Citation:

Zhang, X and Chou, P 2006, 'Multiway pruning for efficient iceberg
J. Kung & R. Wagner (ed.) Proceedings of the 17th
conference on database and expert systems applications

in S. Bressan,
international

Multiway pruning for efficient iceberg cubing

Xiuzhen Zhang & Pauline Lienhua Chou

School of CS & IT, RMIT University, Melbourne, VIC 3001, Australia
{zhang,lchou}@cs.rmit.edu.au

Abstract. Effective pruning is essential for efficient iceberg cube com-
putation. Previous studies have focused on exclusive pruning: regions
of a search space that do not satisfy some condition are excluded from
computation. In this paper we propose inclusive and anti-pruning. With
inclusive pruning, necessary conditions that solutions must satisfy are
identified and regions that can not be reached by such conditions are
pruned from computation. With anti-pruning, regions of solutions are
identified and pruning is not applied. We propose the multiway pruning
strategy combining exclusive, inclusive and anti-pruning with bounding
aggregate functions in iceberg cube computation. Preliminary experi-
ments demonstrate that the multiway-pruning strategy improves the ef-
ficiency of iceberg cubing algorithms with only exclusive pruning.

1 Introduction

Since the introduction of the CUBE operator [6], the computation of data cubes
has attracted much research [3,7,10]. Data cubes consist of aggregates for parti-
tions produced by group-by’s of all subsets of a given set of grouping attributes
called dimensions. Given an aggregation constraint, aggregates in a data cube
that satisfy the constraint form an iceberg cube [3]. Pruning is critical to the
efficiency of iceberg cube computation, as the cube size grows exponentially with
the number of dimensions. With traditional pruning strategies [1,3,4,7,9,10]
regions of the search space that do not satisfy a constraint are identified and
then pruned from computation.

In this paper, we propose two new pruning techniques. (1) Inclusive pruning
identifies conditions that the solutions must meet, and units under search that
do not meet any of these conditions can not be solutions and thus are pruned. (2)
Anti-pruning identifies regions where all units in the regions are solutions and
testing for pruning is saved. We also propose inclusive and anti-pruning strate-
gies with bounding aggregate functions for efficient iceberg cubing. Our initial
experiments confirm that multiway-pruning improves the efficiency of cubing.

With traditional pruning, conditions are identified that warrant non-solutions.

In this sense, it is termed exclusive pruning. With traditional exclusive pruning,
the larger the solution set, the more tests for the pruning condition result in
fruitless effort and become extra unnecessary cost. To the contrary of exclusive
pruning, the cost for inclusive pruning does not increase and anti-pruning be-
comes better with larger solution set. Exclusive, inclusive and anti-pruning are

2006), Heidelberg, Germany, 21 September 2006.

cubing’,

(DEXA

E72418
Typewritten Text
Citation:
Zhang, X and Chou, P 2006, 'Multiway pruning for efficient iceberg cubing',
in S. Bressan, J. Kung & R. Wagner (ed.) Proceedings of the 17th
international conference on database and expert systems applications (DEXA 2006), Heidelberg, Germany, 21 September 2006.

collectively called the multiway pruning strategy. Without inclusive pruning and
anti-pruning, traditional exclusive pruning still compute the complete solutions
and prunes correctly. However, it incurs extra cost. Inclusive and anti-pruning
can not replace exclusive pruning, but complement exclusive pruning and in
many cases greatly reduce the cost for pruning.

1.1 Related work

Studies in the iceberg cubing literature have all focused on exclusive pruning
strategies in iceberg cube computation [3,7,10,12].

Another related area is constraint data mining. Several types of constraints
have been proposed and their properties are used for pruning [1,8,9]. All these
work focus on exclusive pruning, expect in Reference [8]. The succinct constraints
in Reference [8] are conceptually similar to inclusive pruning, however they are
constraints orthogonal to the constraints for exclusive pruning. Our inclusive
pruning does not rely on extra constraints and it is used to enhance exclusive
pruning.

The term inclusive pruning was coined by Webb [11] in the area of machine
learning. Specific pruning rules were developed for classification learning. We in-
troduce inclusive pruning into iceberg cube mining and develop inclusive pruning
strategies for aggregation constraints based on bounding.

The concept of border was used in data mining to represent large spaces [2,
5]. Rather than computing borders, we focus on using borders for more effective
pruning and to compute all solutions in the space represented by borders.

