In this project, this regularisation process is slightly altered: prior to the PDE
evolution, the volume is pre-smoothed by a small amount. Hence all samples (dataset val-
ues and derivatives) at the 1st iteration of the PDE are taken from a pre-smoothed dataset,
not just the second derivatives.

This has the following advantages:

• Allows for construction of a more flexible smoothing pipeline, where an initial pre-
smoothing stage can be Gaussian-based or nonlinear (Perona-Malik, bilateral filter
or other), with near-identical results; moreover, the amount of pre-smoothing of
the data can be controlled visually and subsequent PDE-based stages omitted or
constrained depending on requirements.

• A small degree of initial Gaussian smoothing can reduce the level of inherent noise
to that which the secondary smoothing stage (curvature-based) can further process
to ensure smooth isosurfaces with minimal artifacts or excessive MCM-like con-
traction of isosurfaces. The optimum combination may be dataset dependent: i.e.
highly noisy datasets may require a more aggressive Gaussian pre-smoothing stage.

• Dataset sample values are consistent with derivatives potentially providing a more
effective regularisation.

• Only one volume needs to be sampled per iteration during the PDE evolution, re-
ducing the amount of texture-reads required (or code complexity if the Hossain-
Möller/Catté approach is performed on only the first iteration).

5.4.1 Effect of stopping function

As previously discussed, the stopping function h limits the overall diffusion near edge
regions (isosurface boundaries): note that in the context of 3D, this does not correspond
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directly with feature boundaries (as in the 2D case). In the 3D case, lines of curvature
and ridge and valley-like regions of high anisotropy tend to define feature boundaries. For
feature preservation, smoothing must be performed such that the overall shape of such
regions is preserved; the inter-iosurface boundaries (edges) within the volume are of less
significance overall. The stopping function h attenuates overall smoothing in the latter
case: however, smoothing across a particular isosurface (usually across its boundary with
another within the volume) is a fundamental requirement in order to reduce surface noise.

The overall attenuation in such regions should therefore be kept to a minimum; some
may be required however to reduce feature-shrinkage due to mean-curvature-motion in
isotropic regions. Figure (5.14) demonstrates the balance between these conflicting ob-
jectives: as the attenuating effect of h is reduced, it can be observed that surface noise is
also reduced correspondingly (5.14a-c). As depicted in figure (5.14d), setting h to 1 (by
setting parameter σh to 0) produces maximum smoothing across the isosurface, but results
in some shrinkage (note the corneal regions). Also note that there is some residual noise
in the forehead region for all values of σh.

(a) Gaussian only. (b) HM σh = 5. (c) HM σh = 2. (d) HM σh = 0.

Figure 5.14: Effect of stopping function h on overall smoothing using the Hossain-Möller PDE (15 iter-
ations, λ = 2). Note that Gaussian pre-smoothing is applied throughout (1 iteration, σ = 0.85). Source:
Paul Ross.

The hybrid style-transfer-function/MPR rendering in figure (5.15) demonstrates the effect
of h on the smoothing of internal noise inside the volume (visible in the MPR regions), in
addition to the smoothing of the isosurface boundary (edge) of the smaller internal sphere.
The degree of preservation of shape required on the latter boundary can be finely tuned by
use of the σh parameter. Again, the appropriate balance of noise reduction and boundary
preservation must be carefully considered on a per-application basis.
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(a) No smoothing (b) HM σh = 3. (c) HM σh = 1. (d) HM σh = 0.

Figure 5.15: Effect of stopping function h on overall smoothing using the Hossain-Möller PDE (50 itera-
tions, λ = 2). No Gaussian pre-smoothing is performed in this example. Rendering is a hybrid of STF and
MPR to illustrate the effect of h on both internal noise and isourface boundaries. Source: Paul Ross.

5.4.2 Effect of anisotropy function

Figure 5.16: 2D scalar-field plot of Hossain-Möller anisotropy function τ (see eq.(5.47)), for λ = 0.5, 1,
2 respectively. Towards-red depicts increasing local isotropy (towards τ = 1). Source: Paul Ross.

Isosurface-feature delineation tends to be defined along lines of surface curvature, particu-
larly ridges and valley-type regions with high local anisotropy (where there is a significant
difference between the values of κmax and κmin). It would be prudent to examine the role
of the anisotropy function τ and its associated parameter λ (see fig.(5.16)) in the Hossain-
Möller anisotropic diffusion process, in order to gain a greater insight to its smoothing
effects on differing feature topologies.

Method

In order to demonstrate the role of the τ on the PDE evolution on regions of varying
anisotropy (in particular the tendency to preserve features with high anisotropy), syn-
thetic datasets with isosurface bumps and pits of varying anisotropy were processed using
40 iterations of the PDE. Note that there is a small amount of Gaussian pre-smoothing
employed to reduce any step artifacts from the voxelisation process (i.e. incurred during
the construction of the datasets). The stopping function h was set to a constant value of 1
for this section in order to concentrate on the effect of τ alone on the smoothing process.
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Consider the synthetic dataset depicted in figures (5.17), (5.18), with bumps and pits of
varying anisotropy respectively. Also depicted (in the rightmost images) are the values of
κmin+τκmax, which represent the unnormalised update to the forward-Euler iteration-step
at iteration n + 1, i.e. for fn+1 = fn + ∆t∂f

∂t

n
, where ∂f

∂t

n
= −‖∇fn‖(κnmin + τnκnmax).

Note that these values become smaller as feature anisotropy increases: hence flow in
regions of high anisotropy is reduced.

Figure 5.17: Left: synthetic dataset with convex surface features (bumps) of varying anisotropy. Right:
associated values for κmin + τκmax (larger values are brighter). Source: Paul Ross.

Figure 5.18: Left: synthetic dataset with concave surface features (pits) of varying anisotropy. Right:
associated values for κmin + τκmax (larger-magnitude negative values are darker). Source: Paul Ross.

Results

Figures (5.19) and (5.20) demonstrate the smoothing effect and associated level of feature
preservation of the Hossain-Möller PDE-based filter on the synthetic datasets depicted
in figures (5.17) and (5.18) respectively; note that although the surface features vary in
anisotropy, ‖κmax‖ is constant for all features. Due to the increased flow in isotropic
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regions, these features (towards the bottom right of each image depiction) undergo an
increased level of smoothing overall compared with more anisotropic features; it can be
observed that the most anisotropic features are preserved. Decreasing the scaling param-
eter λ decreases the tendency to preserve anisotropic features and ultimately results in
mean-curvature-motion for λ = 0.

In the context of the ‘babyface’ dataset (see (5.21)), decreasing λ resulted in a reduc-
tion of residual surface noise at the expense of feature detail; ultimately isotropic mean-
curvature-motion occurs when λ = 0. Careful selection of λ can thus be useful for at-
tempting to procure a balance between level of surface noise and feature-detail retention,
but a modified version of the PDE will be required for an optimum solution (see §5.5).

(a) λ = 8 (b) λ = 1 (c) λ = 0.5 (d) λ = 0

Figure 5.19: Synthetic dataset of bumps with varying anisotropy filtered with the Hossain Möller PDE (the
stopping function h is set to 1 in this case): note that surface bumps with greater anisotropy are preserved
more. Furthermore, the parameter λ controls the granularity of the anisotropy scale over which features
are preserved or eliminated (see fig.(5.16)). The rightmost image depicts the result for λ = 0; this is fully
isotropic smoothing (mean curvature motion: since h = 1, the PDE reduces to eq.(5.35)). Source: Paul
Ross.

(a) λ = 8 (b) λ = 1 (c) λ = 0.5 (d) λ = 0

Figure 5.20: Synthetic dataset of pits with varying anisotropy filtered with the Hossain Möller PDE (the
stopping function h is set to 1 in this case): note that surface pits with greater anisotropy are preserved more.
Again, the parameter λ controls the granularity of the anisotropy scale over which features are preserved or
eliminated (see fig.(5.16)). Source: Paul Ross.
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(a) λ = 2.0 (b) λ = 0.8 (c) λ = 0.5 (d) λ = 0.0

Figure 5.21: Effect of varying the anisotropy function parameter λ for the ‘babyface’ dataset: note that
λ = 0 corresponds to MCM when stopping function h is set to 1; otherwise it is MCM with an overall
Perona-Malik type stopping function. Source: Paul Ross.

5.4.3 Hossain-Möller Anisotropic Diffusion: Conclusion

Hossain and Möller’s PDE is clearly effective at preserving anisotropic features: much
more so than the basic Perona-Malik 3D implementation or the standard bilateral filter.
Moreover, there are little or no stepping artifacts. Combined with an additional regular-
ising Gaussian pre-smoothing stage, full filtering can be performed in as little as 5-10
iterations; the performance is thus very high making this method suitable for realtime
streaming 4D ultrasound applications. Current testing on an Nvidia GTX680 GPU pro-
duced a full-filter execution time of 3ms per-volume.

The visual results are very similar to that of Whitaker [93] (see §5.3.2) for parameter λ ∈
[1, 2] and stopping function h set to a constant value of 1. However, its component-wise
formulation presents opportunities for further refinement in order to tackle the problem
of residual noise (such as that found in the forehead region in the obstetric ultrasound
‘babyface’ dataset.)

In summary:

• Very effective at preserving features with high anisotropy with little or no stepping
artifacts.

• Filtering results are similar to Whitaker [93] for λ ∈ [1, 2], h = 1, but the additional
parameters offer a higher degree of control.

• For high-noise applications such as obstetric ultrasound, the method is most effec-
tive for low values of overall stopping function parameter σh, to facilitate maximum
smoothing across (tangential to) any given isosurface; some feature detail may be
lost but optimal selection of σh can minimise this.

