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Abstract

Recommender systems have achieved great success in find-
ing relevant products and services for individual customers,
e.g. in B2C markets, during recent years. However, due to
the diversity of enterprise clients’ requirements it is still
an open question on how to successfully apply existing
recommendation techniques in the B2B domain. This paper
presents GreedyBoost — an accurate, efficient and flexible
ensemble method for product and service recommendations
in the B2B domain. Given a set of base models, GreedyBoost
can sequentially add base models to the ensemble by a linear
approach to minimize training error, so that the ensemble
process is efficient. Meanwhile, GreedyBoost does not have
any special requirement on base models and evaluation met-
rics, so that any kind of client requirements and sale &
distribution purposes can be adapted. Experimental results
on real-world B2B data demonstrate that GreedyBoost can
achieve higher recommendation accuracy compared with two
popular ensemble methods.

1. Introduction

With an increase in the overall competition in the market-
place, companies across all industries are searching for new
and innovative ways to grow their business. Growth can be
defined in a number of ways. For some this means an increase
in profit or revenue, others define it as growing their customer
base. One of the main challenges in achieving this goal is to
better understand the customers as well as to offer products
and services that are demand – at the right time and place.

For decades, enterprises have explored many ways to an-
alyze consumer behavior and trends, for example through
the use of focus groups, interviews and surveys [1]. These
insights are used for creating personas, which can be targeted
in advertising and other promotional campaigns. With a steady
increase in the number of customers to be served and the
volume of data available, companies are looking for a more
automated way to better understand the needs of their clients.

In recent years, recommender systems have become more
and more popular to process vast amounts of client data
and to make specific product and service recommendations
for individuals [2], [3]. This technique has been used very

successfully in the B2C space — Amazon [4] and Alibaba [5]
are just two of the many examples. However, the number of
use cases in the B2B world is very limited so far.

Main challenges of recommender systems in B2B include
the limited availability of data - especially for new clients
with no previous business interaction, offering complexity as
well as multiple data type integration and scalability [6]. The
shortage of data creates the necessity for models to utilize
information that is not directly related to a particular client
but can be inferred. An additional challenge is that in contrast
to making recommendations for an individual person (B2C),
a targeted organization can be very diverse in its structure and
needs. Each of the divisions and, in larger enterprises, each
geographic region, may require a different set of recommen-
dations.

Our analysis has shown that currently available base and
ensemble models do not achieve a high level of accuracy
when it comes to product and service recommendations. With
this problem statement in mind, we explored different ways to
improve the level of accuracy and precision of the ensemble
model. The outcome of this work is presented in this paper
along with a way to implement and evaluate the algorithm.
We refer to the developed algorithm and the application of
the same as GreedyBoost.

The rest of this paper is structured into 5 sections: related
work, algorithm design, analysis, experiments and conclusion.
Section 2 gives a brief overview of the existing research
around recommender systems and discuss limitations of the
current work. Section 3 first presents three classic collaborative
filtering algorithm, which are adopted as base models in
the ensemble, and then presents the proposed GreedyBoost
methods in detail. Algorithm design is followed by Section 4,
which examines the two key characteristics of of GreedyBoost:
(1) convergence and (2) computation complexity. Section 5
evaluates the proposed method in the context of real-world
data sets. Finally, we conclude the paper in Section 6.

2. Related Work

Collaborative filtering (CF) has become one of the most
popular recommendation algorithms during recent years [7]
due to its high accuracy and efficiency. Collaborative filtering-
based recommender systems have been applied in many do-
mains, e.g., product recommendation [8], news recommenda-
tion [9], [10], video recommendation [11], music recommen-
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dation [12] etc. Generally, collaborative filtering methods can
be classified into two main categories [7], [13]: memory-based
collaborative filtering and model-based collaborative filtering.
Memory-based CF methods can build some correlations of
clients/products based on clients’ historical records and then
adopt such correlations to predict their future interests [14],
[8], [15], [16], [17]. On the contrary, model-based CF methods
first train a model based on clients’ historical records, and then
predict the future interests of clients based on the model [18],
[19], [20], [21]. Most of existing model-based collaborative
filtering methods rely on both positive ratings and negative
ratings of clients on products to train the model, which are not
directly applicable to our scenario because there is no negative
ratings in B2B markets. Therefore, the base models in this
paper are selected from memory-based collaborative filtering
methods, which do not suffer from the “missing negative
rating” issue.

