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Abstract
We develop a direct method to recover an orthoalgebra from its poset of Boolean subalge-
bras. For this a new notion of direction is introduced. Directions are also used to characterize
in purely order-theoretic terms those posets that are isomorphic to the poset of Boolean
subalgebras of an orthoalgebra. These posets are characterized by simple conditions defin-
ing orthodomains and the additional requirement of having enough directions. Excepting
pathologies involving maximal Boolean subalgebras of four elements, it is shown that there
is an equivalence between the category of orthoalgebras and the category of orthodomains
with enough directions with morphisms suitably defined. Furthermore, we develop a rep-
resentation of orthodomains with enough directions, and hence of orthoalgebras, as certain
hypergraphs. This hypergraph approach extends the technique of Greechie diagrams and
resembles projective geometry. Using such hypergraphs, every orthomodular poset can be
represented by a set of points and lines where each line contains exactly three points.
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1 Introduction

Contextuality is the phenomenon in quantum theory that the outcome of a measurement
may depend on the context in which that measurement is made, that is, on the experimental
implementation of that measurement. This principle prevents hidden-variable explanations
and clarifies why deterministic explanations of quantum theory are impossible. Contextual-
ity is concerned with how various parts, that are locally consistent, fit together globally. This
work is centered around the idea that “the shape of how the parts fit together” is enough to
determine the whole. The (contents of the) parts themselves are not necessary.

Here, we treat contextuality algebraically: the quantum system is modeled as an algebra,
and measurement contexts are modeled as certain subalgebras. We consider orthoalgebras
[7], which are certain structures with a partially defined binary operation ⊕ called orthogo-
nal sum, a unary operation ′ called orthocomplementation, and constants 0,1. This includes
Boolean algebras, orthomodular lattices, and orthomodular posets. For an example, see
Fig. 1. The appropriate notion of a measurement context then is a Boolean subalgebra: a
subset that is closed under the operations and is induced by restricting the join of a Boolean
algebra to orthogonal elements. See for example Figs. 1 and 2. Thus our main object of
study is the partially ordered set BSub(A) of Boolean subalgebrasB ⊆ A of an orthoalgebra
A; we call this its orthodomain.

This fits in the established mathematical pattern where some collection of substructures
of a structure plays a key role: in classical logic, the collection of subsets of a set; in proba-
bility theory, the measurable subsets of a measurable space; in intuitionistic logic, the open
subsets of a topological space; in projective geometry, the subspaces of a vector space; and
in quantum theory, the collection of closed subspaces of a Hilbert space. In the recent topos-
theoretic approach to quantum mechanics [14], the poset of abelian subalgebras of a von
Neumann algebra are the central ingredient used to treat contextuality. This latter example
is the origin of this work.

Let us emphasize again that, if an orthoalgebra A is the ‘whole’, we merely consider the
‘shape’ BSub(A) of how the ‘parts’ B ⊆ A fit together, and not the internal structure of the
‘parts’ B as Boolean algebras. This is like a jigsaw puzzle that can be solved by finding out
how the pieces fit without relying on the pictures on the pieces. Our first main result is the
following reconstruction.

Theorem A If A is a proper orthoalgebra, BSub(A) has enough directions and
Dir(BSub(A)) is an orthoalgebra isomorphic to A.

Fig. 1 The orthoalgebra on the left is constructed from gluing together two Boolean algebras
{0, a, b, c, a′, b′, c′, 1} and {0, c, d, e, c′, d ′, e′, 1}. The orthogonal sum ⊕ is the union of the orthogonal join
operations of these Boolean algebras. On the right is the Hasse diagram of its poset of Boolean subalgebras
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Fig. 2 Hasse diagrams of the posets BSub(A) for Boolean algebras A with 4, 8, and 16 elements. A Boolean
algebra with 4 elements has two subalgebras: {0, 1}, and itself. A Boolean algebra A with 8 elements has
five subalgebras: {0, 1}, three subalgebras {0, a, a′, 1} for a ∈ A \ {0, 1}, and A itself. A Boolean algebra
with 16 elements has a more complicated structure of subalgebras, containing subalgebras with 2, 4, 8, and
16 elements

The main ingredient in this reconstruction is the new notion of a direction. Call an ele-
ment of a poset basic if it is of height 0 or 1. Then the basic elements in BSub(A) are the
subalgebras {0, a, a′, 1} for a ∈ A. In each Boolean subalgebra B covering {0, a, a′, 1} in
BSub(A), we can consider the subalgebra ↓ a∪↑ a′. This will be equal to either {0, a, a′, 1}
or to B depending on which of a or a′ is basic in B. A direction assigns a consistent choice
of this to each cover of {0, a, a′, 1}. If A is proper, in that its maximal Boolean subalgebras
have more than 4 elements, each basic element {0, a, a′, 1} in BSub(A) will have exactly 2
directions, and these serve the role of a and a′ in an isomorphic copy of the given orthoalge-
bra built from the directions. This is what is meant by having enough directions. Theorem A
somewhat resembles the reconstruction of a sober topological space from the points of its
lattice of open sets.

Compare this to related results. There has been considerable work showing that BSub(A)

determines A in the setting of Boolean algebras [20], and orthomodular posets [11]. Similar
to BSub(A) is the poset CSub(A) of commutative subalgebras of some operator algebra
A. This poset determines the Jordan structure of A for von Neumann algebras [3], or for
various classes of C*-algebras [5, 9, 10, 17]. However, these results are all of the following
nature: if BSub(A) and BSub(A′) are isomorphic (or in the analytic case, if CSub(A) and
CSub(A′) are isomorphic), then there exists a (Jordan) isomorphism between A and A′.
Even when A is a Boolean algebra, the only known method to reconstruct A from BSub(A)

is indirect, via a family of colimits in the category of Boolean algebras [8, 12]. Theorem A
is a concrete, direct, reconstruction of A from the poset BSub(A).

The second main result of this paper is a characterization of the partially ordered sets of
the form BSub(A) for an orthoalgebra A. For Boolean algebras A such a characterization
is known [8]: the posets BSub(A) are those algebraic lattices where the principal downset
of each compact element is a partition lattice. Such lattices are called Boolean domains.
We extend this to the quantum setting of orthoalgebras. For orthoalgebras A we identify
several basic properties of BSub(A), such as having Boolean domains as principal downsets.
We call such posets orthodomains. It would take complex combinatorics to characterize in
elementary terms the orthodomains of the form BSub(A) from some orthoalgebra A. We
sidestep this issue by characterizing them as the orthodomains with enough directions, just
like lattices of open sets of topological spaces are characterized as frames with enough
points.

Theorem B An orthodomain X is of the form BSub(A) for a proper orthoalgebra A if and
only if it is tall and has enough directions, and in that case X 	 BSub(Dir(X)).
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Tallness is a condition requiring the existence of certain joins. The structure of a tall
orthodomain with enough directions is fundamentally determined by its elements of height
at most 3. We call an orthodomain short if all of its elements have height at most 3. Each tall
orthodomain with enough directions can be truncated to a short orthodomain with enough
directions, and each short orthodomain with enough directions can be uniquely extended to
a tall orthodomain with enough directions.

Short orthodomains can be efficiently described via certain hypergraphs. A hypergraph
H consists of a set P of points; a set L of lines where each line consists of three distinct
points; and a set T of planes where each plane consists of 6 lines in a particular config-
uration similar to a Fano plane. These correspond to posets of subalgebras of 4, 8, and
16-element Boolean algebras, see Fig. 3. Those hypergraphs arising as the hypergraphs of
orthoalgebras are called orthohypergraphs and can be characterized in terms of their hav-
ing enough directions. We also show that for orthomodular posets, the orthodomain is in
fact already fundamentally determined at height 2, so we may forget about planes and fruit-
fully think in terms of projective geometry, retaining only points and lines, where each line
consists of exactly three points. In effect, in the hypergraph of an orthomodular poset, any
configuration of points and lines that looks like a plane is a plane.

The standard method to represent orthomodular posets and orthoalgebras is via Greechie
diagrams [6, 18], which are also hypergraphs but of a different sort. Both methods are
preferable to Hasse diagrams, which have no convenient way to indicate orthocomplements
or orthogonal joins, and are completely intractable in all but the simplest cases. Greechie
diagrams will generally be much smaller than our hypergraphs, but the price to pay is that
they hide much of the structure, often in a way that is very difficult to understand. Further-
more, Greechie diagrams apply only to chain-finite orthomodular posets and orthoalgebras,
while hypergraphs apply to arbitrary ones, even ones without atoms. Finally, as we discuss
next, hypergraphs allow one to deal also with morphisms. For Greechie diagrams there are
no such results about morphisms, and it seems highly problematic. Thus our new hypergraph
representation can be an effective addition to the toolbox of working with orthoalgebras,
and seems to capture the essence of their contextuality.

By Theorems A and B we may work with BSub(A) or even its hypergraph directly,
instead of with A itself, without losing information. The third main result of this paper is
an investigation of functorial aspects of the reconstruction. We define morphisms between
orthohypergraphs as certain partial functions that map points to points. We do not obtain a
full categorical equivalence, and have to make some exceptions because the Boolean algebra
with 1 element and the Boolean algebra with 2 elements have the same orthodomain. Sim-
ilarly, the Boolean algebra with 4 elements has 2 automorphisms, whereas its orthodomain
has only 1. However, the fundamental problems lie only with such small pathologies. Using
the term proper to restrict to cases where 4-element maximal Boolean subalgebras do not
play a role, we prove the following.

Fig. 3 Hypergraphs of the examples from Fig. 2

Order (2019) 36:563–609566



Theorem C The functor that assigns to each orthoalgebra its orthohypergraph is essen-
tially surjective and injective on non-trivial objects, and full and faithful with respect to
proper maps.

We proceed as follows. Section 2 starts by describing directions in the Boolean setting,
and Section 3 introduces orthoalgebras and their Boolean subalgebras. Section 4 generalizes
directions to orthoalgebras and proves Theorem A. Directions are used again in Section 5
to prove Theorem B. Section 6 introduces the hypergraph representation of an orthoalgebra,
and Section 7 considers morphisms to prove Theorem C. Section 8 concludes.

2 Subalgebras of Boolean Algebras and Their Directions

We use standard terminology for partially ordered sets, as in e.g. [1]. In particular, for an
element x of a partially ordered set X, denote its principal ideal and principal filter by

↓ x = {w ∈ X | w ≤ x} and ↑ x = {y ∈ X | x ≤ y}.

Definition 2.1 Write Sub(B) for the set of Boolean subalgebras of a Boolean algebra B

partially ordered by inclusion with ⊥ its least element and � its largest element.

Since the intersection of Boolean subalgebras is a subalgebra, Sub(B) is a complete
lattice, and since finitely generated Boolean algebras are finite, the compact elements of
this lattice are the finite Boolean subalgebras of B. Here we recall that an element x of
a partially ordered set X with directed joins is compact if x ≤ ∨

Y for a directed subset
Y ⊆ X implies that x ≤ y for some y ∈ Y . Since every Boolean algebra is the union of its
finite subalgebras, Sub(B) is an algebraic lattice. The algebraic lattices of the form Sub(B)

were characterized by Grätzer et. al. [8] as follows. Here we recall that a partition lattice is
a lattice that is isomorphic to the lattice of the partitions of a set.

Theorem 2.2 [8] A poset X is isomorphic to Sub(B) for a Boolean algebra B if and only
if the following two conditions hold:

(1) X is an algebraic lattice;
(2) ↓ x is a finite partition lattice for each compact element x of X.

We call such lattices Boolean domains.

Definition 2.3 A subalgebra of a Boolean algebra B is called a (principal) ideal subalgebra
when it is of the form I ∪ I ′ for a (principal) ideal I , where I ′ = {a′ | a ∈ I }.
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Principal ideal subalgebras are of the form ↓ a ∪ ↑ a′ for a ∈ B. They will play a
central role throughout the paper. To describe their use, we begin with the order-theoretic
characterization of ideal subalgebras given by Sachs [20].

Definition 2.4 An element x of a lattice is dual modular if (x ∨ y) ∧ z = x ∨ (y ∧ z) for
each z with x ≤ z and (w ∨ x) ∧ y = w ∨ (x ∧ y) for each y with w ≤ y.

Lemma 2.5 [20, Theorem 1] For a Boolean algebra B, the dual modular elements of
Sub(B) are the ideal subalgebras.

The least element ⊥ of the Boolean domain Sub(B) is {0, 1}, the largest element � is
B, and the atoms of Sub(B) are the elements {0, a, a′, 1} for a �= 0, 1. Hence there is a
bijection between complementary pairs {a, a′} in B and elements of Sub(B) that are either
⊥ or an atom.

Definition 2.6 Call an element of a poset with a least element basic if it is either an atom
or the least element.

Definition 2.7 For an element a of a Boolean algebra, we denote the Boolean subalgebra

xa = {0, a, a′, 1} .

Later on, we shall use the same notation also when a is an element of an orthoalgebra.

Lemma 2.8 For a Boolean algebra B, the basic elements of Sub(B) that are dual modular
are xa where a or a′ is basic. In fact, they are principal ideal subalgebras.

Proof Follows immediately from Lemma 2.5.

Our key definition is the following:

Definition 2.9 For B a Boolean algebra, we define the mapping ϕ : B → (Sub(B))2 by

ϕ(a) = (↓ a ∪ ↑ a′,↓ a′ ∪ ↑ a) .

We call ϕ(a) the principal pair corresponding to a, and we remark that the intersection of
its coordinates is precisely xa .

We call a Boolean algebra small if it has at most 4 elements. Our aim is to show that
if B is not small, than ϕ is one-to-one, and to characterize the range of ϕ in purely order-
theoretical terms. This will allow us to reconstruct an isomorphic copy of B from the poset
Sub(B). We formulate this for a general Boolean domain rather than a special case of
Sub(B) for a Boolean algebra B, although all are isomorphic to such.

Definition 2.10 Let X be a Boolean domain. A principal pair of X is an ordered pair (y, z)

of dual modular elements of X that satisfies one of the following conditions:

(1) y = �, z is a basic element;
(2) z = �, y is a basic element;
(3) y ∨ z = � and y ∧ z is a basic element which is not dual modular.
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We say that a principal pair (y, z) (as well as (z, y)) is a principal pair for the basic element x
if y ∧ z = x. Write Pp(X) for the set of principal pairs of X.

Remark 2.11 Notice that in Definition 2.10 the element y ∧ z = x is always basic and it
is dual modular iff case (1) or (2) applies. Therefore, if x is a dual modular basic element,
then (x,�) and (�, x) are the only principal pairs for x.

If B = {0, 1}, then ⊥ = � and ϕ[B] = Pp(Sub(B)) = {(�,�)}. If B has 4 elements,
then B = xa = �, a /∈ {0, 1}, and ϕ[B] = Pp(Sub(B)) = {(⊥,�), (�,⊥), (�,�)}, where
(�, �) = ϕ(a) = ϕ(a′). A principal pair (y, z) satisfies y = z only if B is small and
y = z = �.

Proposition 2.12 Let B be a Boolean algebra, a ∈ B, and xa be the corresponding basic
element of Sub(B). For the map ϕ of Definition 2.9, ϕ(a) and ϕ(a′) are the only principal
pairs for xa , and if B is not small these are distinct. So the image ϕ[B] is Pp(Sub(B)), and
if B is not small then ϕ : B → Pp(Sub(B)) is a bijection.

Proof If a is basic then ϕ(a) = (xa,�), and if a′ is basic then ϕ(a) = (�, xa). In both
cases, xa is a dual modular basic element. So ϕ(a), ϕ(a′) are the two possible principal pairs
for xa . If B is not small, they are distinct (Remark 2.11).

Assume that a is not 0, 1, an atom, or a coatom. So there are b, c with 0 < b < a < c < 1
(and B is not small). Then xa is a basic element that is not dual modular. Let y = ↓ a ∪↑ a′
and z = ↓ a′ ∪ ↑ a. It is clear that y, z are ideal subalgebras, and hence are dual modular.
Also y ∧ z = xa . For any e ∈ B we have e = (e ∧ a) ∨ (e ∧ a′). Since e ∧ a ∈ y and
e ∧ a′ ∈ z, then e is in the subalgebra y ∨ z generated by y, z. So y ∨ z = �. Hence (y, z)

and (z, y) are principal pairs for xa . Since b ∈ y and b /∈ z, these principal pairs are distinct.
We now show these are the only principal pairs for xa . Suppose that (v,w) is a principal

pair for xa . Since v, w are dual modular, they are ideal subalgebras. So v = I ∪ I ′ and
w = J ∪ J ′ for ideals I, J ⊆ B. Now xa = v ∧ w gives

xa = {0, a, a′, 1} = (I ∩ J ) ∪ (I ∩ J ′) ∪ (I ′ ∩ J ) ∪ (I ′ ∩ J ′)

It cannot be the case that a ∈ I ∩ J since then b ∈ I ∩ J because I and J are ideals, and
similarly a /∈ I ′ ∩J ′. So one of a, a′ belongs to I ∩J ′ and the other to I ′ ∩J . Say a ∈ I ∩J ′.
Since J ′ is a filter, there cannot be an element of I other than 1 that is larger than a since it
would belong to I ∩ J ′, and since I is an ideal and a < c < 1 it cannot be that 1 ∈ I since
this would imply that c ∈ I . So a is the largest element of I , and similarly it is the least
element of J ′. So (v,w) = (y, z). If a ∈ I ′ ∩ J , then by symmetry (v,w) = (z, y).

