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CHAPTER 1. INTRODUCTION 
 

1.1 Problem Statement 
 

Globally, lung cancer is the leading cause of cancer-related death in men and the 

second-leading cause in women.  In 2018, an estimated 1.8 million lung cancer deaths 

occurred, with 1.2 million in men and over 576,000 in women, accounting for 1 in 5 

cancer-related deaths worldwide [1]. Advances in precision medicine and genomic 

analyses have resulted in a paradigm shift whereby lung tumors are characterized and 

classified by biomarkers and genetic alterations (e.g., gene expression, mutations, 

amplifications, and rearrangements) that are critical to tumor growth and can be 

exploited with specific targeted agents or immune checkpoint inhibitors.  However, there 

are many limitations of tissue-based biomarkers such as they can be subject to sampling 

bias due to the heterogeneous nature of tumors, the requirement of tumor specimens for 

biomarker testing, and the assays can take significant time and be expensive [2]. As such, 

high-throughput and minimally invasive methods that can improve current precision 

medicine is a critical need.  

In lung cancer, there has been particular interest in predicting EGFR and KRAS 

mutations [3]. Epidermal Growth Factor Receptor (EGFR) is a protein on the surface of 

cells that regulates signaling pathways to control cellular proliferation. Some lung cancer 

cells have too much of this protein, which increases tumor growth.  Lung 

adenocarcinomas with mutated EGFR have a significant response to tyrosine kinase 

inhibitors [4], which makes the detection of this mutation significant in determining 

patient treatment. On the other hand, Kristen Rat Sarcoma viral oncogene (KRAS) is also 

a well-known tumor driver. Mutations of this gene have proven to be a useful biomarker 

to predict resistance to EGFR-based therapeutics [5]. Furthermore, some studies have 

shown that KRAS can be targetable with promising results in phase III of NSCLC [6] [7] 

Liquid biopsy is a good alternative for a non-invasive way to detect EGFR and KRAS 

mutations. The use of surrogate sources of DNA, such as blood, serum, and plasma 

samples, which often contain circulating free tumor (cft) DNA or circulating tumor cells 

(CTCs), is emerging as a new strategy for tumor genotyping [8]. However, this technique 

is pretty recent and still has some disadvantages. Different studies have also shown that 
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the amount of cftDNA is correlated with disease stage, which may make it difficult to 

detect in early stages of cancer. Moreover, non-tumor cfDNA might derive from 

different processes including necrosis of normal tissues surrounding the tumor cells or 

lysis of leukocytes after blood collection, which may make mutation difficult to detect. 

Even when recent versions of liquid biopsy techniques have been approved for clinical 

use, the sensitivity (or True Positive Rate) of this test is still a weak point [3]. All these 

concerns provide space for the application of other non-invasive techniques that may be 

more effective in early stages of cancer and may provide higher sensitivity rates. 

Quantitative image features, or radiomics, have the potential to complement and 

improve current precision medicine. Radiomic features are non-invasive, are extracted 

from standard-of-care images, and do not require timely and often expensive laboratory 

testing. Additionally, radiomic features are not subject to sampling bias since the entire 

tumor is analyzed and represents the phenotype of the entire tumor in 3D and not just the 

portion that was subjected to biomarker testing. 

Radiogenomics is an emerging and important field because it utilizes radiomics to 

predict genetic mutations, gene expression, and protein expression [9]. In this document, 

three methods for predicting EGFR and KRAS mutations from CT images are presented 

and assessed. First, prediction with radiomic features and machine learned models, 

second, prediction through custom Convolutional Neural Networks (CNNs), and finally, 

Transfer Learning by applying pre-trained CNNs. In all three cases, first base models are 

tested and then an ensemble of the best models with a new voting scheme is applied to 

observe if there is an improvement in the prediction performance. 

This work is organized as follows. Chapter 2 provides a general background about 

topics related to Radiomics, Convolutional Neural Networks, Transfer Learning, and 

Ensembles. Chapter 3 presents previous work related to EGFR and KRAS mutation 

prediction through medical image processing. Chapter 4 describes the methodology to 

predict EGFR and KRAS mutations from CT images applied in this study and the 

proposed voting scheme to use with Ensembles. Chapter 5 explains the details of the 

experiment with Radiomic Features and Machine Learned Classifiers. Chapter 6 

describes the experiment with custom Convolutional Neural Networks. Chapter 7 

describes the experiment with pre-trained Convolutional Neural Networks. Finally, the 

conclusions about the proposed approach are provided and future work is described. 
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1.2 Motivation 
 

Lung cancer is the second most common form of cancer in both men and women (not 

including skin cancer). Lung cancer is by far the leading cause of cancer death among 

both men and women. More people die of lung cancer every year than of prostate, colon, 

and breast cancers together. In the United States, the American Cancer Society estimated 

that for 2018 there were 234.030 new cases of lung cancer (121.680 in men and 112.350 

in women) and 154.050 died from lung cancer (83.550 men and 70.500 women) [10] 

In the Colombian case, according to the Ministry of Health, every year 33 thousand 

Colombians die of Cancer, and around 3.875 of them die of Lung Cancer [11]. 

Analyzing the number of deaths for men and women, in the year 2013 in Colombia 13,4 

of 100.000 men died of lung cancer, and 8,1 of every 100.000 women died of the same 

cause [12]. 

Statistics on survival in people with lung cancer vary depending on the stage (extent) 

of cancer when it is diagnosed. Although a small percentage (about 15%) is curable 

when detected early, the 5-year survival rate remains at about 16.6%. [13]. The early 

detection and characterization of Lung Cancer for personalized treatment can be crucial 

for patient survival. In this work, we develop a new voting algorithm for ensembles that 

improves the performance of Machine Learning and Deep Learning models and apply it 

to three automated methods for predicting EGFR and KRAS mutations from CT images, 

which are useful to determine the best treatment for a lung cancer patient in a non-

invasive way. 

 

1.3 Research Objectives 
 

The main objective of this research is to develop a framework to improve the 

performance of Machine Learning and Deep Learning Classifiers with unbalanced 

datasets and apply it to the prediction of EGFR and KRAS mutation from CT images 

 

Specifically, the research focuses on the following goals: 
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1) To design an algorithm for implementing a new voting scheme that improves the 

performance in classification when using ensembles with unbalanced datasets. 

 

2) To develop a methodology for applying machine learning models with unbalanced 

datasets for predicting EGFR and KRAS mutations from CT images that implements the 

designed voting algorithm and assess its performance. 

 

3) To develop a methodology for applying custom and pre-trained Convolutional Neural 

Networks with unbalanced datasets in the prediction of EGFR and KRAS mutations 

from CT images that applies the designed voting algorithm and assess its performance. 
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CHAPTER 2. GENERAL BACKGROUND 
 

2.1 Radiomics 
 

The concept of Radiomics was first introduced by Lambin et. al. [14]. According to 

these authors, Radiomics is the automated high-throughput extraction of large amounts 

of quantitative features of medical images, with the hypothesis that quantitative analysis 

of medical image data can provide more and better information than that of a medical 

expert, such as the differences in tumor shape and texture.  

The standard Radiomics workflow is the following: first segmentation is performed 

on medical images to define tumor region, next features are extracted, such as intensity, 

texture, and shape. Finally, an analysis is performed using these features, and they are 

assessed for their prognostic power or relation to cancer stage or gene expression. These 

are also the stages used for many image processing applications [15]. 

 

 

  

Figure 1. The Radiomics Workflow [14]. 

 

The features extracted from medical images can be classified into the following 

categories [16] [17]: 

 

 Morphological features: based on the physical properties of the tumor, such as 

shape, volume, surface area, sphericity, and mass. Many of these features are 

useful for cancer prognosis. For example, a strong indicator of cancer 
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aggressiveness is how much time it takes the tumor to double its volume [18]. 

Mass is another feature that allows detecting nodule growth in an earlier stage of 

tumor development. [19]. 

 

 Statistical Features: In this category, we can find the first-order features, related 

to the image histogram, and higher-order features, related to texture. The 

histogram shows the range and frequency of the pixel intensity values within the 

Region of Interest (ROI). Many first-order statistical measurements can be 

estimated from the histogram, such as the mean, median, standard deviation, 

kurtosis, energy, entropy, and variance. There have been studies that suggest that 

these features can be used to determine if a tumor is benign or malignant [20]. 

Another application of these features is to measure the response to treatment with 

chemotherapy or radiotherapy. Studies have shown that the first-order statistical 

features can be a good indicator of treatment response in cases where the size of 

the tumor is insufficient [21]. 

 

On the other hand, there are also higher-order statistical features related to 

texture. Among the most used we can find the co-occurrence matrix, the run-

length matrix, and the neighborhood gray-tone difference matrix. The co-

occurrence matrix (GLCM) is built using the number, distance, and angle of the 

combination of gray levels that can be found in an image. The run-length matrix 

(GLRL) measures the continuous pixels with the same gray level in any 

direction. Finally, the Neighborhood Gray-Tone Difference Matrix (NGTDM) 

represents how similar or dissimilar are the pixel intensity values within a 

neighborhood. Other types of texture features are obtained by spatial filtering 

techniques, which are based on neighborhood operations on the original textured 

input images. Some examples of commonly used filters for texture analysis 

include statistical filters like average filter, range filter, and entropy filter or edge 

filters like Prewitt filter, Sobel filter, Laplacian filter, and Laplacian of Gaussian 

(LoG) filter. The input image is convolved with the desired kernel to produce 

filtered images highlighting specific texture information in the original texture 
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image. The resultant filtered images are analyzed using first-order statistics 

(mean, median, standard deviation, etc.). [22] 

. 

Apart from statistical and edge kernels, special kernels have also been designed 

for identifying different types of textures. For example, Laws designed three sets 

of one-dimensional convolution masks of different sizes corresponding to 

different types of textures such as level, edge, spot, wave, ripple, undulation, and 

oscillation.[23].  

The frequency of variations in the gray level values in a region of interest is 

dependent on the scale of the region of interest. The frequency content within an 

image can be analyzed at different scales using wavelets. Image texture can be 

analyzed at different scales by representing the image in a pyramid structure. 

Using a discrete wavelet transform, four low-resolution images can be obtained 

from the original image. By repeatedly applying discrete wavelet transform at 

each level, a hierarchical pyramid structure for different resolutions can be 

created. Texture analysis can be done by computing statistical texture features at 

each level or averaging the results across multiple resolutions [22]. Many studies 

have shown that texture features can be used to determine the stage of the tumor, 

metastasis, response to treatment, survival, and others [24].  

 

 Regional features: these features measure the heterogeneity within the tumor, 

which means that tumor cells can show different morphological and phenotypic 

profiles. The regional features find the variation of intensity between regions, 

which shows how many and how frequent are sub-regions within the tumor. 

Among the methods for finding sub-regions, we can find data-driven 

segmentation and threshold-based segmentation, which allow identifying clusters 

within the ROI. Heterogeneity within the tumor is one of the most promising 

factors of prognosis that predict patient survival [25]. 

 

After extracting quantitative image features the next step is to apply machine learning 

and statistical techniques to create classification models that can predict different aspects 

of cancer. 



13 
 

 

 

2.2 Machine Learning 
 

Machine Learning is an area of Artificial Intelligence that develops algorithms that 

build a mathematical model based on sample data, to make predictions or decisions 

without being explicitly programmed to do so [26]. The type of tasks that can be 

performed by Machine Learning can be classified into two categories: Supervised 

Learning and Unsupervised Learning.  

In Supervised Learning, the algorithms build a mathematical model from a dataset 

that contains data of both the input variables and the desired outputs. Classification and 

Regression algorithms are examples of Supervised Learning. In Classification 

algorithms, the outputs are restricted to a finite set of values (categories), while in 

Regression algorithms the outputs take continuous values, which means that they can 

take any numerical value within a range.  

In Unsupervised Learning, a mathematical model is built from a dataset that contains 

information of the input variables, but it does not have the labels of the desired outputs. 