2 Preliminaries on data cubes

Dimensional datasets are defined by dimensions and measures. In Table 1, there
are 4 dimensions Month, Product, SalesMan (Man) and City, and Sale (aggre-
gated as Sum(Sale)) is the measure. Throughout this paper we use upper-case
letters to denote dimensions and lower-case letters to denote dimension-values.
For example (A,B,C) denotes a group-by and (a, b, c) denotes a partition of tu-
ples from the (4,B, C) group-by, and is called a group. We also use an upper case
letter for a measure attribute to represent the set of values for the measure.

The group-bys in a data cube form a lattice structure called the cube lattice.
Fig. 1 shows an example 4-dimensional cube lattice, where each node denotes a
group-by list. The empty group-by that aggregates all tuples in a dataset is at
the bottom of the lattice and the group-by with all dimensions is at the top of
the lattice. Group-bys form subset/superset relationships. Groups from different
group-bys also form super-group/sub-group relationships.

A special value “*” is assumed in the domain of all dimensions, which can
match any value of the dimension. With the Sales dataset, the (Jan, *, %, %) group
denotes the partition of tuples with Month = January and no restriction on val-
ues for the other dimensions. For simplicity, (Jan, *, ,*) is also written as (Jan).

Table 2. The bounds of some aggregate
functions ({X;|i = 1..n} are MSPs)

upper bound; lower bound
Cnt [Sum Cnt(X;); Min Cnt(X;)
Max|Max Max(X;); Min Max(X;)

Month Prod Man City Cnt(*) Sum(Sale) Min [Max Min(X;); Min Min(X;)
Jan Toy John Perth 5 200 i L

Table 1. A sales dataset, partially aggre-
gated

Mar TV Peter Perth 40 100 Avg M?X Avg(Xi); Miin Avg(X;)
Mar TV John Perth 20 100 if there exists Sum(X;) > 0,
Mar TV John Syd 10 100 su1§(1§?1)>0 Sum(X;),

Apr TV Peter Perth 8 100 other\:vise Max Sum(X,);
Apr Toy Peter Syd 5 100 Sum i

if there exists Sum(X;) < 0,

Sum Sum(Xj;),
Sum(X;)<0

otherwise Min Sum(X;)

The 3-dimensional group (Jan,TV,Perth) is a sub-group of the 2-dimensional
groups (Jan, TV), (Jan, Perth) and (TV, Perth).

Given a dataset S of n dimensions Aq, ..., A,, with the measure X, the data
cube of applying F' on S can be expressed in two ways: (1) Cube(Ay, ..., A,) can
be viewed as the set of possible group-bys, or the set of possible groups for all
group-bys. (2) Cube(X) = {X; = {t[X] |t € g;} | ¢; is a partition of the cube};
that is, a data cube is expressed as partitions of multi-set of measure values
following the grouping of tuples.

3 Bounding aggregate functions

Bounding was proposed as a technique to prune for complex aggregation con-
straints [12]. The idea of bounding is to estimate the upper and lower bounds for
data cubes from the most specific partitions (MSPs) of data. The Sales dataset
comprises 6 MSPs, as shown in Table 1. Each MSPs has been aggregated with
functions Count(*) (denoted as Cnt(*)) and Sum(Sale).

We generalize the original definition of data cubes [6]. Fig. 1 shows Cube (ABCD),
and it can be decomposed into two lattice structures: The nodes in the right poly-
gon form Cube (BCD). For each partition of data with a; € domain(4), the nodes
in the left polygon form a data cube on dimensions {B, C, D} conditioned on
a; € domain(A). In later discussions we use the term data cube to refer to both
unconditional data cubes and conditional data cubes.

The concept of data cube core was coined by Gray et al. [6] it was general-
ized to conditional data cubes. Given Cube(Ay, ..., 4;,) over measure X, all n-
dimensional partitions {(ay, ..., an)|a; # *,a; € domain(A4;),1 < < n} comprise
the core of the data cube and each partition g in the core is a Most Specific Par-
tition (MSP). The multi-set of measure values for tuples in an MSP g, namely
{t[X]|t € ¢;}, is an MSP of the measure. All aggregates in a data cube can be

eI (a1) BODE
o N
: (a1) BCE

Fig. 2. An anti-pruning border on the lat-
Fig. 1. Cube(ABCD) decomposition tice conditioned on (a1).

computed from its MSPs. In Fig. 1, any group in Cube(BCD)|a; can be computed
from some (ay,bs, cj,dx) groups and any group in Cube(BCD) can be computed
from some (b;, cj,dx) groups, where 4, j and k iterates over values in the domain
of B, C and D respectively.