We have shown for any a ∈ B that ϕ(a), ϕ(a′) are principal pairs for xa , they are the
only principal pairs for xa , and that these are distinct if B is not small. Since every principal
pair of Sub(B) is a principal pair for some basic element and all basic elements arise as xa
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for some a ∈ B, this shows that ϕ is onto. If a, b ∈ B and ϕ(a) = ϕ(b), then ϕ(a) and ϕ(b)

are principal pairs for the same basic element. Then if B is not small, a = b.

As every Boolean domain is isomorphic to Sub(B) for some Boolean algebra B, and a
Boolean domain with more than two elements is isomorphic to Sub(B) for some B that is
not small, Proposition 2.12 and Remark 2.11 give the following:

Corollary 2.13 IfX is a Boolean domain, then each basic element has at most two principal
pairs, and if X has more than two elements, each basic element has exactly two principal
pairs. In the case where X has two or fewer elements, each element is basic, all elements
other than � have two directions, and � has a single direction.

How do we incorporate the Boolean algebra structure in our considerations? If ϕ(a) =
(y, z), then ϕ(a′) = (z, y). The partial ordering of Pp(Sub(B)) is more subtle. If ϕ(a) =
(y1, z1) and ϕ(b) = (y2, z2), then a ≤ b implies y1 ≤ y2, and z1 ≥ z2. But these rela-
tionships can hold without a ≤ b. If a is an atom of B, so y1 = {0, a, a′, 1} is a dual
modular atom of X, then ϕ(a) = (y1,�) and ϕ(a′) = (�, y1), but of course a �≤ a′. The
following definition excludes this situation. Notice that this is the only situation requiring
an exception. Suppose that y1 ≤ y2, z1 ≥ z2, and a �≤ b. We can easily exclude the cases
when y1 ∧ z1 is not a dual modular atom or when y1 = �. In the remaining case, z1 = �
and a is an atom. Thus a �≤ b means that a, b are orthogonal, i.e., a ≤ b′. If a < b′, then
y2 = ↓ b ∪ ↑ b′ does not contain a; a contradiction with y1 ≤ y2. The case of b = a′
(y2 = z1, z2 = y1) is the only one which needs to be forbidden.

Definition 2.14 Let X be a Boolean domain. Define a unary operation ′ on Pp(X) by

(y, z)′ = (z, y) .

Define a binary relation ≤ on Pp(X) by (y1, z1) ≤ (y2, z2) when y1 ≤ y2, z1 ≥ z2, and,
additionally, if y1 ∧ z1 is a dual modular atom, then (y2, z2) �= (z1, y1).

Proposition 2.15 For a Boolean algebra B that is not small, ϕ is an order isomorphism
that preserves ′.

Proof The complement ′ of Pp(Sub(B)) commutes with ϕ.
Suppose a, b ∈ B, a ≤ b. By Proposition 2.12, ϕ(a) is a principal pair for x =

{0, a, a′, 1}. Observe ↓ a ∪ ↑ a′ ⊆ ↓ b ∪ ↑ b′ and ↓ a′ ∪ ↑ a ⊇ ↓ b′ ∪ ↑ b. This suffices
for ϕ(a) ≤ ϕ(b) unless x is a dual modular atom. If x is a dual modular atom, then, by
Lemma 2.8, a or a′ is an atom. Then b �= a′, so ϕ(b) �= ϕ(a′) = ϕ(a)′, and hence
ϕ(a) ≤ ϕ(b).

Finally, suppose ϕ(a) ≤ ϕ(b). We will show a ≤ b by contradiction; suppose b′ �≤ a′.
Again ↓ a ∪ ↑ a′ ⊆ ↓ b ∪ ↑ b′ and ↓ a′ ∪ ↑ a ⊇ ↓ b′ ∪ ↑ b. It follows that a′ ∈ ↓ b and
b ∈ ↓ a′. So a′ ≤ b and b ≤ a′, giving a′ = b. Since ϕ(a) ≤ ϕ(b) = ϕ(a)′, the definition
of ≤ implies that x = {0, a, a′, 1} cannot be a dual modular atom of Sub(B). Hence neither
of a, a′ is an atom of B. Since a � b we have a �= 0, so there is c such that 0 < c < a.
Then c ∈ ↓ a ∪ ↑ a′, but c /∈ ↓ a′ ∪ ↑ a = ↓ b ∪ ↑ b′, a contradiction.

For a Boolean algebra B that is small, ϕ preserves ≤ and ′, but it is not a bijection, see
the proof of Proposition 2.12.

Order (2019) 36:563–609570



Theorem 2.16 For a Boolean algebra B with more than 4 elements, and a Boolean domain
X with more than 2 elements:

(1) Sub(B) is a Boolean domain;
(2) Pp(X) is a Boolean algebra;
(3) B is isomorphic to Pp(Sub(B));
(4) X is isomorphic to Sub(Pp(X)).

Proof Part (1) follows from Theorem 2.2 (even without any limitation of the number of
elements of B). Part (3) follows from Proposition 2.15. Since X is a Boolean domain with
more than 2 elements, Theorem 2.2 provides a Boolean algebra A with more than 4 ele-
ments with X 	 Sub(A), so Pp(X) 	 Pp(Sub(A)), which is Boolean by (3), establishing
part (2). To prove part (4), say X 	 Sub(A) for a Boolean algebra A; then part (3) gives
Sub(Pp(X)) 	 Sub(Pp(Sub(A))) 	 Sub(A) 	 X.

For a Boolean algebraB and a∈B, consider the Boolean subalgebras ofB that contain a,
and in each of these take the principal pair in its subalgebra lattice corresponding to a.
While this is a more complex object, it leads to an alternative view of how principal pairs
encode elements, and is the tool we use to extend matters to the orthoalgebra setting. For the
following, we note that for x = {0, a, a′, 1}, the upset ↑ x is the set of Boolean subalgebras
of B that contain a. For y ∈ ↑ x we use the following notation.

↓y a = {b ∈ y : b ≤ a} and ↑y a = {b ∈ y : a ≤ b}

Definition 2.17 For B a Boolean algebra, a ∈ B, and x = {0, a, a′, 1}, let da : ↑ x →
(Sub(B))2 be given by

da(y) = (↓y a ∪ ↑y a′,↓y a′ ∪ ↑y a).

Note that if y is a subalgebra of B, then the lattice of subalgebras Sub(y) of y is the
interval ↓ y of Sub(B). Note also that the definition of da can be expanded to

da(y) = (
y ∧ (↓ a ∪ ↑ a′), y ∧ (↓ a′ ∪ ↑ a)

)
.

The aim is as before — to characterize the mappings da order-theoretically and show
that when B is not small that these are in bijective correspondence with B. Then we define
structure on the collection of such mappings, and show that with respect to this structure,
this bijective correspondence is an isomorphism.

Definition 2.18 For a Boolean domain X, a direction of X is a map d : ↑ x → X2 for some
basic element x ∈ X such that for each y, z ∈ ↑ x:

(1) d(y) is a principal pair for x in the Boolean domain ↓ y;
(2) if y ≤ z and d(z) = (v,w), then d(y) = (y ∧ v, y ∧ w).

We say d is a direction for x, and write Dir(X) for the set of directions of X.

Proposition 2.19 Let X be a Boolean domain .

(1) Each direction d of X determines a principal pair d(�) of X and vice versa.
(2) If d is a direction for x and x < y, then d(y) determines d(�) and hence d.
(3) For each principal pair (u, v) of X there is a unique direction d with d(�) = (u, v).

In particular, there is a bijection γ : Dir(X) → Pp(X) with γ (d) = d(�).
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Proof (1) This is clear from the definition of a direction. (2) Assume first that x = ⊥. Then
the principal pairs for x in X are (�, ⊥) and (⊥, �) . If d(�) = (�, ⊥), then the definition
of a direction gives d(y) = (y,⊥), and if d(�) = (⊥,�), then d(y) = (⊥, y). Since
y �= ⊥, d(y) determines d(�). Suppose that x is an atom of X. Then, since x < y, ↓ y has
more than two elements. So by Theorem 2.16 the components of the principal pair d(y) for
x in ↓ y are different. If d(�) = (u, v), then d(y) = (y ∧ u, y ∧ v), and if d(�) = (v, u),
then d(y) = (y ∧ v, y ∧u). Thus d(y) determines d(�). (3) Since every Boolean domain is
isomorphic to Sub(B) for some Boolean algebra B, we may assume X = Sub(B). Suppose
(u, v) is a principal pair for a basic element x of X. By Theorem 2.16 there is a ∈ B

with x = {0, a, a′, 1} and ϕ(a) = (u, v). So u = ↓ a ∪ ↑ a′ and v = ↓ a′ ∪ ↑ a. Define
d : ↑ x → X2 by d(y) = (↓y a ∪ ↑y a′,↓y a′ ∪ ↑y a). It is easily seen that d is a direction
with d(�) = (u, v). Its uniqueness follows from (2).

Proposition 2.19 allows us to count the number of directions for a basic element using
the known number of principal pairs for it.

Corollary 2.20 Let X be a Boolean domain. If x �= � is a basic element of X, then there
are exactly two directions for x. If� is a basic element ofX (soX has at most two elements),
then there is exactly one direction for �.

The bijection of Proposition 2.19 can be used to define a unary operation ′ and binary
relation ≤ on Dir(X) so that Pp(X) is isomorphic to Dir(X). For a direction d, we have that
d ′ is the direction with the same domain and if d(y) = (u, v) then d ′(y) = d(y)′ = (v, u).
For directions d, e, we have d ≤ e iff the principal pairs d(�) and e(�) satisfy d(�) ≤
e(�). The following corollary of Theorem 2.16 is then immediate.

Corollary 2.21 For a Boolean algebraB with more than 4 elements, and a Boolean domain
X with more than 2 elements:

(1) Sub(B) is a Boolean domain;
(2) Dir(X) is a Boolean algebra;
(3) B is isomorphic to Dir(Sub(B));
(4) X is isomorphic to Sub(Dir(X)).

We conclude this section with an alternate view of the reconstruction of a Boolean alge-
bra B from its Boolean domain X = Sub(B). Let a ∈ B . We consider the case when
xa �= ⊥. For each cover y of xa we have that the 4-element Boolean algebra xa is a subal-
gebra of the 8-element Boolean algebra y. The element a ∈ xa can either embed as an atom
in y, or as a coatom in y. In the first case (↓y a ∪ ↑y a′,↓y a′ ∪ ↑y a) is (xa, y), and in the
second, it is (y, xa). If we use ↓ for (xa, y) and ↑ for (y, xa), a direction d of X for the basic
element xa assigns to each cover y of xa the value d(y) = ↓ or d(y) = ↑ describing how
xa is embedded. This assignment of ↓ and ↑ to the covers of xa must be done in a way that
is consistent with d being a direction, and for each xa there are only two possibilities, one
obtained from the other by interchanging ↓ and ↑ for each cover. Virtually identical remarks
hold when xa = ⊥, except that we consider embedding a 2-element Boolean algebra into
4-element ones. See Fig. 5.

Example 2.22 Consider the power set B = P({1, 2, 3, 4}) of {1, 2, 3, 4}. Its poset X of
Boolean subalgebras is given in Fig. 4.
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Fig. 4 The poset of subalgebras of a 16-element Boolean algebra

We describe the directions of X corresponding to the elements a = {1} and b = {1, 2} in
Fig. 5 by indicating their values ↓ or ↑ on the covers of the basic elements corresponding
to these elements.

We note that the upper covers of a basic element will usually be assigned a mixture of
values of ↓ and ↑, a matter we return to in greater detail when we consider orthoalgebras.

3 Orthoalgebras

This section briefly recalls the basics of orthoalgebras and their subalgebras [7].

Definition 3.1 An orthoalgebra is a set A, together with a partial binary operation ⊕ with a
binary relation ⊥ as its domain of definition, a unary operation ′, and constants 0,1, satisfy-
ing:

(1) ⊕ is commutative and associative in the usual sense for partial operations;
(2) a′ is the unique element with a ⊕ a′ defined and equal to 1;
(3) a ⊕ a is defined if and only if a = 0.

An orthoalgebra is Boolean when it arises from a Boolean algebra by restricting the join to
pairs of orthogonal elements.

Any orthoalgebra is partially ordered by a ≤ c if a ⊥ b and a ⊕ b = c for some b. An
orthoalgebra is Boolean if and only if this is the partial ordering of a Boolean algebra.

Fig. 5 Direction for a distinguished atom in a 16-element Boolean algebra
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Definition 3.2 For orthoalgebras A and C, an orthoalgebra morphism f : A → C is a
function that preserves orthocomplementation and satisfies: if a ⊕ b is defined, then so
is f (a) ⊕ f (b), and f (a ⊕ b) = f (a) ⊕ f (b). If, in addition, there is an orthoalgebra
morphism g : C → A that is the set-theoretic inverse of f , then we call f an orthoalgebra
isomorphism.

Definition 3.3 Let A be an orthoalgebra. A subset S ⊆ A is a subalgebra if:

(1) 0, 1 ∈ S;
(2) a ∈ S ⇒ a′ ∈ S;
(3) if a, b ∈ S and a ⊥ b then a ⊕ b ∈ S.

A subalgebra that is a Boolean orthoalgebra is a Boolean subalgebra. A block is a maximal
Boolean subalgebra. A block is small when it has 4 or fewer elements. Write BSub(A) for
the set of Boolean subalgebras of A partially ordered by inclusion. We call A proper if it
does not have small blocks, or equivalently, if BSub(A) does not have basic elements that
are maximal.

We next consider how to recognize when an orthoalgebra is obtained from a Boolean
algebra.

Definition 3.4 For n≥0 let x1, . . . , xn be a finite sequence of elements of an orthoalgebraA.
Define

⊕0
i=1 xi = 0. If

⊕k
i=1 xi is defined for 0 ≤ k < n, and if

( ⊕k
i=1 xi

) ⊕ xk+1 is

defined, set
⊕k+1

i=1 xi = (⊕k
i=1 xi

) ⊕ xk+1.

Given a permutation π of (1, . . . , n), the commutativity and associativity laws for
orthoalgebras assure that

⊕n
i=1 xi is defined if and only if

⊕n
i=1 xπ(i) is defined, and when

defined, these are equal. Thus
⊕

F in the following definition is well defined.

Definition 3.5 Let A be an orthoalgebra. We call a finite subset F (say of n elements) of A

jointly orthogonal if there is an enumeration xi (1 ≤ i ≤ n) of F such that
⊕n

i=1 xi is
defined, in which case we define

⊕
F = ⊕n

i=1 xi . If 0 /∈ F and
⊕

F = 1, we call F a
partition of unity.

Proposition 3.6 An orthoalgebra A is Boolean if and only if every finite subset S ⊆ A is
contained in {⊕ E | E ⊆ F } for some jointly orthogonal set F .

Proof First assume A is a Boolean orthoalgebra, say it is the restriction of a Boolean alge-
bra B. Any finite subset S ⊆ A is contained in a finite subalgebra C of B because finitely
generated subalgebras of Boolean algebras are finite. Let F be the set of atoms of C. This
is a jointly orthogonal set in A. For each b ∈ S let E = {x ∈ F | x ≤ b}. Now, because b is
the join of E in C and B, we have b = ⊕

E.
For the converse, suppose that every finite subset S ⊆ A is contained in {⊕ E | E ⊆ F }

for some jointly orthogonal set F . First assume that A is finite. In this case, there is a jointly
orthogonal family F such that every element of A equals

⊕
E for some E ⊆ F . Clearly⊕

F = 1, and if F contains 0, we may remove 0 from F to obtain a partition of unity of A.
Since A = {⊕E | E ⊆ F }, it is isomorphic to the orthoalgebra induced by the Boolean
algebra P(F ), and hence A is Boolean.

Now consider the case where A is infinite. For each partition of unity F of A, let BF be
the subalgebra of A generated by F . Explicitly, BF = {⊕E | E ⊆ F }, and in particular
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each BF is a finite Boolean orthoalgebra. By hypothesis, each finite subset of A is contained
in BF for some partition of unity F . If F1 and F2 are partitions of unity, then BF1 ∪BF2 is a
finite subset of A, hence BF1 ∪ BF2 is contained in BF for some partition of unity F . Thus

{BF | F is a finite partition of unity for A}

is an up-directed family of subalgebras of A. Furthermore, each finitely generated subalge-
bra of A is contained in some member of this family. But then the union of this family is all
of A. Hence A is Boolean.

When an orthoalgebra A has more than 2 elements, all of its small blocks have 4 ele-
ments. In this case small blocks are also known as horizontal summands. By removing a
small block from such A, we mean removing the two elements of the block that are not 0,1.
Except when A has only small blocks, removing the small blocks from A leaves an orthoal-
gebra Ã without small blocks, and A can be recovered from Ã by taking the horizontal sum
of Ã and an appropriate number of 4-element Boolean algebras.

We collect in the following remark motivation for why orthoalgebras are a natural choice
of ambient structure to reconstruct from Boolean subalgebras.

Remark 3.7 Each element a of an orthoalgebra belongs to the Boolean subalgebra xa . Thus
any orthoalgebra pastes together a family of Boolean orthoalgebras. More generally, call a
family F of Boolean orthoalgebras compatible [2, 1.7] if for each B,C ∈ F :

(1) B and C have the same 0 and 1;
(2) If a ∈ B ∩ C, then a′ in B equals a′ in C;
(3) for a, b ∈ B ∩ C, a ⊕ b exists in B iff it exists in C, and when defined they are equal.