• Still some residual noise, especially for highly noisy ultrasound datasets; a modified
method will be required to address this issue.
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5.5 Proposed solution: anisotropic diffusion with isotropy-
independent selective mean curvature motion.

Whilst Hossain and Möller’s anisotropic diffusion PDE is very effective for preserving
isosurface features defined by (or delineated by) regions of high anisotropy (e.g. ridges
and valleys), there is often residual noise that this method cannot entirely remove. Fig-
ure (5.22) depicts residual noise in various contexts: note the forehead region in the first
image. The ultimate objective is to maximally reduce noise in these regions, whilst pre-
serving the feature boundaries and other regions of high anisotropy.

Figure 5.22: Surface-noise still remaining after 10 iterations of the unmodified Hossain-Möller PDE-based
smoothing process (circled) with σh = 0, i.e. h set to a constant value of 1. Note that all datasets were
pre-smoothed with one iteration of a volumetric Gaussian filter with σ = 0.85. Source: Paul Ross.

I propose to use a selective mean curvature motion based on the curvature magnitude(s);
areas such as the forehead will be smoothed isotropically using MCM, whilst other regions
are smoothed anisotropically using the Hossain Möller PDE via their standard τ function.
The aim is to preserve shape whilst smoothing out small surface perturbations.

The desired behaviour can be achieved by two approaches:

• Thresholding the anisotropy function τ based on a chosen curvature metric so that
a greater range of features are smoothed isotropically than would be suggested by
their local anisotropy. A thresholding-approach based on local differential proper-
ties of the isosurface has been previously employed by Malladi and Sethian [157][100],
but their method involves switching between minimum and maximum curvature
flows based on a thresholded average value of the level set within a specified ra-
dius. My approach computes second order differential properties and flows either
isotropically or anisotropically based on a threshold or one or more of these prop-
erties.

• Modifying the Hossain-Möller anisotropy function τ such that a greater range of
surface-feature anisotropies are smoothed isotropically without the need for a thresh-
old; This aims to provide a similar result to that of thresholding, but avoiding ar-
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tifacts due to discontinuities either side of the threshold for the given curvature
metric. This is under investigation for future publication.

5.5.1 Thresholding the anisotropy function

This form of selective mean curvature motion can be achieved by increasing the scope for
which the anisotropy function τ returns a value of one (signifying isotropic smoothing):
regions whose maximum curvature ‖kmax‖ is less than a given threshold will be smoothed
isotropically.||

This new thresholded anisotropy function τ can be constructed thus:

τ =


∥∥∥ κminκmax

∥∥∥2λ

if ‖κmax‖ ≥ τ -threshold

1 if ‖κmax‖ < τ -threshold
(5.51)

for λ ∈ {IR+ ∪ {0}}.

Results

The selective MCM approach is highly efficient at reducing noise that cannot be removed
by the standard Hossain-Möller (HM) PDE (see figure (5.22)). Surface noise tends to
have less-pronounced curvature than feature-delineating ridges and valley regions, and is
thus effectively suppressed by the action of mean curvature motion under the curvature
threshold (see fig.(5.23)); other regions are filtered using the standard PDE, preserving
regions of high anisotropy (via the standard HM τ function). In addition, compare the
circled regions of figure (5.24) with the same regions in the volumes smoothed using the
standard HM PDE in figure (5.22).

||note that the threshold effect can be achieved using other curvature metrics and norms (e.g. l2 norm
with κmin and κmax).
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Figure 5.23: Left-Right: Gaussian smoothing (1 iteration, σ = 1.5), the standard Hossain-Möller PDE
(10 iterations, λ = 2), the Hossain-Möller PDE modified for selective MCM via thresholding of ‖κmax‖
(10 iterations, λ = 2, τ -threshold = 0.16). Note that the latter two have a small amount of regularizing
Gaussian pre-smoothing applied (σ = 0.85). Source: Paul Ross.

Figure 5.24: Surface noise removed after 10 iterations of the Hossain-Möller PDE with selective MCM
via curvature-thresholding of τ . Note that all datasets were again pre-smoothed with one iteration of a
volumetric Gaussian filter with σ = 0.85. Compare with fig.(5.22). Source: Paul Ross.

The effect of the threshold is illustrated in figure (5.25); Note how the unwanted surface
noise is gradually eliminated as the threshold value for ‖kmax‖ is increased; i.e. as a
greater range of surface is smoothed isotropically using mean curvature motion.

(a) No thresholding. (b) τ -threshold = 0.05 (c) τ -threshold = 0.10 (d) τ -threshold = 0.16

Figure 5.25: Effect of thresholding the anisotropy function τ of the Hossain-Möller PDE using differ-
ent threshold values of ‖κmax‖ (15 iterations, λ = 2). Note that Gaussian pre-smoothing was applied
throughout (1 iteration, σ = 0.85). Source: Paul Ross.

Figure (5.26) demonstrates what is actually occurring within the τ function itself (in this
case, at the 6th iteration, just before the PDE evolution step). The top row colours indi-
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cate the value of τ at all points on the isosurface: blue indicates the smoothing will be
performed with high anisotropy, whilst red signifies isotropic smoothing (i.e. τ = 1).
Increasing the threshold value can be thus be seen to greatly increase the proportion of
the isosurface that is to be smoothed isotropically. Note that facial features are smoothed
anisotropically, as indicated by the blue regions. The bottom row depicts the rendered
result after smoothing with the above threshold values, using the new selective MCM
method (after the 6th iteration step). Similarly, figure (5.27) demonstrates the effect of
altering the threshold value for τ (and hence fully isotropic smoothing).

(a) τ -threshold = 0 (b) τ -threshold = 0.08 (c) τ -threshold = 0.15 (d) τ -threshold = 0.20

Figure 5.26: ‘Babyface’ dataset: effect of increasing τ -threshold for the modified (selective-MCM)
Hossain-Möller anisotropic diffusion PDE. Top row: At iteration 6: colours indicate value for τ , and hence
how isotropic the smoothing will be; red indicates isotropic smoothing, blue indicates anisotropic. Bottom
row: corresponding filtered results after 6 iterations. Source: Paul Ross.
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(a) τ -threshold = 0 (b) τ -threshold = 0.05 (c) τ -threshold = 0.16 (d) τ -threshold = 0.30

Figure 5.27: Engine dataset: Effect of increasing τ -threshold for the modified (selective-MCM) Hossain-
Möller anisotropic diffusion PDE. Top row: At iteration 6: colours indicate value for τ , and hence how
isotropic the smoothing will be; red indicates isotropic smoothing, blue indicates anisotropic. Bottom row:
corresponding filtered results after 6 iterations. Source: Paul Ross.

Figure (5.28) depicts the filtered output for a range of threshold values for ‖κmax‖, with
consideration given to the effect of overall stopping function h (controlled by parameter
σh).
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(a) τ -thresh = 0, σh = 0 (b) τ -thresh = 0, σh = 1 (c) τ -thresh = 0, σh = 2 (d) τ -thresh = 0, σh = 3

(e) τ -thresh = 1.0, σh = 0 (f) τ -thresh = 1.0, σh = 1 (g) τ -thresh = 1.0, σh = 2 (h) τ -thresh = 1.0, σh = 3

(i) τ -thresh = 1.5, σh = 0 (j) τ -thresh = 1.5, σh = 1 (k) τ -thresh = 1.5, σh = 2 (l) τ -thresh = 1.5, σh = 3

(m) τ -thresh = 2.0, σh = 0 (n) τ -thresh = 2.0, σh = 1 (o) τ -thresh = 2.0, σh = 2 (p) τ -thresh = 2.0, σh = 3

(q) τ -thresh = 2.5, σh = 0 (r) τ -thresh = 2.5, σh = 1 (s) τ -thresh = 2.5, σh = 2 (t) τ -thresh = 2.5, σh = 3

Figure 5.28: Results after application of 15 iterations of the modified Hossain-Möller PDE (with thresh-
olded anisotropy function for selective MCM) for various threshold values of ‖κmax‖ and stopping function
parameter σh. A Gaussian pre-smoothing step was applied throughout (1 iteration, σ = 0.85). Source: Paul
Ross.
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Comparison with the bilateral filter

Using global illumination (GI) as the rendering method illustrates the effectiveness of
the combined curvature-shading and selective-MCM anisotropic diffusion filtering in pre-
serving feature detail whilst optimally suppressing unwanted noise. Figures (5.29) and
(5.30) demonstrate the highlighting of noise that occurs with curvature-based shading:
the bilateral filter (left) is ineffective at suppressing this noise; our method is effective at
removing most of this unwanted surface noise, whilst retaining nearly all feature detail.

(a) Bilateral filter (b) Thresholded PDE method.

Figure 5.29: Global illumination ultrasound (GI) rendering of the obstetric hand dataset with additional
curvature-based shading for feature enhancement. Left: Bilateral filter; Right: new PDE-based method.
Source: Paul Ross.

(a) Bilateral filter (b) Thresholded PDE method.

Figure 5.30: Global illumination ultrasound (GI) rendering of the obstetric ‘babyface’ dataset with ad-
ditional curvature-based shading for feature enhancement. Left: Bilateral filter; Right: new PDE-based
method. Source: Paul Ross.
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5.6 Summary of related methods and contribution

At an isosurface level, noise (or other extraneous low-level detail) manifests itself as small
undulations on that isosurface. Mean curvature motion is effective at smoothing such
noise at the expense of feature-preservation. Conversely, Hossain and Möller’s anisotropic
diffusion method is effective at preserving feature detail whilst smoothing, but leaves
some residual noise. This remaining noise can be substantially reduced by combining
the two approaches based on local curvature magnitude, as features are often defined
by highly curved anisotropic regions, whilst noise consists of low-curvature-magnitude
bumps and pits on an given isosurface.

