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Abstract. This paper studies the problem of computing an upward
topological book embedding of an upward planar digraph G, i.e. a topo-
logical book embedding of G where all edges are monotonically increas-
ing in the upward direction. Besides having its own inherent interest in
the theory of upward book embeddability, the question has applications
to well studied research topics of computational geometry and of graph
drawing. The main results of the paper are as follows.
– Every upward planar digraph G with n vertices admits an upward

topological book embedding such that every edge of G crosses the
spine of the book at most once.

– Every upward planar digraph G with n vertices admits a point-set
embedding on any set of n distinct points in the plane such that the
drawing is upward and every edge of G has at most two bends.

– Every pair of upward planar digraphs sharing the same set of n
vertices admits an upward simultaneous embedding with at most
two bends per edge.

1 Introduction

A book consists of a line called spine and of k half-planes, called pages, having
the spine as a boundary. A book embedding of a planar graph G is a drawing of G
on a book such that the vertices are aligned along the spine, each edge is drawn
in a page and shares with the spine only its end-vertices, and no two edges cross.
A well-known result is that all planar graphs have a book embedding on four
pages and that there exist some planar graphs requiring exactly four pages to
be book embedded [28]. Thus, book embeddings of planar graphs are in general
three-dimensional representations and if one wants to have a two dimensional
drawing of a planar graph where all vertices are collinear, edges must be allowed
to cross the spine. Drawings where spine crossings are allowed are known in
the literature as topological book embeddings [13]. In [10] it is proved that every
planar graph admits a topological book embedding in the plane such that every
edge crosses the spine at most once.
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Motivated by parallel process scheduling problems, upward book embeddings
of acyclic digraphs and of posets have also been widely investigated (see e.g.,
[1,19,20,21,26]). An upward book embedding of an acyclic digraph G is a book
embedding of G such that the ordering of the vertices along the spine is a topolog-
ical ordering of G. Informally, an upward book embedding is a book embedding
in which the spine is vertical and the directed edges are drawn as curves mono-
tonically increasing in the upward direction. In contrast to the result in [28]
concerning the book embeddability of undirected planar graphs, the minimum
number of pages required by an upward book embedding of a planar acyclic
digraph is unbounded [19], while the minimum number of pages required by an
upward book embedding of an upward planar digraph is not known [1,19,26].
Only some classes of upward planar digraphs requiring a constant number of
pages have been established to date (see, e.g. [1,9,21]).

This paper studies the problem of computing an upward topological book em-
bedding of an upward planar digraph G, i.e. a topological book embedding of G
in 2 pages, where all edges are monotonically increasing in the upward direction.
Besides having its own inherent interest in the theory of upward book embed-
dability, the question has applications to well studied research topics of graph
drawing and of computational geometry. The first and more immediate applica-
tion is in the context of computing drawings of hierarchical structures where it
is required to consider not only aesthetic constraints such as the upwardness and
the planarity but also semantic constraints expressed in terms of collinearity for
a (sub)set of the vertices; for example, in the application domains of knowledge
engineering and of project management, PERT diagrams are typically drawn by
requiring that critical sequences of tasks be represented as collinear vertices (see,
e.g., [8,27]).

Upward topological book embeddings turn out to be also a useful tool to
address a classical problem of computational geometry. Let G be a planar graph
with n vertices and let S be a set of n distinct points in the plane. A point-set
embedding of G on S is a planar drawing of G where every vertex of G is mapped
to a point of S. The problem of computing point-set embeddings of planar graphs
such that the number of bends along the edges be a small constant is the subject
of a rich body of literature (including, e.g., [3,4,18,22]). We shall discuss how to
use upward topological book embeddings in order to find new results in the
context of point-set embeddings of planar acyclic digraphs with the additional
constraint that all edges are oriented upward.

Finally, an emerging research direction in graph drawing studies the prob-
lem of representing and visually comparing multiple related graphs which typ-
ically come from different application domains including software engineering,
telecommunications, and computational biology. Simultaneous embeddings (see,
e.g., [5,6,11,14,16]) aid in visualizing multiple relationships between the same
set of objects by keeping common vertices of these graphs in the same posi-
tions. An additional contribution of this paper is to apply upward topological
book embeddings in the context of simultaneous embeddings of upward planar
digraphs.
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More precisely, the main results in this paper can be listed as follows.