Any compatible family gives rise to a structure (A,⊕, ′, 0, 1) by union. A structure
(A,⊕, ′, 0, 1) that arises this way is called a weak orthostructure, extending [2]. This
general setup includes orthoalgebras as well as partial Boolean algebras [16].

A Boolean subalgebra of a weak orthostructure A is a subset B ⊆ A that is closed
under 0, 1, ′, ⊕ and forms a Boolean orthoalgebra. One might hope to reconstruct A from
its poset BSub(A) of Boolean subalgebras, but this is impossible: the partially ordered set
BSub(A) in the introduction (see Fig. 1) is not only induced by the orthoalgebra A in the
introduction, but it is also isomorphic to BSub(D) for the weak orthostructure D obtained
by taking two 8-element Boolean algebras that intersect in a 4-element Boolean algebra xc

where c is an atom of one of the 8-element Boolean algebras and a coatom of the other
8-element Boolean algebra. This D is not only a weak orthostructure, but is a partial
Boolean algebra. This structureD is not an orthoalgebra, and cannot be depicted via a Hasse
diagram.
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4 Orthodomains and Directions

This section abstracts basic properties of BSub(A) for orthoalgebras A into a notion
of orthodomain. We generalize directions from Boolean domains to directions on
orthodomains, and show that an orthoalgebra A can be reconstructed from the directions on
its orthodomain BSub(A). First, an example that exhibits some counterintuitive behavior in
BSub(A).

Example 4.1 The Fraser cube is the orthoalgebra A displayed in the diagram. The four
vertices of each face are the atoms of a 16-element Boolean subalgebra of A.

Consider the element a ⊕ b. Its orthocomplement in the Boolean algebra corresponding
to the bottom face is c ⊕ d, and its orthocomplement in the Boolean algebra corresponding
to the front face is e ⊕ f . Thus c ⊕ d = e ⊕ f . Similarly, the intersection of the Boolean
subalgebras for the top and bottom of the cube consists of 0, a ⊕ b, b ⊕ d, c ⊕ d, a ⊕ c,
and 1. Thus the intersection of two Boolean subalgebras need not be Boolean. This implies
that in BSub(A), two elements need not have a meet, and two elements that have an upper
bound need not have a least upper bound, in contrast to the situation for Boolean domains
and posets of Boolean subalgebras of orthomodular posets.

Definition 4.2 Write � for the covering relation in a partially ordered set: x � z means
x < z and there is no y with x < y < z.

Definition 4.3 An orthodomain is a partially ordered set X with least element ⊥ such that:

(1) every directed subset of X has a join;
(2) X is atomistic and the atoms are compact;
(3) each principal ideal ↓ x is a Boolean domain;
(4) if x, y are distinct atoms and x, y � w, then x ∨ y = w.

Proposition 4.4 If A is an orthoalgebra, BSub(A) is an orthodomain where directed joins
are given by unions.

Proof Let S ⊆ BSub(A) be a directed family. By directedness, B = ⋃
S is closed under

⊕, ′, 0, 1, and is hence is a subalgebra. Also by directedness, Proposition 3.6 shows that B
is Boolean. Thus BSub(A) has directed joins given by union.

The atoms of BSub(A) are the Boolean subalgebras xa where a �= 0, 1. Since directed
joins are given by unions, it follows that the compact elements of BSub(A) are exactly
the finite Boolean subalgebras, and hence every atom is compact. Any B ∈ BSub(A)

is the union and hence join of the atoms beneath it, making BSub(A) atomistic. Finally,
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for a Boolean orthoalgebra B, its Boolean subalgebras are exactly its subalgebras that are
Boolean, so (3) holds in BSub(A).

For (4), suppose xa, xb ∈ BSub(A) be distinct atoms with xa, xb � w. Then
0, a, a′, b, b′, 1 are all distinct. Since w covers an atom and ↓w is a Boolean domain, it is
an 8-element Boolean subalgebra of A containing xa, xb. So w = {0, a, a′, b, b′, c, c′, 1} is
an 8-element Boolean subalgebra of A for some c ∈ A. One of a, a′ is an atom of w, as is
one of b, b′, and one of c, c′. We may assume that a, b, c are atoms. Then a ⊕ b = c′ in w,
and so a ⊕b = c′ in A. Then if v is a Boolean subalgebra of A that contains xa, xb, we have
a, b ∈ v, hence a ⊕ b = c′ ∈ v. Thus w = {0, a, a′, b, b′, c, c′, 1} ⊆ v, and xa ∨ xb = w.
Thus BSub(A) is an orthodomain.

Lemma 4.5 Each element of an orthodomain lies beneath a maximal element.

Proof Let X be an orthodomain and x ∈ X. Zorn’s lemma produces a maximal directed set
containing x ∈ X. Taking the join of this maximal directed set provides a maximal element
of X above x.

We next examine condition (4) more closely.

Definition 4.6 Atoms x, y of an orthodomain are called near if they are distinct, their join
exists and covers x and y. Equivalently, by condition (4): x and y are near if they are distinct
and have an upper bound of height 2.

The following property, similar to the exchange property of geometry, will be key.

Proposition 4.7 (Exchange property) If x, y are near atoms of an orthodomain with x∨y =
w, then there is exactly one atom z that is distinct from x, y and with z � w. Further, any
two of x, y, z are near.

Proof By nearness, x ∨ y = w exists and covers x and y, and by the definition of an
orthodomain, ↓w is a Boolean domain. Since the top of this Boolean domain covers an atom
in it, the Boolean domain w must be isomorphic to the subalgebra lattice of an 8-element
Boolean algebra. Then ↓w must have 3 distinct atoms, so there is a third atom z distinct
from x, y with z � w. Then x, y, z � w. It follows from the definition of orthodomain that
w is the join of any two of x, y, z, hence any two of x, y, z are near.

We now begin the task of reconstructing an orthoalgebra A from its orthodomain
BSub(A). The idea is to extend the directions used in the Boolean case to the orthoalgebra
setting. The reader should consult Definitions 2.17 and 2.18.

Definition 4.8 Let A be an orthoalgebra, a ∈ A. Define the direction corresponding to a to
be the map da : ↑ xa → (BSub(A))2 given by

da(y) = (↓y a ∪ ↑y a′,↓y a′ ∪ ↑y a).

We seek an order-theoretic description in terms of an orthodomain X of the mappings da .
These are again called directions, since when restricted to the setting of Boolean domains,
these are the directions given in Definition 2.18.
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Definition 4.9 A direction for a basic element x of an orthodomain X is a map d : ↑ x →
X2 such that for each y, z ∈ ↑ x:

(1) d(y) is a principal pair for x in the Boolean domain ↓ y;
(2) if y ≤ z and d(z) = (v,w), then d(y) = (y ∧ v, y ∧ w);
(3) if x � y, z and d(y) = (x, y), d(z) = (z, x), then y ∨ z exists and y, z � y ∨ z.

Write Dir(X) for the set of directions for basic elements of X.

Condition (3) of Definition 4.9 looks strange, but its effect will become clear in the proof
of Proposition 4.11.

Note that if d is a direction for some basic element x, then x can be determined from the
partial mapping d as the least element of its domain.

Proposition 4.10 Let d be a direction for a basic element x of an orthodomain X.

(1) for any x ≤ y ≤ z, the value of d(y) is determined by d(z);
(2) for any x < y ≤ z, the value of d(z) is determined by d(y).

Proof (1) This is immediate from the definition of direction. For (2), let v, w ∈ ↓ z be
such that (v,w) and (w, v) are the two principal pairs for x in ↓ z, so d(z) = (v, w) or
d(z) = (w, v). In the first case, d(y) = (y ∧v, y ∧w), in the second d(y) = (y ∧w, y ∧v).
We claim that y ∧ v �= y ∧ w, so d(y) determines d(z). To see this, Definition 2.10 gives
that v∧w = x. So if y ∧v = y ∧w, then x = y ∧v∧w = y ∧v = y ∧w, but d(y) = (x, x)

contradicts d(y) being a principal pair for x in ↓ y (Remark 2.11).

We will show that the directions of an orthodomain BSub(A) form an orthoalgebra A,
but we will see that not all orthodomains are of the form BSub(A) for an orthoalgebra A. So
our task in the orthodomain setting is more complex than in the Boolean domain setting. To
make our path efficient, we next prove the following result that is valid for any orthodomain.

Proposition 4.11 A basic element x of an orthodomain X has at most two directions.

Proof If x is maximal, (x, x) is the only principal pair for x in ↓ x, so there is only one
direction for x in X. Suppose that x is not maximal. By Lemma 4.5 and the definition of a
direction, any direction d for x is determined by its value on the maximal elements w > x.
For any such w, the value d(w) is a principal pair for x in ↓w, so by Corollary 2.13 can
take two values.

Suppose there are three distinct directions d1, d2, d3 for x. Choose any maximal element
w > x. Then two of d1, d2, d3 must agree at w, say d1 and d2. Since d1 �= d2, there is
a maximal v with d1(v) �= d2(v). Choose y, z with x � y ≤ w and x � z ≤ v. The
existence of such a y (and similarly of z) follows from the facts that x < w and ↓w is a
Boolean domain. Indeed, a Boolean domain is isomorphic to the lattice of subalgebras of a
Boolean algebra B, so any basic element in it that is not maximal corresponds to a proper
subalgebra of B with 2 or 4 elements, and therefore has a cover which is a subalgebra of B

with 4 or 8 elements. Since d1(w) = d2(w) and y ≤ w, we have d1(y) = d2(y), and since
d1(v) �= d2(v), we have d1(z) �= d2(z).

As x is basic and x�y, either x = ⊥ and y is an atom, or x is an atom and y has height 2.
In either case the principal pairs for x in ↓ y are (x, y) and (y, x), and similarly the principal
pairs for x in ↓ z are (x, z) and (z, x). Suppose that d1(y) = d2(y) = (x, y). As d1(z) �=
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d2(z), one of them is (x, z) and the other is (z, x). We apply condition (3) of Definition 4.9
and find an upper bound u = y∨z of y, z. According to Proposition 2.19, d1, d2 are uniquely
determined on ↓ u by d1(y) = d2(y), a contradiction with d1(z) �= d2(z), z ∈ ↓ u. The case
d1(y) = d2(y) = (y, x) is excluded analogously with the role of y, z interchanged in (3) of
Definition 4.9. This contradiction shows x has at most two directions.

Now we begin putting structure on the set of directions of an orthodomain.

Proposition 4.12 Let d be a direction for a basic element x of an orthodomain X. There is
a direction d ′ for x given by d ′(w) = (z, y) if d(w) = (y, z). Further, there are directions
0 and 1 for the basic element ⊥ ∈ X, given by

0(w) = (⊥, w) and 1(w) = (w,⊥).

Proposition 4.13 For an orthodomain with no basic maximal elements, the following are
equivalent:

(1) each basic element has a direction;
(2) each basic element has exactly two directions.

Proof The direction (2) ⇒ (1) is trivial. For the converse, let d be a direction for x. Then so
is d ′ given by Proposition 4.12. If d = d ′, then for a maximal element w above x we have
that d(w) = d ′(w), so w is basic, contrary to our assumptions. Thus each basic element has
at least two directions, so by Proposition 4.11, it has exactly two directions.

Definition 4.14 Call an orthodomain proper if it has no maximal elements that are basic.
Say it has enough directions if it is proper and each basic element has a direction.

It directly follows that A is proper if and only if BSub(A) is proper. Note that the def-
inition of an orthoalgebra with enough directions is somewhat analogous to that of spatial
frames, which are defined through the existence of a sufficient supply of points.

Definition 4.15 For X an orthodomain with enough directions, let ⊕ be a partial binary
operation on Dir(X) defined by the following three cases. For each direction d set

(1) d ⊕ 0 = d = 0 ⊕ d;
(2) d ⊕ d ′ = 1.

For d a direction for x and e a direction for y with x, y near and z the third atom beneath
x ∨ y = w, then d ⊕ e is defined if d(w) = (x,w) and e(w) = (y,w), and in this case

(3) d ⊕ e is the direction for z with (d ⊕ e)(w) = (w, z).

We will write d ⊥ e and say d is orthogonal to e if d ⊕ e is defined.

Theorem 4.16 Let A be a proper orthoalgebra. Then the orthodomain BSub(A) has
enough directions and the map ξ : A → Dir(BSub(A)), a �→ da is an orthoalgebra
isomorphism.

Proof By Proposition 4.4, X = BSub(A) is an orthodomain. Let a ∈ A. Let us verify the
three conditions of Definition 4.9 for the direction da given by Definition 4.8. Condition (1)
follows because da(y) is a principal pair in ↓ y for xa . Condition (2) follows by construction
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of da . For condition (3), consider first the case xa = ⊥, where a is either 0 or 1. If a = 0 then
da(y) = (⊥, y) for all y, and if a = 1 then da(y) = (y,⊥) for all y, so (3) holds vacuously.
Suppose xa is an atom of X with xa � y, z and that da(y) = (xa, y) and da(z) = (z, xa).
This means that y, z are 8-element Boolean algebras, that a is an atom in y, and a is a
coatom in z. Let b1, b2 be the atoms of y distinct from a and c1, c2 be the atoms of z distinct
from a′. We depict y below on the left, and z on the right.

Then c1 ⊕ c2 = a and b1 ⊕ b2 = a′ in A. Therefore b1, b2, c2, c2 are the atoms of
a 16-element Boolean subalgebra u of A. Clearly u = y ∨ z and y, z � u, establishing
condition (3). Thus da is a direction. Since this holds for each a ∈ A, the orthodomain X

has enough directions.
Every basic element of X is of the form xa and has 2 directions. Since da and da′ are

directions for xa , the map ξ is surjective. If ξ(a) = ξ(b), then since da is a direction given
by a and db is a direction given by b, we must have that b = a or b = a′. But da �= da′ , so
ξ is injective.

To show that ξ is an isomorphism, it is easily seen that ξ maps 0,1 of A to the directions
0,1 of X, and that ξ(a′) = ξ(a)′. It remains to show that a ⊥ b if and only if ξ(a) ⊥ ξ(b)

and that then ξ(a ⊕ b) = ξ(a) ⊕ ξ(b). Consider the possibilities to have a ⊥ b. For any a

we have a ⊥ 0, ξ(a) ⊥ ξ(0), and ξ(a ⊕0) = ξ(a) = ξ(a)⊕ξ(0). For any a we have a ⊥ a′
and a ⊕ a′ = 1. Since ξ(a′) = ξ(a)′, then ξ(a) ⊥ ξ(a′) and ξ(a ⊕ a′) = 1 = ξ(a) ⊕ ξ(a′).

The remaining possibility to have a ⊥ b is when a, b are distinct atoms of an 8-element
Boolean subalgebraw ofA. In this case, xa and xb are basic elements that are near, xa∨xb =
w, z = {0, a ⊕ b, (a ⊕ b)′, 1} is the third atom beneath w, and da(w) = (xa, w), db(w) =
(xb, w). Thus ξ(a) ⊥ ξ(b), and as da ⊕db is the direction for z with (da ⊕db)(w) = (w, z),
we have ξ(a) ⊕ ξ(b) = ξ(a ⊕ b). Conversely, suppose ξ(a) ⊥ ξ(b) via condition (3) of
Definition 4.15. Since da is a direction for xa and db is a direction for xb, this condition
assumes xa, xb are near and generate an 8-element Boolean subalgebra of A. Further, since
da(w) = (xa, w) and db(w) = (xb, w), we have that a, b are atoms of w, hence a ⊥ b in A.
Finally, da ⊕ db is the direction for the third atom xa⊕b beneath w with (da ⊕ db)(w) =
(w, xa⊕b), so da ⊕ db = da⊕b.

Remark 4.17 The previous theorem achieves one of our primary aims: a means to recon-
struct an orthoalgebra A from its poset of Boolean subalgebras. It only applies if A is a
proper orthoalgebra, but, with one exception, we can still recover A from BSub(A) without
this restriction. The exception is when BSub(A) has a single element, which occurs when
A is a 1-element orthoalgebra and also when A is a 2-element orthoalgebra. In these cases
it is clearly impossible to recover A from BSub(A).

Suppose then that A has more than two elements. If it does have small blocks, these
appear in BSub(A) as maximal atoms. Provided A has a block that is not small, removing
these blocks from A yields an orthoalgebra Ã, and BSub(Ã) is obtained from BSub(A)

from removing maximal atoms. Since we can reconstruct Ã as Dir(BSub(Ã)), we can then
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reconstruct A by adding a number of horizontal summands equal to the number of maximal
atoms of BSub(A). If A consists of only small blocks, it is determined by the cardinality of
the set of its maximal atoms.

5 Characterizing Orthodomains of the Form BSub(A)

In this section, we show, for any orthodomain X with enough directions, that Dir(X) is an
orthoalgebra, and characterize those orthodomains that are of the form BSub(A) for some
orthoalgebra A.

Definition 5.1 For an orthodomain X, let X∗ be the set of elements of X of height 3 or less.
A shadow of X is a nonempty subset S ⊆ X∗ satisfying:

(1) S is a downset of X∗;
(2) S is closed under existing joins in X∗.