Given an aggregate function F, and a multi-dimensional dataset with mea-
sure X, the upper (lower) bound for a data cube is a real number such that for
any partition X; € Cube(X), F(X;) is no larger (smaller) than the upper (lower)
bound. An aggregate function F' is boundable for a data cube if the upper and
lower bounds for the data cube can be determined with a single scan of the local
aggregate values of the MSPs. The bounds for some commonly seen aggregate
functions are listed in Table 2. We use Count(*) as an example to explain. The
Count(*) for any group in a data cube is no larger than Sum; Cnt(X;), the
sum of Count(*) all MSPs. The Count(*) for any group in a data cube is no
smaller than Min; Cnt(X;), the smallest Count(*) among all MSPs. Moreover,
these bounds are the tightest bounds for Count(*). Indeed arithmetic expres-
sions of base functions Sum, Count, Min, and Max are boundable. Details of
bounding algorithms are discussed in Reference [12].

4 Inclusive pruning with bounding

Inclusive pruning is applied before computing the bounds of data cubes for
exclusive pruning. Dimension values that solutions in a lattice must have are
called inclusive dimension values. Groups that are defined by only non-inclusive
dimension-values are definitely not solutions and should be pruned.

Definition 1. Given a data cube to be computed with some constraint, the in-
clusive dimension values are those that define groups that are solutions.

From this definition, dimension values that do not involve any solutions are
non-inclusive dimension values.

Theorem 1. (Inclusive pruning) Given a cube lattice L, an aggregation con-
straint, and a set of inclusive dimension values, groups in L that are defined by
only non-inclusive dimension values are not solutions and can be pruned.

Proof. All solution groups in £ must be grouped by at least one inclusive di-
mension value. A group in £ whose grouping dimension values are solely defined
by non-inclusive dimensions can not be a solution and so can be pruned.

The question to answer now is how to identify the inclusive dimension values
in a cube lattice before it is computed. As will be seen in Section 6, the inclusive
dimension values for a cube are decided in the previous computation of its super-
cubes: all dimensions-values whose bounds have non-empty intersection with the
interval defined by thresholds of the given constraint are inclusive dimension
values for the cube. Importantly these bounds can be computed by a single
traversal of the MSPs. As a result we have the benefit of pruning with little
extra cost. Inclusive pruning is achieved by removing branches that contain only
non-inclusive dimension-values. Note that these branches are pruned from all
sub-trees that are to be computed.

5 Anti-pruning with bounding

When the selectivity of an aggregation constraint is high, a large number of
groups are qualified as iceberg groups. When the data is skewed, the iceberg
groups reside in a few regions of the cube. In both cases, examining the pruning
conditions on these groups does not result in any pruning. We introduce the
notion of the Anti-pruning border to mark regions where all groups are solutions.

Definition 1 (Anti-pruning region) In iceberg-cubing, given a lattice L an
anti-pruning region is a convex space of groups that are all solutions. An anti-
pruning region B can be denoted as (B*,BY): B is the lower border where none
of their supergroups are in B. BU is the upper border consisting of groups in B
where none of their subgroups are in B.

Example 1 An example anti-pruning border on the lattice of B, C, D, and E
conditioned on (ay) is shown in Fig. 2. The upper border consists of the (a1BC),
(a1BDE), and (a;CDE) group-bys and the lower border consists of the (a1BC),
(a1D), and (a1E) group-bys. The anti-pruning region contains groups that are
supergroups of some group in the (a;BC), (a1BDE), and (a;CDE) group-bys as
well as subgroups of some group in the (a1BC), (a1D), and (a1E) group-bys.

An anti-pruning region is a maximum region in a group-lattice where pruning
is unnecessary. The groups within the region covered by the anti-pruning borders
are definitely solutions. We aim to compute anti-pruning regions that are lattices
with little extra cost. We observe that lattices are convex spaces: Given a lattice
conditioned on a group g, the lattice is a convex space where all groups are
subgroups of g and supergroups of some MSPs. We make use of bounding to
detect anti-pruning regions that are lattices, as shown in the observation below.

Observation 1 Given a lattice conditioned on a group g, if both bounds satisfy
a given constraint, the MSPs are the upper anti-pruning border BV, and g is
the lower anti-pruning border B ; the lattice of g is an anti-pruning region. All
groups in the lattice satisfy the constraint.