– It is proved that every upward planar digraph G with n vertices admits
an upward topological book embedding such that every edge of G crosses
the spine of the book at most once. We recall that it is not known how
many pages may be required if the edges must be drawn upward but are
not allowed to cross the spine [1,19,26]. Our result can be regarded as the
upward counterpart of [10], where topological book embeddings of non-
oriented planar graphs are studied.

– It is shown that every upward planar digraph G with n vertices admits a
point-set embedding on any set of n distinct points in the plane, such that
the drawing is upward and every edge of G has at most two bends. Similar
results were previously known only for restricted families of upward planar
digraphs [9].

– Let G1 and G2 be any two upward planar digraphs defined on the same set
of n vertices. An upward simultaneous embedding of G1 and G2 is a pair
of upward planar drawings < Γ1, Γ2 > such that Γ1 is an upward planar
drawing of G1, Γ2 is an upward planar drawing of G2, and for each vertex v
the point representing v is the same in Γ1 and in Γ2.
It is shown that every pair G1, G2 admits an upward simultaneous embed-
ding < Γ1, Γ2 > such that every edge has at most two bends. Non-directed
counterparts of this result are in [11,14].

The proofs of the above results are constructive and give rise to polynomial
time algorithms. In particular, the drawing algorithm to compute upward topo-
logical book embeddings is based on an incremental technique that adds a face
at a time by exploiting the interplay between an st-numbering of the upward
planar digraph given as input and an st-numbering of its dual digraph.

The remainder of the paper is organized as follows. Basic definitions are given
in Section 2. The problem of computing upward topological book embeddings of
upward planar digraphs is studied in Section 3. Upward point-set embeddings
and upward simultaneous embeddings are the subject of Sections 4 and 5, re-
spectively. Finally, conclusions and possible directions for future research can be
found in Section 6. For reasons of space, proofs have been omitted and can be
found in [15].

2 Preliminaries

We assume familiarity with basic graph drawing terminology [2,23,25] and recall
in the following only those definitions and properties that will be extensively
used in the remainder of the paper.

Let G be a digraph and let u, v be any two vertices of G; (u, v) denotes the
directed edge from u to v. An st-digraph is a biconnected acyclic digraph with
exactly one source s and exactly one sink t, and such that (s, t) is an edge of the
digraph. A planar st-digraph is an st-digraph that is planar and embedded with
vertices s and t on the boundary of the external face. The digraph depicted in
Figure 1(a) is an example of a planar st-digraph.
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Property 1. Let v be a vertex of a planar st-digraph G such that v �= s and
v �= t. There exists a path P ⊂ G such that P is directed from s to t and P
includes v.

Property 2. The external face of a planar st-digraph consists of edge (s, t) and
of a directed path from s to t.

Let G be a planar st-digraph. For each edge e = (u, v) of G, we denote by left(e)
(resp. right(e)) the face to the left (resp. right) of e in G. Let s∗ be the face
right((s, t)), and let t∗ be the face left((s, t)). In the rest of the paper we shall
always assume that t∗ is the external face of G. Faces s∗ and t∗ are highlighted
in Figure 1(a).
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Fig. 1. (a) A planar st-digraph G with an st-numbering of its vertices. Digraph G is a
maximal planar st-digraph. (b) st-digraph G (solid) and its dual st-digraph (dashed).
The vertices of the dual st-digraph are numbered according to an st-numbering.

Let G be a planar st-digraph. The dual of G is the digraph denoted as G∗ such
that: (i) there is a vertex in G∗ for each face of G; (ii) for every edge e �= (s, t)
of G, G∗ has an edge e∗ = (f, g) where f = left(e) and g = right(e); (iii) G∗

has an edge (s∗, t∗). Figure 1(b) depicts with dashed edges the dual digraph of
the digraph of Figure 1(a).

Property 3. Let G be a planar st-digraph and let G∗ be the dual digraph of G.
Graph G∗ is a planar st-digraph with source s∗ and sink t∗.

A planar st-digraph is said to be maximal if all its faces are triangles, i.e. the
boundary of each face has exactly three vertices and three edges. Given any
planar st-digraph G, one can always add edges that split faces of G in order to
obtain a maximal planar st-digraph that includes G. Figure 1(a) is an example
of a maximal planar st-digraph.