Unsupervised algorithms find structures and patterns in data, and they can perform tasks 

such as grouping the input records, as in Clustering, they can group the inputs in 

categories, such as in feature learning, or they can reduce the number of features or input 

variables, such as in dimension reduction [27]. 

In this work, we apply Supervised Learning, and more specifically Classification 

algorithms to label an image as Mutant or Wildtype for both the EGFR and KRAS 

mutations. There are many Classification Algorithms, the following four techniques are 

applied in our study: 

 Support Vector Machines: they are supervised learning models that can be used 

for classification or regression analysis. Given some training data, with examples 

labeled as belonging to one of two classes, an SVM training algorithm develops a 

model that assigns new observations to one class or the other. The objective of 

the support vector machine algorithm is to find a hyperplane in an N-dimensional 

space (N — the number of features) that distinctly classifies the data points [28]. 

An SVM constructs a hyperplane in a high-dimensional space and uses it for 
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classification. The hyperplane that causes the best separation is the one that has 

the largest distance to the nearest training data point of any class (functional 

margin) [29] (See Figure 2).  

  

Figure 2. Possible Hyperplanes, Support Vector Machines [28]. 

 

Maximizing the margin distance provides some reinforcement so that future data 

points can be classified with more confidence. Hyperplanes are decision boundaries 

that help classify the data points. Data points falling on either side of the hyperplane 

can be attributed to different classes. Also, the dimension of the hyperplane depends 

upon the number of features. If the number of input features is 2, then the hyperplane 

is just a line. If the number of input features is 3, then the hyperplane becomes a two-

dimensional plane (See Figure 3), and so on [28].  

 

Figure 3. Hyperplanes in 2D and 3D feature space [28]. 
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Support vectors are data points that are closer to the hyperplane and influence the 

position and orientation of the hyperplane. Using these support vectors, we maximize 

the margin of the classifier. To keep the computational load reasonable, the mappings 

used by SVM schemes are designed to ensure that dot products of pairs of input data 

vectors may be computed easily in terms of the variables in the original space, by 

defining them in terms of a kernel function selected to suit the problem [30], 

hyperplanes in the higher-dimensional space are defined as the set of points whose 

dot product with a vector in that space is constant, where such a set of vectors is an 

orthogonal (and thus minimal) set of vectors that defines a hyperplane.  

The original maximum-margin hyperplane algorithm proposed by Vapnik in 1963 

constructed a linear classifier [31]. However, in 1992, Bernhard Boser, Isabelle 

Guyon, and Vladimir Vapnik suggested a way to create nonlinear classifiers by 

applying the kernel trick to maximum-margin hyperplanes [32].  The resulting 

algorithm is formally similar, except that every dot product is replaced by a nonlinear 

kernel function. Some common kernels include Polynomial (homogeneous), 

Polynomial (inhomogeneous), Gaussian radial basis function, and the Hyperbolic 

tangent. Although SVMs are defined as non-probabilistic binary linear classifiers, 

several strategies have been proposed to apply this technique to multiclass problems 

[33]. 

 

 Random Forest: A Decision Tree is a method of Machine Learning and Data 

Mining that creates a model that predicts the value of a target variable based on 

the values of several other input variables. In a Decision Tree, each interior node 

represents one of the input variables and each derived branch from that node 

corresponds to possible values or value ranges of that variable. The leaves of the 

tree represent values of the target variable given the values of the input variables. 

Figure 4 presents an example of a Decision Tree.  
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Figure 4. Decision Tree Example. 

 

If the target attribute takes a discrete value or class, the model is called a 

Classification Tree, and if it takes a continuous value, it is called a Regression 

Tree [34].  

Many methods have been proposed for constructing a decision tree using a 

collection of training samples. The majority of tree construction methods use 

linear splits at each internal node. A typical method selects a hyperplane or 

multiple hyperplanes at each internal node, and samples are assigned to 

branches representing different regions of the feature space bounded by such 

hyperplanes. n. Such methods can be categorized by the types of splits they 

produce that are determined by the number and orientation of the hyperplanes 

[35].: 

o Axis-parallel linear splits: A threshold is chosen on the values at a 

particular feature dimension, and samples are assigned to the branches 

according to whether the corresponding feature values exceed the 

threshold. These trees can be very deep but their execution is 

extremely fast. 

o Oblique linear splits: Samples are assigned to the branches according 

to which side of a hyperplane or which region bounded by multiple 

hyperplanes they fall in, but the hyperplanes are not necessarily 

parallel to any axis of the feature space. A generalization is to use 
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hyperplanes in a transformed space, where each feature dimension can 

be an arbitrary function of selected input features. The decision regions 

of these trees can be finely tailored to the class distributions, and the 

trees can be small. The execution speed depends on the complexity of 

the hyperplanes or the transformation function. 

o Piecewise linear splits: Branches represent a Voronoi tessellation of 

the feature space. Samples are assigned based on nearest-neighbor 

matching to chosen anchor points. The anchor points can be selected 

among training samples, class centroids, or derived cluster centers. 

These trees can have a large number of branches and can be very 

shallow. 

Figure 5 presents the types of linear splits. Within each category, the splitting 

functions can be obtained in many ways. For instance, single-feature splits can 

be chosen by Sethi and Sarvarayudu’s average mutual information [36], the 

Gini index proposed by Breiman et al. [37], Quinlan’s information gain ratio 

[34], or Mingers’s G statistic [38]. Oblique hyperplanes can be obtained by 

Tomek link [39], simulated annealing [40], or perceptron training [41]. 

Hyperplanes in transformed spaces can be chosen using the support vector 

machine method [31]. Piecewise linear or nearest-neighbor splits can be 

obtained by numerous ways of supervised or unsupervised clustering. 

 

Figure 5. Types of linear splits. (a) Axis-parallel linear splits. (b) Oblique linear splits. 
(c) Piecewise linear splits [35]. 
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On the other hand, Random Forest is an ensemble learning approach, where 

several decision tree models are generated on training and the output class is the 

mode of the models for classification problems, as can be seen in Figure 6, or the 

average prediction is returned in the case of regression models [42]. 

 

Figure 6. Random Forest Algorithm Scheme [43] 

 

The algorithm was originally proposed by Tin Kam Ho in 1995 [41]. The author 

claimed that his formulation is a way to implement the “stochastic 

discrimination” classification approach proposed by Eugen Kleinberg [44]. The 

algorithm was later extended in the works of Leo Breiman and Adele Cutler [45] 

who registered "Random Forests" as a trademark in 2006. This work develops 

Breiman’s idea of bagging and random selection of features, initially introduced 

by Ho, to construct a collection of Decision Trees with controlled variance. The 

training algorithm for random forests applies the technique of bootstrap 

aggregating or bagging to tree learners. Given a training set 𝑋 =  𝑋1,𝑋2 … 𝑋𝑛 with 

responses 𝑌 =  𝑌1,𝑌2 … 𝑌𝑛 bagging repeatedly selects a random sample with 

replacement of the training set and fits trees to these samples. Predictions can 

then be made by averaging the predictions from all the individual trees in the case 

of regression, or taking the majority vote in the case of classification. Random 

forest also uses a modified tree learning algorithm that selects, at each candidate 

split in the learning process, a random subset of the features. This process is 

known as “feature bagging”. The reason for this process is the correlation of the 

trees in an ordinary bootstrap sample: if one or a few features are strong 
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predictors for the target variable, these features will be selected in many of the 

generated trees, thus causing them to be correlated. Random decision forests 

correct for decision trees' habit of overfitting to their training set [29]. Random 

forests generally outperform decision trees. 

 

 Neural Networks: Neural networks were first proposed in 1944 by Warren 

McCullough and Walter Pitts [46], two University of Chicago researchers who 

moved to MIT in 1952. An Artificial Neural Network is a computer model that is 

inspired by the animal brain, and it is designed to learn how to perform a specific 

task, such as classification, from a set of observations or examples. An ANN is 

formed by a network of elements called artificial neurons that receive input data 

and change their internal state (activation) according to that input and produce an 

output depending on the input and activation function. The neurons are connected 

to each other forming a directed weighted graph. Artificial Neurons are 

aggregated into layers, and these may perform different kinds of transformations 

on their inputs. The weights and the activation functions can be modified by a 

learning process, which is directed by a learning rule [46].  

 

Artificial neural networks (ANNs) are comprised of node layers, containing an 

input layer, one or more hidden layers, and an output layer (See Figure 7). Most 

of today’s neural nets are organized into layers of nodes, and they’re “feed-

forward,” meaning that data moves through them in only one direction. An 

individual node might be connected to several nodes in the layer beneath it, from 

which it receives data, and several nodes in the layer above it, to which it sends 

data. 
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Figure 7. Artificial Neural Network Scheme [47] 

 

 

To each of its incoming connections, a node will assign a number known as a 

“weight.” When the network is active, the node receives a different data item 

over each of its connections and multiplies it by the associated weight. It then 

adds the resulting products together, yielding a single number. If that number is 

below a threshold value, the node passes no data to the next layer. If the number 

exceeds the threshold value, the node activates, which means sending the number 

(the sum of the weighted inputs) along with all its outgoing connections. 

 

When a neural net is being trained, all of its weights and thresholds are initially 

set to random values. Training data is fed to the input layer and it passes through 

the succeeding layers, getting multiplied and added together in complex ways, 

until it finally arrives, radically transformed, at the output layer. During training, 

the weights and thresholds are continually adjusted until training data with the 

same labels consistently yield similar outputs [48]. 

 

Ultimately, the goal is to minimize a cost function to ensure correctness of fit for 

any given observation. As the model adjusts its weights and bias, it uses the cost 

function and reinforcement learning to reach the point of convergence or the local 

minimum. The process in which the algorithm adjusts its weights is through 

gradient descent, allowing the model to determine the direction to take to reduce 

errors (or minimize the cost function). With each training example, the 

parameters of the model adjust to gradually converge at the minimum [49].  
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Neural networks can be classified into different types, which are used for 

different purposes. The perceptron is the oldest neural network, created by Frank 

Rosenblatt in 1958 [50]. It has a single neuron and is the simplest form of a 

neural network (See Figure 8). 

 

 
 

 Figure 8. Perceptron Scheme [49] 

 

Feedforward neural networks, or multi-layer perceptrons (MLPs) are comprised 

of an input layer, a hidden layer or layers, and an output layer. These are mainly 

the neural networks that have been described in this section. While these neural 

networks are also commonly referred to as MLPs, it’s important to note that they 

are actually comprised of sigmoid neurons, not perceptrons, as most real-world 

problems are nonlinear. Data usually is fed into these models to train them, and 

they are the foundation for computer vision, natural language processing, and 

other neural networks [49]. 

 

Another type of neural networks are Convolutional Neural Networks which are 

usually utilized for image recognition, pattern recognition, and/or computer 

vision. These networks harness principles from linear algebra, particularly matrix 

multiplication, to identify patterns within an image. This type of network will be 

discussed further in section 2.3. 

 

Recurrent neural networks (RNNs) are identified by their feedback loops. These 

learning algorithms are primarily leveraged when using time-series data to make 
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predictions about future outcomes, such as stock market predictions or sales 

forecasting [49]. 

 

Deep Learning and neural networks are terms that may be casually used 

interchangeably. It’s worth noting that the “deep” in deep learning is just 

referring to the depth of layers in a neural network. A neural network that 

consists of more than three layers, can be considered a deep learning algorithm 

[49]. 

 

 Stochastic Gradient Boosting: Gradient boosting is a machine learning 

technique for regression and classification problems, which produces a prediction 

model in the form of an ensemble of weak prediction models, typically decision 

trees. It builds the model in a stage-wise fashion as other boosting methods do, 

and it generalizes them by allowing optimization of an arbitrary differentiable 

loss function [51]. Gradient boosting constructs additive regression models by 

sequentially fitting a simple parameterized function (base learner) to current 

“pseudo”-residuals by least-squares at each iteration. The pseudo-residuals are 

the gradient of the loss functional being minimized, with respect to the model 

values at each training data point evaluated at the current step. It is shown that 

both the approximation accuracy and execution speed of gradient boosting can be 

substantially improved by incorporating randomization into the procedure. 