For iceberg cubes with complex aggregation constraints, the cost of checking
for the pruning conditions is high. Detecting a group-lattice that is an anti-
pruning region supposedly improves the efficiency of cubing algorithms.

6 Multiway Bound-Prune Cubing on G-trees

The Group tree (G-tree) is our data structure for cubing. The G-tree for an
n-dimensional dataset is of depth n, where each level represents a dimension. A
common path starting from the root collapses the tuples with common dimension-
values. Each tree node keeps the local aggregates necessary to compute the ice-
berg cube for a given aggregate function. A G-tree is constructed by one scan of
the input data.

The G-tree in Fig. 3 represents the Sales dataset. To compute the data
cube with aggregate function Average, the local aggregates in each node are
Sum(Sale) and Cnt(*). On the leftmost path node (March) shows that there
are 70 tuples with Sum(Sale) = 300 in the (March, *, %, *) group, whereas the
node (Peter) shows that there are 40 tuples with Sum(Sale) = 100 in the
(March, TV, Peter, %) group.

6.1 Top-down aggregation on G-trees

Top-down aggregation on G-trees is based on the following observation: Con-
struction of an n-dimensional G-tree has computed n group-bys, namely the
group-bys whose dimensions are prefixes of the given list of dimensions. With
the G-tree in Fig. 3, the root node has the aggregate for the group (x, *, *, %)
with Cnt (x) = 88 and Sum (Sale) = 700; The nodes at level one compute
the aggregates for groups in (Month, , *, *), which are (March, *, x, *, 70, 300),
(January, *, *, *,5,200), and (April,x,*,x*,13,200). The nodes at the next 3
levels compute the aggregates for (Month, Product), (Month, Product,Man), and
(Month, Product,Man, City) respectively.

Let A, B, C and D denote the four dimensions of the Sales dataset. The group-
bys that are not represented on the G-tree in Fig. 3 are computed by collapsing
one dimension at a time to construct sub-G-trees. In Fig. 4, each node represents
a G-tree and all group-bys that are simultaneously computed on the G-tree. The
ABCD-tree representing the tree of Fig. 3 is at the top. The group-bys (4,B,C,D),
(A,B,C), (A,B), (A) and () are computed on the (A,B,C,D)-tree. The sub-trees
of the ABCD-tree, (—A)BCD, A(—B)CD, and AB(—C)D, are formed by collapsing on
dimensions A, B, and C respectively.

6.2 Multiway pruning on G-trees

In Fig. 3, the leaf nodes of the G-tree are the MSPs for Cube (Mon, Prod, Man, City).
The dimensions after “/” in each node of Fig. 4 denote prefix dimensions for the
tree at the node and all its sub-trees. A is the prefix dimension for the ACD-
tree and its sub-trees. All group-bys that are computed on the ACD-tree and its

(ABCD, ABC, AB, A, All)*

-A B ‘ -C
(BCD, BC, B)? (ACD, AC)/A® (ABD)/AB®
5\ <
(cD,c)® (BD)B® (AD)/IA”
|l-c
)

Fig. 4. Top-down cubing of a 4 dimen-
sional data cube with shared dimen-
sions

Fig. 3. A sample G-tree

sub-trees form data cubes conditioned on some A-value, Cube(CD)|a;, where i
iterates over the values of A. The leaf nodes originated from a; are the MSPs
for Cube(CD)|a;. The bounds for Cube(ACDE)|a; are obtained by a traversal
of the leaf nodes originated from a;. With the G-tree over dimensions Month,
Product, Man, and City in Fig. 3, before collapsing on Product, we calculate
the bounds for the cube lattices conditioned on each dimension value. Following
Fig. 2, the bounds for Cube (Product, Man, City)|March are computed from the
three leaf nodes originated from (March) of G:

Avg(Cube (Man, City)[Mar) = Max({100/40,100/20,100/10}) = 10;

Avg(Cube (Man, City)[Mar) = Min({100/40,100/20,100/10}) = 2.5.

Inclusive pruning is achieved by identifying Z, the set of inclusive dimension-
values for a cube lattice before its aggregates are computed. Given a G-tree G on
dimensions Ay, ..., A,, the bounds for Cube(Agy1, ..., An)l|a1, ...,ap—1, 1 < k < n,
are computed from the leaf nodes originated from the node aj. If the bound
interval does not violate the given constraint, aj should be added to Z. After
7 is obtained, the G-tree is traversed again in depth-first order for inclusive
pruning. At each node, if its dimension-value is from Z, the traversal to its
children is terminated because the branch is not to be trimmed. If the traversal
reaches a leaf node, the branch is trimmed. From the leaf upwards, the nodes on
the branch that have no children are deleted.

