571 research outputs found

    Strengthening the Effectiveness of Pedestrian Detection with Spatially Pooled Features

    Full text link
    We propose a simple yet effective approach to the problem of pedestrian detection which outperforms the current state-of-the-art. Our new features are built on the basis of low-level visual features and spatial pooling. Incorporating spatial pooling improves the translational invariance and thus the robustness of the detection process. We then directly optimise the partial area under the ROC curve (\pAUC) measure, which concentrates detection performance in the range of most practical importance. The combination of these factors leads to a pedestrian detector which outperforms all competitors on all of the standard benchmark datasets. We advance state-of-the-art results by lowering the average miss rate from 13%13\% to 11%11\% on the INRIA benchmark, 41%41\% to 37%37\% on the ETH benchmark, 51%51\% to 42%42\% on the TUD-Brussels benchmark and 36%36\% to 29%29\% on the Caltech-USA benchmark.Comment: 16 pages. Appearing in Proc. European Conf. Computer Vision (ECCV) 201

    Object detection for big data

    Get PDF
    "May 2014."Dissertation supervisor: Dr. Tony X. Han.Includes vita.We have observed significant advances in object detection over the past few decades and gladly seen the related research has began to contribute to the world: Vehicles could automatically stop before hitting any pedestrian; Face detectors have been integrated into smart phones and tablets; Video surveillance systems could locate the suspects and stop crimes. All these applications demonstrate the substantial research progress on object detection. However learning a robust object detector is still quite challenging due to the fact that object detection is a very unbalanced big data problem. In this dissertation, we aim at improving the object detector's performance from different aspects. For object detection, the state-of-the-art performance is achieved through supervised learning. The performances of object detectors of this kind are mainly determined by two factors: features and underlying classification algorithms. We have done thorough research on both of these factors. Our contribution involves model adaption, local learning, contextual boosting, template learning and feature development. Since the object detection is an unbalanced problem, in which positive examples are hard to be collected, we propose to adapt a general object detector for a specific scenario with a few positive examples; To handle the large intra-class variation problem lying in object detection task, we propose a local adaptation method to learn a set of efficient and effective detectors for a single object category; To extract the effective context from the huge amount of negative data in object detection, we introduce a novel contextual descriptor to iteratively improve the detector; To detect object with a depth sensor, we design an effective depth descriptor; To distinguish the object categories with the similar appearance, we propose a local feature embedding and template selection algorithm, which has been successfully incorporated into a real-world fine-grained object recognition application. All the proposed algorithms and featuIncludes bibliographical references (pages 117-130)

    Online Metric-Weighted Linear Representations for Robust Visual Tracking

    Full text link
    In this paper, we propose a visual tracker based on a metric-weighted linear representation of appearance. In order to capture the interdependence of different feature dimensions, we develop two online distance metric learning methods using proximity comparison information and structured output learning. The learned metric is then incorporated into a linear representation of appearance. We show that online distance metric learning significantly improves the robustness of the tracker, especially on those sequences exhibiting drastic appearance changes. In order to bound growth in the number of training samples, we design a time-weighted reservoir sampling method. Moreover, we enable our tracker to automatically perform object identification during the process of object tracking, by introducing a collection of static template samples belonging to several object classes of interest. Object identification results for an entire video sequence are achieved by systematically combining the tracking information and visual recognition at each frame. Experimental results on challenging video sequences demonstrate the effectiveness of the method for both inter-frame tracking and object identification.Comment: 51 pages. Appearing in IEEE Transactions on Pattern Analysis and Machine Intelligenc

    Action Recognition Using 3D Histograms of Texture and A Multi-Class Boosting Classifier

    Get PDF
    Human action recognition is an important yet challenging task. This paper presents a low-cost descriptor called 3D histograms of texture (3DHoTs) to extract discriminant features from a sequence of depth maps. 3DHoTs are derived from projecting depth frames onto three orthogonal Cartesian planes, i.e., the frontal, side, and top planes, and thus compactly characterize the salient information of a specific action, on which texture features are calculated to represent the action. Besides this fast feature descriptor, a new multi-class boosting classifier (MBC) is also proposed to efficiently exploit different kinds of features in a unified framework for action classification. Compared with the existing boosting frameworks, we add a new multi-class constraint into the objective function, which helps to maintain a better margin distribution by maximizing the mean of margin, whereas still minimizing the variance of margin. Experiments on the MSRAction3D, MSRGesture3D, MSRActivity3D, and UTD-MHAD data sets demonstrate that the proposed system combining 3DHoTs and MBC is superior to the state of the art
    • …
    corecore