Property 4. Let G be a maximal planar st-digraph with more than three vertices.
The dual of G is a planar st-digraph without multiple edges.
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A planar drawing of a digraph is upward if all of its edges are curves monoton-
ically increasing in a common direction which is called the upward direction of
the drawing. For example, upward directions of an upward planar drawing could
be the positive y-direction or the positive x-direction. Figure 1(a) is an example
of an upward planar drawing. A digraph that admits an upward planar drawing
is said to be upward planar. As proved in [7,24], upward planar digraphs are
exactly the subgraphs of planar st-digraphs. Also, an upward planar digraph
G can always be augmented to become a maximal planar st-digraph. This can
be done by adding extra edges that “saturate” the faces of an upward planar
drawing of G and by inserting at most two vertices on the external face of such
upward planar drawing of G. One of these two extra vertices is the source of the
external face of the drawing and the second one is the sink of the external face
of the drawing. By using results of [7,12,24] the following can be proved.

Lemma 1. Let G be an upward planar digraph with n vertices. There exists a
maximal planar st-digraph with at most n + 2 vertices that includes G. Also if
an upward planar drawing of G is given, such an st-digraph can be computed in
O(n) time.

An st-numbering of an st-digraph G with n vertices, is a numbering of its vertices
with the integers 1, . . . , n such that: (i) No two vertices have the same number;
(ii) For every edge (u, v), the number of u is less than the number of v. For
example, the indices of the vertices in Figure 1(a) are given according to an
st-numbering of the depicted st-digraph. The number associated to a vertex v
in an st-numbering of an st-digraph is called the st-number of v. Let u and v
be two vertices of an st-digraph with a given st-numbering; if the st-number of
u is less than the st-number of v we say that u precedes v and we denote it as
u <st v.

Lemma 2. [2] Let G be a planar st-digraph with n vertices. An st-numbering
of G can be computed in O(n) time.

3 Computing Upward Topological Book Embeddings

A 2-page book consists of a single vertical line, called spine, and of 2 half-planes
called pages that share the spine as a common boundary. The half-plane on the
left-hand side of the spine is the left page, the other one is the right page. Let p
and q be two points of the spine. We say that p is below q and denote it as p < q
if the y-coordinate of p is smaller than the y-coordinate of q. Let p and q be two
points of the spine of a 2-page book such that p < q. An upward arc (p, q) is a
circular arc contained in one of the pages and passing through p, q and r, where
r is a point of the perpendicular bisector of segment pq at a distance d(p,q)

2 from
the spine. Points p and q are the endpoints of (p, q).

Let G be an upward planar digraph. An upward topological book embedding
of G is an upward planar drawing Γ of G in a 2-page book such that: (i) All
vertices of G are represented as points of the spine (the spine will also be called
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spine of Γ ); (ii) Each edge (u, v) of G is represented in Γ as either an upward
arc or it consists of two upward arcs (u, z) and (z, v) such that (u, z) is in the left
page and (z, v) is in the right page. Let e = (u, v) be an edge of G represented in
Γ by two upward arcs (u, z) and (z, v); we say that z is the spine crossing of e in
Γ . Figure 2(a) shows an upward topological book embedding of the st-digraph
depicted in Figure 1(a). We remark that, by definition, in an upward topological
book embedding every edge can cross the spine at most once.

In the next subsections we study the problem of computing an upward topo-
logical book embedding of an upward planar digraph G. Based on Lemma 1,
we will describe the drawing procedure by assuming that the input digraph is a
maximal planar st-digraph. Subsection 3.1 introduces the notion of k-facial sub-
graph of an st-digraph, which is used as a guideline for the drawing procedure
described in Subsection 3.2.

3.1 The k-Facial Subgraph

Let G be a maximal planar st-digraph with more than three vertices and let
G∗ be the dual digraph of G. By Property 4, G∗ is a planar st-digraph without
multiple edges; by Lemma 2, its vertices can be numbered according to an st-
numbering. Hence, let {v∗1 = s∗, v∗2 , . . . , v∗m = t∗} be the set of vertices of G∗

where the indices are given according to an st-numbering of G∗. See, for example,
Figure 1(b), where the vertices of the dual are numbered according to an st-
numbering. By definition of dual st-digraph, a vertex v∗i of G∗ (1 ≤ i ≤ m)
corresponds to a face of G; in the remainder of the paper we shall denote as v∗i
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Fig. 2. (a) An upward topological book embedding of the maximal planar st-digraph
of Figure 1(a). The drawing is computed by using Algorithm Upward Spine Drawer of
Section 3.2. (b) The 8-facial subgraph of the maximal planar st-digraph of Figure 1(a).
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both the vertex of the dual digraph G∗ and its corresponding face in the primal
digraph G.