In absence of the stopping function h, the PDE formulations of mean curvature motion and
Hossain and Möller’s anisotropic diffusion PDE differ in one factor only: the coefficient
τ of the κmax component of curvature-based flow. This coefficient denotes the measured
anisotropy in a small neighbourhood around each data sample point and is fundamental in
directing flow along ridge and valley creases, hence preserving feature-detail in feature-
boundary regions (features are usually delineated by ridges and valleys). In MCM, τ is
equal to unity.

The novel contribution involves switching the flow from anisotopic (feature-preserving) to
isotropic (non-feature preserving) dependent on local curvature magnitude; this is easily
achieved by simply setting τ equal to 1 for regions where local curvature magnitude falls
below a desired threshold (user controlled).

Mean Curvature Motion:

∂f

∂t
= −‖∇f‖(κmin + κmax) (5.52)

Hossain-Möller Anisotropic Diffusion (no stopping function h):

∂f

∂t
= −‖∇f‖(κmin + τκmax), τ =


∥∥∥ κminκmax

∥∥∥2λ

if κmax 6= 0

1 if κmax = 0
(5.53)

Hossain-Möller Anisotropic Diffusion with Selective MCM (no stopping function h):

∂f

∂t
= −‖∇f‖(κmin + τκmax), τ =


∥∥∥ κminκmax

∥∥∥2λ

if ‖κmax‖ ≥ τ -threshold

1 if ‖κmax‖ < τ -threshold
(5.54)

for λ ∈ {IR+ ∪ {0}}.
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5.6.1 Final formulation

Note that the following PDE requires that a small degree of Gaussian prefiltering regular-
ization be performed on the initial dataset prior to application.

With the stopping function h included (although this is usually set to 1 for our purposes):

∂f

∂t
= −h(fnn)‖∇f‖(κmin + τκmax), τ =


∥∥∥ κminκmax

∥∥∥2λ

if ‖κmax‖ ≥ τ -threshold

1 if ‖κmax‖ < τ -threshold

(5.55)

for λ ∈ {IR+ ∪ {0}}.

Note that as in Hossain and Möller’s original PDE, the stopping function h is defined as:

h(fnn) = 1− 0.9(fnn/σh)2 (5.56)

where σh is a positive parameter controlling the overall influence of h: setting this to a
value close to 0 reduces h to unity.

Note on parameters:

• τ -threshold: this is the main parameter controlling the threshold of curvature magni-
tude at which flow switches from mean curvature motion to Hossain-Möller anisotropic
diffusion. Setting this to zero is equivalent to pure Hossain-Möller diffusion; in-
creasing this applies mean curvature motion instead to regions below the curvature
magnitude threshold, significantly reducing residual noise in these regions.

• λ: as in standard Hossain-Möller diffusion, this controls the scaling of the anisotropy
coefficient τ and is usually set to 2. Note that setting λ to zero results in pure mean
curvature motion.

• σh: as in standard Hossain-Möller diffusion, this controls the overall flow-attenuation
effect of stopping function h at isosurface boundaries. Since our formulation is fo-
cused on reducing surface undulations on isosurfaces themselves, h is usually set to
one (i.e. no attenuation effect), by setting σh to a value close to zero.

Halting criteria

Halting criteria for the combined HM/MCM diffusion equation is dataset-dependent and
will ultimately depend on the proportion of mean curvature motion present in the final
flow: MCM contracts isosurfaces within a volume towards smaller spherical structures
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and ultimately contracts the volume to a point: there is no convergence on a single iso-
surface. Hence, there is a degree of trial and error in determining the optimal iteration
count for a given dataset. For τ -threshold values of around 0.15, around 10 iterations was
deemed sufficient for most datasets tested.

5.7 Application to medical imaging

5.7.1 CT imaging

One means by which to visually ascertain the level of smoothness of an isosurface is
by application of a large amount of curvature shading; the intention is to deliberately
highlight small surface undulations. Indeed, Kindlmann suggests this as a possible use-
case for curvature shading in [61]. Applying a larger amount than would otherwise be
necessary (c = 1.4) of curvature shading (based on minimum principal curvature) to the
‘foot’ dataset, the results of smoothing using both the standard Hossain Möller filtering
method and our modified version can be compared (see fig.(5.31)). The modified version
(using selective MCM) retains the same salient feature-detail as that achieved via the
standard HM filtering, but the small surface undulations are removed. In general, such
small undulations can be manifestations of noise or merely extraneous fine detail that
may be undesirable in a simplified salient-feature-preserving rendering.

Figure 5.31: Comparison of smoothing results using the standard Hossain-Möller PDE (middle) and our
modified version (right) on the pre-smoothed CT ‘foot’ dataset (left). Note that the pre-smoothing stage
consisted of 1 iteration of a volumetric Gaussian filter, σ = 0.8. Exaggerated curvature shading (c = 1.4,
minimum principal curvature) is applied in addition to the style transfer function shading to depict surface
smoothness in all images. Source: Paul Ross.
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Figure 5.32: L-R: Pre-smoothed vessel dataset using one iteration of Gaussian filtering with σ = 0.85; with
additional Hossain-Möller smoothing; with the modified Hossain-Möller smoothing (our method). Note that
in the context of vessel smoothing, the difference between the latter two methods is small. Source: Paul
Ross.

Note that the modified PDE in fig.(5.32) produces similar results to that of the standard
HM PDE at this level of curvature shading; whilst the former retains smaller valley fea-
tures, the new PDE reduces these to slightly darker regions through isotropic diffusion.

5.7.2 Ultrasound keepsake imaging

The new PDE is particularly effective when used in conjunction with curvature shading
in the context of 3D ultrasound: see fig.(5.33).

Figure 5.33: Comparison of volumetric smoothing methods applied to obstetric ultrasound dataset (all
with the same degree of curvature shading for feature-emphasis): L-R: Gaussian smoothing, σ = 1.65, 1
iteration, radius = 7; standard Hossain-Möller PDE (10 iterations, σh = 0); our method (10 iterations,
σh = 0, τ -thresh = 0.13). Note that the two PDE-based methods use a Gaussian prefilter (1 iteration,
radius = 4, σ = 0.8) prior to the PDE stage. Source: Paul Ross.

5.8 Performance

As previously, the hardware system and testing conditions consisted of the following:
Nvidia GTX680 (with 4GB memory) running on a Xeon workstation (2.4GHz proces-
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sors, 4 physical cores, 8 virtual ‘cores’ with hyperthreading) with 16GB RAM. Perfor-
mance per-iteration was measured for a variety of volumetric smoothing methods: see
table (5.1); note that the bilateral filter (in unoptimised form) is particularly slow. All
PDE-based methods are implemented using forward-Euler numerical integration; Runge-
Kutta 4 produced visually near-identical results with greatly deceased performance (see
table 5.3). Timings were taken for different combination of spline derivatives and cen-
tral differences (see table.(5.2)); all direct data values for the system are computed using
central differences. Note that all tricubic sampling was performed using the accelerated
method outlined in [146].

smoothing method

Dataset Gauss BF PM WCM MCM HM our method

3D US Babyface 2.81ms 43.15ms 0.56ms 1.44ms 1.44ms 1.435ms 1.432ms
CT Engine 9.12ms 131.0ms 1.83ms 3.61ms 3.62ms 3.315ms 3.19ms
CT Head 4.95ms 70.71ms 0.92ms 2.88ms 2.84ms 2.84ms 2.68ms

Table 5.1: Per-iteration timings for different smoothing methods; note that the effective ‘amount’
of smoothing performed per iteration is not necessarily equivalent across methods.

Sampling method (gradient, Hessian)

Dataset CD, CD CD, Spline Spline, CD Spline, Spline

3D US Babyface 1.36ms 4.27ms 2.89ms 11.47ms
CT Engine 3.24ms 9.88ms 8.54ms 33.57 ms
CT Head 2.84ms 9.78ms 5.09ms 21.01 ms

Table 5.2: Forward Euler timings (per iteration) for the new PDE for various combination of 2nd
derivative sampling methods.

Sampling method (gradient, Hessian)

Dataset CD, CD CD, Spline Spline, CD Spline, Spline

3D US Babyface 6.87ms 18.97ms 13.02ms 48.36ms
CT Engine 17.40ms 48.11ms 37.99ms 145.40ms
CT Head 13.01ms 45.52ms 21.56ms 90.78ms

Table 5.3: RK4 timings (per iteration) for the new PDE for various combination of 2nd derivative
sampling methods.

Note that the overall time taken to produce an equivalent visual reduction in noise when
filtering the ‘babyface’ dataset is drastically lower with the new PDE than the standard
HM PDE: the former requires 3 iterations (4.10ms), whilst the latter requires 40 (54ms).
Together with the Gaussian pre-smooth stage, the total filter times per volume are 6.9s and
57.2s respectively. The new PDE is significantly faster as the standard Hossain-Möller
methods in this context because selective mean curvature motion for the new method can
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reduce small amounts of surface noise by isotropic diffusion, whereas HM attempts to
preserve anisotropic features even at the scale of small surface imperfections. It should be
noted that in practice, the PDE-based methods usually require a small amount of initial
Gaussian smoothing as a regularization step.