Specifically, at each iteration, a subsample of the training data is drawn at 

random (without replacement) from the full training data set. This randomly 

selected subsample is then used in place of the full sample to fit the base learner 

and compute the model update for the current iteration [52].  

 

With his “bagging” procedure, Breiman [53] introduced the notion that injecting 

randomness into function estimation procedures could improve their 

performance. Early implementations of AdaBoost [54] also employed random 

sampling, but this was considered an approximation to deterministic weighting 

when the implementation of the base learner did not support observation weights, 

rather than an essential part of the process. A few years later Breiman [55] 

proposed a hybrid bagging-boosting procedure (adaptive bagging) intended for 
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least-squares fitting of additive expansions. This modification replaces the base 

learner in regular boosting procedures with the corresponding bagged base 

learner, and substitutes “out-of-bag” residuals for the ordinary residuals at each 

boosting step. Motivated by this, a minor modification was made to gradient 

boosting, to incorporate randomness as an integral part of the procedure. At each 

iteration, a subsample of the traininig data is drawn at random (without 

replacement) from the full training dataset. This randomly selected subsample is 

then used, instead of the full sample, to fit the base learner and compute the 

model update for the current iteration. This is the basis of the stochastic gradient 

boosting algorithm. 

 

2.3 Convolutional Neural Networks 
 

A Convolutional Neural Network (CNN) is a type of deep neural network that can 

perform classification tasks directly from images, video, text, or sound. CNNs have 

demonstrated performance comparable to a human in Computer Vision tasks. They have 

the advantage over other approaches that they learn directly from image data, eliminating 

the need for manual extraction of features [56].  

CNNs were inspired by biological processes, particularly from the study of the visual 

cortex performed by Hubel and Wiesel [57]. These authors demonstrated that there are 

groups of neurons on the visual cortex that have a local receptive field. A receptive field 

is defined as a limited region of space in which a group of neurons reacts to stimuli. 

Every group of neurons of the visual cortex focuses on a different region of the visual 

field. This causes several receptive fields that can superpose and form a mosaic of the 

whole visual field. These receptive fields are the ones that determine the features to look 

for in an object to determine what it is. These authors also noticed that some groups of 

neurons have bigger receptive fields that react to more complex patterns that are 

combinations of patterns in a lower level. These observations lead to the idea that low-

level neurons are based on the results previously obtained by high-level groups of 

neurons [58]. 
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Just like any other Artificial Neural Network, CNNs are composed of an input layer, 

an output layer, and many intermediate hidden layers. Among the hidden layers we can 

find the following types [59]: 

 Convolutional Layers: The convolutional layers apply n filters or kernels to 

the input layer which generates a feature map. These are the type of layers that 

automatically generates features. 

 ReLU: or Rectified Linear Unit: this layer has the function of turning all 

negative values to zero, to keep the positive values. This layer is known as 

activation, and only the features that are activated continue to the next layer. 

 Pooling: this layer has the purpose of reducing the number of parameters that 

the network needs to learn. To reduce parameters there is an extraction of 

statistics such as the mean or the maximum from a region of the feature map. 

This process causes loss of precision but improves computation. 

 Classification: These are the final layers. Fully Connected Layers are used 

where each pixel of the image is taken as a separate neuron, just like in a 

Multilayer Perceptron. 

 

Convolutions are a key element in CNNs, however, we have not described what a 

convolution is. Convolutions are one of the most critical, fundamental building blocks in 

Computer Vision and Image Processing. When we apply operations such as blurring or 

smoothing an image, we are already applying this operation. In terms of deep learning, 

an image convolution is an element-wise multiplication of two matrices followed by a 

sum. The steps for performing a convolution are the following [60]: 

1. Take two matrices (which both have the same dimensions) 

2. Multiply them, element-by-element (not the dot product, just a 

multiplication) 

3. Sum the elements together. 

An image is a multidimensional matrix. Our image has a width (number of columns) 

and height (number of rows), just like a matrix. Images also have a depth to them – the 

number of channels in the image. For a standard RGB image, we have a depth of 3 – one 

channel for each of the Red, Green, and Blue channels, respectively. Given this 
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knowledge, we can think of an image as a big matrix and a kernel or convolutional 

matrix as a small matrix that is used for blurring, sharpening, edge detection, and other 

processing functions. Essentially, this small kernel slides across the big image from left-

to-right and top-to-bottom, applying a convolution at each coordinate of the original 

image, as can be seen in Figure 9. At each pixel in the input image, the neighborhood of 

the image is convolved with the kernel and the output stored. 

 

 

Figure 9. Example of convolution between Image and sliding kernel [60].  

 

Kernels can be of arbitrary rectangular size MxN, provided that both M and N are odd 

integers. Most kernels applied to deep learning and CNNs are N xN square matrices. We 

use an odd kernel size to ensure there is a valid integer (x;y)-coordinate at the center of 

the image. In an image convolution we follow these steps [60]: 

 

1. Select an (x;y)-coordinate from the original image. 

2. Place the center of the kernel at this (x;y)-coordinate. 

3. Take the element-wise multiplication of the input image region and the kernel, 

then sum up the values of these multiplication operations into a single value. 

The sum of these multiplications is called the kernel output. 
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4. Use the same (x;y)-coordinates from Step #1, but this time, store the kernel 

output at the same (x;y)-location as the output image. 

Below you can find an example of convolving (denoted mathematically as the * 

operator) a 3x3 region of an image with a 3x3 kernel used for blurring: 

 

 

After applying this convolution, we would set the pixel located at the coordinate (i; j) 

of the output image O to 𝑂𝑖,𝑗= 132. Different kernels are used for different standard 

image processing operations, such as smoothing, sharpening, and edge detection. By 

applying convolutional filters, nonlinear activation functions, pooling, and 

backpropagation, CNNs are able to learn filters that can detect edges and blob-like 

structures in lower-level layers of the network, and then use the edges and structures as 

“building blocks”, eventually detecting high-level objects (e.x., faces, cats, dogs, cups, 

etc.) in the deeper layers of the network [60]. 

There are many types of layers used to build Convolutional Neural Networks, but the 

ones we are most likely to encounter include: Convolutional, Activation, Pooling, Fully-

connected, Batch normalization, and Dropout. 

 

Convolutional Layers  

The Convolutional layer is the core building block of a CNN. This layer parameters 

consist of a set of K learnable filters (i.e., “kernels”), where each filter has a width and a 

height, and are nearly always square. These filters are small (in terms of their spatial 

dimensions) but extend throughout the full depth of the volume. For inputs to the CNN, 

the depth is the number of channels in the image (depth of three when working with 

RGB images).  For volumes deeper in the network, the depth will be the number of 

filters applied in the previous layer. For clarification let’s consider the forward-pass of a 
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CNN, where we convolve each of the K filters across the width and height of the input 

volume. We can think of each of our K kernels sliding across the input region, 

computing an element-wise multiplication, summing, and then storing the output value 

in a 2- dimensional activation map, such as in Figure 10. After applying all K filters to 

the input volume, we now have K, 2-dimensional activation maps. We then stack our K 

activation maps along the depth dimension of our array to form the final output volume 

[60] (Figure 11). 

 

Figure 10. Convolutional layer of a CNN scheme [60].  

 

 

Figure 11. Convolutional layer of a CNN, final volume [60].  

 

Every entry in the output volume is thus an output of a neuron that “looks” at only a 

small region of the input. In this manner, the network “learns” filters that activate when 

they see a specific type of feature at a given spatial location in the input volume. In lower 

layers of the network, filters may activate when they see edge-like or corner-like regions. 

Then, in the deeper layers of the network, filters may activate in the presence of high-

level features, such as parts of the face, the paw of a dog, the hood of a car, etc.  
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Three parameters control the size of an output volume: the depth, stride, and zero-

padding size [60].  

 Depth: This parameter of the output volume controls the number of neurons 

(i.e., filters) in the Convolutional layer that connects to a local region of the 

input volume. Each filter produces an activation map that “activates” in the 

presence of oriented edges, blobs, or color. For a given Convolutional layer, 

the depth of the activation map will determine the number of filters we are 

learning in the current layer. The set of filters that are “looking at” the same 

(x;y) location of the input is called the depth column. 

 Stride: we described a convolution operation as “sliding” a small matrix 

across a large matrix, stopping at each coordinate, computing an element-wise 

multiplication and sum, then storing the output. This description is similar to a 

sliding window that slides from left to right and top-to-bottom across an 

image. The stride is the size of the step we take when sliding the window or 

kernel. In the context of CNNs, for each step, we create a new depth column 

around the local region of the image where we convolve each of the K filters 

with the region and store the output in a 3D volume. When creating our 

Convolutional layers we normally use a stride step size S of either S = 1 or S = 

2. Smaller strides will lead to overlapping receptive fields and larger output 

volumes. Conversely, larger strides will result in less overlapping receptive 

fields and smaller output volumes. 

 Zero padding: We need to “pad” the borders of an image to retain the original 

image size when applying a convolution. The same is true for filters inside of 

a CNN. Using zero padding, we can “pad” our input along the borders such 

that our output volume size matches our input volume size. The amount of 

padding we apply is controlled by the parameter this parameter. Without zero 

padding, the spatial dimensions of the input volume would decrease too 

quickly, and we wouldn’t be able to train deep networks (as the input volumes 

would be too small to learn any useful patterns from). 
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Activation Layers 

After each Convolutional layer in a CNN, we apply a nonlinear activation function, such 

as ReLU, ELU, or any of the other Leaky ReLU variants. Activation layers are not 

technically “layers” (since no parameters/weights are learned inside an activation layer) 

and are sometimes omitted from network architecture diagrams, as it’s assumed that an 

activation immediately follows a convolution. An activation layer accepts an input 

volume and then applies the given activation function. Since the activation function is 

applied in an element-wise manner, the output of an activation layer is always the same 

as the input dimension [60]. ReLU or Rectified Linear Unit is a layer that has the 

function of turning all negative values to zero, to keep the positive values, as can be seen 

in Figure 12.  

 

Figure 12. Example of an input volume going through a ReLU activation [60].  

 

Pooling Layers 

The primary function of the Pool layer is to progressively reduce the spatial size (i.e., 

width and height) of the input volume. Doing this allows to reduce the amount of 

parameters and computation in the network. Pooling also helps to control overfitting. It is 

common to insert Pool layers in-between consecutive convolutional layers in CNN 

architectures. Pool layers operate on each of the depth slices of an input independently 

using either the max or average function. Max pooling is typically done in the middle of 

the CNN architecture to reduce spatial size, whereas average pooling is normally used as 

the final layer of the network (e.x., GoogLeNet, SqueezeNet, ResNet) where we wish to 

avoid using Fully Connected layers entirely. The most common type of Pool layer is max 

pooling, although this trend is changing with the introduction of more exotic micro-

architectures [60]. When working with Pool layers, we require two parameters: the 
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receptive field size F (also called the “pool size”) and the stride S. In Figure 13 we can 

see an example of Max Pooling with two different strides. 

 

 

Figure 13. Example of Max Pooling [60].  

 

Notice for every 2x2 block, we keep only the largest value. We can further decrease 

the size of our output volume by increasing the stride.  

 

Batch Normalization 

First introduced by Ioffe and Szegedy [61], batch normalization layers are used to 

normalize the activations of a given input volume before passing it into the next layer in 

the network. Activations leaving a batch normalization layer will have approximately 

zero mean and unit variance (i.e., zero-centered). Batch normalization is extremely 

effective at reducing the number of epochs it takes to train a neural network. Batch 

normalization also has the added benefit of helping “stabilize” training, allowing for a 

larger variety of learning rates and regularization strengths. Using batch normalization 

doesn’t alleviate the need to tune these parameters, but it will make the learning rate and 

regularization less volatile and more straightforward to tune. Also, a final loss and a 

more stable loss curve will be obtained when using batch normalization [60]. 