Let Vk be the subset of the vertices of G that belong to faces v∗1 , v∗2 , . . . , v∗k.
The subgraph of G induced by the vertices in Vk is called the k-facial subgraph
of G and is denoted as Gk. Face v∗k is called the k-th face of G. Observe that
the topology of a k-facial subgraph of G depends on the particular st-numbering
chosen for G∗. The drawing algorithm of the next section considers a sequence
of k-facial subgraphs of G all defined on a same st-numbering of G∗. Hence,
from now on we shall assume that G∗ is given together with an st-numbering.
As an example, Figure 2(b) shows the 8-facial subgraph of the maximal planar
st-digraph depicted in Figure 1(a) assuming that the st-numbering of its dual is
the one shown in Figure 1(b). The proof of Lemma 3 relies on properties of the
st-numbering of G and of its dual.

Lemma 3. Let G be a maximal planar st-digraph with m faces, let Gk−1 be the
(k − 1)-facial subgraph of G (2 ≤ k ≤ m) and let Gk be the k-facial subgraph of
G. Let v∗k be the k-th face of G consisting of edges (w, w′), (w′, w′′), and (w, w′′).
One of the following statements holds:

(S1): (w, w′′) is an edge of the external face of Gk−1; (w, w′) and (w′, w′′) are
edges of the external face of Gk.

(S2): (w, w′) and (w′, w′′) are edges of the external face of Gk−1; (w, w′′) is an
edge of the external face of Gk.

The following lemma can be proved by induction and by means of Lemma 3.

Lemma 4. Let G be a maximal planar st-digraph with m faces and let Gk be
the k-facial subgraph of G (1 ≤ k ≤ m). Gk is a planar st-digraph.

3.2 The Upward Spine Drawer Algorithm

Let G be a maximal planar st-digraph with m faces, and let v1 = s, . . . , vn = t be
the vertices of G ordered according to an st-numbering of G. Algorithm Upward
Spine Drawer receives G as input and it computes as output an upward topolog-
ical book embedding of G. The computed upward topological book embedding
respects the given upward planar embedding for G. In order to properly describe
the algorithm, we need two additional definitions. Let Γ be an upward topolog-
ical book embedding and let p be a point on the spine of Γ . We say that p is
visible from the right-hand side if the horizontal line through p does not intersect
any upward arc of Γ in the right page. Let v be a vertex of Γ and let p be a
point of the spine such that v < p. We say that segment pv is a safe interval of
v if: (i) Every point of pv is visible from the right-hand side and (ii) pv does not
contain endpoints of any upward arcs (either in the left or in the right page).
Note that the safe interval of v is assumed to be an open set.

A high-level description of Algorithm Upward Spine Drawer is as follows. The
algorithm computes an upward topological book embedding of G on a 2-page
book in m steps. At Step 1, it computes an upward topological book embedding
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of the 1-facial subgraph G1. Let Γk−1 be the drawing computed at the end of
Step (k − 1) (2 ≤ k ≤ m). At Step k, a drawing Γk of the k-facial subgraph Gk

is computed by adding a new face to the drawing Γk−1 of Gk−1. At each step
the following invariant properties are maintained.

I1: Let w and w′ be two vertices of the external face of Gk such that w <st w′

in the st-numbering of G. Then w < w′ in Γk.
I2: For each vertex w of the external face of Gk, w is visible from the right-hand

side and w has a safe interval.

A more detailed description of the steps executed by Algorithm Upward Spine
Drawer is given below; Λ denotes the spine of the 2-page book.

– Step 1, computation of Γ1: Let {s, t, w} be the vertices of the boundary of
face v∗1 . Draw s and t along Λ such that s is below t. Let z be a point of the
spine such that s < z < t. Let (s, z) be the upward arc from s to z in the
left page and let (z, t) be the upward arc from z to t in the right page. Draw
edge (s, t) in Γ1 as the curve formed by (s, z) followed by (z, t). Represent
w as point of the spine such that s < w < z. Select two points zs and zw

of the spine such that s < zs < w and w < zw < z. Edge (s, w) is drawn
as two upward arcs (s, zs), (zs, w) into the left and right page, respectively.
Edge (w, t) is drawn as two upward arcs (w, zw), (zw, t), into the left and
right page, respectively.