Note, the second condition means that if T ⊆ S and there is w ∈ X∗ that is the least
upper bound of T in X, which will imply that w is also the least upper bound of T in X∗,
then w ∈ S.

Proposition 5.2 Let X be an orthodomain, S be a shadow of X, x be a basic element of X
with x ∈ S, and d be a direction of X for x. Then:

(1) S is an orthodomain;
(2) the restriction d|S of d to ↑ x ∩ S is a direction of S.

Hence if X has enough directions and S has no maximal elements which are basic, then S

has enough directions.

Proof Since X∗, and hence S, has finite height, every directed set has a maximal element
and hence a join, and each element is compact. Since X is atomistic and S is a downset, S
is atomistic. Since S is a downset of X, for each s ∈ S the ideal ↓ s is a Boolean domain.
Finally, if x, y are atoms of S and x, y �w, then x ∨ y = w in X, hence x ∨ y = w in S as
well. Thus S is an orthodomain, establishing part (1).

To see part (2) we verify the three conditions of Definition 4.9. The first two are trivial
consequences of restricting. For the third, suppose there are x � y, z with y, z ∈ S and
d(y) = (x, y), d(z) = (z, x). Since d is a direction of X, then y ∨ z = w exists in X and
y, z � w. Since x is basic and x � y, z � w then w has height at most 3. So w ∈ X∗ and w

is the join of y, z in X∗. Since S is a shadow, it is closed under joins in X∗, so w ∈ S and
w = y ∨ z in S.

Definition 5.3 Let X be an orthodomain with enough directions and S be a shadow of X

that is proper. Write DirS(X) for the set of directions of X for basic elements x ∈ S, and let
μS : DirS(X) → Dir(S) be given by μS(d) = d|S .

Proposition 5.4 Let X be an orthodomain with enough directions and S be a shadow of X
that is proper. Then:

(1) DirS(X) contains 0,1 and is closed under ′and ⊕;
(2) μS is a bijection from DirS(X) to Dir(S);
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(3) μS preserves 0,1 and ′;
(4) d ⊥ e if and only if μS(d) ⊥ μS(e), and in this case μS(d ⊕ e) = μS(d) ⊕ μS(e).

Proof (1) Since 0,1 are directions for ⊥ and ⊥ ∈ S, we have 0, 1 ∈ DirS(X). If d is a
direction for x, then d ′ is also a direction for x, giving closure under ′. For closure under ⊕,
suppose d, e ∈ DirS(X) with d a direction for x ∈ S, e a direction for y ∈ S, and d ⊥ e.
There are several cases for ⊥. If one of d, e is 0, then d ⊕e equals d or e, and if e = d ′, then
d ⊕ e = 1, so these cases are trivial. In the remaining case x and y are near. Say x ∨ y = w

with z the third atom beneath w. Then w ∈ S since S is closed under joins in X∗, and so
z ∈ S since S is a downset of X. Since d ⊕ e is a direction for z, we have d ⊕ e ∈ DirS(X).

(2) For a basic x ∈ S, the two directions for x in X are d and d ′. These restrict to
directions of S for x and their restrictions are orthocomplements. Then as S has no basic
maximal elements, these restrictions are distinct and are the only two directions for x in S.
Part (3) is trivial.

For part (4), suppose d, e ∈ DirS(X) with d a direction for x and e a direction for y. Note
that one of d, e is 0 iff one ofμS(d), μS(e) is 0, and in this caseμS(d⊕e) = μS(d)⊕μS(e).
Next, e = d ′ iff μS(e) = μS(d)′, and in this case μS(d ⊕ e) = μS(d) ⊕ μS(e). For the
remaining case we have d ⊥ e if and only if x, y are near and d(w) = (x,w), e(w) =
(y, w) where x ∨ y = w. But this is equivalent to μS(d) ⊥ μS(e). In this case, d ⊕ e is the
direction for the third atom z beneath w with (d ⊕ e)(w) = (w, z), and thus its restriction
is a direction for z taking value (w, z) at w, and hence is μS(d) ⊕ μS(e).

A specific instance of the previous proposition is of particular interest. It is easily
seen that X∗ is a shadow of X that has no basic maximal elements when X has none.
Furthermore, since every basic element of X belongs to X∗, we have DirX∗(X) = Dir(X).

Corollary 5.5 If X is an orthodomain with enough directions, then so is X∗, and restriction
gives an isomorphism Dir(X) 	 Dir(X∗).

We next set out to prove that Dir(X) is an orthoalgebra for any orthodomain X with
enough directions.

Lemma 5.6 For X an orthodomain with enough directions, the partial binary operation ⊕
on Dir(X) is commutative and associative: when one side of an expression d ⊕ e = e ⊕ d

or (d ⊕ e) ⊕ f = d ⊕ (e ⊕ f ) is defined, so is the other, and the two are equal.

Proof Clearly ⊕ is commutative. Making use of this and symmetry, it suffices to show that
if (d ⊕ e) ⊕ f is defined, then d ⊕ (e ⊕ f ) is defined, and the two are equal. For this, we
consider a number of cases.

If any of d, e, f are 0, then it is easily verified. The only direction orthogonal to 1 is 0,
so we may also assume that none of d, e, d ⊕ e, f is 1. So there are atoms x, y, z with d a
direction for x, e a direction for y, and f a direction for z. Having d = e′ gives d ⊕ e = 1,
so x, y are distinct, and therefore to have d ⊥ e we must have that x, y are near. Let
x ∨ y = w and let p be the third atom beneath w. Then d ⊕ e is the direction for p with
(d ⊕ e)(w) = (w, p).

Since neither d ⊕ e nor f equals 0 or 1, there are two possibilities to have (d ⊕ e) ⊥ f .
We consider first the case that f = (d ⊕ e)′. Since d ⊕ e is the direction for p with
(d ⊕ e)(w) = (w, p), this means that f is the direction for z = p with f (w) = (p,w).
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Since x, y, p are the three pairwise near atoms under w, we then have that e ⊕ f is defined,
and that e ⊕ f is the direction for x with (e ⊕ f )(w) = (w, x). Thus e ⊕ f = d ′. So
d ⊕ (e ⊕ f ) is also defined and both sides of the expression in this case evaluate to 1.

For the final case (see Fig. 6), it must be that item (3) in Definition 4.15 applies to
(d⊕e) ⊥ f . Since d⊕e is the direction for p with (d⊕e)(w) = (w, p) and f is a direction
for z, the assumptions of (3) give that p, z are near. Say p ∨ z = v, and let q be the third
atom distinct from p, z under v. Then to have d ⊕ e ⊥ f we have (d ⊕ e)(v) = (p, v) and
f (v) = (z, v), and the sum (d ⊕e)⊕f is the direction for q with

(
(d ⊕e)⊕f

)
(v) = (v, q).

Since (d ⊕ e)(w) = (w, p) and (d ⊕ e)(v) = (p, v), we have w �= v. Since the
three atoms beneath w are x, y, p, the three atoms beneath v are p, q, z, and w, v can-
not have more than one common atom beneath them since they are distinct, we have that
x, y, p, q, z, w, v are distinct. Since d ⊕ e is a direction for p, by Definition 4.9
(
p�w, v, (d⊕e)(w) = (w, p) and (d⊕e)(v) = (p, v)

) ⇒ w∨v exists and w, v�w∨v .

Let u = w ∨ v. Since p is an atom and p � w, v � u then u has height 3 so belongs
to X∗. Let S = ↓ u and note that this is a shadow of X. Since S is isomorphic to Sub(B)

for a 16-element Boolean algebra B, Theorem 4.16 gives that Dir(S) 	 B. Proposition 5.4
gives DirS(X) 	 Dir(S). Since d, e, f all belong to DirS(X), their associativity under ⊕
follows.

Theorem 5.7 If X is an orthodomain with enough directions, then Dir(X) is a proper
orthoalgebra.

Proof Lemma 5.6 shows that ⊕ is commutative and associative. There are directions 0,1.
For each direction d also d ′ is a direction, d ⊕ d ′ is defined, and d ⊕ d ′ = 1. Suppose e is
another direction with d ⊕ e defined and d ⊕ e = 1. Since 1 is a direction given by the basic
element 0, it cannot be that d ⊥ e because of reason (3) in Definition 4.15. If it is defined
because of reason (2), then e = d ′. If it is defined because of reason (1), then one of d, e is 0,
and because we have required d⊕e = 1, the other must be 1, hence again e = d ′. So d ′ is the
unique direction with d ⊕ d ′ = 1. Finally, suppose that d is a direction with d ⊕ d defined.
This cannot be defined because of reason (3) of Definition 4.15. It cannot be because of
reason (2) since d �= d ′. So it must be defined because of reason (1), giving d = 0.

To show that Dir(X) is proper, let d �= 0, 1 be a direction for the basic element x ∈ X, so
x must be an atom. We show that {0, d, d ′, 1} is properly contained in some other Boolean
subalgebra of Dir(X). Since X is proper, x cannot be maximal, hence x < v for some
v ∈ X. Then ↓ v is a Boolean domain, hence it must contain some w such that x �w. Let y
be some other atom of X such that y � w, so x and y are near. Since (x,w) and (w, x) are

Fig. 6 A part of the Hasse diagram of the shadow from the proof of Lemma 5.6 (two possible partial diagrams
of the same situation)
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principal pairs for x in ↓w, it follows that either d(w) = (x,w) or d ′(w) = (x,w). Without
loss of generality, assume the former. Let e be the direction for y with e(w) = (y,w).
By Definition 4.15, d ⊥ e is defined. Since e is a direction for y and y �= 0, x we have
e �= 0, 1 and e is distinct from d, d ′, hence d and e generate a Boolean subalgebra of eight
elements, which properly contains {0, d, d ′, 1}. It follows that any small Boolean subalgebra
of Dir(X) is properly contained in a larger Boolean subalgebra, hence Dir(X) cannot have
small blocks.

Remark 5.8 For an orthodomain X with enough directions, X 	 BSub(Dir(X)) does not
usually hold. By Corollary 5.5 Dir(X) 	 Dir(X∗), and we clearly do not have X 	 X∗
for each orthodomain X with enough directions. In fact, X = BSub(A) provides a coun-
terexample for any orthoalgebra A with no small blocks and a block with more than 4
atoms.

Definition 5.9 A shadow S ⊆ X∗ of an orthodomain X is a Boolean shadow if either:

(1) S = ↓ x for some basic x ∈ X;
(2) S has enough directions and Dir(S) is a Boolean orthoalgebra.

Write BShad(X) for the partially ordered set of Boolean shadows of X under inclusion.

Definition 5.10 Let X be an orthodomain with enough directions, and let B be a Boolean
subalgebra of Dir(X). Define:

TB = {x | x is basic in X and there is some d ∈ B with d a direction for x},
SB = the closure of TB under existing joins in X∗.

Proposition 5.11 Let X be an orthodomain with enough directions and let B be a Boolean
subalgebra of Dir(X). Then:

(1) if B has more than 4 elements, then SB is proper and B = DirSB
(X);

(2) SB is a Boolean shadow of X.

Proof We first prove that SB is a shadow of X.
By definition, SB ⊆ X∗ and is closed under existing joins in X∗. It suffices to show that

SB is a downset of X∗. Clearly if w is a basic element of X that belongs to SB , then any
x ≤ w also belongs to S. This covers the case that w is of height 0 or 1. Suppose w ∈ SB is
of height 2 in X. Then w belonging to SB means it is the join w = x ∨ y of two elements
x, y of TB , both of which are atoms of X. Since x, y ∈ TB there are directions d, e ∈ B

with d a direction for x and e a direction for y. Furthermore, since x and y are near, these
may be chosen so that d ⊥ e. If z ≤ w, then either z is one of 0, x, y, w, or z is the third
atom beneath x ∨ y. In the last case d ⊕ e is a direction for z and d ⊕ e belongs to B, so
z ∈ TB ⊆ SB .

Our final case is when w ∈ SB is of height 3. Since w ∈ SB , it is the join of atoms
of TB . Since w ∈ X we have ↓w isomorphic to the poset of subalgebras of a 16-element
Boolean algebra as shown in Fig. 4. Our task is to show that all 7 atoms x in ↓w belong to
TB since this then shows that all elements of height 2 in ↓w are in SB . The atoms in ↓w

can be divided into two groups, the four at left and the three at right. Note that the latter
three atoms are not near to each other. There are two possibilities to consider:

(i) w is the join of two atoms w = x ∨ y from the right with x, y ∈ TB ;
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(ii) w is the irredundant join of 3 atoms of TB .

Using the result above that if z ∈ SB is of height 2 then ↓ z ⊆ SB , and that SB is
closed under joins in X∗, the second case can be reduced to the first, so we just consider
the first. Since w has height 3, it follows that Dir(↓w) must be a 16-element Boolean
algebra. Since ↓w is a proper shadow of X, Proposition 5.4 yields an isomorphism between
Dir↓ w(X) and Dir(↓w). Let d, d ′ be the directions for x and e, e′ be the directions for y. So
d, d ′, e, e′ ∈ B ∩ Dir↓ w(X) and neither of d, d ′ is orthogonal to either of e, e′, since x and
y are not near. Since B is a Boolean subalgebra of Dir(X), then d, e generate a 16-element
subalgebra Y of B ∩Dir↓ w(X), which must be equal to Dir↓ w(X), since the latter is also a
16-element Boolean algebra. Hence Dir↓ w(X) ⊆ B, which expresses that any direction for
any atom in ↓w is contained in B. Hence all atoms of ↓ w are contained in TB , establishing
that SB is a shadow.

For part (1), assume B has more than 4 elements. To see that SB is proper, first note that
it is not the case that 0 is maximal in SB . Let x be an atom in SB and hence in TB . Then there
is a direction d in B that is a direction for x. Since B has more than 4 elements, there is a
nonzero direction e in B orthogonal and unequal to one of d or d ′. If e is a direction for y,
then x, y are near, and w = x ∨ y ∈ SB . So no atom is maximal in SB , and SB is proper.

It remains to show that B = DirSB
(X). Let d be a direction in B for a basic element x.

Then by definition, x ∈ TB ⊆ SB . Thus by definition d ∈ DirSB
(X). Conversely, let

d ∈ DirSB
(X) be a direction for the basic element x of X. By definition, x ∈ SB . But SB

consists of the elements of X∗ that are joins of elements of TB , and as x is basic, it must be
that x ∈ TB . Thus there is a direction e in B for x. But there are only two directions for x,
namely d, d ′. So either e = d or e′ = d, and in either case d is in B since B is closed under
orthocomplementation.

For part (2), it remains to show that the shadow SB is Boolean. If B has 4 or fewer
elements, then TB = ↓ x for a basic element x, so SB = TB , and so SB is Boolean. Suppose
B has more than 4 elements. Then by (1) B = DirSB

(X). Proposition 5.4 gives DirSB
(X) 	

Dir(SB). So Dir(SB) is Boolean, giving that SB is a Boolean shadow.

Proposition 5.12 For X an orthodomain with enough directions, there is an isomorphism
of posets � : BSub(Dir(X)) → BShad(X) given by �(B) = SB .

Proof The map is well-defined by Proposition 5.11. If B1 ⊆ B2, then surely SB1 ⊆ SB2 , so
� preserves order. Suppose SB1 ⊆ SB2 . Since elements of SB2 are joins of elements of TB2 ,
and elements of TB1 are basic and hence join irreducible, this implies that TB1 ⊆ TB2 and
this gives that B1 ⊆ B2. So � is an order embedding.

To see that it is surjective, let S be a Boolean shadow of X. If S is either {⊥} or {⊥, x}
for some atom x of X, then S = �(B) where B = {0, 1} or B = {0, d, d ′, 1} where
d is a direction for x respectively. Suppose that S has enough directions and Dir(S) is a
Boolean orthoalgebra. Let B = DirS(X). By Proposition 5.4, B is a subalgebra of Dir(X)

and the restriction map from B to Dir(S) is an isomorphism, so B is a Boolean subalgebra
of Dir(X). Then �(B) = SB is the shadow generated by TB , and the elements of TB are
those basic elements x of X that have a direction d ∈ B = DirS(X). By definition, the
elements of DirS(X) are those directions that are for some basic x ∈ S. Thus TB consists of
the basic elements in S, so �(B) = S.

Definition 5.13 Let X be an orthodomain. We say X is short if X = X∗. We say X is tall
if m = ∨

S exists and ↓m ∩ X∗ = S for each Boolean shadow S.
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Proposition 5.14 Let A be a proper orthoalgebra. Then X = BSub(A) is a tall
orthodomain with enough directions.

Proof By Theorem 4.16, X is an orthodomain with enough directions, and there is an ortho-
algebra isomorphism ξ : A → Dir(X) where ξ(a) = da is the direction for xa with

da(w) = (↓w a ∪ ↑w a′,↓w a′ ∪ ↑w a).

Let S be a Boolean shadow of X. If S = ↓ x for a basic element x it is clear that x = ∨
S

exists and ↓ x ∩ X∗ = S. Assume that S has enough directions and Dir(S) is Boolean. By
Proposition 5.4 Dir(S) 	 DirS(X), hence DirS(X) is Boolean. Let m = ξ−1[DirS(X)].
Then m is a Boolean subalgebra of A, and consists of all the a ∈ A with ξ(a) ∈ DirS(X),
hence all a ∈ A with da ∈ DirS(X), and therefore all a ∈ A with xa ∈ S. Since each basic
element of X is of the form xa given by some a ∈ A, we have for a basic element x ∈ X,
that x ∈ S exactly when x ≤ m. Since S is a downset and X is atomistic m = ∨

S, and
since S is closed under existing joins in X∗ we have ↓m ∩ X∗ = S. Thus X is tall.