The biggest drawback of batch normalization is that it can slow down the time it takes 

to train the network (even though fewer epochs will be needed to obtain reasonable 

accuracy) due to the computation of per-batch statistics and normalization. 
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Dropout 

Dropout is a form of regularization that aims to help prevent overfitting by increasing 

testing accuracy, perhaps at the expense of training accuracy. For each mini-batch in the 

training set, dropout layers, with probability p, randomly disconnect inputs from the 

preceding layer to the next layer in the network architecture. The reason to apply dropout 

is to reduce overfitting by explicitly altering the network architecture at training time. 

Randomly dropping connections ensures that no single node in the network is 

responsible for “activating” when presented with a given pattern. Instead, dropout 

ensures there are multiple, redundant nodes that will activate when presented with 

similar inputs [60]. This in turn helps the model to generalize. Figure 14 examples of 

neural network layers without dropout, and with 0.5 dropout. 

 

 

Figure 14. Example of Dropout layer [60].  

 

Fully-connected Layers 

Neurons in Fully-connected (FC) layers are fully-connected to all activations in the 

previous layer, as is the standard for feedforward neural networks. FC layers are always 

placed at the end of the network, usually followed by a softmax classifier which will 

compute the final output probabilities for each class [60]. 

 

CNN architectures 

One aspect that significantly affects the performance of a CNN is its architecture. 

Several famous architectures have achieved outstanding performance for image 

classification after being trained on ImageNet. This is an image database organized 

according to the WordNet hierarchy, in which each node of the hierarchy is depicted by 

hundreds and thousands of images. Currently, they have an average of over five hundred 
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images per node [62]. As part of the ImageNet Large Scale Visual Recognition 

Challenge [63], some of the architectures that have achieved outstanding performance 

have thus become available to the public as part of the Keras library. Three of these pre-

trained networks are used in the Transfer Learning Experiment: 

 VGG16: This is a convolutional neural network model proposed by K. Simonyan 

and A. Zisserman [64] from the University of Oxford. The authors propose 

networks of increasing depth using an architecture with very small (3 × 3) 

convolution filters, which shows that a significant improvement on the prior-art 

configurations can be achieved by pushing the depth to 16–19 weight layers. The 

model achieves 92.7% top-5 test accuracy in ImageNet. Figures 15 and 16 

display the architecture of the VGG16 network. 

 

 

Figure 15. VGG16 Architecture [65].  
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Figure 16. VGG16 Layers [66].  

 

 Inception: This architecture is proposed by Google. The main hallmark of this 

architecture is the improved utilization of the computing resources inside the 

network. The authors increased the depth and width of the network while keeping 

the computational budget constant. To optimize quality, the architectural 

decisions were based on the Hebbian principle and the intuition of multi-scale 

processing. The model achieves 93.3% top-5 test accuracy in ImageNet [67]. 

Figure 17 shows the architecture of Inception V3. 

 

Figure 17. Inception V3 network architecture [68].  

 

 ResNet-50:  This architecture is proposed by Microsoft. A residual neural 

network (ResNet) is an artificial neural network (ANN) o that builds on 

constructs known from pyramidal cells in the cerebral cortex. Residual neural 

networks do this by utilizing skip connections, or shortcuts to jump over some 

layers. Typical ResNet models are implemented with double or triple-layer skips 

that contain nonlinearities (ReLU) and batch normalization in between. ResNet 
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achieves 96.4% top-5 test accuracy in ImageNet [69]. Figure 18 shows the 

scheme for the ResNet Architecture: 

 

Figure 18. ResNet network architecture scheme [70].  

 

2.4 Metrics in Classification Problems 
 

The objective of this study is to predict the mutation status of a lung nodule from a CT 

image. Two mutations are considered: EGFR and KRAS. For both mutations only two 

values are possible, either the nodule is Wildtype or it is Mutant. As can be seen, this is a 

case of a binary classification problem. In classification problems, the outputs are 

restricted to a finite set of values (categories), as was explained before. Several metrics 

have been proposed to evaluate the performance of classifiers, both for traditional 

machine learning models and for deep learning ones. We will describe the ones applied 

in this study. Most classification performance metrics are derived from the confusion 

matrix. This is a matrix where each row represents the instances in an actual class while 

each column represents the instances in a predicted class, or vice versa. The name stems 

from the fact that it makes it easy to see whether the system is confusing two classes (i.e. 

commonly mislabeling one as another). It is a special kind of contingency table, with two 

dimensions ("actual" and "predicted"), and identical sets of "classes" in both dimensions 

(each combination of dimension and class is a variable in the contingency table) [71]. 
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Figure 19. Confusion Matrix [72].  

 

As can be seen in Figure 19, our observations can be classified into four categories: 

 True Positives (TP): The model predicted positive and the label was actually 

positive. 

 True Negatives (TN): The model predicted negative and the label was actually 

negative. 

 False Positives (FP): The model predicted positive and the label was actually 

negative. That is the observation was falsely classified as positive. 

 False Negatives (FN): The model predicted negative and the label was actually 

positive. That is the observation was falsely classified as negative. 

In the confusion matrix, we state the number of observations that correspond to each of 

the four categories. From this table we can estimate certain well known and commonly 

used metrics [73]: 

 Accuracy: This is one of the most common metrics for classifiers. Accuracy 

gives an idea of how many of the observations were correctly classified, both for 

the positive and negative cases. The mathematical expression for accuracy is the 

following: 

 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
=  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
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 Sensitivity, Recall or True Positive Rate (TPR): This metrics gives us an idea 

of how good is the classifier to detect the positive cases. The mathematical 

expression for this metric is the following: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑃
=  

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 Specificity or True Negative Rate (TNR): This metric gives us an idea of how 

good is the classifier at detecting the negative cases. The mathematical 

expression for this metric is the following: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑁
=  

𝑇𝑁

𝑇𝑁+𝐹𝑃
  

 

 Fall-out or False Positive Rate (FPR): This metric gives an idea of how many 

of the observations are incorrectly classified as positive. The mathematical 

expression for this metric is the following: 

𝐹𝑎𝑙𝑙 𝑜𝑢𝑡 =  
𝐹𝑃

𝑁
=  

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
= 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 

 

 Precision or Positive Predicted Value (PPV): It is another common metric that 

tells us that from the labels our classifier has labeled positive, the amount that is 

actually positive. The mathematical expression for this metric is the following: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

 F1 Score: This metric is the harmonic mean of precision and sensitivity. The 

mathematical expression for this score is the following: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 × 
𝑃𝑃𝑉 ×  𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
=  

2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
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There are other performance metrics commonly used in binary classification problems 

that are derived from the Receiver Operating Characteristic (ROC) curve. The ROC 

curve is a graphical plot that illustrates the diagnostic ability of a binary classifier system 

as its discrimination threshold is varied. The ROC curve is created by plotting the true 

positive rate (TPR) or Sensitivity against the false positive rate (FPR) or Fall-out at 

various threshold settings, as can be seen in Figure 20. In general, if the probability 

distributions for both detection and false alarm are known, the ROC curve can be 

generated by plotting the cumulative distribution function (area under the probability 

distribution from −∞ to the discrimination threshold) of the detection probability in the 

y-axis versus the cumulative distribution function of the false-alarm probability on the x-

axis [73]. 

 

 

Figure 20. Example of ROC Curve [74].  

 

ROC analysis provides tools to select possibly optimal models and to discard suboptimal 

ones independently from the cost context or the class distribution. From this curve, we 

can derive another commonly used metric in classification problems: the AUC. This 

stands for Area Under the ROC curve, and it represents the degree or measure of 

separability. It tells how much the model is capable of distinguishing between classes. 

The higher the AUC, the better the model is at predicting 0 classes as 0 and 1 classes as 

1. The AUC takes values from 0 to 1. An excellent model has AUC near to 1 which 
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means it has a good measure of separability. A poor model has an AUC near 0 which 

means it has the worst measure of separability. In fact, it means it is reciprocating the 

result. It is predicting 0s as 1s and 1s as 0s. And when AUC is 0.5, it means the model 

has no class separation capacity whatsoever [75]. The AUC values are directly related to 

how separate the probabilistic distributions for class 0 and class 1 are from each other, as 

can be seen in Figures 21 to 24. 

 

 

 

Figure 21. Distribution and ROC curve, case AUC=1 [75].  

 

 

 

 
 

Figure 22. Distribution and ROC curve, case AUC=0.7 [75].  
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Figure 23. Distribution and ROC curve, case AUC=0.5 [75].  

 

 

 

 

Figure 24. Distribution and ROC curve, case AUC=0 [75].  

 

The AUC is one of the metrics more commonly used for evaluating classifiers in 

medical image classification problems, and is the metric that is more frequently used in 

other works of the state of the art. 
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CHAPTER 3. STATE OF THE ART 
 

3.1 Radiomics in Lung Cancer 

 

Lung cancer tumors show significant phenotypic differences that can be 

visualized in a non-invasive way through medical images. Radiomics, a concept 

introduced by Lambin et al. [14] takes care of quantifying tumor phenotypes by 

estimating several quantitative features of the images. These features have proven to be 

useful for the classification of pulmonary nodules (diagnostic) and prognosis of an 

already identified cancer [76].  

Many radiomic quantitative features can be extracted from medical images and 

several previous studies have shown that they have classifying and prognostic values 

[17] . For this reason, recent work has focused on determining which features, or sets of 

features, have the greatest predicting value and have higher reproducibility, so they can 

be used to develop predictive models. 

One example of these works is the one presented by Saad and Choi [77].  Non-

Small Cell Lung Cancer (NSLC) can be classified as adenocarcinoma, squamous cell 

carcinoma and large cell carcinoma, however 20% of pathology reports of these tumors 

are unclassified. These authors analyze through Radiomics spatial variations to decode 

unclassified tumors. Twelve spatial descriptors extracted from the 3D co-occurrence 

matrix were profiled into each one of the sub-groups. Afterward, a classifier based on 

these profiles was built applying Support Vector Machines (SVM). Sixteen multi-class 

classifier models with an 81% average accuracy and descriptor subset size ranging from 

12 to 144 were reported. The average area under the curve was 86.3% at a 95% 

confidence interval and a 0.03-0.08 standard error. 

In the study performed by Ma et al. [78], 583 radiomic features are used to 

distinguish between malignant and benign nodules. These features measure intensity, 

shape, heterogeneity, and information in multiple frequencies, and are later used as 

input for a classification system that applies a Random Forest Technique. This method 

was tested with the 79 CT images from the TCIA (The Cancer Imaging Archive), and 

an 82.7% of classification accuracy was obtained.   
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Another recent work is the one presented by Huang et al. [79]. These authors 

seek to obtain a biological marker or signature from the features obtained through 

Radiomics that can be used to predict survival in patients diagnosed with stages I and II 

of NSCLC. 132 texture features obtained from the image histogram and the Gray Levels 

Co-occurrence Matrix (GLCM) were estimated. Then the LASSO (Least Absolute 

Shrinkage and Selection Operator) technique was applied to determine which of these 

features were discriminant of patient survival.  The generated signature was statistically 

significantly associated with the survival index of the patients and independent of other 

clinical or pathological risk factors.       

In the work presented by Wu et al. [80], a relationship between radiomic features 

and the histological subtypes of tumors, adenocarcinoma and squamous cell carcinoma, 

is searched. A total of 440 radiomic features are extracted from segmented tumor 

volumes, which measured phenotypical features such as shape, size, intensity values 

statistics, and texture. Afterward, univariate and multivariate statistical analysis is 

performed to determine which of these features are discriminant. In the univariate 

analysis, it was observed that 53 features were associated with the tumor histology, 

most of them obtained by applying wavelet transforms. In the multivariate analysis, the 

feature selection method ReliefF obtained the higher prediction accuracy, and the best 

performance was obtained with the Bayesian classifier using five features obtained 

through wavelets and related to the gray-level run-length, median, and obliquity, among 

others.  