– Step k, computation of Γk (2 ≤ k ≤ m): Let Γk−1 be the drawing of Gk−1
and let w1 = s, w2, . . . , wh = t be the counterclockwise sequence of the
vertices along the external face of Γk−1. Add face v∗k to Γk−1 as follows.

• Statement S1 of Lemma 3 holds. The boundary of face v∗k is a three cycle
having two consecutive vertices of the external face of Γk−1, say wi and
wi+1 (1 ≤ i ≤ h − 1), and a vertex v of the external face of Gk. Let p be
a point above wi such that segment wip is the safe interval of wi. Draw
v as a point in the safe interval of wi. Let zwi be a point of Λ such that
wi < zwi < v. Draw edge (wi, v) as the upward arc (wi, zwi) in the left
page followed by the upward arc (zwi , v) in the right page. Let zv be a
point of Λ such that v < zv < p. Draw edge (v, wi+1) as the upward arc
(v, zv) in the left page followed by the upward arc (zv, wi+1) in the right
page.

• Statement S2 of Lemma 3 holds. The boundary of face v∗k is a three cycle
having three consecutive vertices of the external face of Γk−1 denoted
as wi, wi+1, and wi+2 (1 ≤ i ≤ h − 2). Drawing Γk is computed by
adding edge (wi, wi+2) to Γk−1 as follows. Let zwi be a point in the safe
interval of wi. Draw (wi, wi+2) as the upward arc (wi, zwi) in the left
page followed by the upward arc (zwi , wi+2) in the right page.

Figure 2(a) is an example of drawing computed by Algorithm Upward Spine
Drawer when the input is the maximal planar st-digraph of Figure 1(a).

Lemma 5. Let G be a maximal planar st-digraph. Algorithm Upward Spine
Drawer maintains Invariants I1 and I2.
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Lemma 6. Let G be a maximal planar st-digraph. Algorithm Upward Spine
Drawer computes an upward topological book embedding of G.

We are now ready to present the main result of this section.

Theorem 1. Every upward planar digraph G with n vertices admits an upward
topological book embedding. Also, if an upward planar drawing of G is given, such
upward topological book embedding can be computed in O(n) time.

In the next two sections we discuss applications of Theorem 1 to problems of
graph drawing and computational geometry. Namely, Section 4 is devoted to
upward drawings with constraints on the position of the vertices, while Section 5
is concerned with simultaneous embeddings of pairs of upward planar digraphs
sharing their vertex set.

4 Upward Point-Set Embeddings

Let S be a set of n distinct points on the plane and let G be an upward planar
digraph with n vertices. An h-bend upward point-set embedding of G on S is an
upward planar drawing of G such that each vertex is mapped to a distinct point
of S and every edge has at most h bends (notice that the mapping of the vertices
to the points of S is not part of the input). A digraph G is h-bend upward point-
set embeddable if it has an h-bend upward point-set embedding on any set of n
points in the plane. In [9] it has been proved that an upward planar digraph is
1-bend upward point-set embeddable if and only if it has an upward topological
book embedding such that no edge crosses the spine (i.e. it has an upward book
embedding on two pages). It has also been proved that the following classes
of digraphs admit this type of drawing: tree dags [21], unicyclic dags [21], and
two-terminal series-parallel digraphs [9]. Hence, all graphs in these families are
1-bend upward point-set embeddable. However, not all upward planar digraphs
have an upward topological book embedding without spine crossings [21] and
therefore at least two bends are necessary in the general case. By using Theorem 1
and techniques from [10,22] we can prove that two bends per edge are actually
always sufficient. In the following theorem the area of a drawing is the area of
the smallest axis-aligned rectangle enclosing the drawing.

Theorem 2. Every upward planar digraph G with n vertices admits a 2-bend
upward point-set embedding on any set S of n distinct points in the plane. Also, if
an upward planar drawing of G is given, such 2-bend upward point-set embedding
can be computed in O(n log n) time and in area O(W 3), where W is the width
of the smallest axis-aligned rectangle enclosing S.