The following proposition says that the situation described in Remark 5.8 cannot happen
for tall orthodomains.

Proposition 5.15 If X is a tall orthodomain with enough directions, then X 	
BSub(Dir(X)).

Proof By Proposition 5.12, we have BSub(Dir(X)) 	 BShad(X). Define
ψ : BShad(X) → X by ψ(S) = ∨

S, and λ : X → BShad(X) by λ(m) = ↓m∩X∗. Since
X is tall,

∨
S exists and ↓(

∨
S) ∩ X∗ = S. For any w ∈ X we have ↓w ∩ X∗ is a downset

of X∗ that is closed under existing joins in X∗, hence is a shadow. If w is basic in X, then
by definition ↓w is a Boolean shadow. Otherwise ↓ w is a proper Boolean domain, hence
has enough directions. Since ↓ w ∩ X∗ = (↓w)∗, Corollary 5.5 gives that ↓w ∩ X∗ is an
orthodomain with enough directions and that Dir(↓w ∩ X∗) is isomorphic to Dir(↓w),
and hence is Boolean. In any case, ↓w ∩ X∗ is a Boolean shadow of X. So ψ and λ are
well-defined. Since ↓(

∨
S) ∩ X∗ = S we have λ ◦ ψ = id. For w ∈ X, by atomisticity

w = ∨
(↓w ∩ X∗), so ψ ◦ λ = id. Thus BShad(X) 	 X, so BSub(Dir(X)) 	 X.

Theorem 5.16 The following are equivalent for an orthodomain X:

(1) X is tall and has enough directions;
(2) X 	 BSub(A) for a proper orthoalgebra A.

When these conditions hold, Dir(X) is an orthoalgebra and X 	 BSub(Dir(X)).

Proof The direction (1) ⇒ (2) follows from Theorem 5.7 and Proposition 5.15. The
direction (2) ⇒ (1) follows from Theorem 4.16 and Proposition 5.14.

Remark 5.17 The previous theorem only characterizes orthodomains of the form BSub(A)

for a proper orthoalgebra A. This can be extended to orthoalgebras A with small blocks as
follows. If A has two or fewer elements, then BSub(A) is a 1-element orthodomain. If A has
more than two elements and all its blocks are small, then BSub(A) is an orthodomain where
all elements are basic, and each orthodomain where all elements are basic arises this way as
the horizontal sum of 4-element Boolean algebras, one for each atom of the orthodomain.
Otherwise not all blocks of A are small. Let Ã be the orthoalgebra obtained by removing
small blocks from A. Then BSub(Ã) is a tall orthodomain with enough directions, and
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BSub(A) is obtained from this by adding a maximal atom to BSub(Ã) for each small block
of A. So the orthodomains isomorphic to BSub(A) for some orthoalgebra A are exactly
those that have one element, have all their elements basic, or are constructed by adding a
set of maximal atoms to a tall orthodomain with enough directions.

Theorem 5.18 The following are equivalent for an orthodomain X:

(1) X is short and has enough directions;
(2) X 	 BSub(A)∗ for a proper orthoalgebra A.

When these conditions hold, Dir(X) is an orthoalgebra and X 	 BSub(Dir(X))∗.

Proof The direction (2) ⇒ (1) follows from Theorem 4.16 and Corollary 5.5. For the
converse, assume (1). Theorem 5.7 assures that Dir(X) is a proper orthoalgebra. By Propo-
sition 5.12 there is an isomorphism � : BSub(Dir(X)) → BShad(X) given by �(B) =
SB where SB is from Definition 5.10. Then � restricts to an isomorphism of posets
�′ : BSub(Dir(X))∗ → BShad(X)∗. We will show that BShad(X)∗ is equal to the poset
of principal downsets ↓w where w ∈ X, hence is isomorphic to X. This will show that
BSub(Dir(X))∗ is isomorphic to X, establishing (2) and the further remark.

Supposew ∈ X. Ifw is basic, then by definition ↓w is a Boolean shadow that clearly has
height at most 1 in BShad(X). Otherwise ↓w is a Boolean domain with enough directions
and Dir(↓w) is a Boolean algebra. Thus ↓w is a Boolean shadow. Since X is short, w has
height at most 3, so ↓w has height at most 3 in BShad(X), so belongs to BShad(X)∗.

From the isomorphism �′, the elements of BShad(X)∗ are the SB where B is a Boolean
subalgebra of Dir(X) with at most 16 elements. We must show that all such SB are equal
to ↓w for some w ∈ X. If B has 4 or fewer elements then SB is equal to ↓w for a basic
element w ∈ X. Suppose B has 8 elements. Let d1, d2, d3 be the directions that are the
atoms of B and assume di is a direction for the basic element xi of X for i = 1, 2, 3. Since
d1 is orthogonal to d2 we have that x1, x2 are near, so have a join w = x1 ∨ x2, and this
belongs to SB . By simple counting, SB must be equal to ↓w. Finally, suppose that B has
16 elements and d1, . . . , d4 are the atoms of B with di a direction for xi for i = 1, . . . , 4.
Since d1, d2 are orthogonal x1, x2 are near, so z = x1 ∨ x2 exists. Suppose x is the third
atom beneath z. Then (d1⊕d2)(z) = (z, x). Let y = x3∨x4. Since d3⊕d4 = (d1⊕d2)

′ we
have that the third atom under y is x. Also (d3 ⊕ d4)(y) = (y, x), so (d1 ⊕ d2)(y) = (x, y).
Then by condition (3) of Definition 4.9 w = y ∨ z exists and has height 3. Then simple
counting gives that SB = ↓w.

Remark 5.19 The previous theorem extends to small blocks as in Remark 5.17. This
provides a bijective correspondence between isomorphism classes of orthoalgebras and iso-
morphism classes of short orthodomains where each basic element has a direction. Here we
use the obvious fact that a maximal atom has a direction.

Remark 5.20 We have shown that for an orthoalgebra A, the poset BSub(A)∗ of elements
of height 3 or less in BSub(A) is sufficient to reconstruct A. We will show one cannot
make due with the order structure of the elements of height 2 or less. Specifically, for an
orthodomain X, let X† be the poset of elements of height 2 or less in X. We will give two
non-isomorphic orthoalgebras A and C where BSub(A)† and BSub(C)† are isomorphic.

Let A be the 16-element Boolean algebra shown in Fig. 4. The diagram in Fig. 7 shows
the Fano plane minus a single line, the circle connecting the middle elements of each side.
This figure gives a poset P with bottom ⊥, seven atoms given by the vertices of this figure,
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Fig. 7 The hypergraph view of
the subalgebras of a 16-element
Boolean algebra

and six elements of height 2 given by the lines of the figure, with the understanding that
a vertex lies beneath a line if it lies on the line. Then P is isomorphic to the elements
BSub(A)† of height 2 or less in BSub(A) (Fig. 7).

However, it follows from the usual Greechie hypergraph representation of orthoalgebras
(see [18] with a correction [19]) that this poset also represents the atom structure of an
orthoalgebraC. This means that there is an orthoalgebraC whose blocks all have 8 elements
where the atoms of C are the vertices of this figure, and the sets of atoms forming a block
of C are exactly the vertices lying on a line in the figure. Then BSub(C) is isomorphic to P ,
and as every element of it is of height 2 or less, BSub(C)† = BSub(C). Thus BSub(A)† 	
BSub(C)†, but A �	 C.

It turns out that such pathologies do not exist for orthomodular posets— an orthomodular
poset A is determined up to isomorphism by the elements of height at most 2 in BSub(A).
See Theorem 6.8 for details.

6 Hypergraphs

In this section, we begin the process of making a categorical view of the correspondence
between orthoalgebras and their structures of Boolean subalgebras. Here we refine the
object level correspondence suggested at the end of the previous section between orthoal-
gebras A and their posets BSub(A)∗ of Boolean subalgebras having at most 16 elements.
We treat these posets graph-theoretically, to be precise as certain hypergraphs, in a way that
seems more intuitive. The next section introduces morphisms between these hypergraphs
and relates the resulting categories.

Definition 6.1 A hypergraph is a triple G = (P, L, T ) consisting of a set P of points, a set
L of lines, and a set T of planes. A line is a set of 3 points, and a plane is a set of 7 points
where the restriction of the lines to these 7 points is as shown below.

point line plane

Note that a set of 7 points, where the lines among them are as in a plane, need not be
a plane. Having lines among 7 points as shown is a necessary condition to be a plane, but
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not a sufficient one. If one is drawing a picture of a hypergraph, planes should be placed in
circles to indicate that they are indeed planes. Note also that a plane has two types of points.
One type, called a corner point, lies on 3 lines of the plane; the other type, called an edge
point, lies on 2 lines of the plane. Each plane has 4 corner points (the middle is a corner)
and 3 edge points.

Definition 6.2 A subset S of the points of a hypergraph G is a subgraph if it is closed under
lines and planes:

• if two points of a line belong to S, then so does the third point;
• if two points, that do not lie on a line but do lie in a plane, belong to S, then so do all

the other points of that plane.

The smallest subgraph containing a set of points is called the subgraph it generates.

Observe that a subgraph S of G, together with the sets of lines and planes of G that contain
only elements from S, forms a hypergraph. Each point, line, and plane of any hypergraph is
a subgraph, but there can be others.

Definition 6.3 Each orthoalgebra A defines a hypergraph G(A) = (P, L, T ) by:

• points are the atoms of BSub(A);
• three points form a line if they are the atoms under an element of BSub(A) of height 2,

so if they are near;
• seven points form a plane if they are the atoms under an element of BSub(A) of height 3.

A hypergraph G is an orthohypergraph if it is isomorphic to G(A) for some orthoalgebra A.
It is a Boolean hypergraph if it is isomorphic to G(B) for a Boolean algebra B.

Notice that the points of G(A) are all xa , a ∈ A \ {0, 1}. The Boolean hypergraph of a 4-
element Boolean algebra is a single point, that of an 8-element Boolean algebra is 3 points
arranged in a single line, and that of a 16-element Boolean algebra is 7 points arranged
into a plane. The corner points in the plane correspond to Boolean subalgebras of the form
xa for a an atom in the ambient 16-element Boolean algebra. The edge points correspond
to Boolean subalgebras of the form xa where a is an element of height 2 in the ambient
Boolean algebra. See also Fig. 4, where the four left atoms correspond to corner points, and
the three right atoms to edge points.

Theorem 6.4 For an orthoalgebra A, the poset BSub(A)∗ of Boolean subalgebras of
A of height 3 or less can be reconstructed from G(A). Thus, if A is proper, then up
to isomorphism A can be reconstructed from its hypergraph G(A) as the directions of
BSub(A)∗.

Proof Construct a poset isomorphic to BSub(A) as follows. Let ⊥ be its bottom and let its
atoms be the points of G(A). Elements of height 2 are the lines, and lie above the atoms they
contain. Elements of height 3 are the planes, and lie above the atoms they contain. The poset
so constructed is isomorphic to BSub(A)∗. Thus, when A is proper, we can then reconstruct
A from its hypergraph G(A) via the directions of BSub(A)∗.
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Remark 6.5 Theorem 6.4 shows how to characterize orthohypergraphs among hypergraphs.
Given a hypergraph G, one constructs a poset X of height at most 3 from it as described in
the theorem. Then G is an orthohypergraph if and only if this poset is an orthodomain with
enough directions. Due to the nature of the poset constructed from G, several conditions of
the definition of an orthodomain, Definition 4.3, are automatically satisfied. Finite height
implies directed subsets have joins, it is atomistic, and each principle ideal is a Boolean
domain. Only the fourth condition needs to be verified, and this says that if two points lie
on a line, then they do not both lie on another line or both belong to a plane that does
not contain this line. Determining whether this orthodomain has enough directions is more
problematic, as it is in the orthodomain setting. However, the conditions to be a direction
are easily translated into the hypergraph setting (see Lemma 7.14 below), and are easier to
work with in this way.

In the following, we consider the hypergraph G(A) of an orthoalgebra A. By def-
inition, a point p of G(A) is an atom of BSub(A), and a line l of G(A) that con-
tains p is a cover of p in BSub(A). The following observations will be used in the
next section.

Proposition 6.6 Let A be an orthoalgebra and G(A) be its hypergraph.

(1) If two lines have at least 2 points in common, then they are equal.
(2) If A is a Boolean algebra then any two points of G(A) generate a line or plane.

Proof (1) Suppose that lines l, m have common points xa, xb for some a, b ∈ A with none
of a, a′, b, b′ equal to 0,1 or to each other. Furthermore, l and m are 8-element Boolean
subalgebras ofA that contain a, b. So inA, one of a, a′ is orthogonal to one of b, b′. Suppose
a is orthogonal to b. Then the atoms of l are a, b, (a ⊕ b)′ and the atoms of m are a, b, (a ⊕
b)′. Thus l = m.

(2) Suppose xa, xb are distinct points, where a, a′, b, b′ are distinct from 0,1 and from
each other. Let S be the subalgebra of the Boolean algebra A generated by a, b. Then S has
at least 8 elements from the properties of a, a′, b, b′, and S has at most 16 elements because
the free Boolean algebra generated by a 2-element set has 16 elements. If S has 8 elements,
then it is a line of G(A) that contains xa, xb, and if S has 16 elements, then it is a plane that
contains xa, xb.

As is shown in Remark 5.20, the elements of height 2 or less in the poset BSub(A) do not
determine A in the general case when A is an orthoalgebra. Thus points, lines and planes
are necessary in some cases to describe the hypergraph of an orthoalgebra. However, if it
is known that the orthoalgebra is an orthomodular poset, one can do better, as we will now
show.

Proposition 6.7 Let A be an orthomodular poset. If the hypergraph G(A) has points and
lines configured as the hypergraph of a 16-element Boolean algebra, then these points and
lines are the points and lines of a plane of G(A).

Proof The assumptions provide that there are elements a, b, c, d, e, f, g ∈ A different
from 0,1 such that the points xa, xb, xc, xd, xe, xf , xg of the hypergraph are configured as
indicated below.
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Any two points of xa, xb, xc, xd are connected by a line, or equivalently, are near. Hence,
given two of these points, we can form four pairs consisting of a non-trivial member of the
first point and one non-trivial members of the second point, and precisely one of these pairs
consists of mutually orthogonal elements. For instance, given the points xa and xb, exactly
one of a ⊕ b, a′ ⊕ b, a ⊕ b′ and a′ ⊕ b′ is defined. We first exclude the possibility that
both non-trivial elements in a point are orthogonal to some non-trivial members in the other
points. For instance, we cannot have both a ⊥ b and a′ ⊥ c. By symmetry, this case implies
all other cases. So assume a ⊥ b and a′ ⊥ c. We derive a contradiction.

These assumptions mean that b < a′ < c′. Since these elements form a chain, they lie in
a 16-element Boolean subalgebra of A whose atoms are b, a′ ∧b′, c′ ∧a, c. Since b ≤ c′, we
have that b ∨ c is one of f, f ′, hence lies in a block with a, a′. So one of the following must
hold:

(i) a < b ∨ c (ii) a′ < b ∨ c (iii) b ∨ c < a (iv) b ∨ c < a′

We are in a Boolean algebra, so if (i) applies, a = a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) = a ∧ c,
giving a ≤ c, a contradiction. If (ii) applies, a′ = a′ ∧ (b∨c) = (a′ ∧b)∨ (a′ ∧c) = a′ ∧b,
giving a′ ≤ b, a contradiction. If (iii) applies, b ≤ a, a contradiction, and if (iv) applies,
c ≤ a′, a contradiction.

So for each of xa, xb, xc, xd there is one non-trivial member of that set that is orthogonal
to a non-trivial member of each of the others. Without loss of generality, we may assume that
these members are a, b, c, d. So a, b, c, d are pairwise orthogonal. We note that pairwise
orthogonal elements of an orthomodular poset are jointly orthogonal. Indeed, a ⊥ c and
b ⊥ c imply a, b ≤ c′, so a ⊕ b = a ∨ b ≤ c′, hence (a ⊕ b) ⊕ c is defined, and in
a similar way, we find that ((a ⊕ b) ⊕ c) ⊕ d) is defined. This means that a, b, c, d lie
in some Boolean subalgebra of A. Note, this is not a property that holds in orthoalgebras!
Therefore, in each of the lines in the diagram where xa appears, a is an atom of the line
(recall, this line is a Boolean subalgebra of A), and similarly for b, c, d . It follows that the
third atom of the line containing xa, xb is a′ ∧ b′. Then a′ ∧ b′ is equal to one of e, e′, and
we may assume a′ ∧ b′ = e. Since d < a′ ∧ b′, the third atom of the line containing xc, xd

cannot be e, and therefore must be e′ = a ∨ b. Therefore a ∨ b ∨ c ∨ d = 1. It follows
that a, b, c, d generate a 16-element Boolean subalgebra w of A. Each element of the sets
xe, xf , xg can be obtained from a, b, c, d, and therefore xe, xf , xg are also contained in w.
By cardinality considerations, these are all the points beneath w, and hence also all the lines
beneath w.

