18,740 research outputs found

    Facial Component Detection in Thermal Imagery

    Get PDF
    This paper studies the problem of detecting facial components in thermal imagery (specifically eyes, nostrils and mouth). One of the immediate goals is to enable the automatic registration of facial thermal images. The detection of eyes and nostrils is performed using Haar features and the GentleBoost algorithm, which are shown to provide superior detection rates. The detection of the mouth is based on the detections of the eyes and the nostrils and is performed using measures of entropy and self similarity. The results show that reliable facial component detection is feasible using this methodology, getting a correct detection rate for both eyes and nostrils of 0.8. A correct eyes and nostrils detection enables a correct detection of the mouth in 65% of closed-mouth test images and in 73% of open-mouth test images

    Automatic human face detection for content-based image annotation

    Get PDF
    In this paper, an automatic human face detection approach using colour analysis is applied for content-based image annotation. In the face detection, the probable face region is detected by adaptive boosting algorithm, and then combined with a colour filtering classifier to enhance the accuracy in face detection. The initial experimental benchmark shows the proposed scheme can be efficiently applied for image annotation with higher fidelity

    Deep Boosting: Layered Feature Mining for General Image Classification

    Full text link
    Constructing effective representations is a critical but challenging problem in multimedia understanding. The traditional handcraft features often rely on domain knowledge, limiting the performances of exiting methods. This paper discusses a novel computational architecture for general image feature mining, which assembles the primitive filters (i.e. Gabor wavelets) into compositional features in a layer-wise manner. In each layer, we produce a number of base classifiers (i.e. regression stumps) associated with the generated features, and discover informative compositions by using the boosting algorithm. The output compositional features of each layer are treated as the base components to build up the next layer. Our framework is able to generate expressive image representations while inducing very discriminate functions for image classification. The experiments are conducted on several public datasets, and we demonstrate superior performances over state-of-the-art approaches.Comment: 6 pages, 4 figures, ICME 201

    Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

    Get PDF
    Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance

    Multitarget Tracking in Nonoverlapping Cameras Using a Reference Set

    Get PDF
    Tracking multiple targets in nonoverlapping cameras are challenging since the observations of the same targets are often separated by time and space. There might be significant appearance change of a target across camera views caused by variations in illumination conditions, poses, and camera imaging characteristics. Consequently, the same target may appear very different in two cameras. Therefore, associating tracks in different camera views directly based on their appearance similarity is difficult and prone to error. In most previous methods, the appearance similarity is computed either using color histograms or based on pretrained brightness transfer function that maps color between cameras. In this paper, a novel reference set based appearance model is proposed to improve multitarget tracking in a network of nonoverlapping cameras. Contrary to previous work, a reference set is constructed for a pair of cameras, containing subjects appearing in both camera views. For track association, instead of directly comparing the appearance of two targets in different camera views, they are compared indirectly via the reference set. Besides global color histograms, texture and shape features are extracted at different locations of a target, and AdaBoost is used to learn the discriminative power of each feature. The effectiveness of the proposed method over the state of the art on two challenging real-world multicamera video data sets is demonstrated by thorough experiments

    Online Feature Selection for Visual Tracking

    Get PDF
    Object tracking is one of the most important tasks in many applications of computer vision. Many tracking methods use a fixed set of features ignoring that appearance of a target object may change drastically due to intrinsic and extrinsic factors. The ability to dynamically identify discriminative features would help in handling the appearance variability by improving tracking performance. The contribution of this work is threefold. Firstly, this paper presents a collection of several modern feature selection approaches selected among filter, embedded, and wrapper methods. Secondly, we provide extensive tests regarding the classification task intended to explore the strengths and weaknesses of the proposed methods with the goal to identify the right candidates for online tracking. Finally, we show how feature selection mechanisms can be successfully employed for ranking the features used by a tracking system, maintaining high frame rates. In particular, feature selection mounted on the Adaptive Color Tracking (ACT) system operates at over 110 FPS. This work demonstrates the importance of feature selection in online and realtime applications, resulted in what is clearly a very impressive performance, our solutions improve by 3% up to 7% the baseline ACT while providing superior results compared to 29 state-of-the-art tracking methods
    • 

    corecore