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Abstract
We study k-page upward book embeddings (kUBEs) of st-graphs, that is, book embeddings of single-
source single-sink directed acyclic graphs on k pages with the additional requirement that the vertices
of the graph appear in a topological ordering along the spine of the book. We show that testing
whether a graph admits a kUBE is NP-complete for k ≥ 3. A hardness result for this problem was
previously known only for k = 6 [Heath and Pemmaraju, 1999]. Motivated by this negative result,
we focus our attention on k = 2. On the algorithmic side, we present polynomial-time algorithms
for testing the existence of 2UBEs of planar st-graphs with branchwidth β and of plane st-graphs
whose faces have a special structure. These algorithms run in O(f(β) · n+ n3) time and O(n) time,
respectively, where f is a singly-exponential function on β. Moreover, on the combinatorial side, we
present two notable families of plane st-graphs that always admit an embedding-preserving 2UBE.
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13:2 Upward Book Embeddings of st-Graphs

1 Introduction

A k-page book embedding 〈π, σ〉 of an undirected graph G = (V,E) consists of a vertex
ordering π : V ↔ {1, 2, . . . , |V |} and of an assignment σ : E → {1, . . . , k} of the edges of G
to one of k sets, called pages, so that for any two edges (a, b) and (c, d) in the same page, with
π(a) < π(b) and π(c) < π(d), we have neither π(a) < π(c) < π(b) < π(d) nor π(c) < π(a)
< π(d) < π(b). From a geometric perspective, a k-page book embedding can be associated
with a canonical drawing Γ(π, σ) of G where the k pages correspond to k half-planes sharing
a vertical line, called the spine. Each vertex v is a point on the spine with y-coordinate π(v);
each edge e is a circular arc on the σ(e)-th page, and the edges in the same page do not cross.

For k-page book embeddings of directed graphs (digraphs), a typical requirement is
that all the edges are oriented in the upward direction. This implies that G is acyclic and
that all the vertices appear along the spine in a topological ordering. This type of book
embedding for digraphs is called an upward k-page book embedding of G (for short, kUBE).
Note that, when k = 2 and the two pages are coplanar, drawing Γ(π, σ) is an upward planar
drawing of G, i.e., a planar drawing where all the edges monotonically increase in the upward
direction. The study of upward planar drawings is a most prolific topic in the theory of
graph visualization [6, 7, 20, 21, 25, 26, 28, 31, 33, 35, 51, 69].

The page number of a (di)graph G (also called book thickness) is the minimum number k
such that G admits a (upward) k-page book embedding. Computing the page number
of directed and undirected graphs is a widely studied problem, which finds applications
in a variety of domains, including VLSI design, fault-tolerant processing, parallel process
scheduling, sorting networks, parallel matrix computations [29, 53, 68], computational
origami [2], and graph drawing [22, 37, 52, 76]. See [42] for additional references.

Book embeddings of undirected graphs. Seminal results on book embeddings of undirected
graphs are described in the paper of Bernhart and Kainen [19]. They prove that the graphs
with page number one are exactly the outerplanar graphs, while graphs with page number two
are the sub-Hamiltonian graphs. This second result implies that it is NP-complete to decide
whether a graph admits a 2-page book embedding [75]. Yannakakis [77] proved that every
planar graph has a 4-page book embedding, while the fascinating question whether the page
number of planar graphs can be reduced to three is still open. The aforementioned works
have inspired several papers about the page number of specific families of undirected graphs
(e.g., [16, 18, 29, 46]) and about the relationship between the page number and other graph
parameters (e.g., [43, 50, 60, 61]). Different authors studied constrained versions of k-page
book embeddings where either the vertex ordering π is (partially) fixed [8, 30, 62, 73, 74] or the
page assignment σ for the edges is given [10, 9, 11, 57]. Relaxed versions of book embeddings
where edge crossings are allowed (called k-page drawings) or where edges can cross the spine
(called topological book embeddings) have also been considered (e.g., [1, 14, 24, 27, 36, 44, 45]).
Finally, 2-page (topological) book embeddings find applications to point-set embedding and
universal point set (e.g., [12, 13, 39, 40, 47, 59]).

Book embeddings of directed graphs. As for undirected graphs, there are many papers
devoted to the study of upper and lower bounds on the page number of directed graphs.
Heath et al. [56] show that directed trees and unicyclic digraphs have page number one
and two, respectively. Alzohairi and Rival [4], and later Di Giacomo et al. [37] with an
improved linear-time construction, show that series-parallel digraphs have page number two.
Mchedlidze and Symvonis [63] generalize this result and prove that N -free upward planar
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digraphs, which contain series-parallel digraphs, also have page number two (a digraph is
upward planar if it admits an upward planar drawing). Frati et al. [49] give several conditions
under which upward planar triangulations have bounded page number. Overall, the question
asked by Nowakowski and Parker [66] almost 30 years ago, of whether the page number of
upward planar digraphs is bounded, remains open. Several works study the page number of
acyclic digraphs in terms of posets, i.e., the page number of their Hasse diagram (e.g., [3, 66]).