Ensemble methods have been proved to be more accurate
than single models, and two of the most popular ensemble
methods are boosting and bagging [22]. Boosting methods can
integrate the power of a set of “weak” learners to achieve a
learner with better performance [23]. Gradient boosting [24] is
one of popular boosting method which can construct additive
learning models by sequentially fitting a simple parameter-
ized function (base learner) to minimize residuals by some
loss function at each iteration. Another popular method is
AdaBoosting [25], which can set higher weights to wrongly
predicted examples during iterations to help choose base
learners to minimize the overall training error. The above
boosting methods can achieve good performance if the base
learners can be trained or easily obtained. However, this cannot
be easily guaranteed in top-N recommendation application, in
which no negative examples are available for model learning.
Different from boosting, bagging method [26] can build base
learners by changing the set of training examples and then use
the average outputs of all the base learners, so that ensemble
results can achieve better generalization performance. Bagging
can achieve good performance if the base learners are not very
stable [27], e.g., decision-tree or neural network. However,
memory-based collaborative filtering methods are similar to
kNN methods, which have been proved to be stable. There-
fore, bagging cannot substantially improve recommendation
accuracy as in other applications.

In addition, some of the existing ensemble methods have
special requirements about the base learners. For instance,
gradient boosting decision tree [28] can only deal with the case
that all the base learners are decision trees. On the contrary, the
proposed GreedyBoost method can be adopted to integrate any
kinds of base learners, e.g., user-based collaborative filtering,
item-based collaborative filtering and Naı̈ve Bayes recommen-
dation in this work. This flexibility is important because many
real-world problem cannot be easily solved by one kind of
methods but a variety of different kinds of methods.

3. Algorithm Design

This section first presents the three collaborative filtering
models that are adopted as base models in GreedyBoost,
i.e., user-based collaborative filtering (UBCF) [14], item-based
collaborative filtering (IBCF) [15] and Naı̈ve Bayes recom-
mendation algorithm (NBR) [29]. Note that, the GreedyBoost
method is orthogonal to base models, so that any other base
model can be adopted by GreedyBoost. Then, the technique
details of GreedyBoost algorithm is presented.

3.1. Base Models

3.1.1. User-based Collaborative Filtering. User-based col-
laborative filtering (UBCF) method is based on the idea that
users with certain interests in the past will be likely to have
similar interests in the future. Thus, we can observe the
similarities among users in the past, then predict the future
interest of a target user based on the decision of its similar
neighbors. There are two key steps in the above process: 1)
measure the similarity among different users and 2) compute
the recommendation score based on the decision of neighbors.

Similarity computation. There are a variety of methods for
computing similarities, and we adopt two of the most popular
ones for top-N recommendation, i.e., Cosine similarity and
Jaccard similarity. Given two users u and v, let ru,i be the
rating of user u on item i and n be the number of items. Note
that, the value of ru,i is binary in top-N recommendation, i.e.,
ru,i = 1 if u purchased i before and ru,i = 0 otherwise.
Then, the Cosine similarity between u and v can be computed
as follows:

cos(u, v) =

∑n
i=1 ru,irv,i√∑n

i=1 r
2
u,i

√∑n
i=1 r

2
v,i

(1)

The Jaccard similarity between u and v can be computed as
follows:

jaccard(u, v) =
|Iu ∩ Iv|
|Iu ∪ Iv|

(2)

where Iu (Iv) is the set of items that are rated by u (v) before.
Rating computation. Given a target user u and the simi-

larities between u and all other users, we can select the set
of most similar users to u as “neighbors”, and then predict
the rating of u on unrated items based on the opinions of the
neighbors by a weighted average as follows [14]:

r̂u,i =

∑
v∈Nu

sim(u, v)rv,i∑
v∈Nu

sim(u, v)
(3)

where Nu is the set of neighbors of u. sim(x, y) is a user
similarity measure, which can be computed by Equation 1 or
Equation 2.

