37 research outputs found

    Better bitmap performance with Roaring bitmaps

    Get PDF
    Bitmap indexes are commonly used in databases and search engines. By exploiting bit-level parallelism, they can significantly accelerate queries. However, they can use much memory, and thus we might prefer compressed bitmap indexes. Following Oracle's lead, bitmaps are often compressed using run-length encoding (RLE). Building on prior work, we introduce the Roaring compressed bitmap format: it uses packed arrays for compression instead of RLE. We compare it to two high-performance RLE-based bitmap encoding techniques: WAH (Word Aligned Hybrid compression scheme) and Concise (Compressed `n' Composable Integer Set). On synthetic and real data, we find that Roaring bitmaps (1) often compress significantly better (e.g., 2 times) and (2) are faster than the compressed alternatives (up to 900 times faster for intersections). Our results challenge the view that RLE-based bitmap compression is best

    A Three-phased Online Association Rule Mining Approach for Diverse Mining Requests

    Get PDF
    In the past, most incremental mining and online mining algorithms considered finding the set of association rules or patterns consistent with the entire set of data inserted so far. Users can not easily obtain the results from their only interested portion of data. For providing ad-hoc, query-driven and online mining supports, we first propose a relation called multidimensional pattern relation to structurally and systematically store the context information and the mining information for later analysis. Each tuple in the relation comes from an inserted dataset in the database. This concept is similar to the construction of a data warehouse for OLAP. However, unlike the summarized information of fact attributes in a data warehouse, the mined patterns in the multidimensional pattern relation can not be directly aggregated to satisfy users’ mining requests. We then develop an online mining approach called Three-phased Online Association Rule Mining (TOARM) based on the proposed multidimensional pattern relation to support online generation of association rules under multidimensional considerations. Experiments for both homogeneous and heterogeneous datasets are made, with results showing the effectiveness of the proposed approach

    Multiway pruning for efficient iceberg cubing

    Get PDF
    Effective pruning is essential for efficient iceberg cube computation. Previous studies have focused on exclusive pruning: regions of a search space that do not satisfy some condition are excluded from computation. In this paper we propose inclusive and anti-pruning. With inclusive pruning, necessary conditions that solutions must satisfy are identified and regions that can not be reached by such conditions are pruned from computation. With anti-pruning, regions of solutions are identified and pruning is not applied. We propose the multiway pruning strategy combining exclusive, inclusive and anti-pruning with bounding aggregate functions in iceberg cube computation. Preliminary experiments demonstrate that the multiway-pruning strategy improves the efficiency of iceberg cubing algorithms with only exclusive pruning

    Clustering Algorithms For High Dimensional Data – A Survey Of Issues And Existing Approaches

    Get PDF
    Clustering is the most prominent data mining technique used for grouping the data into clusters based on distance measures. With the advent growth of high dimensional data such as microarray gene expression data, and grouping high dimensional data into clusters will encounter the similarity between the objects in the full dimensional space is often invalid because it contains different types of data. The process of grouping into high dimensional data into clusters is not accurate and perhaps not up to the level of expectation when the dimension of the dataset is high. It is now focusing tremendous attention towards research and development. The performance issues of the data clustering in high dimensional data it is necessary to study issues like dimensionality reduction, redundancy elimination, subspace clustering, co-clustering and data labeling for clusters are to analyzed and improved. In this paper, we presented a brief comparison of the existing algorithms that were mainly focusing at clustering on high dimensional data

    Processing of an iceberg query on distributed and centralized databases

    Get PDF
    Master'sMASTER OF SCIENC

    PADS: A simple yet effective pattern-aware dynamic search method for fast maximal frequent pattern mining

    Full text link
    While frequent pattern mining is fundamental for many data mining tasks, mining maximal frequent patterns efficiently is important in both theory and applications of frequent pattern mining. The fundamental challenge is how to search a large space of item combinations. Most of the existing methods search an enumeration tree of item combinations in a depth-first manner. In this paper, we develop a new technique for more efficient max-pattern mining. Our method is pattern-aware: it uses the patterns already found to schedule its future search so that many search subspaces can be pruned. We present efficient techniques to implement the new approach. As indicated by a systematic empirical study using the benchmark data sets, our new approach outperforms the currently fastest max-pattern mining algorithms FPMax* and LCM2 clearly. The source code and the executable code (on both Windows and Linux platforms) are publicly available at http://www.cs.sfu.ca/~jpei/Software/PADS.zip. © Springer-Verlag London Limited 2008

    Cubes convexes

    Full text link
    In various approaches, data cubes are pre-computed in order to answer efficiently OLAP queries. The notion of data cube has been declined in various ways: iceberg cubes, range cubes or differential cubes. In this paper, we introduce the concept of convex cube which captures all the tuples of a datacube satisfying a constraint combination. It can be represented in a very compact way in order to optimize both computation time and required storage space. The convex cube is not an additional structure appended to the list of cube variants but we propose it as a unifying structure that we use to characterize, in a simple, sound and homogeneous way, the other quoted types of cubes. Finally, we introduce the concept of emerging cube which captures the significant trend inversions. characterizations
    corecore