Another recent study focused on determining which radiomic features are more 

significant for cancer evolution is Emaminejad et al. [81]. In this study, the association 

between several radiomic features and two genomic biomarkers is evaluated, with the 

purpose of predicting survival without recurrence in cancer patients after surgery. 35 

features were estimated from CT images and analyzed with the data mining software 

Weka. Afterward, ten non-redundant features were selected. Among these features were 

entropy, standard deviation, mean, irregularity of tumor boundary, density values of 

minimum and maximum pixel, obliquity, and kurtosis. The prediction capacity between 

the quantitative image features, the subjective features given by a radiologist, and the 

previously mentioned biomarkers were compared, and they all showed to be relevant 

classifiers. Between these options, the radiomic quantitative features presented the 

higher predictive power. 
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3.2 Radiomics in prediction of EGFR and KRAS Mutations 

 

Other authors have previously tried to predict EGFR and KRAS mutations in Non-

Small Cell Lung Cancer (NSCLC) from image features. In the work presented by 

Gevaert et al. [3], the authors attempted to predict these mutations from semantic image 

features provided by radiologists. From a dataset of 186 images of thin-slice CT scans, 

89 semantic image features were specified by a radiologist. Then Decision Trees were 

built to predict EGFR and KRAS mutations. The final model uses only four semantic 

features. The presence of emphysema is at the root of the tree, determining EGFR 

wildtype tumors, followed by tumors with airway abnormalities also determining EGFR 

wildtype tumors. Next, tumors that have smooth or irregular margins are again predicted 

to have no EGFR mutation. Next, for the remaining tumors that have lobulated, 

spiculated, or poorly defined margins, if they contain any ground glass component, they 

are predicted to be EGFR mutated. Finally, for purely solid lesions, when the margins are 

lobulated, spiculated, or poorly defined, the model predicts the presence of an EGFR 

mutation. The proposed predictive model for the EGFR mutation achieved an AUC of 

0.89; however, conclusive results for the KRAS mutation were not obtained.  

Pinheiro et al. [82] also found a correlation between imaging features and mutation 

status for EGFR mutation (AUC of 0.745) but could not find the same for the KRAS 

mutation. Two main types of input features were considered: radiomic and semantic 

(given by a radiologist). The semantic ones were further divided into features that only 

describe the nodule, features that only describe structures external to nodule and a hybrid 

between the previous two. Radiomics were not further divided as they only describe the 

nodule. When using Principal Component Analysis (PCA) followed by t-distributed 

Stochastic Neighbour Embedding (t-SNE) for dimensionality reduction, the authors 

concluded that the separation of classes between mutated and wildtype EGFR gene status 

is better when using hybrid semantic features. However, the separation is not perfect, as 

there are samples outside their cluster, which illustrates the level of complexity faced in a 

classification process. Contrarily, for KRAS, there was no visible separation between 

classes with any type of input features. The images were taken from The NSCLC-

Radiogenomics dataset [83], where 116 cases were considered for the EGFR mutation 
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model and 114 were considered for the KRAS mutation model. A set of 1218 radiomic 

features were extracted using the open-source package PyRadiomics [84]. The classifier 

used in this work was Extreme Gradient Boosting (XGBoost), which is a scalable and 

accurate implementation of gradient boosted trees algorithms. 

On the other hand, Wang et al. [85] utilized semantic features to predict EGFR and 

KRAS mutation, and found a significant correlation between EGFR and KRAS 

mutations and lesions with a low ground glass opacity (GGO). In particular, the authors 

found that L858R point mutations, exon 19 deletions and KRAS mutations were more 

common in lesions with a lower GGO proportion (P=0.029, 0.027 and 0.018, 

respectively).  

Mei et al. [86] utilized texture features to predict mutations in EGFR at exon 19 and 

exon 21. In a retrospective study with 306 patients, 3D radiomic features were extracted 

using the open-source library PyRadiomics [84]. Ninety-four texture features, including 

first-order features (19 features), gray-level-co-occurrence matrix (GLCM) features (27 

features), gray-level-run-length matrix (GLRLM) features (16 features), gray-level size 

zone matrix (GLSZM) features (16 features), and shape features (16 features), were 

extracted from the segmented lesions. Then Logistic Regression Analysis was applied to 

build a predictive model. The authors reported an AUC of 0.66 for predicting EGFR 

exon 21 mutation using a model that included sex, non-smoking status, and the Size 

Zone Non-Uniformity Normalized radiomic feature.  

Shiri et. al. [87] created machine learning models from PET and CT image features to 

predict both EGFR and KRAS mutations. The authors worked with a dataset of 211 

NSCLC patients, each including diagnostic CT (CTD), low dose CT (CTA), and PET, as 

well as mutation status for KRAS and EGFR. From this dataset 186 patients were 

selected that had manual tumor segmentation on PET images and 175 patients with 

segmentation were selected from the CTD and CTA images. The images were 

preprocessed with Laplacian of Gaussian (LOG) wavelet decomposition (WAV) and 

discretization to 64 bin (BIN64). Then several radiomic features were extracted: first-

order statistics and SUV based (19 features), Shape-based (16 features), gray level co-

occurrence matrix (GLCM; 23 features), gray level run length matrix (GLRLM; 16 

features), gray level size zone matrix (GLSZM; 16 features), neighboring gray-tone 

difference matrix (NGTDM; 5 features), and gray level dependence matrix (GLDM; 14 

features).  In this study, different algorithms were used for data splitting, feature 
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selection, and classification. For feature selection, Select K Best (KB), Select K Best & 

Mutual Info Regression (KB-MIR), Select from Model (SM), and Variance Threshold & 

Select from Model (VT-SM) were applied. For data splitting, 10-fold cross-validation 

was used. Several classification algorithms were used: random forest (RF), Bagging 

(BG), Logistic Regression (LREG), Naive Bayesian (NB), and Support Vector Machine 

(SVM). In their best results, these authors obtained an AUC of 0.75 for both mutations in 

CT images by applying a combination of K-Best and variance threshold feature selector 

with logistic regression. Incorporating PET kept AUC values around 0.74.  

Liu et al. [88] utilized radiomics features and clinical data to predict EGFR status. 298 

patients with surgically resected peripheral lung adenocarcinomas were investigated and 

Definiens Developer XD© [89] (Munich, Germany) was used the image analysis 

platform to perform tumor segmentation and feature extraction. The authors extracted a 

total of 219 features from each of the 3D objects. These features were divided into eight 

categories, including tumor size, shape, location, air space, pixel intensity histogram, 

run-length & co-occurrence, laws texture, and wavelets. The correlation between features 

was investigated to address the collinearity issue. The highly correlated features 

(correlation > 0.9) were regarded as dependent features which were not considered in the 

analysis. Multiple logistic regression analysis was performed. The final model was 

selected using the backward elimination method. Further, various predictive models were 

developed by the support vector machine (SVM) and the principal component analysis 

(PCA) and were compared with the logistic regression model. Finally, the authors found 

an AUC of 0.647 with the best model based on 5 radiomic features which improved to 

0.709 AUC by combining radiomic features and clinical data.  

Deep learning has recently been applied in the diagnosis of different types of cancer 

[90], and other authors like Wang et. al. [91]  have applied these techniques to mutation 

prediction. These authors utilized deep learning to the prediction of EGFR mutational 

status. The authors worked with a dataset of 844 lung adenocarcinoma patients with pre-

operative CT images, EGFR mutation, and clinical information from two hospitals. For 

applying the deep learning model, a cubic region of interest (ROI) containing the entire 

tumor was manually selected. The authors applied Convolutional Neural Networks to 

create the predictive model. The authors used transfer learning to train the first 20 

convolutional layers from the ImageNet dataset, applying the DenseNet [92] pre-trained 

network, and then the last four convolutional layers were trained using 14.926 CT 
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images from lung adenocarcinoma tumors in the primary cohort. The authors found an 

AUC of 0.81 on an independent validation cohort.  

Other recent studies have applied clinical nomograms to predict EGFR mutation 

status. In the work presented by Zhang et al. [93], the authors combined CT features and 

clinical risk factors and used them to build a prediction nomogram. They obtained a 0.74 

AUC on the validation cohort. Table 1 summarizes the methods and results of previous 

work. 

 

 

Table 1 Previous Work Summary 

 

Authors Methods Results 

Gevaert et al.  Semantic Features, Machine 

Learning 

EGFR: 0,89 AUC 

KRAS: inconclusive 

Pinheiro et 

al. 

Quantitative Image Features EGFR: 0.745 AUC 

KRAS: inconclusive 

Mei et al.  Quantitative texture features EGFR: 0.66 AUC 

Shiri et. al.  Quantitative features from CT and 

PET, machine learning 

EGFR y KRAS: 0.75 AUC 

Liu et al.  Quantitative features, clinical data, 

Machine Learning 

EGFR: 0.709 AUC 

Wang et.al.  Deep Learning EGFR: 0,81 AUC 

Zhang et al. Semantic features, Risk factors EGFR: 0.74 AUC 
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CHAPTER 4. MATERIALS AND METHODS 
 

For this study, a cohort of 99 patients from the TCIA was obtained [94], whose data 

included CT images with tumor segmentation on the CT image, genomic data (KRAS 

mutational status, and EGFR mutational status), and clinical data (age, sex, smoking 

status, pathological T stage, pathological N stage, pathological M stage and histology 

type). Details of the cohort and corresponding data are published in a previous study [3] 

Patients with unknown mutational status were eliminated from the analysis, which 

resulted in 83 patients for the analysis. This type of data, with curation, is difficult to 

obtain. This set, while small, allows for comparisons. The summary of the study cohort 

is presented in Table 2. Table 3 summarizes the clinical features of the study cohort. Part 

of this study has been published in [95]. 

 

Table 2 Mutation Status Data Summary 

Variable Values Number of Cases (%) 

EGFR 

Mutation 

Status 

Mutant 12 (14%) 

Wildtype 71 (86%) 

Total 83 (100%) 

KRAS 

Mutation 

Status 

Mutant 20 (24%) 

Wildtype 63 (76%) 

Total 83 (100%) 

 

For the EGFR mutation case, there is not a significant difference observed between 

the mutant and wildtype statuses in terms of age. In terms of gender, for the mutant 

status there seems to be a more balanced distribution between the genders, while the 

wildtype status seems to be significantly more common among men. In terms of smoking 

history, the EGFR mutant status seems to be found more often among former smokers, 

and non-smokers in second place, while the wildtype status seems to be more common 

among former and current smokers. There is no significant difference between the 

groups in terms of T cancer stage, although wildtype status seems to be more common 

for patients with stage T1a. Cases with stages N1 and N2 seem to more frequently 

present wildtype status, as well as patients with M1b stage. In terms of histology type, 

none of the Squamous Cell Carcinoma patients present the EGFR mutation; this is only 

present in Adenocarcinoma cases. 
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Table 3 Clinical Features Data Summary 

Variable Overall 

Dataset 

EGFR 

Mutant 

EGFR 

Wildtype 

KRAS 

Mutant 

KRAS 

Wildtype 

Median 

Age 

(Range) 

69  

(46 – 85) 

72  

(55 –85) 

69 

 (46 – 84) 

68  

(50- 81) 

69 

 (46-85) 

Gender      

Male 65 (78%) 7 (8%) 58 (70%) 16 (19%) 49 (59%) 

Female 18 (22%) 5 (6%) 13 (16%) 4 (5%) 14 (17%) 

Smoking 

Status 

     

Current 18 (22%) 1 (1%) 17 (21%) 6 (6%) 12 (16%) 

Former 56 (67%)  8 (9%) 48 (58%) 14 (17%) 42 (50%) 

Non-

smoker 

9 (11%) 3 (4%) 6 (7%) 0 (0%) 9 (11%) 

Pathologic

al T Stage 

     

Tis 3 (4%) 1 (1%) 2 (3%) 0 (0%) 3 (4%) 

T1a 17 (21%) 1 (1%) 16 (20%) 4 (5%) 13 (16%) 

T1b 19 (23%) 5 (6%) 14 (17%) 3 (3%) 16 (20%) 

T2a 26 (31%) 3 (3%) 23 (28%) 7 (8%) 19 (23%) 

T2b 6 (7%) 1 (1%) 5 (6%) 1 (1%) 5 (6%) 

T3 8 (9%) 1 (1%) 7 (8%) 5 (6%) 3 (3%) 

T4 4 (5%) 0 4 (5%) 0 (0%) 4 (5%) 

Pathologic

al N Stage 

     

N0 65 (78%) 10(12%) 55 (66%) 16 (20%) 49 (58%) 

N1 8 (10%) 1 (1%) 7 (9%) 1 (1%) 7 (9%) 

N2 10 (12%) 1 (1%) 9 (11%) 3 (3%) 7 (9%) 

Pathologic

al M 

Stage 

     

M0 80 (96%) 12(14%) 68 (82%) 19 (23%) 61 (73%) 

M1b 3 (4%) 0 0% 3 (4%) 1 (1%) 2 (3%) 

Histology      

Adenocar

cinoma 

66 (80%) 12(14%) 54 (66%) 19 (23%) 47 (57%) 

Squamous 

cell 

carcinoma 

NSCLC 

NOS 

14 (17%) 

 

 

 

3 (3%) 

0 (0%) 

 

 

 

0 (0%) 

14 (17%) 

 

 

 

3 (3%) 

0 (0%) 14 (17%) 

 

 

 

1 (1%) 

 

 

 

2 (2%) 

 

For the KRAS mutation, there are no significant differences in terms of age and 

gender between the mutant and wildtype cases. In terms of smoking history, it can be 

observed that none of the non-smokers presented the KRAS mutation. For the 

pathological stage, it seems that most patients with stage N1 and N2 are wildtype cases. 
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Moreover, as seen with the EGFR mutation, mutant status is only found in 

Adenocarcinoma.  