Observation 2 (Inclusive pruning) Consider computing an iceberg cube with
the constraint “F(X) in [61,02]”. Given a G-tree with n dimensions Ay, ..., Ay,
Suppose [by,ba] are the bounds for Cube(Ag41, ..., Apn)la1, ..., a1, the sub-cube
by collapsing ay, (1 < k < n), inclusive dimension-values are those ay, such that
[b1,b2] N [01,02] # ¢. Branches defined by only non-inclusive dimension-values
are pruned from computation.

After inclusive pruning branches on a G-tree that can not contain solutions
have been pruned from computation. With the bounds computed for each cube
lattice, exclusive- and anti-pruning are then applied.

Algorithm 1 The MBPC Algorithm

// Assume that an n-dimensional G-tree T" with aggregate function F is constructed.
// The iceberg cube is computed by calling MBPC(T'(Aq, ..., An), ¢).
Input: a) T is a G-tree with conditional base B.
b) Aggregate constraint “ F'(X) in [d1, d2]” is assumed global.
Output: The iceberg groups in the iceberg cube.
MBPC(T(By, ..., Bm), B)
(1) for each dimension i =1..m — 1 do

(2) for each node b; of dimension B; on T’
(3) Output the group g conditioned on B if F(g) in [d1, d2];
(4) Compute the bounds [b1, b2] and Z for Cube(Biy1, ..., Bm)|B U {b;i};

// inclusive pruning
(5) Prune branches formed by only dimension-values from —Z;
(6) if ([b1,b2] N [61,02] = ¢)
(7) break; // exclusive pruning
(8) else if ([bl, bz] N [(517 (52] = [bl, bz])
9) compute all groups in Cube(Bit1, ..., Bm)|BU {b;};
(10) break; //anti-pruning
(11) for j =i+ 1..m do
(12) Construct the sub-tree Ts by collapsing Bj;
(13) MBPC(Ts, BU {b:});

Observation 3 (Exclusive- and anti-pruning) Consider computing an ice-
berg cube with the constraint “F(X) in [01,02]”. Given a G-tree for dimensions
A1, ..., Ay, let [by, ba] be the bounds for Cube(Agi1, ..., Apn)lay, ..., ax—1, the cube
by collapsing A (1 < k < n). If [b1,ba] N [01,d2] = &, the branches originated
from the node (ay, ..., ag—1) can be pruned; otherwise if [by, ba]N[d1,02] = [b1, ba],
all groups in Cube(Ag41, ..., An) are qualified groups.

6.3 The MBPC algorithm

We present the Multiway Bound-Prune Cubing (MBPC) algorithm for com-
puting iceberg cubes, with inclusive- exclusive and anti-pruning strategies. The
algorithm is shown as Algorithm 1.

A G-tree is built by one scan of the input dataset and is the input for
MBPC. MBPC is a recursive procedure where with each recursion, an addi-
tional dimension-value is accumulated in g, the group to be computed. For the
ease of presentation, one group ¢ is processed a time in Algorithm 1. Indeed with
top-down cubing on the G-tree, multiple groups are simultaneously processed.
The steps involved in each group are the same.

At line 3 of the algorithm, the groups that are computed on an G-tree are
conditioned on the conditional base B of the tree. Initially the conditional base
is empty. The prefix dimension-value before the collapsing dimension is accumu-
lated into the conditional base B within each recursion. The bounds are obtained

184 3.6
164 -
g 33‘47
141 e
£ E
[= 32
5 5 “BPC
04 et BPC =
104, = MBPC (anti-pruning) 301 *—"MBPC (anti-pruning)
2
3 28
“Thess 0 > > > > ,
0 == , ; y y RO G % % & 4 %
G,y Ry R Ry &, &, &, &, & Vo P Yo, e e, Ca Z Pl Yy G
Y% Y T T Ty Ty T Ty T Ty, Y, U, Ty, W, W, T, %y, T, %, %,
Average Range Average Range

(a) Weather (100,000 tuples, 9 dimensions) (b) Census (88,443 tuples, 12 dimensions)

Fig. 5. Performance comparison of MBPC (anti-pruning) and BPC

when the branches under the prefix groups are amalgamated. No extra scan of
the tree is required.

