3 research outputs found

    Intelligent frame selection as a privacy-friendlier alternative to face recognition

    Get PDF
    The widespread deployment of surveillance cameras for facial recognition gives rise to many privacy concerns. This study proposes a privacy-friendly alternative to large scale facial recognition. While there are multiple techniques to preserve privacy, our work is based on the minimization principle which implies minimizing the amount of collected personal data. Instead of running facial recognition software on all video data, we propose to automatically extract a high quality snapshot of each detected person without revealing his or her identity. This snapshot is then encrypted and access is only granted after legal authorization. We introduce a novel unsupervised face image quality assessment method which is used to select the high quality snapshots. For this, we train a variational autoencoder on high quality face images from a publicly available dataset and use the reconstruction probability as a metric to estimate the quality of each face crop. We experimentally confirm that the reconstruction probability can be used as biometric quality predictor. Unlike most previous studies, we do not rely on a manually defined face quality metric as everything is learned from data. Our face quality assessment method outperforms supervised, unsupervised and general image quality assessment methods on the task of improving face verification performance by rejecting low quality images. The effectiveness of the whole system is validated qualitatively on still images and videos.Comment: accepted for AAAI 2021 Workshop on Privacy-Preserving Artificial Intelligence (PPAI-21

    Face Image Quality Assessment: A Literature Survey

    Full text link
    The performance of face analysis and recognition systems depends on the quality of the acquired face data, which is influenced by numerous factors. Automatically assessing the quality of face data in terms of biometric utility can thus be useful to detect low-quality data and make decisions accordingly. This survey provides an overview of the face image quality assessment literature, which predominantly focuses on visible wavelength face image input. A trend towards deep learning based methods is observed, including notable conceptual differences among the recent approaches, such as the integration of quality assessment into face recognition models. Besides image selection, face image quality assessment can also be used in a variety of other application scenarios, which are discussed herein. Open issues and challenges are pointed out, i.a. highlighting the importance of comparability for algorithm evaluations, and the challenge for future work to create deep learning approaches that are interpretable in addition to providing accurate utility predictions
    corecore