3,781 research outputs found

    BoostFM: Boosted Factorization Machines for Top-N Feature-based Recommendation

    Get PDF
    Feature-based matrix factorization techniques such as Factorization Machines (FM) have been proven to achieve impressive accuracy for the rating prediction task. However, most common recommendation scenarios are formulated as a top-N item ranking problem with implicit feedback (e.g., clicks, purchases)rather than explicit ratings. To address this problem, with both implicit feedback and feature information, we propose a feature-based collaborative boosting recommender called BoostFM, which integrates boosting into factorization models during the process of item ranking. Specifically, BoostFM is an adaptive boosting framework that linearly combines multiple homogeneous component recommenders, which are repeatedly constructed on the basis of the individual FM model by a re-weighting scheme. Two ways are proposed to efficiently train the component recommenders from the perspectives of both pairwise and listwise Learning-to-Rank (L2R). The properties of our proposed method are empirically studied on three real-world datasets. The experimental results show that BoostFM outperforms a number of state-of-the-art approaches for top-N recommendation

    OBOE: Collaborative Filtering for AutoML Model Selection

    Full text link
    Algorithm selection and hyperparameter tuning remain two of the most challenging tasks in machine learning. Automated machine learning (AutoML) seeks to automate these tasks to enable widespread use of machine learning by non-experts. This paper introduces OBOE, a collaborative filtering method for time-constrained model selection and hyperparameter tuning. OBOE forms a matrix of the cross-validated errors of a large number of supervised learning models (algorithms together with hyperparameters) on a large number of datasets, and fits a low rank model to learn the low-dimensional feature vectors for the models and datasets that best predict the cross-validated errors. To find promising models for a new dataset, OBOE runs a set of fast but informative algorithms on the new dataset and uses their cross-validated errors to infer the feature vector for the new dataset. OBOE can find good models under constraints on the number of models fit or the total time budget. To this end, this paper develops a new heuristic for active learning in time-constrained matrix completion based on optimal experiment design. Our experiments demonstrate that OBOE delivers state-of-the-art performance faster than competing approaches on a test bed of supervised learning problems. Moreover, the success of the bilinear model used by OBOE suggests that AutoML may be simpler than was previously understood

    GreedyBoost: An Accurate, Efficient and Flexible Ensemble Method for B2B Recommendations

    Get PDF
    Recommender systems have achieved great success in finding relevant products and services for individual customers, e.g. in B2C markets, during recent years. \ However, due to the diversity of enterprise clients\u27 requirements it is still an open question on how to successfully apply existing recommendation techniques in the B2B domain. \ \ This paper presents GreedyBoost --- an accurate, efficient and flexible ensemble method for product and service recommendations in the B2B domain. Given a set of base models, GreedyBoost can sequentially add base models to the ensemble by a linear approach to minimize training error, so that the ensemble process is efficient. Meanwhile, GreedyBoost does not have any special requirement on base models and evaluation metrics, so that any kind of client requirements and sale \\& distribution purposes can be adapted. Experimental results on real-world B2B data demonstrate that GreedyBoost can achieve higher recommendation accuracy compared with two popular ensemble methods

    A Bayesian Approach toward Active Learning for Collaborative Filtering

    Full text link
    Collaborative filtering is a useful technique for exploiting the preference patterns of a group of users to predict the utility of items for the active user. In general, the performance of collaborative filtering depends on the number of rated examples given by the active user. The more the number of rated examples given by the active user, the more accurate the predicted ratings will be. Active learning provides an effective way to acquire the most informative rated examples from active users. Previous work on active learning for collaborative filtering only considers the expected loss function based on the estimated model, which can be misleading when the estimated model is inaccurate. This paper takes one step further by taking into account of the posterior distribution of the estimated model, which results in more robust active learning algorithm. Empirical studies with datasets of movie ratings show that when the number of ratings from the active user is restricted to be small, active learning methods only based on the estimated model don't perform well while the active learning method using the model distribution achieves substantially better performance.Comment: Appears in Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence (UAI2004
    corecore