5.9 Conclusion

For feature-preserving noise reduction in the context of volumetric data, it has been ob-
served that first-order methods are not an effective approach. Perona-Malik and other
gradient-based anisotropic diffusion methods (including related neighbourhood methods
such as the bilateral filter) can effectively preserve edges in 2D images, but a simple ex-
tension to 3D is insufficient to retain feature detail in a volumetric context. These methods
are not aware of 2nd order geometric isosurface properties and do not make sufficient dis-
tinction between noise and feature detail. Moreover, Perona-Malik suffers from stepping
artifacts that are a result of a shock component in the PDE formulation [91]; to a lesser
extent [70], the bilateral filter can also display such artifacts in certain circumstances [80].

As salient features tend to be delineated by lines of curvature, or surrounding boundary
regions of high curvature and high anisotropy (such as ridges and valleys), a higher order
geometric approach is required to effectively preserve such features when removing noise
[155]. A generalised 2nd order geometric-flow anisotropic diffusion PDE [10] can be for-
mulated in 3D by considering an orthonormal basis in IR3 [9], composed of the principal
curvature directions and the surface normal, and then considering 2nd directional deriva-
tives in those respective directions [8]. Other methods explicitly make use of a diffusion
tensor [87] or 4th order geometric flows [106].

In formulating a general 3D anisotropic diffusion PDE with directional derivatives, Hos-
sain and Möller produced a PDE which is fundamentally a modified mean curvature mo-
tion (they add an anisotropy-dependent multiplier for controlling smoothing in the two
independent principal curvature directions; an overall stopping function is also included).
This method produces results similar to Whitaker’s weighted curvature motion [93] but
is in a form that facilitates further modification. The Hossain-Möller (HM) method is
very effective at preserving feature boundaries and features themselves, but some residual
noise usually remains. Our proposed anisotropic diffusion with isotropy-independent se-

lective mean curvature motion essentially extends the feature-preserving HM anisotropic-
diffusion process by performing isotropic mean curvature motion on regions of low curva-
ture (of which several metrics may be used). Hence areas of higher curvature are smoothed
anisotropically, preserving feature detail, whilst low curvature regions (often flat but noisy
regions) are effectively denoised. This new method can be applied across modalities, but
is particularly applicable to 3D ultrasound imaging as this is often inherently noisy.
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An initial Gaussian filter stage performs several functions: regularisation for the compu-
tation of derivatives; pre-smoothing also reduces the embedded noise component enough
to allow a reduction in the number of iterations required in the PDE smoothing stage. In
addition, selective MCM rapidly reduces unwanted noise in few iterations. Combined,
the new smoothing method has very good performance: between 5 and 10 iterations is
all that is usually required, even for noisy ultrasound data. On an Nvidia GTX680 GPU,
the execution time for the new PDE filter on the ‘babyface’ dataset (192x126x200 vox-
els) was 4.08ms (3 iterations - see fig.(5.2)); for comparison, the Gaussian pre-filter stage
completed in 2.8ms (using separable kernels of radius 3, 1 iteration). Note that the com-
bined time for the regularization pre-smoothing step and the PDE stage should be taken
into account here when considering overall performance (still under 7ms per volume).

In conclusion: combined with curvature-based shading, this new smoothing approach
forms part of a smoothing/rendering pipeline that can produce images of high detail with
minimal noise. The curvature shading component is highly effective for the enhancement
of feature detail but is also prone to highlighting noise; the new filtering method ensures
that noise is maximally suppressed whilst retaining the highlighted feature details. In
addition, this method has very high performance (low execution time) and is thus suitable
for real-time filtering of streaming 4D ultrasound data. Overall, our smoothing method
has been demonstrated (through visual results) to be more effective at suppressing noise
than the unmodified Hossain-Möller anisotropic diffusion PDE method for ultrasound
imaging applications; the latter tends to leave small amounts of residual noise in areas of
low curvature.
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Chapter 6

Complete System

The main objective of this research was to develop a rendering and filtering system (for
application to multiple modalities but particularly applicable to 3D keepsake ultrasound)
which satisfied three crucial objectives: (1) the capability to enhance feature delineation,
(2) have minimal noise or visible noise-based artifacts, (3) have a level of overall perfor-
mance such that it is suitable for application to real-time streaming 4D ultrasound. Aside
from these main criteria, the overall system was developed within the context of an illus-
trative approach for maximum flexibility and potential to employ contrasting rendering
styles with ease. Several features are provided in addition to those designed to satisfy
the fundamental requirements: depth-cueing such as Gooch shading, HSV-space colour
modulation for curvature and depth-based effects in addition to several post-processing
image-space operations for cel-shading.

6.1 Pipeline

The preceding chapters have outlined the specific details of the major components and
their significance, but fig.(6.1) presents an overview of the entire system. All computa-
tion stages (filtering, rendering) are performed on the GPU via the CUDA runtime; final
screen rendering is performed using OpenGL to display the output texture (buffer) of the
CUDA rendering steps. Filtering is performed in multiple stages: stage 1 is essentially a
pre-smoothing (regularization) step prior to the application of the curvature-based diffu-
sion process. This stage can be switched between Gaussian, bilateral and Perona-Malik
volumetric filters, although Gaussian smoothing is usually applied here.
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Figure 6.1: Filtering and rendering pipeline of operations for the overall system. The ‘stage 1’ filter
normally consists of a volumetric Gaussian filter to pre-smooth the dataset prior to the curvature-based PDE
smoothing stage; this Gaussian filter can be switched to a bilateral or a Perona-Malik variant if required.
The image-plane smoothing filters for the image-space post-processing steps (deferred shading and others)
are Perona-Malik based.

.

6.2 Applications

The system is applicable to multiple modalities, where the emphasis of specific require-
ments vary with modality and application. High-quality non-photorealistic rendering in
multiple styles can be achieved using high-definition CT data, whereas the depiction of
3D keepsake ultrasound images (with particular attention to the feature detail) can be
improved using the combination of curvature-based shading and filtering. Moreover, the
techniques used in this latter application can also be employed in other rendering contexts,
e.g. global illumination; the advantages they offer can be transposed to that context.

6.2.1 Ultrasound babyface (keepsake images)

The system is particularly effective at highlighting and enhancing feature detail in ob-
stetric ultrasound applications, which suffer from a large inherent noise component. This
application is therefore especially challenging: feature detail is low yet noise is high.
Such a combination presents a problem in that the noise component tends to be high-
lighted along with the feature detail. The volumetric noise reduction stage is therefore
crucial in allowing shape-enhancing shading to effectively shade feature boundaries with-
out significant visual noise induction. Figures (6.2) and (6.3) show two datasets within
different rendering contexts and how the combination of curvature shading and volume
filtering can enhance both global illumination and illustrative rendering styles.
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Figure 6.2: Enhancement of feature detail with minimal noise in obstetric ultrasound: curvature shading
and filtering are used with both style transfer functions and global illumination renderers.

Figure 6.3: Another example of feature-detail enhancement with minimal noise in obstetric ultrasound
keepsake imaging: note the finger creases but lack of noise in the palm region. Source: Paul Ross.

6.2.2 4D ultrasound

4D ultrasound is essentially a temporal stream of 3D sub-volumes, and thus suffers from
the same issues as the static 3D case: feature boundaries and texture is indistinct and noise
is high. Figure (6.4) depicts a heart-valve dataset where curvature shading has enhanced
the sense of texture in the heart walls.

Figure 6.4: Style transfer function rendering with supplementary curvature shading to improve shape
depiction in 4D ultrasound heart-valve data. See figs. (4.18) and (4.19) for comparison with style-transfer
function shading alone. Source: Paul Ross.
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6.2.3 CT imaging

Vessel rendering

Figures (6.5) and (6.6) depict a range of possible contexts in which different illustrative
styles can be applied. Note that the boundary (neck) of the aneurysm can be highlighted
using curvature shading.

Figure 6.5: Application of the system to cranial blood vessels with additional depth cueing: multiple
styles are presented according to required criteria in each case. L-R: a more subtle illustration style; non-
photorealstic render featuring post-processing ‘toon’ shading using Perona-Malik filtering on the colour
buffer; contrasting style designed to highlight regions of high minimum principal curvature for visual
aneurysm detection (using HSV-curvature shading). Source: Paul Ross.

Figure 6.6: Non-photorealistic rendering styles for aneurysm depiction in vessel with depth cueing: Left:
warm-to-cool Gooch shading; Right: toon shading with post-processing cel-shading effect using Perona-
Malik diffusion. Source: Paul Ross.
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Head and foot

Style transfer functions in conjunction with curvature shading can be used for both illus-
trative (fig.(6.7)) and quasi-photorealistic styles (fig.(6.8), rightmost image).

Figure 6.7: Non-photorealistic rendering of the CT ‘head’ dataset using curvature-based shading for facial
feature enhancement and increased definition in skull texture. Curvature-based volume filtering is also
applied to reduce noise on the skull surface for a slightly abstracted look. Source: Paul Ross.

Figure 6.8: Curvature-based shading is highly effective in highlighting joint regions in the foot; contour
lines and partial opacity provide added context. Source: Paul Ross.

6.3 Comparison with other methods

Achieving an improved balance of feature preservation/depiction and noise suppression
is the fundamental premise behind this work, whether in the context of illustrative ren-
dering, global illumination or other lighting and shading models. The combination of
curvature-based smoothing and curvature-based shading allows a greater level of feature
retention and depiction with less noise than other methods such at the bilateral filter and
3D anisotropic diffusion. This combination of curvature-based techniques is particularly
effective in application to obstetric ultrasound imaging: figures (6.9) and (6.10) demon-
strate the new smoothing approach applied to style transfer function rendered datasets
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with curvature shading, in comparison to the bilateral filter and standard Hossain-Möller
diffusion.

Figure 6.9: Smoothing methods compared for style transfer function (STF) rendered obstetric ultra-
sound with curvature shading. L-R: bilateral filter; Hossain-Möller anisotropic diffusion filter; our method.
Source: Paul Ross.