After obtaining the predicted rating r̂u,i for each of the
unrated items of user u, we can rank all the unrated items by
the predicted rating in a descending order and recommend the
top k items to the user.
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3.1.2. Item-based Collaborative Filtering. Item-based col-
laborative filtering method works based on the idea that users
will be interested in items that are similar to the items they
have purchased before. Thus, we can observe the similarities
among items, then predict the future interest of a target user
based on the set of items it purchased. Similarly, there are also
two key steps in the above process: 1) measure the similarity
among different items and 2) compute the recommendation
score based on the purchase history of the target user.

Similarity computation. Item similarities can be computed
just like user similarities. Given two items i and j, the Cosine
similarity between i and j can be computed as follows:

cos(i, j) =

∑m
u=1 ru,iru,j√∑m

u=1 r
2
u,i

√∑m
u=1 r

2
u,j

(4)

where m is the number of users. The Jaccard similarity
between i and j can be computed as follows:

jaccard(i, j) =
|Ui ∩ Uj |
|Ui ∪ Uj |

(5)

where Ui (Uj) is the set of users that rated by i (j) before.
Rating computation. Given a target user u and the similar-

ities among all items, we can predict the rating of u on unrated
item i based on the similarities between i and the set of items
that u rated before by a weighted average as follows [15]:

r̂u,i =

∑
j∈Iu sim(i, j)ru,j∑
j∈Iu sim(i, j)

(6)

where Iu is the set of items that are rated by u. sim(x, y) is an
item similarity measure, which can be computed by Equation 4
or Equation 5.

Similar to UBCF, after obtaining all the predicted ratings,
we can rank all the unrated items by the predicted rating in a
descending order and recommend the top k items to the user.

3.1.3. Naı̈ve-Bayes Recommendation. Naı̈ve Bayes recom-
mendation algorithm is a kind of content-based method, which
adopts user/item features to generate the recommendations,
e.g., based on firmographics information of companies. Given
a target user u with a set of content features Fu = {f1, ..., ft},
the recommendation score for an unrated item i can be
computed as follows [29]:

r̂u,i = Pr(i|F ) =
Pr(i) Pr(F |i)

Pr(F )
(7)

Then, based on the independence assumption of each feature
in F , we have

r̂u,i =
Pr(i)

∏
f∈F Pr(f |i)∏

f∈F Pr(f)
(8)

Pr(i) is the probability of item i being purchased in the past,
which is defined as follows:

Pr(i) =
N1(i) + δ∑
j N1(j) + nδ

(9)

where N1(i) is the number of times that item i was purchased
in the past and δ is the Laplacian smoothing parameter to
avoid the “0”-probability issue.

Pr(f) is the probability that feature f appeared among all
the users, which is defined as follows:

Pr(f) =
N2(f) + δ∑
f ′ N2(f ′) + tδ

(10)

where N2(f) is the number of times that feature f appeared
among all users.

Pr(f |i) is the probability of the feature f among the users
who purchased i, which is defined as follows:

Pr(f |i) =
N3(i, f) + δ∑
f ′ N3(i, f ′) + tδ

(11)

where N3(i, f) is the number of times that feature f appears
among the users who purchased i.

3.2. GreedyBoost Method

Related works [28], [26], [22], [21], [30] have theoret-
ically and empirically proved that ensemble methods can
significantly improve model performance compared with base
methods, because the generalization error of ensemble model
can be reduced by combining the advantages of different base
models. To this end, we adopt the ensemble idea in B2B
recommendation and propose an accurate, efficient and flexible
ensemble method, namely GreedyBoost, which can greedily
combine the outputs of a number of base models by a weight
optimization algorithm.