Three experiments were conducted, first with traditional radiomic features and 

machine learned models, second with custom Convolutional Neural Networks (CNNs), 

and third, with pre-trained CNNs and fine-tuning. The experiments were executed in a 

computer with Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz, 16 GB of RAM memory 

and an NVIDIA GeForce GTX 1060 GPU. This hardware configuration limited some of 

the experiments as is explained in future sections. All the experiments consisted of two 

stages: first base classifier performance was assessed and second ensembles of several 

models were tested. An ensemble model is created by generating multiple models and 

combining them to produce an output classification. To combine the different models, a 

voting process is performed among them to determine the final result. There are different 

types of voting, for example, average voting, in which the average of the probabilities for 

each class of all the models is computed, and then a classification is performed based on 

the average probability. Another type of voting is maximum probability, in which for 

each case the base model with the higher pseudo-probability is selected, and the 

classification of the case is performed based on the pseudo-probabilities of this classifier 

alone. 

In this study, three types of voting were tested: average, maximum, and the method 

proposed here, Selective Class Average Voting (SCAV). SCAV is a voting technique 

that is particularly useful when dealing with an unbalanced dataset, where one class 

(majority class) is much more frequent than the other (minority class). In SCAV, first we 

count how many models predicted the minority class (in our case, the mutant status), and 

if this quantity is above a threshold value, the final outcome is the minority class. The 

pseudo-probability of this particular case is computed by averaging the scores of all the 

models where the final result was the minority class. If the value is below the chosen 

threshold, the final outcome is the majority class (in this case, the wildtype status), and 

the class pseudo probability is computed by finding the average of probabilities of all the 

models where the final result was the majority class. Once the probabilities are averaged 

according to the previous process, a threshold of 0.5 is applied to the final score to 

determine if the sample belongs to the minority (mutant) or to the majority (wildtype) 

class. To select the best thresholds for SCAV, that is the threshold for how many models 

must vote for the minority class, the performance of the ensemble on the Training set 
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was assessed, and the thresholds that enabled a higher AUC on this data were selected 

and applied to the Test data. Figure 25 describes the algorithm used by SCAV. 

 

 

 

 

Figure 25. Selective Class Average Voting (SCAV) algorithm. 

 

The use of ensembles increases the probability of obtaining better results, since we 

have several diverse models as inputs, and their errors tend to be outvoted by the full set 

of classifiers. This enables better generalization error. However, there are some 

disadvantages to this approach; first that it consumes more time. Several models have to 

be trained before an ensemble can be attempted, and it requires more computing power 

and resources, since we have several classifiers running at the same time. This last item 

creates a limitation in how many total models can be used in the ensemble. 

 

4.1 Experiment 1: Radiomic features and Machine Learned Classifiers 
 

Quantitative image features (N=266) presented in [96] were extracted from the 

segmented regions which included texture and non-texture features. Non-texture features 

include tumor size, tumor shape, and tumor location categories, and texture features 

include pixel histogram, run length, co-occurrence, Laws, and Wavelet features. To 

extract these features, Definiens Developer XD© (Munich, Germany) was used [89]. 

Definiens is based on the Cognition Network Technology that allows the development 

and execution of image analysis applications. Here, the Lung Tumor Analysis 

application was used. Most of the features were implemented within the Definiens 
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platform, whereas some were computed with an implementation of the algorithms in 

C/C++ developed in a previous work by some of the advisors of this work [57]. 

For stage 1, the following experimental workflow was applied to predict mutation 

status from image features. First, the data was divided into Train and Test sets as part of 

a 10-fold cross-validation. Second, on each fold feature selection was applied to select 

the image features with the most predictive power, third, the SMOTE algorithm [97] was 

applied to balance the dataset, fourth, a classifier was trained with the previously selected 

features as inputs on the balanced training data, and finally, the resulting model was 

applied to the test set. Figure 26 summarizes the presented workflow. 

 

 

Figure 26. Experiment 1 Workflow. 

 

Feature selection was used to determine the image features with more predictive 

power. Sets of 5, 10, 15, and 20 features were tested. For feature selection, two methods 

were separately applied. The selection approaches were the Mann Whitney test [98], and 

ReliefF [99]. In particular, the Mann Whitney filter is not a standard feature selection 

algorithm, and its use for feature selection is a proposal of this work. 

Since this is a case of an unbalanced dataset (one class is much more abundant than 

the other) an optional application of the SMOTE algorithm [97] was performed to create 

synthetic samples of the minority class. The SMOTE algorithm was applied with the 

default settings. These settings make the dataset approximately balanced by class. 

Finally, a classifier was trained with the selected features. Four machine learned 

classifiers were used: Random Forests [41], Support Vector Machines [31], Stochastic 

Gradient Boosting [52] and Neural Networks [100].  

For every experiment, standard metrics were computed: including accuracy, 

sensitivity, and specificity (assuming the mutant status as the positive case), and Area 

Under the ROC Curve (AUC) [73]. The workflow was applied in a ten-fold cross-

validation scheme, where iteratively nine folds were used to select features and train the 

classifier, and the left-out fold was used for testing the model. 
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The whole process was coded and executed in R 3.5.1 using the package FSelector 

[101] for the ReliefF feature selection, package DMwR [102] for the SMOTE algorithm, 

and package caret [103] to test the four different classifiers. For the four classification 

algorithms, the classifiers were executed with the default settings of the caret package. 

For the Random Forest algorithm, 500 trees were generated and variables randomly 

sampled as candidates at each split. For the Support Vector Machines algorithm, a linear 

kernel was used in all the experiments, and for the cost (c parameter) c=1. For the 

Stochastic Gradient Boosting algorithm the following parameters were used: trees = 

1000, interaction.depth =6, shrinkage = 0.1, n.minobsinnode = 10. Finally, for the neural 

networks, the nnet package of caret with 2 units in the hidden layer, a 100 iterations and 

logistic (sigmoid) as activation function were used. In the package nnet the neural 

network always has a single layer where you specify the number of nodes. 

The implementation of the Mann-Whitney Feature Selector was coded in R.3.5.1 

using the wilcox.test function to compute the p-value of every feature (every column of 

the dataset) and then features were sorted by this value in increasing order. 

In the second stage of the experiment an ensemble of the base models was applied. 

Sets of 5, 10, and 20 models were tested. To select which base models would be part of 

the ensemble, the average performance on the training set was considered. The base 

models were sorted according to their average AUC on the train set, and the top 5, 10 

and 20 were selected.  

 

4.2 Experiment 2: Custom Convolutional Neural Networks 
 

In the second experiment, CNNs were applied to the problem of predicting EGFR and 

KRAS mutations. CNNs are a type of deep neural networks that have proven to be useful 

in detecting patterns on images [104]. From the same TCIA dataset, the CT images from 

the 83 patients that had both tumor segmentation and mutation information were selected 

and processed so a volume with only the tumor would be obtained. Then images of the 

Region of Interest (ROI) with a uniform size of 128 × 128 pixels per slice were 

extracted. From the whole volume, up to three slices per patient were selected to be part 

of the final dataset. The slice that had the largest tumor area was selected by manual 

visual inspection by the lead author of the segmented images. Then, we left one out in 
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both directions of the z-axis and selected the two slices that where closest to the chosen 

slice up and down. The immediately consecutive slices were not used, assuming they 

were too similar to the central image. A slice without a clear piece of tumor in it was 

discarded. The dataset was then split into three: training (65%), validation (15%), and 

test (20%) datasets. For this experiment, and the transfer learning experiments that also 

involve CNNs, a fixed train and test dataset was used instead of the 10-fold cross 

validation. This was performed this way since training a CNN is computationally more 

complex than training a machine learning model, and repeating the training 10 times 

takes too much time and machine power for the available hardware. Since there was 

more than one image from each patient, we verified that images from the same patient 

were assigned to the same dataset. 

In the first stage of the second experiment. Several CNN models were applied to 

predict EGFR and KRAS mutations, varying conditions such as the CNN architecture, 

data augmentation, the optimizer, the learning rate, and the number of epochs of training. 

Augmentation was applied in these experiments with two modalities: first augmenting 

only the minority class, and second augmenting both classes. For both cases, the original 

images were augmented 4 times through rotations with 90 degrees of difference (0, 90, 

180, and 270 degrees). Augmentation was only applied to the training dataset. Since this 

is a very small dataset, small CNN architectures were tested. Ten different architectures 

were applied with a different number of convolutional layers. Figures 27 to 36 show the 

applied ten architectures. 

 

 

Figure 27. Architecture 1 of CNN base models. 
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Figure 28. Architecture 2 of CNN base models. 

 

 

Figure 29. Architecture 3 of CNN base models. 

 

 

Figure 30. Architecture 4 of CNN base models. 

 

 

Figure 31. Architecture 5 of CNN base models. 

 

 

Figure 32. Architecture 6 of CNN base models. 
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Figure 33. Architecture 7 of CNN base models. 

 

 

 

Figure 34. Architecture 8 of CNN base models. 

 

 

Figure 35. Architecture 9 of CNN base models. 

 

 

Figure 36. Architecture 10 of CNN base models. 

 

Most of this architectures were inspired by the VGG-16 architecture, but just with the 

first few layers. Different variations of number of layers and filters following the VGG-
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16 pattern were tested in the different architectures with a few exceptions. Architectures 

4 and 8 were inspired by the CNN-F architecture [105] initially proposed by Chatfield et 

al. [106] that affirmed to work well with small datasets. 

When enough good results were obtained using the base CNN models, a second stage 

of ensembles of CNN models was performed. Combinations of three and five models 

were tested from the models that performed best on training, and different types of 

voting were applied: average, maximum, and SCAV voting. The second experiment was 

coded in Python 3, and the library OpenCV was used for the image processing tasks. For 

the CNN generation, the library Keras with TensorFlow backend was utilized. 

 

4.3 Experiment 3: Pre-trained CNNs and Fine Tuning 

 

For the third experiment Transfer Learning was applied. Three well-known CNNs: 

VGG16, ResNet50, and Inception, pre-trained in the image database ImageNet, were 

applied to the problem of predicting EGFR and KRAS mutations. These networks were 

implemented from the library Keras. From these models, the Convolutional layers and 

their weights from the ImageNet training were taken and frozen, then the models were 

complemented with two alternative architectures which included Fully Connected 

Layers, and these layers were trained on the Mutations Dataset and labels (Fine Tuning). 

