458 research outputs found

    Lung nodule diagnosis and cancer histology classification from computed tomography data by convolutional neural networks: A survey

    Get PDF
    Lung cancer is among the deadliest cancers. Besides lung nodule classification and diagnosis, developing non-invasive systems to classify lung cancer histological types/subtypes may help clinicians to make targeted treatment decisions timely, having a positive impact on patients' comfort and survival rate. As convolutional neural networks have proven to be responsible for the significant improvement of the accuracy in lung cancer diagnosis, with this survey we intend to: show the contribution of convolutional neural networks not only in identifying malignant lung nodules but also in classifying lung cancer histological types/subtypes directly from computed tomography data; point out the strengths and weaknesses of slice-based and scan-based approaches employing convolutional neural networks; and highlight the challenges and prospective solutions to successfully apply convolutional neural networks for such classification tasks. To this aim, we conducted a comprehensive analysis of relevant Scopus-indexed studies involved in lung nodule diagnosis and cancer histology classification up to January 2022, dividing the investigation in convolutional neural network-based approaches fed with planar or volumetric computed tomography data. Despite the application of convolutional neural networks in lung nodule diagnosis and cancer histology classification is a valid strategy, some challenges raised, mainly including the lack of publicly-accessible annotated data, together with the lack of reproducibility and clinical interpretability. We believe that this survey will be helpful for future studies involved in lung nodule diagnosis and cancer histology classification prior to lung biopsy by means of convolutional neural networks

    Brain Tumor Detection and Multi Classification Using GNB-Based Machine Learning Approach

    Get PDF
    In an abnormal tissue called a brain tumor, the cells of the tumor reproduce quickly. if no control over tumor cell growth. The difficulties involved in identifying and treating brain tumors Machine learning is the most technologically sophisticated tool for classification and detection, implementing reliable state-of-the-art A.I. as well as neural network classification techniques, the use of this technology in early diagnosis detection of brain tumors can be accomplished successfully. it is well known that the segmentation method is capable of helping simply destroy the brain's abnormal tumor regions In order to segment and categorize brain tumors, this study suggests a multimodal approach involving machine learning and medical assistance. Noise can be seen in MRI images. To make the method for eliminating noise from images easier, a geometric mean is used later. The algorithms used to segment an image into smaller pieces are fuzzy c-means algorithms. Detection of a specific area of interest is made simpler by segmentation. The dimension reduction procedure is carried out using the GLCM. Photographic features are extracted using the GLCM algorithm. Then, using a variety of ML techniques, like as CNN, ANN, SVM, Gaussian NB, and Adaptive Boosting, the photos are categorized. The Gaussian NB method performs more effectively with regard to the identification and classification of brain tumors. The plasterwork work achieved 98.80 percent accuracy using GNB, RBF SVM

    EGFR and KRAS mutation prediction on lung cancer through medical image processing and artificial intelligence

    Get PDF
    Lung cancer causes more deaths globally than any other type of cancer. To determine the best treatment, detecting EGFR and KRAS mutations is of interest. However, non-invasive ways to obtain this information are not available. In this study, an ensemble approach is applied to increase the performance of EGFR and KRAS mutation prediction from CT images using a small dataset. A new voting scheme, Selective Class Average Voting (SCAV) is proposed and its performance is assessed both for machine learning models and Convolutional Neural Networks (CNNs). For the EGFR mutation, in the machine learning approach, there was an increase in the Sensitivity from 0.66 to 0.75, and an increase in AUC from 0.68 to 0.70. With the deep learning approach an AUC of 0.846 was obtained with custom CNNs, and with SCAV the Accuracy of the model was increased from 0.80 to 0.857. Finally, when combining the best Custom and Pre-trained CNNs using SCAV an AUC of 0.914 was obtained. For the KRAS mutation both in the machine learning models (0.65 to 0.71 AUC) and the deep learning models (0.739 to 0.778 AUC) a significant increase in performance was found. This increase was even greater with Ensembles of Pre-trained CNNs (0.809 AUC). The results obtained in this work show how to effectively learn from small image datasets to predict EGFR and KRAS mutations, and that using ensembles with SCAV increases the performance of machine learning classifiers and CNNs.DoctoradoDoctor en Ingeniería de Sistemas y Computació

    An effective method for lung cancer diagnosis from CT scan using deep learning-based support vector network

    Get PDF
    Producción CientíficaThe diagnosis of early-stage lung cancer is challenging due to its asymptomatic nature, especially given the repeated radiation exposure and high cost of computed tomography(CT). Examining the lung CT images to detect pulmonary nodules, especially the cell lung cancer lesions, is also tedious and prone to errors even by a specialist. This study proposes a cancer diagnostic model based on a deep learning-enabled support vector machine (SVM). The proposed computer-aided design (CAD) model identifies the physiological and pathological changes in the soft tissues of the cross-section in lung cancer lesions. The model is first trained to recognize lung cancer by measuring and comparing the selected profile values in CT images obtained from patients and control patients at their diagnosis. Then, the model is tested and validated using the CT scans of both patients and control patients that are not shown in the training phase. The study investigates 888 annotated CT scans from the publicly available LIDC/IDRI database. The proposed deep learning-assisted SVM-based model yields 94% accuracy for pulmonary nodule detection representing early-stage lung cancer. It is found superior to other existing methods including complex deep learning, simple machine learning, and the hybrid techniques used on lung CT images for nodule detection. Experimental results demonstrate that the proposed approach can greatly assist radiologists in detecting early lung cancer and facilitating the timely management of patients

    Lung Cancer Classification Using Modified Squeezenet

    Get PDF
    Lung cancer is the primary cause of mortality in individuals diagnosed with cancer. Detecting and diagnosing lung cancer early significantly reduces the mortality rate. The early diagnosis of lung cancer is greatly facilitated by medical imaging. The recommendation is to undergo a CT scan, as it has a higher probability of detecting lung cancer during its initial phases. The detection of lung cancer greatly depends on the utilization of advanced deep learning technology, specifically convolutional neural networks, which assist in accurately classifying the CT image. This paper proposed a Modified light weight SqueezeNet architecture that mixes bottleneck residual network and fully connected layer along with global average pooling in the original network. This modification enhances the classification performance with a slight rise in computational complexity.  CT images of 330 patients are used as a data set for testing the proposed technique, which is executed in MATLAB 2022a platform. The proposed method can identify lung cancer and categorize it as either malignant or normal with test Accuracy of 95.76%, Recall-92.94%, Precision of 98.75%, Specificity-98.75%, and AUC-0.9977. The Modified SqueezeNet gives better classification performance against the base SqueezeNet model. The proposed method outperforms traditional deep learning networks like AlexNet, ShuffleNet, ResNet-50, and GoogleNet
    • …
    corecore