Given a set of base models M = {m1,m2, ...,mk}, where k
is the number of base models, the goal of the proposed Greedy-
Boost method is to find the optimal weights {w1, ..., wk} to
combine the outputs of all base models in M . Therefore, the
output of the ensemble model can be defined as follows:

m∗ =

k∑
i=1

wi ∗mi (12)

Following the idea of boosting, the proposed GreedyBoost
method iteratively add new base models in the ensemble while
ensuring that the weight of newly added base model can
minimize the training error. As illustrated in Figure 1, the
proposed GreedyBoost method consists of three key steps:

1) Let m∗ = m1 (assuming that m1 is the base model with
lowest training error);

2) Update m∗ by adding the best base model m′ ∈ M
ensuring that m′ can minimize the residual error of
m∗, and then compute the corresponding weight w by
optimize the following problem w = arg minw′ E((1−
w)m∗+wm) (E(·) is an evaluation function to measure
how accurate a model is);

3) Repeat step 2 until the error of m∗ converges or the
maximum number of iterations reaches.

Algorithm 1 formally describes the detailed procedure of the
proposed GreedyBoost algorithm. For each step, a base model
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Fig. 1. High-level overview of the proposed GreedyBoost method

is added to the ensemble by a weighted average to integrate
the base model with the current ensemble model, which makes
it very fast to add a base model. Moreover, the evaluation
function E(·) does not need to be specified in GreedyBoost,
which allows us to optimize the ensemble model with any kind
of evaluation metrics, i.e., the GreedyBoost method is flexible
and can be adopted in any kind of top-N recommendation
problems.

4. Analysis

4.1. Generalization Performance

This section proves that the proposed GreedyBoost method
can generalize well with sufficient number of base models, i.e.,
the good performance of the ensemble model on training data
can be preserved on test data. Here, we first prove the case
that all the base models are of equal weight in the ensemble.

Theorem 1 Let the errors of k different base models
m1, ...,mk be k independent random variables, ai ≤ Xi ≤ bi,
the expectation of the errors be m and m̄ = 1

k

∑k
i=1mi. For

any ε, δ > 0, if we choose k ≥
√∑k

i=1(bi−ai)2 log δ/2

−2ε2 we have

Pr[|m− m̄| < ε] ≥ 1− δ. (13)

Proof: Based on Hoeffding’s inequality, we have

Pr[m− m̄ ≥ ε] ≤ exp{ −2k2ε2∑k
i=1(bi − ai)2

} (14)

Similarly, we have

Pr[m̄−m ≥ ε] ≤ exp{ −2k2ε2∑k
i=1(bi − ai)2

} (15)

Algorithm 1 GreedyBoost
Require: A set of base models M = {m1,m2, ...,mk},

evaluation metric E(mi), i ∈ {1, ..., k}
Ensure: Final model m∗

1: choose m0 ∈M as the base model with best performance
evaluated by E;

2: S∗ = E(m0);
3: while S∗ does not converge do
4: Let ST = ∅ be the data structure to store the interme-

diate recommendation accuracy during training;
5: Let TM = ∅ be the data structure to store the interme-

diate weight and the selected base model pairs during
training;

6: for each i ∈ [1, k] do
7: w = arg minw′{w′ ∗m∗ + (1− w′) ∗mi};
8: sti = E(w ∗m∗ + (1− w) ∗mi);
9: put sti into ST ;

10: put (mi, w) into TM ;
11: end for
12: st∗ = maxst∈ST st;
13: if st∗ > S∗ then
14: S∗ = st∗;
15: m∗ = w ∗m∗ + (1− w) ∗mi, where (mi, w) is the

corresponding model and weight
16: else
17: break;
18: end if
19: end while
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Then, combining the above two inequalities, we have

Pr[|m− m̄| ≥ ε] ≤ 2 exp{ −2k2ε2∑k
i=1(bi − ai)2

} (16)

This is equivalent to

Pr[|m− m̄| < ε] ≥ 1− 2 exp{ −2k2ε2∑k
i=1(bi − ai)2

} (17)

To ensure that Pr[|m − m̄| < ε] ≥ 1 − δ, we have
2 exp{ −2k2ε2∑k

i=1(bi−ai)2
} ≤ δ. Solving the inequality, we have

k ≥

√∑k
i=1(bi − ai)2 log δ/2

−2ε2
(18)

This proves the conclusion in the theorem.
Note that, Theorem 1 is based on the bounded error of all

base models. This means that if the errors of all base models
are bounded, then the error of their ensemble is bounded.
Otherwise, if any of the base models has an unbounded error,
the above theorem does not hold. If the base models run on
datasets with limited examples, the errors of the base models
are always bounded. Therefore, we can claim that the above
theorem will hold in real-world problems in which datasets
always have limited examples.