Figures 37 and 38 show the two architectures tested in the Transfer Learning experiment. 

The images used for this experiment were the same 128x128 images that were extracted 

for the custom CNN’s experiment.  

 

 

Figure 37. Architecture 1 for Transfer Learning Experiments. 
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Figure 38. Architecture 2 for Transfer Learning Experiments. 

 

First combinations of the three previously mentioned CNNs with the two 

complementary alternative custom architectures were tested as single classifiers. 

Augmentation was applied in these experiments with two modalities: first augmenting 

only the minority class, and second augmenting both classes. Again in both cases, the 

images in the training dataset were augmented 4 times through rotations, just like in the 

custom CNNs experiment. Different options of initial learning rate, optimizer, and 

number of epochs were tested. Also for this experiment fixed Train and Test datasets 

were used: training (65%), validation (15%), and test (20%) datasets. Again this option 

was chosen since 10-fold cross-validation for CNNs was too computationally expensive 

for the available hardware.  

For stage two, Ensembles of several classifiers were tested. Average, Maximum, and 

SCAV voting were applied. Finally, the best models of the custom CNNs and the pre-

trained networks were combined in an Ensemble.  
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CHAPTER 5. Radiomic features and Machine Learned Classifiers 
 

5.1 Machine Learned Models: EGFR Mutation 

 

The ten best results of the performance of the base classifiers for the EGFR mutation 

are presented in Table 4, sorted by their AUC. The classifiers are gradient based method 

(gbm), random forest (RF), support vector machine (SVM), and neural network (nnet). 

Table 4 EGFR mutation prediction results on Test dataset, base classifiers 

Feature Selection Classifier SMOTE Accuracy Sensitivity Specificity AUC 

MW (5 features) nnet No 0.83 0.00 0.98 0.43 

ReliefF (15 features) SVM Yes 0.76 0.66 0.78 0.68 

ReliefF (10 features) RF Yes 0.76 0.41 0.82 0.67 

ReliefF (15 features) nnet Yes 0.76 0.58 0.79 0.67 

ReliefF (5 features) RF Yes 0.77 0.50 0.82 0.64 

ReliefF (20 features) RF Yes 0.73 0.16 0.83 0.63 

ReliefF (20 features) SVM Yes 0.68 0.66 0.69 0.63 

ReliefF (5 features) nnet Yes 0.71 0.50 0.75 0.60 

ReliefF (5 features) SVM Yes 0.79 0.25 0.89 0.59 

ReliefF (15 features) RF Yes 0.72 0.25 0.80 0.57 

MW (5 features) gbm Yes 0.68 0.16 0.78 0.53 

 

The highest AUC for EGFR mutation prediction was 0.68 (standard deviation of 0.25 

between folds) with an SVM classifier. This model had an Accuracy of 0.76 with a 

standard deviation of 0.154. For this mutation, much better results were obtained with 

ReliefF as feature selector. This result suggests that SVM works best because there is a 

clear margin of separation in the high dimensional space, and this separation follows a 

linear pattern, since a linear kernel is being used for these experiments. 

Then, ensembles of different numbers of models with three different types of voting 

were tested. Table 5 presents the best results with ensembles. 

 

Table 5 EGFR mutation prediction best results on Test dataset, ensembles. 

Ensemble Combination Classifiers Accuracy Sensitivity Specificity AUC 

Ensemble SCAV thresh 3 (10 

models) 
gbm, SVM, nnet 0.59 0.75 0.57 0.70 

Ensemble SCAV thresh 6 (10 

models) 
gbm, SVM, nnet 0.80 0.33 0.89 0.68 

Ensemble Average (10 models) gbm, SVM, nnet 0.78 0.16 0.89 0.68 

Ensemble Average (5 models) All 0.78 0.16 0.89 0.67 

Ensemble Average (5 models) RF, SVM, nnet 0.79 0.33 0.87 0.66 

Ensemble Maximum (10 models) gbm, SVM, nnet 0.75 0.41 0.82 0.59 
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The best AUC was 0.70 (0.149 standard deviation between folds) with SCAV. This 

model also had the higher sensitivity (0.75). Moreover, in another model, an accuracy of 

0.80 with a standard deviation of 0.119 was obtained with a 0.68 AUC (0.20 standard 

deviation). It can be observed for the machine learning experiment that a higher 

accuracy, sensitivity, specificity, and AUC can be obtained by applying ensembles and 

SCAV. Different ensemble combinations can be used to favor certain metrics.  

 

5.2 Machine Learned Models: KRAS Mutation 
 

The results of the performance of the ten best base classifiers for the KRAS mutation are 

presented in Table 6. The best AUC is 0.65 with a standard deviation of 0.173 between 

folds. This model also had an accuracy of 0.70 with a standard deviation of 0.193 For 

this mutation, similar results could be obtained with both feature selection methods, 

though ReliefF was still best. Again SVM was the algorithm that performed better. This 

suggests that there is a linear separation margin between the two classes in the high 

dimensional space. Then, ensembles of different numbers of models with three different 

types of voting were tested. Table 7 presents the best results with ensembles. The 

ensemble approach resulted in an improved AUC of 0.71 (0.207 standard deviation) with 

a 0.72 accuracy (0.163 standard deviation) using SCAV. Again, the models with best 

accuracy and best AUC were obtained with the proposed voting scheme. This was the 

best AUC that could be obtained for the KRAS mutation with the machine learning 

models. 
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Table 6 KRAS mutation prediction results on Test dataset, base classifiers 

Feature Selection Classifier SMOTE Accuracy Sensitivity Specificity AUC 

MW (10 features) nnet No 0.72 0.10 0.93 0.44 

Relief (10 features) nnet No 0.75 0.00 1.00 0.44 

ReliefF (5 features) SVM Yes 0.70 0.35 0.81 0.65 

MW (15 features) SVM Yes 0.64 0.40 0.72 0.64 

ReliefF (5 features) gbm Yes 0.64 0.60 0.65 0.63 

ReliefF (20 features) gbm Yes 0.63 0.50 0.67 0.63 

MW (10 features) SVM Yes 0.64 0.45 0.70 0.63 

MW (20 features) SVM Yes 0.71 0.40 0.81 0.63 

ReliefF (15 features) SVM Yes 0.67 0.45 0.75 0.62 

MW (5 features) SVM Yes 0.71 0.35 0.83 0.62 

MW (15 features) gbm Yes 0.67 0.40 0.77 0.62 

ReliefF (15 features) RF Yes 0.62 0.40 0.70 0.60 

 

 

 

Table 7 KRAS mutation prediction best results on Test dataset, ensembles. 

Ensemble Combination Classifiers Accuracy Sensitivity Specificity AUC 

Ensemble SCAV thresh 8 (10 models) SVM, nnet 0.72 0.20 0.89 0.71 

Ensemble SCAV thresh 6 (10 models) SVM, nnet 0.73 0.30 0.87 0.69 

Ensemble Average (5 models) SVM 0.70 0.35 0.81 0.67 

Ensemble Maximum (5 models) SVM 0.70 0.40 0.80 0.66 

Ensemble Average (10 models) SVM, nnet 0.66 0.35 0.76 0.65 
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CHAPTER 6. CUSTOM CONVOLUTIONAL NEURAL NETWORKS 
 

6.1 Convolutional Neural Networks: EGFR Mutation 

 

The best results of EGFR mutation prediction applying CNNs on the Test set are 

presented in Table 8. Although Stochastic Gradient Descent (SGD) and Adam were 

tested as optimizers, it can be observed that all the best results were obtained with SGD 

as optimizer. This suggests that SGD can be a good choice when dealing with small 

datasets with small CNN architectures. Also, according to some authors [107], SGD is 

more locally unstable and is more likely to converge to the minima at the flat or 

asymmetric basins/valleys which often have better generalization performance over other 

types of minima. The best result was obtained with Architecture 4, which is presented in 

Figure 30. This model had an AUC of 0.846 and an accuracy of 0.800. This result is 

significantly better than the one obtained with the machine learning approach. Among 

the reasons why this architecture works best, we can highlight that Architecture 4, unlike 

most of the other architectures, applies a 11x11 kernel, while the rest apply smaller 

kernels (3x3). This suggests that maybe the texture patterns that characterize EGFR 

mutation are bigger and can be better detected with kernels of a greater size. 

 

Table 8 EGFR mutation best results on Test dataset, CNNs. 

Model Optimizer Learning Rate Epochs Accuracy Sensitivity Specificity AUC 

Arch. 4 SGD 0.0005 30 0.800 0.667 0.846 0.846 

Arch. 6 SGD 0.0005 30 0.771 0.222 0.961 0.752 

Arch. 1 SGD 0.01 8 0.400 1.000 0.192 0.688 

Arch. 6 SGD 0.01 10 0.657 0.666 0.654 0.675 

Arch. 3 SGD 0.01 7 0.543 0.778 0.461 0.671 

Arch. 4 SGD 0.01 10 0.543 0.778 0.461 0.628 

Arch. 1 SGD 0.01 30 0.514 0.778 0.423 0.623 

Arch. 2 SGD 0.01 30 0.542 0.667 0.538 0.571 

Arch. 4 SGD 0.01 20 0.600 0.444 0.654 0.559 

 

After the base CNN models were obtained, an ensemble of the best CNN models was 

created. Table 9 presents the results of the best ensembles of CNN models. The best 

result in terms of AUC was 0.820 and an accuracy of 0.828, this result was obtained with 

a combination of the three best models and SCAV. An even better accuracy (0.857) was 

obtained with the combination of the five best models. This was the best accuracy for the 
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EGFR mutation. Even if in this case there was not an increase in performance in terms of 

AUC, a better accuracy was obtained by applying SCAV. 

Table 9 EGFR Mutation Best Results, Ensembles of CNNs 

Model Accuracy Sensitivity Specificity AUC 

Ensemble (3 models) SCAV thresh 3 0.828 0.667 0.885 0.820 

Ensemble (5 models) SCAV thresh 5 0.857 0.667 0.923 0.778 

Ensemble (3 models) Average 0.486 0.778 0.385 0.743 

Ensemble (5 models) Average 0.628 0.778 0.577 0.641 

Ensemble (3 models) Maximum 0.371 0.778 0.231 0.624 

 

6.2 Convolutional Neural Networks: KRAS Mutation 

 

The best results of KRAS mutation prediction using CNNs on the Test set are 

presented in Table 10. Analyzing the results for KRAS, we can see there is not a model 

that performs well according to all three metrics. The best result according to AUC is 

0.739, however, the sensitivity of this model is zero, so none of the mutant cases were 

detected. The model with the best accuracy has 72.2% and a sensitivity of 0.25, so it is a 

more balanced result, however, the AUC is only 0.566.  

Table 10 KRAS mutation best results on Test dataset, CNNs. 

Model Optimizer Learning Rate Epochs Accuracy Sensitivity Specificity AUC 

Arch. 1 SGD 0.01 60 0.667 0.000 1.000 0.739 

Arch. 6 Adam 0.005 10 0.333 1.000 0.000 0.607 

Arch. 6 Adam 0.001 10 0.667 0.000 1.000 0.593 

Arch. 1 Adam 0.005 15 0.722 0.250 0.958 0.566 

Arch. 1 SGD 0.01 90 0.667 0.000 1.000 0.555 

Arch. 1 SGD 0.01 10 0.555 0.667 0.500 0.531 

 

In order to improve the results, an ensemble of the best CNN models was created. 

Table 11 shows the best results with ensembles of CNNs. The best AUC that could be 

obtained in this stage was 0.778, which was obtained with an ensemble of the three best 

models and average voting. This was the best AUC that could be obtained for the KRAS 

mutation with custom CNNs, and is significantly better than the result obtained with the 

machine learning models. This was the only stage where the best results in terms of AUC 

were not obtained with SCAV; however, an equal accuracy could be obtained by 

applying SCAV with the best three models. 
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Table 11 KRAS mutation best results on Test dataset, ensembles of CNNs. 