5 Upward Simultaneous Embeddings

Let G1 and G2 be two planar graphs with the same vertex set, i.e. V (G1) =
V (G2) = V . A simultaneous embedding of G1 and G2 is a pair of drawings of
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G1 and G2 such that each drawing is planar and each vertex is represented by
the same point in both drawings. The problem of computing a simultaneous
embedding of two undirected planar graphs is a classical subject of investigation
in the graph drawing literature (see, e.g. [5,6,11,14,16]). This section considers
the upward version of this problem and uses Theorem 1 together with techniques
from [11,14] to establish upper bounds on the area and number of bends per edge
of the computed drawings.

Let G1 and G2 be two upward planar digraphs with the same vertex set, i.e.
V (G1) = V (G2) = V . An upward simultaneous embedding of G1 and G2 is a
pair of upward planar drawings Γ1 of G1 and Γ2 of G2 such that each vertex
is represented by the same point in both drawings. An upward simultaneous
embedding of G1 and G2 will also be denoted as < Γ1, Γ2 >. Note that the
upward directions of Γ1 and Γ2 in < Γ1, Γ2 > are not required to be the same.

Theorem 3. Every pair of upward planar digraphs G1 and G2 such that V (G1)
= V (G2) = V admits an upward simultaneous embedding with at most two
bends per edge. Also, if a pair of upward planar drawings of G1 and G2 is given,
such upward simultaneous embedding can be computed in O(n) time and in area
O(n2) × O(n2), where n = |V |.

6 Conclusions and Open Problems

In this paper we presented a unified approach to studying book-, point-set, and
simultaneous embeddability problems of upward planar digraphs. The approach
is based on a linear time strategy to compute an upward planar drawing of an
upward planar digraph such that all vertices are collinear and each edge has at
most two bends. Besides having impact in relevant application domains of graph
drawing and computational geometry, the presented results open new research
directions in the area of upward planarity with constraints of the positions of
the vertices. We therefore conclude this paper by discussing some of the most
interesting questions that can be inspired by the presented results.

Upward book embeddability: Theorem 1 shows that an upward topological book
embedding of an upward planar digraph can be computed such that every edge
crosses the spine at most once. It would be interesting to study the problem of
computing upward topological book embeddings with the minimum number of
spine crossings.

Upward point-set embeddability: Theorem 2 shows that every upward planar di-
graph with n vertices has a 2-bend upward point-set embedding on any set on n
distinct points in the plane. In [22] it is proved that point-set embeddings of undi-
rected planar graphs may require two bends per edge. This immediately implies
that the same lower bound also applies to the upward planar case, and therefore
the statement of Theorem 2 is tight in terms of bends per edge. However, it
is well-known that every (undirected) outerplanar graph with n vertices has a
point-set embedding on any set of n points in general position with straight-
line edges and that the outerplanar graphs are the largest family of graphs with
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this property [18]. It would be interesting to characterize those upward planar
digraphs that have an upward point-set embedding with straight-line edges on
any set of points in general position.

Upward simultaneous embeddability: Theorem 3 shows that any two upward pla-
nar digraphs have an upward simultaneous embedding with at most two bends
per edge. It would be interesting to understand whether the number of bends
per edge stated in Theorem 3 is also necessary in some cases. We recall that one
bend on some of the edges may be required to simultaneously embed pairs of
undirected planar graphs [5,14,17] and hence the same lower bound also applies
to the problem of computing upward simultaneous embeddings.

A related question asks whether a straight-line upward simultaneous embed-
ding of two upward planar digraphs G1 and G2 is always possible in the no-
mapping scenario. In this scenario, the goal is to compute a pair < Γ1, Γ2 > of
straight-line upward planar drawings of G1 and of G2 such that the set of points
representing the vertices is the same in Γ1 and in Γ2, but each vertex can have
different coordinates in the two drawings. For example, a straight-forward con-
sequence of the literature is that any number of tree dags and of unicyclic dags
can be upward simultaneously embedded without mapping and with straight-
line edges. Namely, in [21] it is proved that these graphs admit an upward book
embedding with all edges in the same page. Thus, choose a set S of n points in
general position such that: (i) the points are in convex position, (ii) all points
have distinct y-coordinates, and (iii) the two extreme points in the y-direction
are adjacent in the convex hull and all the remaining points are to the left of the
upward-directed line they define. Now compute a straight-line upward point-set
embedding of each tree or unicyclic dag with n vertices by mapping the vertices
to the points of S by increasing y-coordinate and according to the below-to-
above order of these vertices along the spine. We find it interesting to study the
general question about whether any pair of upward planar digraphs (not just
tree dags or unicyclic dags) admit an upward simultaneous embedding without
mapping.
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