The above Theorem 1 states that if we can choose enough
independent base models then the error of the averaged outputs
of all base models can be bounded. If we take the averaged
outputs of all base models as a kind of ensemble, then the
above Theorem 1 also indicates that the error of the averaged
ensemble model is also bounded. Moreover, the above proof
actually does not require each base model to be of equal
weight, i.e., unequal weights in the averaging can also derive
similar results. Therefore, we can conclude that the error of the
proposed GreedyBoost method is bounded. Then, based on the
argument that m̂ ≤ 1

k

∑k
i=1mi [30] (m̂ is the generalization

error of the ensemble), we know that the generalization error
of ensemble cannot be larger than the average error of all
base models, i.e., the generalization error of the ensemble is
bounded. Therefore, we can conclude that the generalization
error of GreedyBoost method is also bounded. This indicates
that, if the ensemble model can achieve good performance on
training data, it can also achieve similarly good performance
on test data.

4.2. Complexity Analysis

Following, we only analyze the the computation complexity
of the proposed GreedyBoost method. This is because Greedy-
Boost only requires the outputs of all base models, so that
all base models can be trained offline. The training of the
GreedyBoost method is efficient, because adding a base model
to the ensemble model only requires a linear combination of
the output of the previous ensemble model and the output of
the selected base model. Therefore, the computation of training
in the GreedyBoost method is O(L) per iteration, where L is
the number of examples in the cross-validation data. Suppose

that there are k different base models in M , steps 5 to 10 in
Algorithm 1 take k times per iteration. If the GreedyBoost
method runs T iterations in total before termination, the
total computation cost of training the ensemble model is
only O(LKT ) (assuming that the evaluation metric can be
computed in O(L)). If the computation cost of evaluation
metric is more complex than O(L), e.g., computation of AUC
value requires sorting and thus is O(LlogL)), the computation
cost of GreedyBoost is O(LlogLKT ).

4.3. Reference to B2C Recommendations

It should be noted that the proposed GreedyBoost method is
more suitable to B2B recommendations than B2C recommen-
dations, due to the often different application scenarios in the
B2C and B2B context. There are three aspects that summarize
the key differences: 1) Accuracy. B2B data are sparse so that
complex models may easily overfit due to incomplete and
noisy training data [31], [32]. However, GreedyBoost adopts
a linear model to integrate the base models and achieves good
generalization performance as analyzed in Section 4.1. This
guarantees that the recommendations from GreedyBoost can
be reliable in real-world B2B sales and markets as it does not
easily overfit towards the limited training data. 2) Efficiency.
Users are not changing with a high frequency in the B2B
domain, i.e., on a weekly or even monthly basis. Therefore,
we can pre-train a set of base models, and then GreedyBoost
can serve different goals based on the same pre-trained base
models. This is different for B2C recommendation, in which
user interests will often update/change on a daily basis. 3)
Flexibility. Requirements are very dynamic in B2B sales and
marketing campaigns, so that the method should provide
recommendations based on different optimization goals and
scenarios, e.g. for precision, coverage, revenue. GreedyBoost
can achieve any optimization goal by optimizing towards
those goals based on the same base models. In contrast,
for B2C applications, recommendations will mostly have one
optimization goal so that no such flexibility is required.
Moreover, some existing ensemble methods, e.g. gradient
boosting, cannot support various kinds of optimization goals
due to the limitation of the algorithms. For instance, gradient
boosting cannot optimize towards loss functions which are not
differentiable, e.g. area under ROC curve. In conclusion, we
can say that although the proposed GreedyBoost method can
be applied in the B2C domain as well, it is more suitable to
application areas in the B2B space.

5. Experiments

5.1. Experimental Setup

5.1.1. Dataset Description. In this section, we evaluate the
proposed GreedyBoost method on a real-world dataset, which
is collected from a commercial B2B company. The com-
pany develops, manufactures and markets computer hardware
and software, and also provides IT-related services. Table 1
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describes the detailed information of the dataset. Table 2
describes customer features, i.e., country, industry and region,
which are adopted in the Naı̈ve Bayes recommendation algo-
rithm. We select customer purchase records from 2011 to 2014
as training data, and use the data in 2015 as testing. During the
training of the ensemble model, we randomly select 20% data
from training set as validation set, which is used to determine
the optimal weight of each base model.