Model Accuracy Sensitivity Specificity AUC 

Ensemble (3 models) Average 0.722 0.250 0.958 0.778 

Ensemble (3 models) SCAV thresh 2 0.722 0.250 0.958 0.722 

Ensemble (4 models) SCAV thresh 3 0.722 0.250 0.958 0.642 

Ensemble (7 models) SCAV thresh 4 0.694 0.416 0.833 0.618 

Ensemble (7 models) SCAV thresh 5 0.694 0.083 1.000 0.604 
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CHAPTER 7. PRE-TRAINED CNNS AND FINE TUNING 
 

 

7.1 Pre-trained CNNs: EGFR Mutation 
 

For the first stage of the Transfer Learning Experiments combinations of a pre-trained 

network (VGG16, ResNet50, or Inception) and a few additional layers (Models 1 and 2, 

shown in Figures 37 and 38) were tested. Table 12 presents the best results of single 

classifiers with pre-trained networks and fine-tuning 

 

Table 12 EGFR Mutation Best Results, Pre-trained CNNs 

Model Optimizer Learning Rate Epochs Accuracy Sensitivity Specificity AUC 

VGG16 – Model 1 SGD 0,0005 10 0,686 0,889 0,615 0,820 

ResNet50 - Model 2 SGD 0,0005 5 0,600 0,778 0,538 0,778 

VGG16 – Model 2 SGD 0,0005 10 0,600 0,889 0,500 0,747 

ResNet50 – Model 2 SGD 0,0005 8 0,600 0,555 0,615 0,658 

ResNet50 - Model 1 Adam 0,005 10 0,743 0,000 1,000 0,504 

Inception - Model 2 SGD 0,0005 8 0,514 0,555 0,500 0,602 

Inception - Model 1 SGD 0,005 10 0,686 0,111 0,885 0,551 

Inception - Model 1 SGD 0,0005 10 0,800 0,222 1,000 0,547 

 

The best result in terms of AUC was 0.820 and was obtained with VGG16 and 

architecture 1. The Sensitivity of this model is also high (88.9%). After the single models 

were evaluated, ensembles of pre-trained CNNs were tested. In this step, the three best 

models in terms of AUC in training and the three best models in terms of accuracy on 

training were tested in the Ensembles. Table 13 presents the best results. Models with 

higher AUC (0.837) and higher accuracy (85,7%) could be obtained with SCAV. 
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Table 13 EGFR Mutation Best Results, Ensembles of Pre-trained CNNs 

Ensemble Combination Accuracy Sensitivity Specificity AUC 

Ensemble Average (3 best models AUC) 0,657 1,000 0,538 0,837 

Ensemble SCAV thresh 2 ((3 best models AUC) 0,657 0,889 0,577 0,761 

Ensemble SCAV thresh 3 (3 best models AUC) 0,857 0,667 0,923 0,829 

Ensemble SCAV thresh 2 (3 best models 

accuracy) 0,743 0,778 0,731 0,765 

Ensemble SCAV thresh 3 (3 best models 

accuracy) 0,800 0,222 1,000 0,564 

 

Finally, ensembles of the best custom CNNs and the best pre-trained models were 

tested. The results are presented in Table 14. 

 

Table 14 EGFR Mutation Best Results, Ensembles of Pre-trained and Custom CNNs  

 

Ensemble Combination Accuracy Sensitivity Specificity AUC 

Ensemble SCAV (3 best pre-trained models, 2 

best custom CNNs) thresh 3 0,828 0,778 0,846 0,855 

Ensemble SCAV (3 best pre-trained models, 

2 best custom CNNs) thresh 4 0,886 0,556 1,000 0,914 

 

Combining the best custom CNNs and the best pre-trained models we obtained the 

best AUC of all the experiments, 0.914. This ensemble combination also has very good 

accuracy (88.6%). It can be concluded that this is the best model for EGFR mutation 

prediction. This result is slightly better than the one obtained by Gevaert. et. al. [3] (0.89) 

with the same dataset, but has the advantage that this result was obtained with features 

extracted automatically from the image and not given manually by a radiologist. This 

result is also better than the one obtained by Wang. et. al. [91] with deep learning 

techniques (but with a different dataset). Figure 39 shows sample images of correct and 

incorrect classification of EGFR mutant cases with our best model. Figure 40 presents a 

sample image of a correctly classified EGFR wildtype case with the best model. Since 

the specificity of this model is 1, there were no incorrectly classified wildtype cases. 

These images suggest that the classifier works best with big tumors. 
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a) 

 

b) 

 

Figure 39. Examples of EGFR Mutant cases a) Correctly Classified, b) Incorrectly 
Classified. 

 

 

Figure 40. Example of a correctly classified EGFR Wildtype case. 

 

7.2 Pre-trained CNNs: KRAS Mutation 

 

For the KRAS mutation, the same combinations of one of the three pre-trained networks 

(VGG16, ResNet50, and Inception) with fine-tuning with the architectures presented in 

Figures 37 and 38 were tested. First, single classifiers were assessed. Table 15 presents 

the best results of the base classifiers. The best model was VGG16 with model 2, with an 

AUC of 0.778 and an accuracy of 72.2%. This is the best and more balanced result 

obtained with the base classifiers for the KRAS mutation, which shows the effectiveness 

of the Transfer Learning approach for this particular problem. Compared to the results 

obtained with the EGFR mutation, where the best result for the base classifier was 

achieved with a custom architecture, we can speculate that the texture patterns of the 

KRAS mutation are smaller, since they work better with the 3x3 kernels traditional to the 

VGG-16 architecture, and can be perceived with more standard feature extraction filters, 

since the model benefits from its training in Imagenet, a generic image database. 
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Table 15 KRAS Mutation Best Results, Pre-trained CNNs. 

 

Model Optimizer 

Learning 

Rate Epochs Accuracy Sensitivity Specificity AUC 

VGG16-Model2 Adam 0,0005 50 0,722 0,667 0,750 0,778 

VGG16-Model2 Adam 0,0005 10 0,667 0,333 0,833 0,778 

Inception-Model1 SGD 0,0005 10 0,583 0,916 0,417 0,767 

VGG16-Model1 SGD 0,0005 50 0,722 0,333 0,917 0,712 

VGG16-Model2 Adam 0,0005 70 0,694 0,500 0,792 0,712 

 

After single classifiers were tested, ensembles of pre-trained CNNs were assessed. The 

best results of this approach are presented in Table 16.  

 

Table 16 KRAS Mutation Best Results, Ensembles of Pre-trained CNNs. 

Ensemble Combination Accuracy Sensitivity Specificity AUC 

Ensemble Average (5 best models) 0,722 0,583 0,792 0,809 

Ensemble Average (3 best AUC models ) 0,750 0,667 0,792 0,809 

Ensemble SCAV thresh 2 (3 best AUC models) 0,778 0,667 0,833 0,771 

Ensemble SCAV thresh 3 (3 best AUC models) 0,694 0,250 0,917 0,767 

Ensemble SCAV thresh 2 (5 best models) 0,778 0,750 0,792 0,757 

 

With the ensembles of pre-trained CNNs, the best results in terms of AUC was 0.809 

obtained both with an ensemble with average voting of the 5 and the 3 best models, 

however, the accuracy of the ensemble with the 3 best models was higher. Even if in this 

case the best result was not obtained using SCAV, good results were also obtained with 

this voting approach, in particular, the model with the higher accuracy of the ensembles 

(77,8%) was obtained with SCAV.  

 For this mutation ensembles of Pre-Trained and custom CNNs were also attempted, 

however the results were not better than the ones obtained with only Pre-Trained CNNs  

The results obtained with Ensembles of Pre-Trained CNNs were the best for the KRAS 

mutation prediction, and particularly the 0,809 AUC was the highest obtained for this 

mutation. This result is very promising, especially considering that in the work presented 

by Gevaert et. al. [3] with the same dataset, a conclusive predictive model for the KRAS 

mutation could not be obtained. Also, in the state of the art, the higher AUC obtained for 
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the KRAS mutation was 0.75, which is lower than the AUC obtained in this work, 

however, this result was obtained with a different dataset. Figure 41 shows sample 

images of a correctly and incorrectly classified KRAS mutant case for our best model. 

Figure 42 presents a correctly and incorrectly classified case of KRAS wildtype tumor 

with our best model. Again these images suggest that the classifier works better with 

bigger tumors. 

 

 

a) 

 

b) 

 

Figure 41. Examples of KRAS Mutant cases a) Correctly Classified, b) Incorrectly 
Classified. 

 

 

 

a) 

 

b) 

 

Figure 42. Examples of KRAS Wildtype cases a) Correctly Classified, b) Incorrectly 
Classified. 
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK 
 

In this study, we analyzed the effectiveness of using ensembles in the prediction 

of EGFR and KRAS mutations in a small dataset, in particular, we assessed the 

performance of a proposed voting scheme SCAV. We tested this scheme with both 

ensembles of machine learning models, ensembles of custom CNNs, and ensembles of 

pre-trained CNNs, and a significant improvement from the base classifiers was 

observed.  

For the EGFR mutation and machine learning models, the best AUC was 

obtained by creating a model with ReliefF’s 15 best features and a Support Vector 

Machine (SVM) as classifier. The AUC increased when applying an Ensemble with 

SCAV. The image features that were more frequently associated with this mutation are 

texture features, such as 3D Laws and Wavelet features, others related to tumor shape, 

such as Flatness and Asymmetry, and finally GLSZM features related to gray level 

zones in the image. For the deep learning models with custom CNNs, the highest AUC 

(0.846) was obtained by a CNN with Architecture 4. In this case we did not see an 

increase in terms of AUC when we applied Ensembles, but the accuracy increased when 

using an Ensemble with SCAV voting. The performance further increased when we 

applied Ensembles of Pre-Trained CNNs and custom CNNs with SCAV voting (0,914 

AUC). This was the best result that could be obtained for the EGFR mutation, and it 

indicates that ensembles, and in particular our voting scheme can significantly increase 

performance of classifiers when dealing with a small dataset and a not so outstanding 

performance of the base models. Our results were better than the ones obtained by 

Gevaert et. al. [3] with the same dataset, and our model did not require semantic 

features manually specified by a radiologist. Further, our best model obtained a higher 
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AUC than the ones presented by the most recent works that used deep learning [91] and 

nomograms [93], as is summarized in Table 1. 

For the KRAS mutation, an increase in performance was also observed, both 

with the machine learning models and the deep learning ones. The AUC of the machine 

learning models went from 0.65 to 0.71 with an ensemble of 10 models and SCAV for 

the voting method. Among the image features that were associated with the KRAS 

mutation, we could find texture features, particularly 3D Laws features, and features 

related to grey level non-uniformity. For the CNNs, the performance went from an AUC 

of 0.739 to an AUC of 0.778 with an ensemble of CNNs. The performance also 

increased when we built ensembles of Pre-Trained CNNs (0,809 AUC). These results 

are much better than the ones obtained in [3] where a conclusive model for KRAS 

mutation could not be found for this same dataset. This result also outperforms other 

recent works of the state of the art. 

For both mutations, in most cases better results could be obtained by applying 

SCAV as the voting method, rather than average and maximum voting, however, a 

more rigorous method to determine the best threshold is still necessary. Also, we 

proposed a new Feature Selection algorithm based on the Mann Whitney test. Although 

in some cases this filter had good performance, better results were obtained with the 

standard feature selection algorithm, Relief. Furthermore, higher Sensitivity was 

obtained when applying the SMOTE algorithm for the machine learning models, which 

is an effective strategy to handle unbalanced classification datasets.  

This work showed novel ways to use ensembles of CNNs and non-neural 

classifiers on small data to achieve state-of-the-art results. Our proposed approach, 

which is to use ensembles with SCAV, shows in this study that the performance of 

classifiers can be improved, even when the base models do not perform that well, and 
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this is an important contribution from this work. Since larger datasets will enable better 

models, we firmly believe that if our approach is applied with more data it will yield 

outstanding performance and may generate models that can be used in clinical practice. 

This indicates a promising future for detecting these mutations in a non-invasive way.  
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