Theorem 6.8 If A is an orthomodular poset, then the hypergraph G(A) is completely
determined by its points and lines.
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Proof Proposition 6.7 shows that any configuration of points and lines in G(A) that is iso-
morphic to the set of points and lines of a plane, is the set of all points and lines of a plane
of G(A). So the planes of G(A) are determined by the points and lines of G(A).

We have given several properties that hold in Boolean hypergraphs and orthohyper-
graphs. These will be used in the next section when we introduce morphisms. These
properties are not intended to be sufficient to characterize these hypergraphs. The mat-
ter of having workable conditions to recognize the hypergraphs that are orthohypergraphs
or Boolean hypergraphs seem quite interesting, and potentially of considerable use in
constructing such orthohypergraphs, and hence their corresponding orthoalgebras.

Problem 6.9 Characterize those hypergraphs that are isomorphic to the hypergraphs of
Boolean algebras, and those that are isomorphic to the hypergraphs of orthoalgebras.

We next consider several examples of hypergraphs of orthoalgebras and compare these
with the Greechie diagrams of the structures. We refer the reader to [18] for a thorough
account, and comment only that Greechie diagrams show the atoms of a chain-finite orthoal-
gebra with the atoms of a block being connected by a line. We begin with the setting
where Greechie diagrams are most familiar, representing orthoalgebras whose blocks have
exactly 8 elements. For such an orthoalgebra A its Greechie diagram and hypergraph are
the same. The 12-element orthomodular poset MO2 × 2 consists of two 8-element Boolean
algebras that intersect in a 4-element Boolean algebra. Its Greechie diagram is the same as
its hypergraph, and is shown below.

For orthoalgebras having blocks with 16 or more elements, the situation is more complex.
Consider the orthomodular poset MO2 × MO2. This structure has 36 elements, 8 atoms and
4 blocks of 16 elements each. Its Greechie diagram is given below. This diagram gives good
insight into the behavior of the atoms and coatoms, but one must infer the behavior of the 18
elements of height two. In particular, the key feature of this structure, that it has two central
elements of height 2 that are therefore in all four blocks, is hidden. With experience, one
can tell how the “missing” elements of the structure behave, but as the structures become
more complex, this becomes increasingly difficult.
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In describing the hypergraph of a structure with larger blocks, it is useful to note that there
are many ways to draw the seven points and six lines that comprise a plane. Below we give
three possibilities, the original as a plane that we have used, and two others that we will
employ. They are all equivalent. In these diagrams, we choose to depict the corner points
and some portions of lines as larger than others as an aid to readability. The point is that
pairs of “parallel” sides connecting corner points intersect at an edge point at “infinity”.

Making use of the rightmost form of depicting planes, the hypergraph of MO2 × MO2 is
shown below. The Greechie diagram “sits inside” the hypergraph, and the elements missing
from the Greechie diagram are included as smaller dots as well. The primary feature of this
structure, the central element, is clearly visible.

Here we may view the hypergraph as augmenting the Greechie diagram, allowing us
to precisely depict and reason about the elements not depicted in the Greechie diagram.
For those with experience with Greechie diagrams, this is not necessary for MO2 × MO2.
However, when reasoning with more complicated situations such as the Fraser cube of
Example 4.1, this can be useful. For instance, the Fraser cube has the property that two of its
blocks have intersection that is non Boolean, a fact that until very recently was incorrectly
reported in the literature [19].

The Fraser cube has 36 elements, with 8 atoms, 6 blocks of 16 elements each. Its
Greechie diagram, as the name suggests, is a cube. Here the atoms are vertices of the cube,
and the blocks are its faces. Using the middle of the three ways to depict a plane described
above, we can draw the hypergraph of the Fraser cube as shown below.
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The diagram has a point in the middle of each face, as well as 3 additional “points at
infinity”, one for each pencil of parallel edges. The blocks given by the front and back face
intersect at the two points at infinity given by sideways and vertical edges, so do not intersect
in a Boolean algebra. Here too, the Greechie diagram is sitting inside of the hypergraph, and
the additional detail of the hypergraph allows us to depict and reason more clearly.

Remark 6.10 Throughout our treatment of hypergraphs, we have used terminology reflec-
tive of that used in projective geometry. This is indicated in our use of the terms ‘point’,
‘line’, and ‘plane’. It has also been of benefit that there is a similarity between the planes
used in our hypergraphs and the usual Fano plane, which is realized as the lattice of
subspaces of a 3-dimensional vector space over the 2-element field Z2.

Our results have close analogues in projective geometry. In projective geometry, one
takes the lattice L = Sub(V ) of subspaces of a vector space V . Lattices arising this way are
characterized as certain complemented, algebraic, atomistic, modular lattices. This lattice
L is determined by its elements of height at most 2, and these elements are organized into
the points and lines of a projective geometry with points being atoms and lines elements of
height 2. The vector space V can be reconstructed from L by techniques essentially dating
to Euclid. More recent treatments of this classical subject treat categorical aspects of this
correspondence as well [4]. All this is mirrored in our treatment of an orthoalgebra A via
its poset BSub(A) of Boolean subalgebras. In the case that A is an orthomodular poset,
we require only the elements of height 2 in this poset to reconstruct A, but for general
orthoalgebras must go one level higher.

Partial explanation of this similarity can be found by noting that each Boolean algebra
A is a vector space over Z2 under the addition + of symmetric difference. Subalgebras of
A are the vector subspaces that contain 1 and are additionally closed under meet. Write 〈1〉
for the subspace of A generated by the vector 1, and consider the interval I = [〈1〉, A] of
the subspace lattice. The subalgebras of height n in BSub(A) have height n in I . Since I

is isomorphic to the subspace lattice of A/〈1〉, we may regard BSub(A) as sitting inside a
projective geometry over Z2. This explains the similarity of the hypergraph of a 16-element
Boolean algebra to a Fano plane — the missing line is a subspace containing 1 that is not a
subalgebra.
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7 Morphisms

In this section we consider morphisms between orthoalgebras and orthohypergraphs. There
are some basic obstacles to producing a full categorical equivalence, such as the fact that
a 4-element Boolean algebra has two automorphisms, while its poset of Boolean subalge-
bras has only a single element. However, modulo such isolated pathologies, we show that
morphisms between orthoalgebras can be captured by morphisms between their associated
orthohypergraphs.

Recall that an orthoalgebra morphism f : A → C preserves the orthocomplementation,
and if a ⊕ b is defined, so is f (a) ⊕ f (b), in which case f (a ⊕ b) = f (a) ⊕ f (b). Note
that the image of f need not be a sub-orthoalgebra of C, since elements f (a) and f (b)

might be orthogonal in C without a and b being orthogonal in A. For example, consider
MO2, the horizontal sum of two 4-element Boolean algebras. Call its four atoms a, a′, b, b′.
This embeds into the power set of {i, j, k} by f (a) = {i}, f (a′) = {j, k}, f (b) = {j}, and
f (b′) = {i, k}. On a positive note, we record the following fact.

Proposition 7.1 For orthoalgebras A and C, a map f : A → C is an orthoalgebra mor-
phism if and only if for each Boolean subalgebra B of A, the restriction of f to B is a
Boolean algebra homomorphism of B into a Boolean subalgebra of C.

Proof Assume that f is an orthoalgebra morphism, and let a, b ∈ B such that f (a) ⊕ f (b)

in C is defined. By Proposition 3.6, there is a jointly orthogonal set F ⊆ B such that
a = ⊕

Ea and b = ⊕
Eb for some Ea,Eb ⊆ F . Hence we have f (a) = ⊕

f [Ea] and
f (b) = ⊕

f [Eb]. Assume there is some e ∈ Ea ∩ Eb. Since f (a) ⊕ f (b) is defined, it
follows that f (e) ⊕ f (e) is defined, so f (e) must be 0. Thus f [Ea] ∩ f [Eb] ⊆ {0}. Let
c = ⊕

(Eb \ Ea). Then a ⊕ c is defined and

f (a ⊕ c) =
⊕

f [Ea] ⊕
⊕

f [Eb \ Ea] =
⊕

f [Ea] ⊕
⊕

f [Eb] = f (a) ⊕ f (b),

so we conclude that f (a) ⊕ f (b) ∈ f [B]. As a consequence, f [B] is a subalgebra of C.
To see that f [B] is Boolean, let S ⊆ f [B] be finite. Then there is a finite T ⊆ B such
that f [T ] = S. Since B is Boolean, there is some jointly orthogonal set F ⊆ B such
that T ⊆ {⊕E | E ⊆ F }. Then f [F ] is a jointly orthogonal set in f [B] such that S ⊆
{⊕E | E ⊆ f [F ]}, hence f [B] is Boolean. Thus f restricts to an orthoalgebra morphism
between the Boolean algebras B and f [B]. Let a ≤ b in A. By definition of the order in an
orthoalgebra, we have a⊕c = b for some c ∈ A, hence f preserves the order. Let a, b ∈ B.
Then f (a) ∨ f (b) ≤ f (a ∨ b). Moreover, a ∨ b = e1 ∨ e2 ∨ e3 for e1 = a ∧ b, e2 = a ∧ b′
and e3 = a′ ∧ b, which are mutually orthogonal, so

f (a ∨ b) = f (e1 ⊕ e2 ⊕ e3) = f (e1) ⊕ f (e2) ⊕ f (e3) = f (e1) ∨ f (e2) ∨ f (e3).

Since f (e1)∨f (e2) ≤ f (a) and f (e1)∨f (e3) ≤ f (b), we obtain f (e1)∨f (e2)∨f (e3) ≤
f (a)∨f (b), whence f (a∨b) = f (a)∨f (b). Since f preserves the orthocomplementation,
it follows now from DeMorgan’s Law that f preserves meets in B, hence its restriction to B

is a Boolean algebra homomorphism.
For the converse, let a, b ∈ A such that c = a ⊕ b is defined. Then B =

{0, a, a′, b, b′, c, c′, 1} is a Boolean subalgebra B of A, and f restricts to a Boolean algebra
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homomorphism of B into some Boolean subalgebra of C. As a consequence, we have
f (a′) = f (a)′. Since a ⊥ b, we have b ≤ a′, so f (b) ≤ f (a)′, i.e., f (a) ⊥ f (b). Hence

f (a ⊕ b) = f (a ∨ b) = f (a) ∨ f (b) = f (a) ⊕ f (b),

so f is an orthoalgebra morphism.

Suppose that A and C are orthoalgebras. Write P and Q for the sets of points of the
hypergraphs G(A) and G(C). We define a morphism α : G(A) → G(C) to be a partial
function α : P → Q satisfying certain properties outlined below. In dealing with partial
function, we write α(p) = ⊥ to indicate that the partial function is not defined at the point p,
and indicate this diagrammatically by crossing out the vertex of the hypergraph indicating p.

Definition 7.2 For G,H orthohypergraphs with point sets P and Q, a morphism α : G →
H is a partial function α : P → Q such that:

(A1) The partial function α acts on a line l of G in one of the following ways.

(A2) The partial function α acts on a plane t of G in one of the following ways.

(A3) If l, m are lines of G that intersect in the point p, and α(l), α(m) are distinct lines of
a plane t ′ ofH whose intersection is an edge point α(p) of t ′, then l, m lie in a plane
t of G that is mapped isomorphically to t ′.

Proposition 7.3 Orthohypergraphs and the hypergraph morphisms form a category under
the usual composition of partial functions.

Proof The identity map on an orthohypergraph is a hypergraph morphism. Suppose
G,H,J are orthohypergraphs with point sets P,Q, R, and α : G → H and β : H → J are
hypergraph morphisms. So α : P → Q and β : Q → R are partial functions. The compos-
ite β ◦ α is the usual relational product β ◦ α = {(p, r) | ∃q ∈ Q : (p, q) ∈ α, (q, r) ∈ β}.
So γ = β ◦ α is a partial function from P to R. We must verify (A1)–(A3).
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For (A1), let l = {x, y, z} be a line of G. If case (i) of (A1) applies to α(l), then none of
α(x), α(y), α(z) are defined, so none of γ (x), γ (y), γ (z) is defined, so (i) of (A1) applies
to γ . In case (ii), α(l) is a point q of Q. If β(q) = ⊥, then case (A1.i) applies to γ (l), and
if β(q) = r , then (A1.ii) applies to γ (l). In case (iii), α(l) = m for some line m of R, and
whichever of case (i)–(iii) of (A1) applies to β(m) also applies to γ (l). Thus (A1) holds for γ .

For (A2), let t be a plane of G. If case (i) of (A2) applies to α(t), then (A2.i) applies
to γ (t). In case (ii), α(t) is a point q of Q. Then either (A2.i) or (A2.ii) applies to γ (t)

according to whether β(q) is undefined or a point of R. In case (iii), α(t) is a line m of Q.
Then (A2.i), (A2.ii), (A2.iii) applies to γ (t) according to whether (A1.i), (A1.ii), (A1.iii)
applies to β(m). If case (A2.iv) applies to α(t), then γ (t) is a plane t ′ of Q. Then case (i)–
(iv) of (A2) applies to γ (t) according to which of case (i)–(iv) of (A2) applies to β(t ′). Thus
(A2) holds for γ .

For (A3), suppose l, m are lines of P that intersect in a point p. Suppose that γ (l) =
l′′, γ (m) = m′′ are distinct lines of a plane t ′′ of J that intersect in an edge point r of
t ′′. Since γ (l), γ (m) are distinct lines of R, the lines α(l) = l′ and α(m) = m′ of Q

must be distinct. Since p lies on l, m, then α(p) = q is a point on both l′,m′, and must
therefore be their unique intersection point. Then the lines l′,m′ intersect in a point q and
β(l′) = l′′, β(m′) = m′′ are distinct lines of the plane t ′′ of J that intersect in the edge
point r of t ′′. Since (A3) applies to β, the lines l′, m′ lie in a plane t ′ of H that is mapped
isomorphically by β to t ′′. In particular, l′,m′ are distinct lines of t ′, and their intersection
point q is an edge point of t ′. Applying (A3) to α gives a plane t of G that contains l, m and
is mapped by α isomorphically to t ′. Thus γ maps t isomorphically to t ′′, as required. Thus
(A3) holds for γ .

Definition 7.4 Let OA be the category of orthoalgebras and orthoalgebra morphisms, and
OH be the category of orthohypergraphs and hypergraph morphisms.

Next we extend A �→ G(A) to a functor OA → OH. Let A and C be orthoalgebras with
P and Q the point sets of their hypergraphs. So points of P are 4-element subalgebras xa

of A and points of Q are 4-element subalgebras xc of C.

Definition 7.5 For an orthoalgebra morphism f : A → C, define a partial map G(f ) : P →
Q by

G(f )(xa) =
{

xf (a) if f (a) �= 0, 1,
⊥ otherwise.

Informally, if we regard ⊥ as an augmented least element of the hypergraph, we have
x0 = x1 = ⊥, hence G(f )(xa) = xf (a) for each a ∈ A.

Proposition 7.6 If f is an orthoalgebra morphism, then G(f ) is a well-defined hypergraph
morphism, giving a functor G : OA → OH.

Proof Let f : A → C and α = G(f ). By definition, α is a partial function from the set of
points P of the hypergraph G(A) to the set of points Q of the hypergraph G(C). To show it
is a hypergraph morphism, we must verify (A1)–(A3).

Suppose l is a line of P . Then l is an 8-element Boolean subalgebra of A. The points p

on the line l are the xa where a is an atom of l. The image s = f (l) is a Boolean subalgebra
of C. If s has 1 or 2 elements, then f maps each atom of l to 0 or 1, hence each point p of
the line l to ⊥, and (A1.i) applies. If s has 4 elements, so s = xc is a point of Q, then one

Order (2019) 36:563–609 597



atom of l is mapped to 0 and the other two to c, c′. So one point on the line l is mapped by
α to ⊥, and the other two to s. So (A1.ii) applies to α(l). If s has 8 elements, then f is an
isomorphism from l to s and (A1.iii) applies.

Let s = f (t) be the image of a 16-element Boolean subalgebra t of A. Then s is a
Boolean subalgebra of C. If s has 1 or 2 elements, then every element of t is mapped to
{0,1}, so (A2.i) applies. If s is a 4-element Boolean algebra with atoms a, a′, then s = xa

is a point of Q. In this case, exactly two atoms of t are mapped by f to 0, and the other
two atoms are mapped to a, a′. Then two corners of t are mapped to ⊥, and the other two
corners to the point s. That the remainder of the situation is as described in (A2.ii) follows
from behavior of α on lines as given in (A1) that is already established. Suppose s has 8
elements. Then three atoms of t are mapped to the three atoms of s, and the fourth atom of t

is mapped to 0. Thus three corners of t are mapped to the three points on the line s of A and
the fourth corner is mapped to ⊥. That the remainder of the situation is as in (A2.iii) follows
from the behavior of α on lines already established. Finally, if s has 16 elements, then f is
an isomorphism from t to s, and the situation is as in (A2.iv).

For (A3), let l, m be distinct lines of P that intersect in a point and satisfy the hypotheses
of (A3). Suppose the points on l are xa, xb, xc, and those of m are xc, xd, xe for some
a, b, c, d, e ∈ A with none equal to 0,1. One of a, a′, one of b, b′, and one of c, c′ is an
atom of l; and one of c, c′, one of d, d ′, and one of e, e′ is an atom of m. We may assume
without loss of generality that a, b are atoms of l and that d, e are atoms of m. There are
now two distinct possibilities: that the same member of c, c′ that is an atom of l is an atom
of m, and that one of c, c′ is an atom of l and the other is an atom of m. We may assume
without loss of generality that c is an atom of l.