Figure 6.10: Smoothing methods compared for style transfer function obstetric ultrasound with curva-
ture shading (‘arm’ dataset). L-R: bilateral filter; Hossain-Möller anisotropic diffusion filter; our method.
Source: Paul Ross.

It can be observed that Hossain-Möller diffusion is effective at preserving feature-detail in
comparison with the bilateral filter; however, some residual noise remains. The addition
of selective mean curvature motion applied to regions of lower local curvature visibly
reduces any residual noise in these regions.

The combined curvature smoothing and shading approach to improve the balance of fea-
ture depiction and noise reduction can also be applied to global illumination rendering; it
was found to be highly effective at achieving these objectives in this context, producing
visibly higher fidelity results than have been obtained from the application of global illu-
mination alone. Figure (6.11) depicts the previously seen ‘hand’ dataset, rendered using
global illumination: the effect of the additional curvature shading stage can be seen on the
rightmost images. Bilateral filtering is presented as a comparison (top row); bottom row
images are smoothed using the new method.
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Figure 6.11: Application to global illumination ultrasound to highlight feature detail with minimal noise.
Left-hand images depict global illumination only; right-hand images have the additional curvature shading
step. Top row: bilateral filter; Bottom row: our method (modified Hossain-Möller anisotropic diffusion with
selective mean curvature motion). Source: Paul Ross.

Figures (6.12) and (6.13) respectively compare smoothing methods and illustrate the ef-
fectiveness of curvature-shading in a global illumination context for improved feature
depiction.
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Figure 6.12: Smoothing methods compared for global illumination obstetric ultrasound with curvature
shading. L-R: bilateral filter; Hossain-Möller anisotropic diffusion filter; our method. Source: Paul Ross.

Figure 6.13: The effect of curvature shading on feature depiction for global illumination obstetric ultra-
sound. L-R: bilateral filter (no curvature shading); filtering using our method (no curvature shading); our
filtering method with additional curvature shading. Source: Paul Ross.

6.4 Conclusion

The system is effective across different modalities: an increase in surface texture detail
is apparent in the context of CT imaging through the use of curvature shading. This
can contribute to abstract illustrative rendering styles or quasi-photorealistic rendering,
where it resembles the shading produced by ambient occlusion. Curvature shading can
also be used to highlight specific pathology, such as vessel aneurysms; highly contrasting
illustrative styles are effective in this regard. The overall system is particularly effective
when applied to 3D ultrasound, as this typically has a high level of intrinsic noise; feature
detail can be enhanced using supplementary curvature shading within the context of the
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chosen rendering style, whilst minimising the effect of noise.

The development of a new PDE-based smoothing method allows the use of curvature
shading without visually amplifying any inherent noise in the dataset. The noise-reduction
and curvature-shading are thus complementary and, in combination, succeed in addressing
the somewhat competing objectives of the individual components.
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Chapter 7

Conclusions

This project has documented the development of a flexible volumetric filtering and render-
ing system for medical visualisation applications with the core requirements of enhanc-
ing feature delineation whilst minimising noise or undesired low-curvature feature detail.
Curvature-based shading and curvature-based filtering can be used together to achieve
good results for both these criteria; their combination is fundamental in this regard. This
system has been shown to be particularly effective in enhancing facial feature detail in 3D
‘keepsake’ ultrasound imaging.

Curvature-based shading is used a supplementary shading step to augment the primary
rendering method, in order to enhance feature detail and improve shape depiction by high-
lighting surface ridges, valleys and general second order differential properties. One par-
ticular caveat is that noise generally manifests itself (particularly speckle noise in the case
of 3D ultrasound) as surface undulations, which are themselves shaded by the curvature-
shading stage. In order to mitigate this, initial development incorporated a smoothed
deferred curvature shading stage to filter the curvature data before application as a post-
processing shading step. This works well for low-noise datasets but is insufficient in
reducing the effect of the significant noise component in ultrasound data.

A PDE-based volume filtering method was thus developed using Hossain and Möller’s
3D anisotropic diffusion [8] as a solid basis; the anisotropy conditions in this are relaxed
allowing pure mean curvature motion (a fast isotropic flow) for small local curvature, re-
gardless of isotropy. This has two fundamental benefits for noisy datasets: faster evolution
overall than pure anisotropic diffusion and the ability to remove small surface imperfec-
tions. Clearly defined ridges and valleys that form feature boundaries on isosurfaces are
preserved, as the flow becomes anisotropic as in the case of the Hossain and Möller PDE.
In the context of 3D obstetric ultrasound, this has the ability to remove noise in rela-
tively flat regions such as the forehead, whilst preserving feature boundaries around the
eyes, nose and mouth. The increase in speed as a result of an increased level of selective
isotropic smoothing compared to the original Hossain and Möller PDE allows the filtering
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process to complete with far fewer iterations (around 10x). This improved performance
renders it highly suitable for streaming 4D ultrasound as volumes can be filtered and ren-
dered in real time.

The combination of curvature-based filtering via the new anisotropic diffusion with se-

lective mean curvature motion PDE and supplementary curvature-based shading allows
salient features to be depicted in detail without the visual amplification of noise. These
methods together are especially suited to noisy modalities such as 3D ultrasound and pro-
duce results that are visibly superior than other tested state of the art methods in such
contexts.

7.1 Overview of work

7.1.1 Objectives

As stated in the introduction chapter, this research project’s aims were twofold:

1. The development of an illustrative rendering system with potential applications in
obstetric ultrasound, surgery planning, patient education and shape-perception test-
ing.

2. Within the context of this illustrative rendering system and more generally, the
development of a unified curvature-based approach to shading-enhancement and
volume smoothing: supplementary shading techniques and a novel data smoothing
method were developed to enhance the depiction of salient features whilst suppress-
ing visible noise artifacts and extraneous surface detail.

7.1.2 Illustrative rendering

A base illustrative rendering system (see §3) was constructed using Bruckner and Gröller’s
style transfer function approach: in this method, shading/lighting maps constitute transfer-
function control points and provide pre-rendered lookup-textures for normal-based shad-
ing for specific regions in the transfer function (which is itself a mapping of dataset inten-
sity values to shading and opacity).

Style transfer functions proved an effective and flexible means by which to implement a
wide-range of rendering styles; however, traditional illustration also makes use of con-
tour and crease lines to accentuate or enhance shape depiction and feature detail. Style
transfer functions can incorporate normal-based contour lines in their lighting maps (as a
black band around the edge), but additional curvature-based crease-lines were considered
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a necessary addition, as feature detail was found to be lacking using normal-based shading
alone.

7.1.3 Curvature Shading

The base rendering system was extended through the addition of curvature-based shad-
ing to provide enhanced shape-depiction along crease lines such as ridges and valleys.
The system can shade based on a selection of metrics: minimum and maximum principal
curvature measures are used for valley and ridge shading respectively. Curvature-shading
is primarily performed using a simple curvature-metric-based modulation of the normal-
based rendered colour. This supplementary shading was shown to be effective for visual
enhancement of feature boundaries (see §4); however, since volumetric noise (manifest-
ing as small undulations on a given isosurface) also has inherent surface curvature, its
depiction is also enhanced using curvature-based shading.

Limiting this noise amplification effect is achieved via two approaches in this system (in
the final formulation detailed in the next two subsections, both constitute novel methods):

• Reducing the highlighting of noise by smoothing the curvature data used in shading
modulation (see §7.1.4 below).

• Smoothing the volumetric data itself in a manner effective for our objectives: pre-
serving salient features whilst suppressing noise or extraneous detail (see §7.1.5
below).

7.1.4 Deferred and smoothed curvature shading

The deferred and smoothed curvature-based shading method was our novel, yet some-
what limited first approach (US Patent Application no 14/661,456) for reducing the vis-
ible effects of noise amplification inherent in the curvature shading process. For opaque
isosurfaces, noise highlighting is reduced by performing curvature shading as a deferred
step: the curvature data is sampled on ray termination (intersection with the isosurface)
and stored in a 2D buffer. This is then smoothed using Perona-Malik diffusion. For CT
data, this method results in a significant reduction in the appearance of noise-related ar-
tifacts (see §4.7). For 3D ultrasound (a modality with a high intrinsic noise component),
this technique is more limited in its efficacy: substantial noise-induced shading artifacts
usually remain. To solve this issue, a new volumetric filtering method was developed.
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7.1.5 Developing a new curvature-based smoothing method

The new PDE-based smoothing method constitutes this research project’s major novel
contribution. Both the bilateral filter and Perona Malik gradient-based diffusion methods
were tested initially but the results suffered from shock-derived stepping artifacts; these
are particularly prevalent when implemented in the context of 3D volumes. Whilst they
can be effective in 2D image processing, gradient-based methods such as these are not
sufficient to preserve features in 3D, as these are generally defined by regions of high
curvature within isosurfaces rather than high-gradient isosurface boundaries.

Curvature-based diffusion methods make use of second derivatives. The 3D anisotropic
diffusion PDE developed by Hossain and Möller proved effective in preserving feature
detail (where features themselves or their boundaries are delineated by highly anisotropic
ridge and valley-like structures of high curvature magnitude).

In volumetric contexts, noise or other undesirable surface detail manifests itself as sur-
face undulation with low curvature-magnitude (compared to that of feature boundaries).
Removal of these unwanted components is achieved in our method by smoothing isotrop-
ically using non-feature-preserving mean curvature motion in these regions; for regions
of high curvature-magnitude (such as feature boundaries), feature-preserving Hossain-
Möller smoothing is performed. The novel smoothing approach performs switching be-
tween Hossain-Möller’s anisotropic diffusion and mean curvature motion, based on a
threshold of the local curvature magnitude (similarly to how Malladi and Sethian [157]
switch between minimum and maximum curvature flow in their diffusion process).

