40 research outputs found

    Boolean Subalgebras of Orthoalgebras

    Get PDF
    We develop a direct method to recover an orthoalgebra from its poset of Boolean subalgebras. For this a new notion of direction is introduced. Directions are also used to characterize in purely order-theoretic terms those posets that are isomorphic to the poset of Boolean subalgebras of an orthoalgebra. These posets are characterized by simple conditions defining orthodomains and the additional requirement of having enough directions. Excepting pathologies involving maximal Boolean subalgebras of four elements, it is shown that there is an equivalence between the category of orthoalgebras and the category of orthodomains with enough directions with morphisms suitably defined. Furthermore, we develop a representation of orthodomains with enough directions, and hence of orthoalgebras, as certain hypergraphs. This hypergraph approach extends the technique of Greechie diagrams and resembles projective geometry. Using such hypergraphs, every orthomodular poset can be represented by a set of points and lines where each line contains exactly three points.Comment: 43 page

    Boolean subalgebras of orthoalgebras

    Get PDF
    We develop a direct method to recover an orthoalgebra from its poset of Boolean subalgebras. For this a new notion of direction is introduced. Directions are also used to characterize in purely order-theoretic terms those posets that are isomorphic to the poset of Boolean subalgebras of an orthoalgebra. These posets are characterized by simple conditions defining orthodomains and the additional requirement of having enough directions. Excepting pathologies involving maximal Boolean subalgebras of four elements, it is shown that there is an equivalence between the category of orthoalgebras and the category of orthodomains with enough directions with morphisms suitably defined. Furthermore, we develop a representation of orthodomains with enough directions, and hence of orthoalgebras, as certain hypergraphs. This hypergraph approach extends the technique of Greechie diagrams and resembles projective geometry. Using such hypergraphs, every orthomodular poset can be represented by a set of points and lines where each line contains exactly three points

    Remarks on the order-theoretical and algebraic properties of quantum structures

    Get PDF
    This thesis is concerned with the analysis of common features and distinguishing traits of algebraic structures arising in the sharp as well as in the unsharp approaches to quan- tum theory both from an order-theoretical and an algebraic perspective. Firstly, we recall basic notions of order theory and universal algebra. Furthermore, we introduce fundamental concepts and facts concerning the algebraic structures we deal with, from orthomodular lattices to e↵ect algebras, MV algebras and their non-commutative gener- alizations. Finally, we present Basic algebras as a general framework in which (lattice) quantum structures can be studied from an universal algebraic perspective. Taking advantage of the categorical (term-)equivalence between Basic algebras and Lukasiewicz near semirings, in Chapter 3 we provide a structure theory for the lat- ter in order to highlight that, if turned into near-semirings, orthomodular lattices, MV algebras and Basic algebras determine ideals amenable of a common simple description. As a consequence, we provide a rather general Cantor-Bernstein Theorem for involutive left-residuable near semirings. In Chapter 4, we show that lattice pseudoe↵ect algebras, i.e. non-commutative gener- alizations of lattice e↵ect algebras can be represented as near semirings. One one side, this result allows the arithmetical treatment of pseudoe↵ect algebras as total structures; on the other, it shows that near semirings framework can be really seen as the common “ground” on which (commutative and non commutative) quantum structures can be studied and compared. In Chapter 5 we show that modular paraorthomodular lattices can be represented as semiring-like structures by first converting them into (left-) residuated structures. To this aim, we show that any modular bonded lattice A with antitone involution satisfying a strengthened form of regularity can be turned into a left-residuated groupoid. This condition turns out to be a sucient and necessary for a Kleene lattice to be equipped with a Boolean-like material implication. Finally, in order to highlight order theoretical peculiarities of orthomodular quantum structures, in Chapter 6 we weaken the notion of orthomodularity for posets by introduc- ing the concept of the generalized orthomodularity property (GO-property) expressed in terms of LU-operators. This seemingly mild generalization of orthomodular posets and its order theoretical analysis yields rather strong applications to e↵ect algebras, and orthomodular structures. Also, for several classes of orthoalgebras, the GO-property yields a completely order-theoretical characterization of the coherence law and, in turn, of proper orthoalgebras

    Logical equivalence between generalized urn models and finite automata

    Full text link
    To every generalized urn model there exists a finite (Mealy) automaton with identical propositional calculus. The converse is true as well.Comment: 9 pages, minor change

    Finite homogeneous and lattice ordered effect algebras

    Get PDF
    AbstractWe prove that for every finite homogeneous effect algebra E there exists a finite orthoalgebra O(E) and a surjective full morphism φE:O(E)→E. If E is lattice ordered, then O(E) is an orthomodular lattice. Moreover, φE preserves blocks in both directions: the (pre)image of a block is always a block

    Quantum logic and decohering histories

    Get PDF
    An introduction is given to an algebraic formulation and generalisation of the consistent histories approach to quantum theory. The main technical tool in this theory is an orthoalgebra of history propositions that serves as a generalised temporal analogue of the lattice of propositions of standard quantum logic. Particular emphasis is placed on those cases in which the history propositions can be represented by projection operators in a Hilbert space, and on the associated concept of a `history group'.Comment: 14 pages LaTeX; Writeup of lecture given at conference ``Theories of fundamental interactions'', Maynooth Eire 24--26 May 1995
    corecore