If c′ is an atom of m, then a ⊕ b = c′, so ((a ⊕ b) ⊕ d) ⊕ e exits and is equal to 1. Thus
a, b, d, e are a partition of unity in A, so generate a 16-element Boolean subalgebra t of A.
Thus t is a plane of P , and since neither c, c′ is an atom of t , we have that l, m intersect in
the edge point xc of this plane. We now consider the case where c is an atom of both l, m.
Since α(xc) is an edge point of the plane t ′ that contains α(l) and α(m), we have that f (c) is
an atom of one of α(l), α(m), and a coatom of the other. But our assumptions of α(l), α(m)

give that f maps l isomorphically to α(l), and f maps m isomorphically to α(m). So f

cannot map an atom of one of these Boolean algebras to a coatom of its image.
This shows that α = G(f ) is a hypergraph morphism. If g : C → E is an orthoalgebra

morphism, it is clear that G(g ◦ f ) = G(g) ◦ G(f ), and that G takes the identity morphism
of A to the identity of G(A). Thus G is a functor.

There are several fundamental obstacles preventing an equivalence between the cate-
goriesOA andOH. On the level of objects, the one-element and 2-element Boolean algebras
both have a 1-element poset of Boolean subalgebras, and hence empty hypergraphs. Fur-
thermore, the 4-element Boolean algebra has two automorphisms, while its hypergraph has
one point and therefore only one automorphism. The latter difficulty extends to any orthoal-
gebra having a 4-element block. Moreover, if we were to consider a morphism from a
countable free Boolean algebra to itself whose image was a 4-element Boolean algebra, a
similar problem would arise, and this would be the case also if we took an orthoalgebra
that was a horizonal sum of two such free Boolean algebras. However, modulo such small
blocks, we next show that morphisms in OA can be treated via morphisms in OH.

Definition 7.7 An orthoalgebra morphism f : A → C is proper if

• each a in A is in a block whose image has more than 4 elements
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• each orthogonal a, b ∈ A are contained in a block of A whose image does not equal
{0, f (a), f (a)′, f (b), f (b)′, 1}.

Clearly, if the image of each block of A under f : A → C has more than 4 elements,
then f is proper. The reason we prefer the more complex condition of properness to simply
saying that the image of each block has more than 4 elements is only in part due to greater
generality. The condition of properness has a simpler, and more easily applicable, translation
to the hypergraph setting.

Definition 7.8 A hypergraph morphism α : P → Q is proper when:

(A4) Each point p in P is in a line or plane whose image contains a line;
(A5) For distinct points p, q of P that lie on a line of P there is a point s ∈ P so that

p, q, s lie in a line or plane of P and α(s) is defined and not equal to α(p), α(q).

Proposition 7.9 Let A, C be orthoalgebras and let P,Q be the point sets of their hyper-
graphs. An orthoalgebra morphism f : A → C is proper if and only if its hypergraph
morphism G(f ) : P → Q is proper.

Proof Write α = G(f ).
“⇒” Let p be a point of P . Then p = xa for some a �= 0, 1 in A. Since f is proper there

is a block B of A that contains a and whose image has more than four elements. If α(p) is
a point xf (a) of Q, then there is some b ∈ B with xb a point mapped by α to a point xf (b)

of Q different from xf (a). Since a, b generate a Boolean subalgebra of B with more than 4
elements, p, q lie on a line or plane of P . The image of this line or plane under α contains
distinct points xf (a), xf (b), hence by (A1)–(A2) contains a line.

Suppose α(p) = ⊥. So we may assume f (a) = 0. Since the image of B has more
than 4 elements, there are b, c ∈ B with f (b) = i and f (c) = j where i, j are distinct
atoms of an 8-element Boolean subalgebra of the image of B. Set b1 = a′ ∧ b ∧ c′ and
c1 = a′ ∧ b′ ∧ c. Then a, b1, c1 belong to B and f (a) = 0, f (b1) = i, f (c1) = j . Further,
a, b1, c1 are pairwise orthogonal. So a, b1, c1 generate a subalgebra of B whose atoms are
among a, b1, c1, a

′ ∧ b′
1 ∧ c′

1. This subalgebra has either 8 or 16 elements, so is either a
line or plane of P that contains p. Its image under α contains distinct points of Q, hence
contains a line of Q.

To show that α satisfies (A5), suppose p, q are distinct elements of P that lie on a line
of P . Then there are a, b ∈ A with p = xa and q = xb. Since p, q lie on a line we
have that one of a, a′ is orthogonal to one of b, b′, and we assume a is orthogonal to b. By
assumption, there is a block B of A that contains a, b and some c ∈ B with f (c) /∈ S :=
{0, f (a), f (a)′, f (b), f (b)′, 1}. We consider several cases, and in each produce an element
c1 ∈ B with f (c1) /∈ S and a, b, c1 generating an at most 16-element subalgebra of B.
We use the fact that three pairwise orthogonal elements of a Boolean algebra, and that a
3-element chain of B, generate an at most 16-element subalgebra.

If f (c) ∧ f (a) �= 0, f (a), set c1 = a ∧ c. Then c1 < a ≤ b′. Also f (c1) �= 0, f (a),
and since 0 < f (c1) < f (a) ≤ f (b′), we cannot have f (c1) = f (a)′, f (b), f (b)′, 1.
So f (c1) /∈ S. If f (c) ∧ f (b) �= 0, f (b) the situation is symmetric. If f (c) ∧ f (a) = 0
and f (c) ∧ f (b) = 0, then set c1 = a′ ∧ b′ ∧ c. Then f (c1) = f (c) and a, b, c1 are
pairwise orthogonal. If f (c) ∧ f (a) = 0 and f (c) ∧ f (b) = f (b), set c1 = (a′ ∧ c) ∨ b.
Then f (c1) = f (c) and b ≤ c1 ≤ a′. If f (c) ∧ f (a) = f (a) and f (c) ∧ f (b) = 0 it is
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symmetric. Finally, if f (c) ∧ f (a) = f (a) and f (c) ∧ f (b) = f (b), set c1 = a′ ∧ b′ ∧ c′.
Then f (c1) = f (c)′ and a, b, c1 are pairwise orthogonal.

“⇐” Suppose a �= 0, 1. Then it follows from (A4) that xa is in a line or plane of P whose
image under α contains a line. Thus a is in a Boolean subalgebra of A whose image under f

contains an 8-element subalgebra of C. Extend this Boolean subalgebra containing a to a
block, and this provides the first condition. For the second, suppose a, b ∈ A are orthogonal.
If one or both of a, b is 0 or a = b′, then the second condition for the properness of f

follows from the first. If both a, b �= 0 and a �= b′, then xa and xb are distinct points of P ,
and the orthogonality of a, b gives that they lie on a line of P . By (A5) there is a point xc

of P that lies in a line or plane of P with α(xc) defined and not equal to α(xa), α(xb). Then
a, b, c lie in a Boolean subalgebra of A with at most 16-elements and f (c) is not equal to
any of 0, f (a), f (a)′, f (b), f (b′), 1. Extend this Boolean subalgebra to a block.

Lemma 7.10 Let A,C be proper orthoalgebras. If an orthoalgebra morphism f : A → C

is injective, then it is proper. Moreover, f is injective if and only if G(f ) is injective.

Proof If a �= 0, 1 in A, it is in a block with more than 4 elements because A has no small
blocks. Now let a, b ∈ A be orthogonal. Suppose f is injective. Then a, b are contained
in a block B of A with at least 8 elements. Hence f (a), f (b) lie in a block that contains
f (B) and therefore has at least 8 elements, so cannot equal {0, f (a), f (a)′, f (b), f (b)′, 1}.
Hence f is proper. Let xa, xb be points of the hypergraph corresponding to A and assume
that G(f )(xa) = G(f )(xb). Then {0, f (a), f (a)′, 1} = {0, f (b), f (b)′, 1} (also if f (a) =
0, 1), hence f (a) = f (b) or f (a) = f (b′). Injectivity of f gives a = b or a = b′. In both
cases we have xa = xb. Conversely, assume that G(f ) is injective, and let a, b ∈ A such
that f (a) = f (b). Then

G(f )(xa) = xf (a) = xf (b) = G(f )(xb),

hence xa = xb by injectivity of G(f ), whence a = b or a = b′. However, the latter would
imply f (b) = f (a) = f (b′) = f (b)′, which is impossible if A is proper, so we must have
a = b. We conclude that f is injective.

Remark 7.11 Neither orthoalgebra morphisms that are proper, nor proper hypergraph mor-
phisms, are closed under composition. For example, consider the 16-element Boolean
algebra A with atoms a, b, c, d, define f : A → A by a �→ 0, b �→ b, c �→ c, d �→ d,
and define g : A → A by a �→ a, b �→ 0, c �→ c, d �→ d . Then f and g are both orthoal-
gebra morphisms that are proper, but g ◦ f has a 4-element image so is not proper. Since
A is a proper orthoalgebra, it also follows that an orthoalgebra morphism between proper
orthoalgebras need not be a proper morphism.

Thus a direct categorical approach using proper morphisms is not possible. By the pre-
vious lemma, we can restrict to the category OAi of proper orthoalgebras and injective
orthoalgebra homomorphisms. For now, we will stay general, and show that the functor
G : OA → OH is full and faithful with respect to proper morphisms.

Proposition 7.12 Orthoalgebra morphisms f, g : A → C that are proper are equal if
G(f ) = G(g).

Proof Suppose P,Q are the point sets of G(A),G(C) and set α = G(f ) = G(g). So by
Proposition 7.9 α : P → Q is proper, hence by Definition 7.8 it satisfies conditions (A4)-
(A5). We have that G(g)(xa) = G(f )(xa) = G(f )(xa′) for each a ∈ A. In particular,
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G(f )[A] = G(g)[A], and also f [A] = g[A]. To show that f = g, we take an arbitrary
a ∈ A and show that f (a) = g(a). This is obvious if a = 0, 1, so we assume a �= 0, 1.
Since f is proper, there is a block B that contains a whose image under f has more than 4
elements. In showing that f (a) = g(a) we consider two cases.

Suppose f (a) is either 0,1, and therefore that g(a) is either 0,1. We will show that
f (a) = 0 implies g(a) = 0. The argument for f (a) = 1 follows from this since f (a′) = 0
implies g(a′) = 0, hence g(a) = 1. Let e ∈ B with f (e) �= 0, 1. Set b = e ∧ a′ and
c = e′ ∧ a′. Then a, b, c are pairwise orthogonal in B and their join is 1. We have a �= 0, 1
and since f (b) = f (e) �= 0, 1 and f (c) = f (e′) �= 0, 1, we have b, c �= 0, 1. Thus a, b, c

are atoms of an 8-element Boolean subalgebra of B. We cannot have g(a) = 1 since that
gives g(a′) = 0, hence g(b) = 0, contrary to g(b) being either f (b), f (b′) and therefore
not equal to 0,1.

Next, suppose f (a) �= 0, 1. Since the image of B under f has more than 4 elements,
there is e ∈ B with f (e) /∈ xf (a). We claim there is an 8-element subalgebra S of B that
contains a that is mapped isomorphically to an 8-element Boolean subalgebra T of C. Since
a, a′ are an atom and coatom of S and g(a) is equal to either f (a) or f (a)′, it must be
that g(a) = f (a). To produce this S, we consider several cases. First, if f (e) < f (a),
then set b = e ∧ a. Then f (b) = f (e), so 0 < b < a, and the subalgebra S generated
by a and b is an 8-element subalgebra. Also the image of S is an 8-element subalgebra
T generated by f (a), f (e), where 0 < f (e) < f (a). A similar argument holds in the
case of any comparability among f (a), f (a)′ and f (e), f (e)′. Suppose there is no such
comparability, so a meet of one of f (a), f (a)′ with one of f (e), f (e)′ does not belong to
{0, f (a), f (a)′, f (e), f (e)′, 1}. Set b = e ∧ a′ and c = e′ ∧ a′. Then a, b, c are pairwise
orthogonal and their join is 1, so they generate an 8-element subalgebra S of B. Since none
of f (a), f (b), f (c) is 0 or 1, the image of T of S is then an 8-element Boolean subalgebra
of C.

Having shown that the functor G is faithful on proper morphisms, we turn attention to
showing that it is full. Our earlier notion of directions will be key.

Definition 7.13 Suppose A is a proper orthoalgebra, and let G = G(A) is its hypergraph.
Write Dir(G) for the orthoalgebra of directions of the orthodomain BSub(A)∗ that is the set
of points, lines, and planes of G with the obvious order.

Let’s review some basics of directions when using the terms points, lines, and planes of
G to refer to elements of height at most 3 in the orthodomain BSub(A)∗. Basic elements
are ⊥ and the points p. A direction d for a basic element assigns to each cover of that
basic element either ↑ or ↓ (see also the remark below Corollary 2.21). The direction d

is determined by its assignment on any given cover. The orthocomplementary direction d ′
assigns exactly the opposite choice of ↑ or ↓ to each cover. The basic element ⊥ has two
directions, 0 and 1. The direction 0 assigns ↓ to each point, and the direction 1 assigns ↑ to
each point.

Lemma 7.14 Let d be a direction for a point p of an orthohypergraph G.

(1) If p is a corner point of a plane t , then d takes the same value of ↑or ↓ on all three
lines of t containing p.

(2) If p is a edge point of a plane t , then d takes opposite values of ↑and ↓ on the two
lines of t containing p.
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(3) If l, m are two lines containing p and d takes opposite values of ↑and ↓ on l, m, then
there is a plane t with p as an edge point and l, m the two lines of t containing p.

Proof (1) and (2) can be shown by calculating the directions for a 16-element Boolean
algebra B and depicting this on the plane that is its hypergraph. Alternately, for such B, the
corner points of its plane are the subalgebras xa where a is an atom of B, and the edge points
are the subalgebras xb where b, b′ are elements of height 2 in B. A direction for the point
essentially chooses one element from the point and provides ↑ or ↓ as a value for a line
containing that point depending one whether the chosen element is an atom or coatom of
the 8-element subalgebra corresponding to that line. An atom a of B lies in three 8-element
subalgebras of B and is an atom of each. An element b of height 2 in B lies in two 8-
element subalgebras, and is an atom in one, and a coatom in the other (see for instance Fig. 4
where the element ‘1’, corresponding to an atom of B, occurs in the first three subalgebras
of the second row as an atom. Likewise, the element ‘12’, corresponding to an element of
height two in B, occurs in the first and the last subalgebras of the second row as a coatom
and an atom, respectively). (3) Definition 4.9 of a direction provides that in the indicated
circumstance l ∨ m = t exists and covers l, m. Then t is a plane containing l, m, and the
remainder follows from (2).

Now comes the key notion. In the rest of this section we assume that A, C are proper
orthoalgebras. Write G andH for their hypergraphs, with point sets P and Q.

Definition 7.15 For α : P → Q a proper hypergraph morphism, define fα : Dir(G) →
Dir(H) as follows. Let fα map the directions 0,1 to 0,1. If d is a direction for p ∈ P , let l

be a line through p such that α(l) goes through α(p), and set

fα(d) = the direction for α(p) that takes value d(l) at α(l).

The following results show that this is indeed well-defined.

Lemma 7.16 If α : P → Q is a proper hypergraph morphism, then for each p ∈ P there
is a line l containing p with α(l) covering α(p).

Proof Condition (A4) of a proper hypergraph morphism says that p is in a line or plane
whose image contains a line. Suppose p is in a line l whose image contains a line. Then
α(p) is a point and α(l) is a line containing that point, hence covering α(p). Suppose p is in
a plane t whose image contains a line. In condition (A2), only cases (iii) or (iv) may apply
to α(t). If α(p) = ⊥, then p is in a line in this plane whose image is a point and therefore
covers α(p), and otherwise p is in a line in this plane whose image is a line and therefore
covers α(p).

For the following result, recall that each basic element p has exactly two directions,
and that if one direction for the element is d, then the other d ′ is formed by reversing the
directions of all values d(l) for covers l of the basic element. So if l, m cover p, then one
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direction for p takes the same value at l, m precisely when both directions for p take the
same value at l, m.

Lemma 7.17 Suppose α : P → Q is a proper hypergraph morphism and p ∈ P belongs
to lines l, m where l′ = α(l) and m′ = α(m) cover α(p). If d is a direction of G for p and
e is a direction ofH for α(p), then d(l) = e(l′) implies that d(m) = e(m′).

Proof Suppose first that α(p) = ⊥. Since the directions ofH for ⊥ are 0, 1 and each takes
the same value on all covers of ⊥, that is, on all points of Q, we must show that a direction
d for p takes the same value on the lines l, m that contain p. If not, then by Lemma 7.14(3),
there is a plane t containing l, m and having their intersection p as an edge point. Consider
condition (A2) together with the assumption α(p) = ⊥. The only possibilities that have an
edge point of the plane undefined are (i) and (ii), and both have at least one of the two lines
l, m containing p mapped to ⊥, and hence not covering α(p).