In summary (data smoothing):

• Gradient based methods are not sufficient for volume smoothing due to shock com-
ponents and the restrictions inherent in consideration of only first-order differential
properties: in 3D volumes, features (and their boundaries) within isosurfaces are
defined by regions of high curvature (i.e. 2nd-order differential properties).

• Hossian-Möller anisotropic diffusion is a curvature-based method that is effective
in preserving anisotropic features; however, some residual low-level noise remained
in the datasets that were tested.

• Mean curvature motion (MCM) is an isotropic curvature-based smoothing method
that rapidly reduces noise in 3D volumes but does not preserve features.

• The novel contribution here is a PDE that combines feature-preserving Hossain-
Möller anisotropic diffusion with isotropic mean curvature motion: flow switches
between them dependent on local curvature magnitude: thus, features defined by re-
gions of high curvature are preserved by anisotropic diffusion whilst low-curvature
noise or other undesirable surface detail is removed using isotropic MCM.
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7.1.6 Overall system and applications

The overall system can be employed to present high quality rendered results from nu-
merous modalities and has numerous potential applications where the visible presence
of surface noise or extraneous low-level surface detail must be reduced without compro-
mising the depiction of salient features. Moreover, supplementary shading methods can
provide shape-enhancement by highlighting ridges and valley regions surrounding major
features within an isosurface.

Potential applications include:

• applications where non-photorealistic illustrative rendering or exaggerated shading
and enhanced shape depiction is required.

• surgical planning applications to highlight and isolate salient structures (e.g. ves-
sels) against a traditionally rendered background (e.g. MPR or Blinn-Phong-shaded
3D rendering).

• assessment of shape perception in perceptual psychology experimentation or re-
search contexts.

• patient education where information can be presented in a simplified form but with
salient features intact.

• high fidelity 3D obstetric ultrasound for ‘keepsake’ imaging.

• applications (illustrative or other rendering contexts) where feature retention and
reduction of visible noise artifacts is desired.

Note that the supplementary shading and volume filtering components can be used within
any rendering context, and have been shown to be particularly effective in improving the
fidelity of global illumination ultrasound imaging.

7.1.7 Performance

All per-voxel or per-pixel operations are highly parallel GPU-compute based (imple-
mented via Nvidia’s Cuda libraries and runtime) implementations, resulting in a high
level of performance overall. In particular, the volumetric filtering method is performant
enough to allow it to be used for real-time filtering of subvolumes with a streaming 4D
ultrasound context.

7.2 Novel contributions

In summary:
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• A curvature-based PDE-based diffusion method for volumetric smoothing com-
bining anisotropic diffusion (Hossain-Möller) for feature preservation in highly
anisotropic regions with high curvature magnitude (features and their boundaries,
within isosurfaces) and isotropic mean curvature motion (MCM) to reduce residual
noise and extraneous detail in regions of low curvature magnitude.

• A deferred and smoothed curvature based shading method for supplementary shad-
ing of ridge and valley regions with minimal noise amplification.

• An overall illustrative rendering system incorporating the two above contributions
for an improved balance of salient feature preservation and visible noise-artifact
suppression over what is currently available in state-of-the-art systems. One poten-
tially novel application is the use of the supplementary feature-enhancing shading in
perceptual psychology shape-perception testing. Other applications include surgery
planning, patient education and ‘keepsake’ obstetric ultrasound imaging.

Note that the first two contributions are generally applicable to all rendering methods:
they were shown to be effective in non-illustrative rendering contexts such as volumetric
global-illumination ultrasound.

7.3 Future work

7.3.1 Applications

In addition to those considered initially by the author, one interesting suggested possible
application of this system (and briefly mentioned above) is its potential use as a framework
(or intrinsic part of one) for perceptual psychology studies into human shape and surface
structure perception. As such, it could form the basis for a testing apparatus and thus
contribute to a substantial research area.

7.3.2 Rendering

As Bruckner mentioned in [138], a possible improvement to the style transfer function
rendering system is a separation of lighting and texturing operations. This would stop the
‘moving texture’ issue and separate specular highlights from diffuse and ambient shad-
ing/lighting; a curvature shading step can be performed between these shading stages to
avoid shading over highlights with the resulting ‘greying’ effect.
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7.3.3 Filtering

The new PDE method achieves a switching between mean curvature motion and anisotropic
diffusion based on a threshold of a chosen curvature metric. This can introduce discon-
tinuities in the flow as it switches from one to the other; an alternative method is under
investigation for future work, in which a new anisotropy function approximates the flow
achieved through thresholding, without the discontinuity. This has proved effective so far
but is still at the testing stage.

A comparison of our results with non-local means would also be of interest for future
work. Additionally, an in-depth comparative quantitative analysis of various state-of-
the art smoothing methods (including ours) presents an opportunity for further research,
shifting the focus somewhat from visual presentation. This does however present several
issues:

• It is difficult to obtain noise-free ground-truth without performing some initial smooth-
ing. Synthetic datasets can be generated, but the voxelisation process produces
aliasing artifacts: these should ideally be smoothed by some explicit filtering mech-
anism or by supersampling and downsampling (itself equivalent to box filtering).
Yet filtering is undesirable as this could introduce bias (or its perception) into any
result.

• In the context of obstetric ultrasound, using our method itself to produce ground-
truth would introduce a bias into the result; yet other smoothing methods cannot
produce visual results of equivalent fidelity to obtain respectable noise-free feature-
preserved ground-truth.

• Hossain and Möller used a CT dataset of a human tooth as a low-noise ground-truth
basis for quantitatively testing their algorithm. This dataset has low-level surface
imperfections and striations, which are effectively preserved by the HM filtering
method. Applying our method to such a dataset reduces this low-level surface detail
with respect to the ground-truth and can result in a worse signal-to noise ratio than
expected. Our algorithm doesn’t aim to preserve ground-truth per-se; it reduces
low-level surface imperfections (from either noise or what constitutes extraneous
detail) and preserves highly anisotropic, highly curved regions and their boundaries.
The result is a reduction in fine-surface detail and a preservation of salient features.

Our method is thus difficult to quantify with respect to ground truth, and is more concerned
with presenting an optimal visual balance of feature preservation and low-level noise or
extraneous detail reduction. More work is certainly required in this area. An alterna-
tive would be a user study involving clinicians in which questions such as ‘which image
presents a more visually optimal balance of feature-retention and noise suppression?’ can
be posed; a lay-user study would necessarily be an exercise in gathering information on
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user preference: an interesting research question, but a subtly different one to that which
we seek to answer.

7.4 Concluding remarks

In conclusion, this research project has developed and introduced a system for the filtering
and rendering of volumetric datasets in which the primary aims are to provide an improved
visual balance of feature retention and noise suppression over the current state-of-the-art.
In this regard, it presents output images with comparatively minimal visible noise ar-
tifacts and a high level of salient feature-retention. The system as a whole provides a
primarily illustrative rendering application, but the core novel filtering and supplemen-
tary shading techniques can be used in other rendering contexts to increase the fidelity
(with respect to feature depiction and visible noise reduction) of rendered output. Of par-
ticular significance is its application to 3D obstetric ultrasound: current state-of-the art
systems use global illumination as their preferred mode of rendering; application of the
novel techniques developed throughout this project provide global illumination rendered
output which far surpasses anything currently offered from the major medical imaging
technology providers.
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Appendix A

A.1 Curvature: background

In order to formulate a means by which principal curvatures can be computed, it is first
necessary to introduce a degree of formalism. The Gauss Map and its derivatives provide
a more structured framework by which to describe and derive various curvature metrics.

A.1.1 The Gauss Map

The following can provide a succinct and intuitive means of describing the change in nor-
mal direction. Under this mapping, surface normals are normalized and parallel-translated
to the centre of the unit sphere S2 = {(x, y, z) ∈ IR3 : x2 +y2 +z2 = 1} [158], effectively
becoming position vectors for points on the surface of the sphere with respect to its cen-
tre (see figure A.1). For a surface X embedded in IR3, with orientation N , the mapping
N : X → S2 is called the Gauss Map [159]. It can be shown that the Gauss map is
differentiable: this is of significance in the attempt the quantify the amount by which the
normals (and hence the tangent plane) change direction at a given point on the surface.

A.1.2 Shape operator

Curvature metrics can be computed by consideration of the differential of the Gauss Map,
dNp at a given point p on the embedded surface. Consider a mapping from the tangent
space Tp to Tp:

The Weingarten map or shape operator is the differential of the Gauss Map: for a two-
dimensional manifold (surface in this context) embedded in IR3, it is a 2x2 matrix whose
eigenvalues and eigenvectors are the principal curvatures and associated direction vectors
in the tangent plane at a given point on the surface. Informally, it essentially encapsulates
the change in direction of the normal vector at a given point in an infinitesimally small
local neighbourhood of the surface.
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Figure A.1: Gauss map: the traced-out line on the surface of the unit sphere (left) corresponding to the
movement of the normal on a surface along circular path (right). Source: Wolfram Demonstrations Project,
Demo author: Michael Rogers.

The 2x2 matrix form of the shape operator L is a useful consideration in the context of
explicit parameterized surfaces, but is of limited practicality in the context of this applica-
tion. For implicit isosurfaces defined as level sets in a scalar field f ∈ IR3, a more suitable
approach involves the extension of L to a 3x3 matrix: the tangent-space basis in IR2 is
extended to IR3 by the addition of the surface normal vector.

