232 research outputs found

    Optimal Acyclic Hamiltonian Path Completion for Outerplanar Triangulated st-Digraphs (with Application to Upward Topological Book Embeddings)

    Full text link
    Given an embedded planar acyclic digraph G, we define the problem of "acyclic hamiltonian path completion with crossing minimization (Acyclic-HPCCM)" to be the problem of determining an hamiltonian path completion set of edges such that, when these edges are embedded on G, they create the smallest possible number of edge crossings and turn G to a hamiltonian digraph. Our results include: --We provide a characterization under which a triangulated st-digraph G is hamiltonian. --For an outerplanar triangulated st-digraph G, we define the st-polygon decomposition of G and, based on its properties, we develop a linear-time algorithm that solves the Acyclic-HPCCM problem with at most one crossing per edge of G. --For the class of st-planar digraphs, we establish an equivalence between the Acyclic-HPCCM problem and the problem of determining an upward 2-page topological book embedding with minimum number of spine crossings. We infer (based on this equivalence) for the class of outerplanar triangulated st-digraphs an upward topological 2-page book embedding with minimum number of spine crossings and at most one spine crossing per edge. To the best of our knowledge, it is the first time that edge-crossing minimization is studied in conjunction with the acyclic hamiltonian completion problem and the first time that an optimal algorithm with respect to spine crossing minimization is presented for upward topological book embeddings

    Upward Book Embeddings of st-Graphs

    Get PDF
    We study k-page upward book embeddings (kUBEs) of st-graphs, that is, book embeddings of single-source single-sink directed acyclic graphs on k pages with the additional requirement that the vertices of the graph appear in a topological ordering along the spine of the book. We show that testing whether a graph admits a kUBE is NP-complete for k >= 3. A hardness result for this problem was previously known only for k = 6 [Heath and Pemmaraju, 1999]. Motivated by this negative result, we focus our attention on k=2. On the algorithmic side, we present polynomial-time algorithms for testing the existence of 2UBEs of planar st-graphs with branchwidth b and of plane st-graphs whose faces have a special structure. These algorithms run in O(f(b)* n+n^3) time and O(n) time, respectively, where f is a singly-exponential function on b. Moreover, on the combinatorial side, we present two notable families of plane st-graphs that always admit an embedding-preserving 2UBE

    Crossing-Free Acyclic Hamiltonian Path Completion for Planar st-Digraphs

    Full text link
    In this paper we study the problem of existence of a crossing-free acyclic hamiltonian path completion (for short, HP-completion) set for embedded upward planar digraphs. In the context of book embeddings, this question becomes: given an embedded upward planar digraph GG, determine whether there exists an upward 2-page book embedding of GG preserving the given planar embedding. Given an embedded stst-digraph GG which has a crossing-free HP-completion set, we show that there always exists a crossing-free HP-completion set with at most two edges per face of GG. For an embedded NN-free upward planar digraph GG, we show that there always exists a crossing-free acyclic HP-completion set for GG which, moreover, can be computed in linear time. For a width-kk embedded planar stst-digraph GG, we show that we can be efficiently test whether GG admits a crossing-free acyclic HP-completion set.Comment: Accepted to ISAAC200

    Continuity argument revisited: geometry of root clustering via symmetric products

    Full text link
    We study the spaces of polynomials stratified into the sets of polynomial with fixed number of roots inside certain semialgebraic region Ω\Omega, on its border, and at the complement to its closure. Presented approach is a generalisation, unification and development of several classical approaches to stability problems in control theory: root clustering (DD-stability) developed by R.E. Kalman, B.R. Barmish, S. Gutman et al., DD-decomposition(Yu.I. Neimark, B.T. Polyak, E.N. Gryazina) and universal parameter space method(A. Fam, J. Meditch, J.Ackermann). Our approach is based on the interpretation of correspondence between roots and coefficients of a polynomial as a symmetric product morphism. We describe the topology of strata up to homotopy equivalence and, for many important cases, up to homeomorphism. Adjacencies between strata are also described. Moreover, we provide an explanation for the special position of classical stability problems: Hurwitz stability, Schur stability, hyperbolicity.Comment: 45 pages, 4 figure

    On 1-bend Upward Point-set Embeddings of stst-digraphs

    Full text link
    We study the upward point-set embeddability of digraphs on one-sided convex point sets with at most 1 bend per edge. We provide an algorithm to compute a 1-bend upward point-set embedding of outerplanar stst-digraphs on arbitrary one-sided convex point sets. We complement this result by proving that for every n≥18n \geq 18 there exists a 22-outerplanar stst-digraph GG with nn vertices and a one-sided convex point set SS so that GG does not admit a 1-bend upward point-set embedding on SS

    Computing upward topological book embeddings of upward planar digraphs

    Get PDF
    This paper studies the problem of computing an upward topological book embedding of an upward planar digraph G, i.e. a topological book embedding of G where all edges are monotonically increasing in the upward direction. Besides having its own inherent interest in the theory of upward book embeddability, the question has applications to well studied research topics of computational geometry and of graph drawing. The main results of the paper are as follows. -Every upward planar digraph G with n vertices admits an upward topological book embedding such that every edge of G crosses the spine of the book at most once. -Every upward planar digraph G with n vertices admits a point-set embedding on any set of n distinct points in the plane such that the drawing is upward and every edge of G has at most two bends. -Every pair of upward planar digraphs sharing the same set of n vertices admits an upward simultaneous embedding with at most two bends per edge

    Developing a Mathematical Model for Bobbin Lace

    Full text link
    Bobbin lace is a fibre art form in which intricate and delicate patterns are created by braiding together many threads. An overview of how bobbin lace is made is presented and illustrated with a simple, traditional bookmark design. Research on the topology of textiles and braid theory form a base for the current work and is briefly summarized. We define a new mathematical model that supports the enumeration and generation of bobbin lace patterns using an intelligent combinatorial search. Results of this new approach are presented and, by comparison to existing bobbin lace patterns, it is demonstrated that this model reveals new patterns that have never been seen before. Finally, we apply our new patterns to an original bookmark design and propose future areas for exploration.Comment: 20 pages, 18 figures, intended audience includes Artists as well as Computer Scientists and Mathematician
    • …
    corecore