Suppose that α(p) = q is a point of Q. So for l′ and m′ to cover α(p) we have that
l′,m′ are lines of Q that contain q. Our result will follow if we show that d(l) = d(m) iff
e(l′) = e(m′). If d(l) and d(m) take opposite values, then by Lemma 7.14(3) we have that
l, m lie in a plane t with their intersection p an edge point of this plane. Considering the
possibilities for α(t) given by (A2), only case (iv) can apply. So α maps t isomorphically to
a plane t ′, hence with l′,m′ distinct lines of t ′ with their intersection point q = α(p) an edge
point of t ′. Then by part 2 of Lemma 7.14, we have that e takes opposite values at l′,m′. If
e(l′) and e(m′) take opposite values, then by part 3 of Lemma 7.14 we have that l′, m′ are
distinct lines of a plane t ′ with their intersection q an edge point of this plane. By condition
(A3), l and m lie in a plane t of G that is mapped isomorphically by α to t ′, and hence with
the intersection p of l, m being an edge point of t . So d(l) and d(m) take opposite values
by Lemma 7.14(2).

Together, Lemmas 7.16 and 7.14 show that Definition 7.15 is a valid definition of a
mapping fα : Dir(G) → Dir(H). We now proceed to establish properties of this map.

Proposition 7.18 If α : P → Q is a proper hypergraph morphism, then fα : Dir(G) →
Dir(H) is an orthoalgebra morphism.

Proof By Definition 7.15, fα preserves 0 and 1. If d is a direction for a basic element p and
l is a cover of p with α(l) a cover of α(p), then we have that d and its orthocomplement
d ′ take opposite values at l. Then by Definition 7.15, fα(d) and fα(d ′) are directions for
α(p) that take opposite values at the cover α(l) of α(p). Therefore fα(d) and fα(d ′) are
orthocomplements. So fα also preserves orthocomplementation.

It remains to show that fα preserves orthogonal joins. For the rest of the proof, assume
that d is a direction for the basic element p, that e is a direction for the basic element q,
and that d is orthogonal to e. We must show that fα(d) is orthogonal to fα(e) and that
fα(d ⊕ e) = fα(d) ⊕ fα(e). This requires distinguishing several cases.

Case 1: At least one of p, q is ⊥. Since the directions for ⊥ are 0 and 1, since d is
orthogonal to e, it follows that at least one of d and e is 0. Since fα preserves 0, it then
follows that fα(d) is orthogonal to fα(e) and that fα(d ⊕ e) = fα(d) ⊕ fα(e).

In the remainder, assume neither p nor q equals ⊥, and therefore both are points of P .
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Case 2: p = q. Since d, e are directions for the same point p and are orthogonal, it fol-
lows that they are orthocomplements. Since fα preserves orthocomplements, it follows
that fα(d) is orthogonal to fα(e) and that fα(d ⊕ e) = fα(1) = 1 = fα(d) ⊕ fα(e).

So we now have the situation where p and q are distinct points of P . Since d is orthogonal
to e, it follows that p and q lie on a line l. Let r be the third point on l. Then since d is
orthogonal to e we have that d(l) and e(l) have the value ↓, and that d ⊕ e is the direction
for r with (d ⊕ e)(l) having value ↑. The cases that follow will all assume this setup.

Case 3: α(l) properly contains α(p), α(q). From (A1), this implies that α(l) = l′ is a
line, and therefore α(p) = p′, α(q) = q ′, and α(r) = r ′ are distinct points comprising
the line. Definition 7.15 then gives that fα(d) is the direction for p′ with fα(d)(l′) = ↓,
that fα(e) is the direction for q ′ with fα(e)(l′) = ↓, and that fα(d ⊕ e) is the direction
for r ′ with fα(d ⊕e)(l′) = ↑. Then fα(d) and fα(e) are orthogonal and fα(d)⊕fα(e) is
the direction for r ′ taking value ↑ at l′. Since fα(d ⊕ e) and fα(d)⊕fα(e) are directions
for r ′ taking the same value at l′, they are equal.

Suppose α(l) does not properly contain α(p), α(q). Up to symmetry, there are several pos-
sibilities: (i) α(p) = α(q) = ⊥, (ii) α(p) = ⊥, α(q) = q ′, and (iii) α(p) = α(q) = p′.
In any of these cases, since α is proper, by (A5) there is a plane t of P with α(t) properly
containing α(p), α(q). Hence there is a point s ∈ t with α(s) not in l′. Our remaining cases
include this setup.

Case 4: α(p) = α(q) = ⊥. By (A1) also α(r) = ⊥. Since there is a point s in t with
α(s) �= ⊥, the situation must be as indicated as in (A2.ii) with p, q, r forming the bottom
of the plane. We then let u be the top of the plane, and note that α(u) �= ⊥. There are
two different possibilities, that p, q are both corners of t , and that one of p, q is an edge
point of t , say p is an edge point. These lead to the two situations depicted below.

Note that l is the bottom line of each plane. In each case, let i be the line containing
p, u, let j be the line containing q, u, and let k be the line containing r, u. Since α(u) �=
⊥, in each case α(i) = i′, α(j) = j ′ and α(k) = k′ cover ⊥. In a plane, a direction
for a corner point takes the same value on all three lines containing the point, and a
direction for an edge point takes opposite values on the two lines containing the point.
Since d(l) = ↓, e(l) = ↓, (d ⊕ e)(l) = ↑, this yields the following.

Situation at left: d(i) = ↓, e(j) = ↓, and (d ⊕ e)(k) = ↓
Situation at right: d(i) = ↑, e(j) = ↓, and (d ⊕ e)(k) = ↑

Definition 7.15 provides that fα(d)(i′) takes the same value of ↑ or ↓ as d(i). But since
α(p), α(q), and α(r) equal ⊥, each of fα(d), fα(e), and fα(d ⊕ e) is either 0 or 1.
Together with the above information, this provides the following.

Situation at left: fα(d) = 0, fα(e) = 0, and fα(d ⊕ e) = 0

Situation at right: fα(d) = 1, fα(e) = 0, and fα(d ⊕ e) = 1
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In each case, fα(d) and fα(e) are orthogonal, and fα(d ⊕ e) = fα(d) ⊕ fα(e).
Case 5: α(p) = ⊥ and α(q) = q ′. From (A1), α(r) is also equal to the point q ′. The

existence of the point s in t with α(s) different from α(p), α(q) implies (A2.iii) applies.
There are then two possibilities depending on whether q or r is an edge point of t .

Write u for the top of the plane and i, j, k for the lines containing p, u, and q, u,
and r, u respectively as in the previous case. In each situation we have that d(l) = ↓,
so d(i) = ↓, and hence the direction fα(d) for ⊥ takes value ↓ at the point α(i′), and
therefore fα(d) = 0. So in each situation we have that fα(d) is orthogonal to fα(e) and
fα(d) ⊕ fα(e) = fα(e). It remains to show that fα(d ⊕ e) = fα(e). Using the fact that
e(l) = ↓ and (d ⊕ e)(l) = ↑, as well as our description of how arrows work at corner
and edge points of a plane, we have the following.

Situation at left: e(j) = ↓ and (d ⊕ e)(k) = ↓
Situation at right: e(j) = ↑ and (d ⊕ e)(k) = ↑

Since (A2.iii) applies, it follows that α(j) = j ′ and α(k) = k′ are the same line con-
taining q ′. In the first situation, fα(e)(j ′) = ↓ and fα(d ⊕ e)(k′) = ↓, whereas in the
second situation fα(j ′) = ↑ and fα(d ⊕ e)(k′) = ↑. Since j ′ = k′, in either situation
fα(e) = fα(d ⊕ e) as required.

Case 6: α(p) = α(q) = p′. Then (A1.ii) applies to α(l), so α(r) = ⊥. Since there is
a point s in t with α(s) different from p′ and ⊥, case (A2.iii) applies with r the corner
point of t mapped to ⊥. Then one of p, q is a corner point and the other an edge point.
By symmetry we need only consider the situation where p is an edge point.

Write u for the top of the plane and i, j, k for the lines containing p, u, and q, u,
and r, u respectively as in the previous case. Note that (A2.iii) implies that α(u) = u′
is a point distinct from p′. Our considerations for the way arrows behave in a plane in
conjunction with d(l) = ↓, e(l) = ↓ and (d ⊕ e)(l) = ↑ imply the following.

d(i) = ↑, e(j) = ↓, and (d ⊕ e)(k) = ↑
Since α(p) = α(q) = p′, then fα(d) and fα(e) are directions for p′. Also, α(i) = i′ and
α(j) = j ′ both contain the distinct points p′, u′, so i′ = j ′. It follows from the above that
fα(d) and fα(e) take opposite values ↑ and ↓ respectively at the line i′ = j ′. Since they
are directions for the same point p′, they are orthocomplements. Thus fα(d)⊕fα(e) = 1.
We have that d ⊕ e is a direction for r and α(r) = ⊥. Also, α(k) = k′ is the point u′.
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Since d ⊕ e takes value ↑ at k, then fα(d ⊕ e) takes value ↑ at u′. Thus fα(d ⊕ e) = 1.
This completes the proof of this case, and of the proposition.

Recall from Theorem 4.16 that for a proper orthoalgebra A, there is an orthoalgebra
isomorphism from A to Dir(BSub(A)) taking an element a ∈ A to the direction da given
by Definition 4.8. Suppose G is the hypergraph of A. Then as noted in Theorem 6.4, and as
used throughout this section, the orthodomain BSub(A) can be reconstructed from G.

Theorem 7.19 Suppose A and C are orthoalgebras with hypergraphs G and H whose
point sets are P and Q. Suppose α : P → Q is a proper hypergraph morphism. Then
the orthoalgebra morphism fα : Dir(G) → Dir(H) induces an orthoalgebra morphism
gα : A → C where

gα(a) = c if fα(da) = dc

Further, the induced hypergraph morphism G(gα) is equal to α, and therefore gα is proper.

Proof Since gα is given by the composite of the orthoalgebra morphism fα with the
orthoalgebra isomorphisms from A to Dir(G) and from Dir(H) to C, it is an orthoalgebra
morphism. To see that G(gα) = α, suppose xa is point of P . Let gα(a) = c. Then xc is
either ⊥ or a point of Q. By Definition 7.5, we have that G(gα)(xa) = xc. Since da is a
direction for xa , Definition 7.15 gives that fα(da) is a direction for α(xa). But gα(a) = c

implies by the definition of gα that fα(da) = dc. But dc is a direction for xc. Thus fα(da) is
a direction for α(xa) and a direction for xc, hence α(xa) = xc. Thus G(gα) = α. That this
implies that gα is proper is given by Proposition 7.9.

A functor F : C → D is an equivalence of categories when it is full, faithful, and essen-
tially surjective. Fulness and faithfulness mean that for any objects A and C of C, there is
a bijection F : C(A,C) → D(F (A), F (C)) of homsets. Essential surjectivity means that
each object D ∈ D is isomorphic to F(C) for some object C of C. We have seen various
obstructions to providing an equivalence between the categories of orthoalgebras and ortho-
hypergraphs. These include the fact that a one and two-element orthoalgebra have the same
hypergraph, and various difficulties involving morphisms between orthoalgebras where the
image of a block might be small. Essentially, the difficulty arises from the fact that a 4-
element Boolean algebra has 2 automorphisms while its 1-element hypergraph only has one.
This is the only difficulty.

Definition 7.20 Write OAp(A,C) for the collection of orthoalgebra morphisms that are
proper from one orthoalgebra A to another C, and OHp(G,H) for the collection of proper
hypergraph morphisms from one hypergraph G to another H. Write OAi for the category
of proper orthoalgebras and injective orthoalgebra morphisms. Write OHi for the cate-
gory of orthohypergraphs in which every point lies on a line and injective orthohypergraph
morphisms.

Theorem 7.21 The functor G : OA → OH has the following properties:

• it is essentially surjective on objects;
• it is injective on objects with the exception of 1- and 2-element orthoalgebras;
• it is full on proper morphisms: G : OAp(A, C) → OHp(G(A),G(C)) is surjective;
• it is faithful on proper morphisms: G : OAp(A,C) → OHp(G(A),G(C)) is injective.
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Proof That G : OA → OH is a functor is Proposition 7.6. By definition of ortho-
hypergraphs, G is essentially surjective. A proper orthoalgebra A is isomorphic to the
orthoalgebra of directions of BSub(A)∗, and hence determined by its hypergraph G(A). As
described in Remarks 4.17 and 5.17, non-trivial proper orthoalgebras are also determined
up to isomorphism by their posets of Boolean subalgebras of height at most 3, and hence
by their hypergraphs. So G is essentially injective on non-trivial orthoalgebras. Proposi-
tion 7.12 proves G : OAp(A,C) → OHp(G(A),G(C)) injective, and Theorem 7.19 proves
it surjective.

Corollary 7.22 The functor G restricts to an equivalence OAi 	 OHi.

Proof Observe that an orthoalgebraA has no small blocks if and only if every point of G(A)

lies on a line, and combine the previous theorem with Lemma 7.10.

8 Concluding Remarks

We have introduced a newmethod to describe orthoalgebras. Several previous methods have
existed for about 50 years [15]. These include pasted families of Boolean algebras, which
describe an orthostructure by specifying its maximal Boolean subalgebras (blocks) and their
intersections; orthogonality relations, which give the elements of the orthostructure directly
and a relation of orthogonality; and Greechie diagrams used for chain-finite orthostruc-
tures, where the structure is described via a hypergraph whose points are atoms of the
structure.

This new description is based on the poset of Boolean subalgebras of an orthoalgebra. We
emphasize that it is the abstract structure of this poset that is required, not a knowledge of
the actual Boolean subalgebras and their containments; it is enough to know ‘how the parts
fit together’, we do not need to know the parts themselves. Any non-trivial orthoalgebra can
be reconstructed from its poset of Boolean subalgebras via a technique called directions.
This can be further refined to use only that portion of this poset of Boolean subalgebras
of height 3 or less, which can be described as a type of hypergraph. For orthoalgebras,
this hypergraph requires points, lines, and planes, while for orthomodular posets points and
lines of 3 points each are sufficient. The idea behind this reconstruction of an orthoalgebra
from a hypergraph is as follows: each point of the hypergraph yields two elements of the
orthoalgebra to be reconstructed, and the two directions for each point say whether each
element sits as an atom or coatom in each 8-element Boolean algebra that contains it. This
suffices to determine the orthoalgebra up to isomorphism.

In contrast to other methods of representing orthostructures, a categorical correspon-
dence in the setting of hypergraphs is relatively elegant. Morphisms between hypergraphs
are certain partial mappings between their points that satisfy basic conditions describing
how homomorphisms work on Boolean algebras with at most 16 elements, as well as one
simple, but more specific axiom. This provides a functor G from the categoryOA of orthoal-
gebras and their morphisms to the category OH of orthohypergraphs and their morphisms.
On objects this is essentially surjective, and even injective when excepting trivial orthoal-
gebras. Basic obstacles involving automorphisms of 4-element Boolean algebras prevent
an equivalence between any obvious modification of these categories. However, a stronger
result is obtained by restricting to proper morphisms, that for orthoalgebras bypass the
difficulty of the image of a block being a 4-element Boolean algebra. On these proper
morphisms, G is full and faithful. Unfortunately proper morphisms do not compose and
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therefore do not form a category in their own right. Informally, modulo some minor excep-
tions for trivial orthoalgebras and morphisms where some blocks have small images, the
categories OA and OH are ‘nearly’ equivalent.

A description of sorts is given for the posets, and therefore the hypergraphs, that arise
as posets of Boolean subalgebras of an orthoalgebra. Several of the conditions required
are relatively simple using in an essential way the characterization of the poset of Boolean
subalgebras of a Boolean algebra in terms of partition lattices [8]. However, a higher order
condition involving the existence of a sufficient supply of directions for the poset is also
required. This leads to the following question.We believe a positive solution to this would be
of substantial benefit in moving this direction of research forward to allow use of hypergraph
techniques to problems in orthostructures previously addressed only via techniques similar
to Greechie diagrams [18, 19].

Problem 8.1 Characterize the hypergraphs that arise as orthohypergraphs of Boolean
algebras, orthomodular lattices, orthomodular posets, and of orthoalgebras.

Aside from its basic interest and potential applicability, the results here are directly
related to several lines of research. They are a direct continuation of work begun by
Sachs [20] and continued by Grätzer et. al. [8] on the connection between Boolean alge-
bras and their lattices of subalgebras. Indeed, our key notion of directions requires the
analysis originally given by Sachs. Results here are new even in the Boolean context.
They provide a more direct reconstruction of a Boolean algebra from its poset of subalge-
bras via directions rather than by the colimit approach of [8]; they introduce hypergraph
techniques that simplify descriptions; and they give a categorical treatment that involves
morphisms.

The results here are also directly related to the topos approach to quantum mechanics
of Isham et. al. [14]. In this line of investigation, the poset of Boolean subalgebras of the
orthomodular lattice of closed subspaces of a Hilbert space is the central ingredient used
to construct various sheaves. In [11] it was shown that even in the setting of orthomod-
ular lattices, this poset determines the orginal orthomodular lattice. Various studies have
continued this investigation to the matter of connecting the poset of abelian subalgebras
of a von Neumann algebra or C∗-algebra to the given von Neumann or C∗-algebra [3,
9, 13, 17]. There is a fundamental obstacle in this line of investigation given that there
exist non-isomorphic von Neumann algebras with isomorphic Jordan structure. Also a pri-
mary barrier is the fact that only for special classes of C∗-algebras is the poset of its
abelian C*-subalgebras atomic. Bearing this in mind, we ask the following broadly phrased
question.

Problem 8.2 Develop the connection between C∗-algebras and their posets of abelian
subalgebras using hypergraph techniques.
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