TABLE 1. Dataset Description (purchase records)

#records #customers #products period
∼ 1.3 million ∼ 180k 627 2011 - present

TABLE 2. Dataset Description (customer features)

#countries #regions #industries
165 7 24

5.1.2. Evaluation Metrics. In top-N recommendation sce-
nario, we can regard the recommendation as binary classifica-
tion problem, because the label of each client-product pair
in the test set is 1 or 0. i.e., purchased or not. And the
recommendation scores can be used to predict the probability
of clients purchasing products. To this end, we use Receiver
Operator Characteristic (ROC) curves, which shows how the
number of correctly classified positive examples varies with
the number of incorrectly classified negative examples. How-
ever, ROC curves can present an overly optimistic view of an
algorithm’s performance if there is a large skew in the class
distribution. Therefore, area under ROC curves (AUC) can be
used to evaluate the overall performance of each algorithm.

Meanwhile, we also evaluate the proposed GreedyBoost
method using precision and recall metrics, which are two com-
monly used in evaluating top-N recommendation algorithms.
Precision-Recall curves can show the trend of recall varying
with precision, and the area under PR curves (AUPR) can be
used to evaluate the overall performance of each algorithm.
For both the two evaluation metrics, higher value means better
accuracy. Precision and Recall can be computed as follows:

Precision =
|Ir ∩ Iu|
|Iu|

(19)

Recall =
|Ir ∩ Iu|
|Ir|

(20)

where Ir is the set of recommended items and Iu is the set
of items that are liked by user u.

The ROC curve represents the relationship between sensitiv-
ity and specificity, in which sensitivity is the same as recall but
specificity is slightly different from precision. As pointed out
by Davis and Goadrich [33], Precision-Recall curves provide
more informative pictures of algorithm performance when
dealing with highly skewed datasets. Note that, GreedyBoost
can optimize towards AUC and AUPR independently. There-
fore, if the targeted dataset is highly skewed, we can let
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Fig. 2. ROC curve comparison

GreedyBoost optimize the ensemble model towards AUPR.
Otherwise, we can let GreedyBoost optimize towards AUC.

5.2. Base Model Selection

The performance of the proposed GreedyBoost method is
determined by the selection of base models. In this section,
we adopt the three kinds of base models as described in
Section 3.1. For UBCF and IBCF, we vary the number of
neighbors to form diverse base models. In particular, we adopt
100, 200 and 300 as the numbers of neighbors in UBCF
to form three different UBCF-based models and adopt 50,
100, and 150 as the numbers of neighbors in IBCF to form
three different IBCF-based models. In total, we have seven
base models in GreedyBoost: three UBCF-based models, three
IBCF-based models and a Naı̈veBayes model.

5.3. Accuracy Comparison

In this section, we compare GreedyBoost with two classic
ensemble methods, i.e., Bagging [26] and Gradient Boost-
ing [28], as well as all the base models adopted in the
ensemble on the two aforementioned evaluation metrics AUC
and AUPR. Table 3 shows the AUC scores of three base
models and three different ensemble methods. We can see from
the results that GreedyBoost achieves better performance than
all the other compared methods. Figure 2 shows the ROC curve
for all these models, and the same trend can be observed.

TABLE 3. Comparison of Area under ROC Curve
(AUC)

Model AUC Score
User-based Collaborative Filtering 0.8172
Item-based Collaborative Filtering 0.8050
Naı̈ve-Bayes 0.9181
Bagging 0.9044
Gradient Boosting 0.9178
GreedyBoost 0.9361

1569



0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

IBCF
UBCF

NaiveBayes
Bagging

GradientBoost
GreedyBoost

Fig. 3. PR curve comparison

Table 4 shows the area under PR curve (AUPR) of all
three ensemble models and three base models. Note that, the
precision-recall curves show the results averaged over all the
customers, so that the trends are slightly different from those in
the ROC curve. However, the proposed GreedyBoost method
still outperforms all the other compared methods. Figure 3
shows the PR curves of all the compared methods.