Extension to 3x3 Jacobian matrix

For an implicit surface embedded in IR3 (with unit normal n = [n1, n2, n3]T at a given
point), consider the 3x3 Jacobian matrix∇nT:

∇nT =


∂n1

∂x
∂n2

∂x
∂n3

∂x

∂n1

∂y
∂n2

∂y
∂n3

∂y

∂n1

∂z
∂n2

∂z
∂n3

∂z

 (A.1)

The matrix ∇nT is the shape operator extended to a 3x3 matrix in the standard IR3 Eu-
clidean basis [111]: it has an extra eigenvector (the normal vector) and associated zero
eigenvalue. The eigenvalues and eigenvectors are invariant under a change of basis, hence
computing these for∇nT will give the principal curvatures and associated directions.

It can be shown to be equivalent to the normalised tangent-plane projection of the Hessian
matrix H [3][160][161]:

∇nT = −∇
( ∇fT

‖∇f‖

)
= − 1

‖∇f‖(I− nnT)H (A.2)
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where I is the 3x3 identity matrix and I − nnT projects onto the tangent plane. This can
give an intuitive insight into the properties of ∇nT; it is also used by Kindlmann et al in
[3] in their method for the computation of principal curvatures.

A.1.3 Gaussian and mean curvatures

Two fundamental measures of curvature are the Gaussian curvature G and the mean cur-
vature K. The Gaussian curvature G is defined as the product of the principal curvatures,
i.e. the product of the eigenvalues (the determinant) of the shape operator. It is an intrin-

sic curvature metric: this curvature property of a manifold is independent of the space in
which it is embedded (see Gauss’s Theorema Egregium [159]). The mean curvatureK for
a two-dimensional manifold embedded in IR3 is simply half of the sum of the principal
curvatures, i.e. half of the trace of the shape operator L. It is an extrinsic curvature metric:
it is dependent on the space in which the manifold is embedded.

Hence:

G = κ1κ2 (A.3)

K =
κ1 + κ2

2
(A.4)

Conversely, given G and K, it is possible to compute κ1 and κ2 by simple application of
the quadratic formula.

Gaussian curvature

An expression for the determinant κ1κ2 of the shape operator L can be derived from its
3x3 extended form∇nT.

The directional derivative in a direction v is a quadratic form − 1
‖∇f‖v

THv, restricted to
the tangent plane, whose maximum and minima are the principal curvatures [55].

These are equivalent to the eigenvalues in the following system:

(∇nT)v = λv (A.5)

Factorising (as in eq. A.2) in terms of the normal vector and Hessian gives:

(
− 1

‖∇f‖(I− nnT)H

)
v = λv (A.6)
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The characteristic equation is:
λ(λ2 − 2Kλ+G) (A.7)

which has eigenvalues κ1, κ2 and 0. It can be shown [55][162] that G can be expressed as
follows:

G =
1

‖∇f‖4
∇fTadj(H)∇f (A.8)

where adj refers to the classical adjoint.

Mean curvature

The mean curvature K can also be computed by considering the above eigensystem (eq.
A.5) and its characteristic equation (A.7). K is simply half of the sum of the eigenvalues:

K =
κ1 + κ2

2
=

trace(∇nT)

2
=

∂n1

∂x
+ ∂n2

∂y
+ ∂n3

∂z

2
(A.9)

It should be noted that this is equal to half the divergence of n. i.e.:

2K = div(n) = −∇ · ∇f‖∇f‖ (A.10)

By the product rule:

2K = − ∇
2f

‖∇f‖ − ∇
(

1

‖∇f‖

)
· ∇f (A.11)

where∇2 denotes the Laplacian, with∇2f = fxx + fyy + fzz = trace(H). Further expan-
sion using the chain and product rules (see §A.5.4) produces the following expression in
terms of the gradient∇f and Hessian H:

K =
∇fTH∇f − ‖∇f‖2trace(H)

2‖∇f‖3
(A.12)

This concurs with the formula for implicit functions in [162] (disregarding the opposite
sign convention).
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A.2 Curvature computation: methods to determine prin-
cipal curvature values.

There are numerous expressions by which curvature can be derived (see [162] for a com-
prehensive list of formulae). Two main methods previously described in the literature for
principal curvature computation were implemented and tested here. These are:

• Kindlmann method: employs matrix invariants (under a change of basis) to com-
pute principal curvatures using a further restriction of the Jacobian matrix ∇nT to
its tangent-plane components only. In this approach, the restricted Jacobian is com-
puted explicitly, and the curvature metrics derived thereof [3].

• Gaussian and mean curvature method: computes the Gaussian and mean curva-
tures directly. These constitute the product and sum of the eigenvalues of the
shape-operator L; formulae for both can be derived by considering the eigensystem
(∇nT)v = λv, since ∇nT is the 3x3 extended form of L. The principal curvatures
(the eigenvalues themselves) can easily be computed from the Gaussian and mean
curvatures.

The principal curvature direction vectors are not required for the curvature-shading appli-
cation discussed herein.

A.2.1 Kindlmann method

Kindmann et al [3] make direct use of the factorisation of ∇nT, as depicted in (A.2) in
terms of the Hessian matrix and unit normal vector. Furthermore, consider an orthonormal
basis {v1,v2,n} where v1, v2 are the principal curvature direction vectors spanning the
tangent plane at a given point, and n is the unit surface normal at that point. With respect
to this basis, it can be shown that∇nT takes the following form:

∇nT =


κ1 0 σ1

0 κ2 σ2

0 0 0

 (A.13)

σ1 and σ2 represent the change in normal in the direction of the normal itself; these values
are not required for computation of principal curvatures. Since this is upper triangular, its
eigenvalues lie on the diagonal. In the {v1,v2,n} basis, ∇nT can be post-multiplied by
the projection matrix I− nnT so that the σ1, σ2 terms are eliminated:
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M = − 1

‖∇f‖∇n
T(I− nnT) =


κ1 0 0

0 κ2 0

0 0 0

 (A.14)

For practical purposes,∇nT(I−nnT) is computed from data with respect to the standard
Euclidean basis for IR3. Kindlmann makes use of matrix invariants (under change of basis:
its trace and Frobenius norm) in order to obtain κ1, κ2. The post-multiplication projection
step allows this by removing the σ terms from the Frobenius norm whilst leaving the
eigenvalues unchanged.

κ1 = T +
√

2F 2 − T 2 (A.15a)

κ2 = T −
√

2F 2 − T 2 (A.15b)

where T = trace(M), F = ‖M‖F =
√∑

i

∑
j |mij|2, with κ2 < κ1.

Since∇nT = − 1
‖∇f‖(I−nnT)H (see eq.A.2), the final matrix N required for computation

is thus:
N = − 1

‖∇f‖(I− nnT)H(I− nnT) (A.16)

From this matrix, its trace and Frobenius norms and (A.15), the principal curvatures can
be obtained.

Note that the Hessian matrix and normal vectors are used in direct matrix/vector compu-
tation steps: this may present a performance advantage on SIMD hardware (compared to
expanding into scalar terms) if implemented in vector assembly language.

A.2.2 Gaussian and Mean curvature method

A slightly different approach can be taken using the mean and Gaussian curvatures as
a starting point: the principal curvatures can be computed from these standard curvature
metrics. Although the derivation makes use of a slightly different perspective conceptually
than the direct method given above, they are essentially equivalent. The difference is
purely computational: the above method makes use of direct matrix and vector arithmetic,
whilst the following computes the principal curvatures using explicit scalar derivative
components. Either method may or may not produce a performance advantage, hardware
dependant.

For mean curvature K, expanding equation A.12 in terms of explicit partial derivatives,
the following formula is used in the CUDA curvature computation kernel:
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K =
1

2‖∇f‖3

(
2fyfzfyz − f 2

x(fyy + fzz)+

2fxfzfxz − f 2
y (fxx + fzz)+

2fxfyfxy − f 2
z (fxx + fyy)

)
(A.17)

Similarly, expanding A.8 produces the following expression for Gaussian curvature G:

G =
1

‖∇f‖4

(
f 2
x(fyyfzz − f 2

yz) + 2fyfz(fxzfxy − fxxfyz)+

f 2
y (fxxfzz − f 2

xz) + 2fxfz(fyzfxy − fyyfxz)+
f 2
z (fxxfyy − f 2

xy) + 2fxfy(fxzfyz − fzzfxy)
)

(A.18)

These expressions can also be found in [55], [96], [8]. Principal curvatures κ1, κ2 can be
easily obtained givenK andG. Recall thatG = κ1κ2 and thatK = κ1 +κ2. Hence, given
both these curvature metrics and by application of the quadratic formula, the principal
curvatures (maximum κ1 and minimum κ2) can be computed as:

κ1 = K +
√
K2 −G (A.19a)

κ2 = K −
√
K2 −G (A.19b)

with κ2 < κ1.

A.3 Curvature computation: Cuda Kernels

The following are the author’s implementation of Cuda compute kernels (GPU-compute
kernels using Nvidia’s Cuda libraries and runtime) for the curvature computation methods
outlined in §A.2.