Inclusive pruning (line 5) is applied before further aggregation of subgroups.
For the top-down iceberg cubing on the G-tree, a list 7 is created when the G-tree
is built. The list consists of dimension-values of the G-tree, each is associated
with a bit-vector. When the G-tree is traversed in depth-first order to obtain the
bounds for the nodes on the G-tree, the bounds for the dimension-values in the
the list are also obtained; they determine which branches can be trimmed.

The test for anti-pruning (line 8) can be combined with that for exclusive
pruning (line 6) as a single test, where the intersection of the two ranges is
performed only once. Anti-pruning (line 9) is applied by aggregation of groups
without any bounding or bounding test being performed.

7 Experiments

We conducted preliminary experiments to examine the performance of MBPC.
We implemented MBPC with anti-pruning and compared its performance with
that of BPC, that uses only exclusive bound pruning. Experiments were con-
ducted on a PC with i686 processor running GNU/Linux.

Two datasets were used in our experiments. The weather dataset ! is the
weather reports collected at various weather stations globally in 1985. Nine of the
attributes such as station-id, longitude, and latitude are used as dimensions
and the cardinalities range from 2 to 6505. Numbers between 1 and 100 were
randomly generated as the measure. The US census dataset 2 was collected from
surveys about various aspects of individuals in the households in US in 1990.
The original dataset has 61 different attributes such as hrswork1(hours worked
last week) and valueh(value of the house). We selected 12 discrete attributes as
dimensions and a numeric attribute as the measure. Census is dense and skewed
and Weather is very sparse.

! http://cdiac.ornl.gov/ftp/ndp026b/SEPS5L.DAT.Z
2 ftp://ftp.ipums.org/ipums,/data/ip19001.Z

The results of computing iceberg cubes with the constraint “Avg(X) in
[01,62]” are shown in Fig. 5. The time reported does not include time for output.
Generally anti-pruning further improves the efficiency of the BPC algorithm.
Moreover, as 05 get larger and the iceberg cube to compute get larger, more pro-
nounced improvement can be observed. MBPC shows significant improvement
in run time over BPC on Weather. MBPC outperforms BPC consistently by
about 13% for different aggregation constraint thresholds. MBPC shows modest
improvement over BPC on the Census dataset.

8 Conclusions

We have proposed multiway pruning strategies in iceberg cubing: exclusive, in-
clusive and anti-pruning. We have also presented an iceberg cubing algorithm
with the multiway pruning strategy with bounding. Our initial experiments with
anti-pruning has shown that the multiway pruning strategy can significantly im-
prove efficiency of cubing algorithms, especially on computing large cubes. More
extensive experiments are underway to examine the effectiveness of inclusive
pruning and the multiway pruning strategy with respect to general data charac-
teristics.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In Proc.
of VLDB’9/, pages 487-499, Santiago, Chile.
2. R. J. Bayardo. Efficiently mining long patterns from databases. In Proc. of SIG-
MOD’98, pages 85—93.
3. K Beyer and R Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. In Proc. of SIGMOD’99.
4. L. Chou and X. Zhang. Computing complex iceberg cubes by multiway aggregation
and bounding. In Proc. of DaWak’04 (LNCS 3181), Zaragoza Spain.
5. G. Dong and J. Li. Efficient mining of emerging patterns: Discovering trends and
differences. In Proc. of KDD’99, pages 15-18, San Diego, USA.
6. J Gray et al. Data cube: a relational aggregation operator generalizing group-by,
cross-tab, and sub-totals. Data Mining and Knowledge Discovery, 1(1), 1997.
7. J Han, J Pei, G Dong, and K Wang. Efficient computation of iceberg cubes with
complex measures. In Proc. of SIGMOD’01.
8. R.Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining and pruning
optimizations of constrained associations rules. In Proc. of SIGMOD’98.
9. J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent itemsets with convertible
constraints. In Proc. of ICDE’01.
10. K. Wang et al. Divide-and-approximate: A novel constraint push strategy for
iceberg cube mining. IEEE TKDE, 17(3):354-368, March 2005.
11. G. I. Webb. Inclusive pruning: a new class of pruning rules for unordered search
and its application to classification learning. In Proc. of ACSC’96.
12. X. Zhang, L. Chou and G. Dong. Efficient computation of iceberg cubes by bound-
ing aggregate functions. I[EEE TKDE, In submission.