TABLE 4. Comparison of Area under PR Curve

Model Area under PR
User-based Collaborative Filtering 0.1415
Item-based Collaborative Filtering 0.0687
Naı̈ve-Bayes 0.0902
Bagging 0.1557
Gradient Boosting 0.0971
GreedyBoost 0.1703

Overall, the proposed GreedyBoost method outperforms the
other five methods by 2.0% - 16.3% relatively in terms of AUC
and 9.4% - 147.9% relatively in terms of AUPR, respectively.
The main reasons that the proposed GreedyBoost method can
achieve better accuracy are as follows. First, the proposed
method can directly optimize towards the given evaluation
metric. On the contrary, the bagging method does not have
such property because it tries to improve the model accuracy
by preventing base models from overfitting using randomiza-
tion. Gradient boosting method can minimize training error,
but lower training error, e.g., lower mean absolute error, does
not mean higher AUC or AUPR because they are not directly
correlated [34]. Secondly, the proposed method has good
generalization performance, so that it will not easily overfit
as in gradient boosting [28].

5.4. Efficiency Analysis

To further evaluate the efficiency of the proposed Greedy-
Boost method, we compare the computation time of Greedy-
Boost with Bagging and Gradient Boosting. In this experi-
ments, the maximum number of iteration is set to 200 for

TABLE 5. Efficiency Comparison

Model Computation Time (seconds)
Bagging 13.1
Gradient Boosting 1,206.9
GreedyBoost 902.3

GreedyBoost and Gradient Boosting and convergence thresh-
old is set to 0.0001. For all the three compared methods, we
set the number of base models to 7. The numbers reported
in Table 5 are the average results over 5 separate runs. Note
that computation times for the base model generation process
are not included in Table 5 because they can be pre-trained
in B2B recommendations. We can see from Table 5 that the
computation time for GreedyBoost and Gradient Boosting
are much higher than Bagging, which is because training
is required to learn model parameters for GreedyBoost and
Gradient Boosting. And for Bagging, only a simple average
is required to do the ensemble. However, the accuracy of
Bagging converges with the number of base models, which
can typically be as large as several hundreds [22]. Since
the training time of base models is much longer than the
training time of ensemble, the proposed GreedyBoost method
can achieve a much lower overall computation overhead
compared to Bagging. GreedyBoost and Gradient Boosting
are of similar computation complexity. But compared with
Gradient Boosting, GreedyBoost can reduce computation time
by approximately 1/4 in the experiments, which is mainly
due to faster convergence speed. In conclusion, GreedyBoost
can achieve a good level of efficiency compared with popular
ensemble methods.

6. Conclusion

Recommender systems have been proven to be a valuable
support in the sales and customer interaction process. They
allow enterprises to process vast amounts of client informa-
tion and to make meaningful recommendations. This work
addresses one of the main challenges of recommender systems,
which is to optimize the level of accuracy and precision. The
analysis and experiments in this paper proves that the proposed
implementation method for this algorithm — GreedyBoost —
is a more accurate, efficient and flexible way for integrating
different kinds of recommendation base models in the B2B
domain.

Experimental results on real-world business data demon-
strate that the proposed method can achieve higher accuracy
and efficiency than two well-known ensemble methods. In
addition, the GreedyBoost model performs significantly better
than each of the base models. Meanwhile, the proposed
method is orthogonal to base learners, which shows high
flexibility by making it possible to integrate any kind of
recommendation methods into the ensemble.

The future work for improving the proposed GreedyBoost
method will focus on the following two aspects. First, the
GreedyBoost method does not consider model-based collabo-
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rative filtering methods due to low compatibility. Therefore, in-
corporating model-based collaborative filtering methods, e.g.,
matrix approximation-based method, to improve the model
accuracy will be one of the possible extensions. Secondly,
the weights of base models in GreedyBoost are globally
optimized, which may be optimal in terms of all users but
may not be optimal in terms of individual users. Therefore,
another extension will be to give each user a unique set of
optimal weights in the ensemble model.
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