A.3.1 Kindlmann method

inline __device__ float2 calcCurvature(const float3x3& H, const float3& grad)

{

float grad_mag = length(grad);

if(grad_mag < GRAD_THRESHOLD)

return make_float2(0.0f, 0.0f);

//normal, gradient magnitude

float3 n = -1.0f*normalize(grad);
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//n*ntranspose (nnT)

float3x3 nnT;

float nxny = n.x*n.y;

float nxnz = n.x*n.z;

float nynz = n.y*n.z;

nnT.m[0] = make_float3(n.x*n.x, nxny, nxnz);

nnT.m[1] = make_float3(nxny, n.y*n.y, nynz);

nnT.m[2] = make_float3(nxnz, nynz, n.z*n.z);

//P = I - nnT

float3x3 I;

I.m[0] = make_float3(1.0f, 0.0f, 0.0f);

I.m[1] = make_float3(0.0f, 1.0f, 0.0f);

I.m[2] = make_float3(0.0f, 0.0f, 1.0f);

float3x3 P;

P.m[0] = I.m[0] - nnT.m[0];

P.m[1] = I.m[1] - nnT.m[1];

P.m[2] = I.m[2] - nnT.m[2];

//compute G = -PHP/|g|

float one_over_grad_mag = 1.0f/grad_mag;

float3x3 temp = mul(H,P);

float3x3 temp2 = mul(P, temp);

float3x3 G;

G.m[0] = -temp2.m[0]*one_over_grad_mag;

G.m[1] = -temp2.m[1]*one_over_grad_mag;

G.m[2] = -temp2.m[2]*one_over_grad_mag;

//trace of G

float trace = G.m[0].x + G.m[1].y + G.m[2].z;

//Frobenius norm of G (squared)

float F_sq = 0.0f;

F_sq += (G.m[0].x*G.m[0].x);

F_sq += (G.m[0].y*G.m[0].y);

F_sq += (G.m[0].z*G.m[0].z);

F_sq += (G.m[1].x*G.m[1].x);

F_sq += (G.m[1].y*G.m[1].y);

F_sq += (G.m[1].z*G.m[1].z);

F_sq += (G.m[2].x*G.m[2].x);

F_sq += (G.m[2].y*G.m[2].y);

F_sq += (G.m[2].z*G.m[2].z);

//curvature

float2 curvature;

float tmp = sqrt(2.0f*F_sq-(trace*trace));

curvature.x = (trace + tmp)*0.5f; //kappa1

curvature.y = (trace - tmp)*0.5f; //kappa2

return curvature;

}

A.3.2 Gaussian and mean curvature method

inline __device__ float2 calcCurvatureAlt(const float3x3& H, const float3& grad)

{

float grad_mag = length(grad);

if(grad_mag < GRAD_THRESHOLD)

return make_float2(0.0f, 0.0f);

float G, K;

float grad_mag_cubed = grad_mag*grad_mag*grad_mag;

float gradx_sq = grad.x*grad.x;

float grady_sq = grad.y*grad.y;

float gradz_sq = grad.z*grad.z;

float gradx_grady = grad.x*grad.y;

float gradx_gradz = grad.x*grad.z;

float grady_gradz = grad.y*grad.z;

G = gradx_sq*(H.m[1].y*H.m[2].z - H.m[1].z*H.m[1].z) + 2.0f*grady_gradz*(H.m[0].z*H.m[0].y - H.m[0].x*H.m[1].z);

G += grady_sq*(H.m[0].x*H.m[2].z - H.m[0].z*H.m[0].z) + 2.0f*gradx_gradz*(H.m[1].z*H.m[0].y - H.m[1].y*H.m[0].z);

G += gradz_sq*(H.m[0].x*H.m[1].y - H.m[0].y*H.m[0].y) + 2.0f*gradx_grady*(H.m[0].z*H.m[1].z - H.m[2].z*H.m[0].y);

G /= grad_mag_cubed*grad_mag;

155



K = 2.0f*grady_gradz*H.m[1].z - gradx_sq*(H.m[1].y + H.m[2].z);

K += 2.0f*gradx_gradz*H.m[0].z - grady_sq*(H.m[0].x + H.m[2].z);

K += 2.0f*gradx_grady*H.m[0].y - gradz_sq*(H.m[0].x + H.m[1].y);

K /= 2.0f*grad_mag_cubed;

float tmp = sqrt(K*K - G);

float k1 = K + tmp;

float k2 = K - tmp;

return make_float2(k1, k2);

}

A.4 Modified Hossain-Möller smoothing filter

The following is the author’s Cuda implementation for the modified HM filter (Anisotropic
Diffusion with Selective MCM). Note that the system has been tested on Kepler, Maxwell
and Pascal-class Nvidia GPUs.

A.4.1 Core function

float __inline__ __device__ Modified_HM_core_func(const float3x3& H, const float3& grad, float grad_mag, float curv_mult,

float one_over_sigma, float tau_threshold,

float two_lambda)

{

float2 curvature = curv_mult*calcCurvatureAlt(H, grad);

float kappa_min = curvature.y;//min

float kappa_max = curvature.x;// max

float3 n = -1.0f*normalize(grad);

float f_nn = dot(n, mul(H,n));

float h = 1.0f-pow(h_base, f_nn*one_over_sigma*f_nn*one_over_sigma);

if(fabs(kappa_max)<fabs(kappa_min))

{

float temp = kappa_min;

kappa_min=kappa_max;

kappa_max=temp;

}

float tau = (fabs(kappa_max) > tau_threshold) ? pow(fabs(kappa_min)/(fabs(kappa_max)), two_lambda) : 1.0f;

tau = clamp(tau, 0.0f, 1.0f);

return -grad_mag*h*(kappa_min + tau*kappa_max);

}

A.4.2 Standard forward-Euler

template<typename GradSampler, typename HessSampler>

__global__ void modified_hossain_moller(int width, int height, int depth, float one_over_sigma,

float two_lambda, float timestep,

float grad_threshold, float vox_threshold,

float tau_threshold, float curv_mult)

{

int x = blockIdx.x*blockDim.x + threadIdx.x;

int y = blockIdx.y*blockDim.y + threadIdx.y;

int z = blockIdx.z*blockDim.z + threadIdx.z;

if(x>=width || y>=height || z>=depth)

return;

GradSampler grad_sampler;

float3 position = make_float3(x+0.5f,y+0.5f,z+0.5f);

float vox = tex3D(tx, x+0.5f, y+0.5f, z+0.5f));

float3 grad = grad_sampler(tx, position);

float grad_mag = length(grad);

float vox_new=0;
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if(grad_mag > grad_threshold && vox > vox_threshold)

{

HessSampler hess_sampler;

float3x3 H = hess_sampler(tx, position);

vox_new = vox + timestep*Modified_HM_core_func(H, grad, grad_mag, curv_mult,

one_over_sigma, tau_threshold,

two_lambda);

int is_nan = (int) isnan(vox_new);

vox_new = ((float)is_nan)*vox + ((float)!is_nan)*vox_new; //avoid branch

}

else

vox_new = vox;

clamp(vox_new, 0.0f, 255.0f);

surf3Dwrite<float>((float) vox_new, vol_out, sizeof(float)*x, y, z, cudaBoundaryModeZero);

}

Note that GradSampler and HessSampler are functors which specify the sampling method
for the 1st and 2nd derivatives; they are of the form:
struct HessSamplerTricubic

{

template<class T, enum cudaTextureReadMode mode>

inline __device__ float3x3 operator()(texture<T, 3, mode> tex, float3 position)

{

return tricubic_hessian(tex, position);

}

};

A.5 Some useful vector calculus expressions

The following are useful in the derivation of an expression for mean-curvature in terms of
the Hessian matrix H and gradient ∇u:

A.5.1 Expansion of∇(‖∇u‖)

2D example (Ω ⊂ IR2, u : Ω 7→ IR):

∇(‖∇u‖) = ∇(u2
x + u2

y)
1
2

=

[
∂
∂x

(u2
x + u2

y)
1
2

∂
∂y

(u2
x + u2

y)
1
2

]

=

[
1
2
(u2

x + u2
y)
− 1

2 (2uxxux + 2uxyuy)
1
2
(u2

x + u2
y)
− 1

2 (2uyyuy + 2uxyux)

]

=
1

‖∇u‖

[
uxxux + uxyuy

uyyux + uxyux

]

=
H∇u
‖∇u‖ (A.20)

Similarly for Ω ⊂ IR3, u : Ω 7→ IR.
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A.5.2 Expansion of∇
(

1
‖∇u‖

)
2D example (Ω ⊂ IR2, u : Ω 7→ IR):

∇
(

1

‖∇u‖

)
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− 1

2

=

[
∂
∂x

(u2
x + u2

y)
− 1

2

∂
∂y

(u2
x + u2

y)
− 1

2

]

=

[
−1

2
(u2

x + u2
y)
− 3

2 (2uxxux + 2uxyuy)

−1
2
(u2

x + u2
y)
− 3

2 (2uyyuy + 2uxyux)

]

= − 1

‖∇u‖3

[
uxxux + uxyuy
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]

= − H∇u
‖∇u‖3

(A.21)

A.5.3 Expansion of div
( ∇u
‖∇u‖

)
General case, Ω ⊂ IRn, u : Ω 7→ IR:
Using the product rule and eq.(A.21):

div

(
∇u
‖∇u‖

)
=
∇2u

‖∇u‖ −
(

H∇u
‖∇u‖3

)
· ∇u

=
∇2u

‖∇u‖ −
∇uTH∇u
‖∇u‖3

=
‖∇u‖2∇2u

‖∇u‖3
− ∇u

TH∇u
‖∇u‖3

=
‖∇u‖2trace(H)−∇uTH∇u

‖∇u‖3
(A.22)

A.5.4 Mean curvature

Following the convention for the direction of surface normal n as used throughout, i.e.:

n = − ∇u‖∇u‖ (A.23)

The mean curvature K can be defined as the divergence of the surface normal:

158



K = −1

2
div

(
∇u
‖∇u‖

)

=
∇uTH∇u− ‖∇u‖2trace(H)

2‖∇u‖3
(A.24)

using eq.(A.22).
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