About the lower bounds, Nowakowski and Parker [66] give an example of a planar st-graph
that requires three pages for an upward book embedding (see Fig. 9a). A planar st-graph is
an upward planar digraph with a single source s and a single sink t. Hung [58] shows an
upward planar digraph with page number four, while Heath and Pemmaraju [54] describe
an acyclic planar digraph (which is not upward planar) requiring bn/2c pages. Syslo [72]
provides a lower bound on the page number of a poset in terms of its bump number.

Besides the study of upper and lower bounds on the page number of digraphs, several
papers concentrate on the design of testing algorithms for the existence of kUBEs. The
problem is NP-complete for k = 6 [55]. For k = 2, Mchedlidze and Symvonis [65] give linear-
time testing algorithms for outerplanar and planar triangulated st-graphs. An O(w2nw)-time
testing algorithm for 2UBEs of planar st-graphs whose width is w is given in [63], where
the width is the minimum number of directed paths that cover all the vertices. Heath and
Pemmaraju [55] describe a linear-time algorithm to recognize digraphs that admit 1UBEs.

Finally, as for the undirected case, constrained or relaxed variants of kUBEs for digraphs
are studied [2, 38, 52], as well as applications to the point-set embedding problem [37, 52].

Contribution. Our paper is motivated by the gap present in the literature about the
computation of upward book embeddings of digraphs: Polynomial-time algorithms are known
only for one page or for two pages and subclasses of planar digraphs, while NP-completeness
is known only for exactly 6 pages. We shrink this gap and address the research direction
proposed by Heath and Pemmaraju [55]: Identification of graph classes for which the existence
of kUBEs can be solved efficiently. Our results are as follows:

We prove that testing whether a digraph G admits a kUBE is NP-complete for every
k ≥ 3, even if G is an st-graph (Section 3). An analogous result was previously known
only for the constrained version in which the page assignment is given [2].
We describe another meaningful subclass of upward planar digraphs that admit a 2UBE
(Section 4). This class is structurally different from the N -free upward planar digraphs,
the largest class of upward 2-page book embeddable digraphs previously known.
We give algorithms to test the existence of a 2UBE for notable families of planar st-graphs.
First, we give a linear-time algorithm for plane st-graphs whose faces have a special
structure (Section 5). Then, we describe an O(f(β) · n+ n3)-time algorithm for n-vertex
planar st-graphs of branchwidth β, where f is a singly-exponential function (Section 6).
The algorithm works for both variable and fixed embedding. This result also implies a
sub-exponential-time algorithm for general planar st-graphs.

2 Preliminaries

We assume familiarity with basic definitions on graph connectivity and planarity (see [15, 23]).
We only consider (di)graphs without loops and multiple edges, and we denote by V (G) and
E(G) the sets of vertices and edges of a (di)graph G.

A digraph G is a planar st-graph if and only if: (i) it is acyclic; (ii) it has a single source
s and a single sink t; and (iii) it admits a planar embedding E with s and t on the outer face.
A graph G together with E is a planar embedded st-graph, also called a plane st-graph.

SoCG 2019



13:4 Upward Book Embeddings of st-Graphs

Let G be a plane st-graph and let e = (u, v) be an edge of G. The left face (resp. right
face) of e is the face to the left (resp. right) of e while moving from u to v. The boundary of
every face f of G consists of two directed paths pl and pr from a common source sf to a
common sink tf . The paths pl and pr are the left path and the right path of f , respectively.
The vertices sf and tf are the source and the sink of f , respectively. If f is the outer face, pl
(resp. pr) consists of the edges for which f is the left face (resp. right face); in this case pl
and pr are also called the left boundary and the right boundary of G, respectively. If f is an
internal face, pl (resp. pr) consists of the edges for which f is the right face (resp. left face).

The dual graph G∗ of a plane st-graph G is a plane st-graph (possibly with multiple edges)
such that: (i) G∗ has a vertex associated with each internal face of G and two vertices s∗ and t∗
associated with the outer face of G, that are the source and the sink of G∗, respectively; (ii)
for each internal edge e of G, G∗ has a dual edge from the left to the right face of e; (iii) for
each edge e in the left boundary of G, there is an edge from s∗ to the right face of e; (v) for
each edge e in the right boundary of G, there is an edge from the left face of e to t∗.

Consider a planar st-graph G and let G be a planar st-graph obtained by augmenting G
with directed edges in such a way that it contains a directed Hamiltonian st-path PG. The
graph G is an HP-completion of G. Consider now a plane st-graph G and let E be a planar
embedding of G. Let G be an embedded HP-completion of G whose embedding E is such
that its restriction to G is E . We say that G is an embedding-preserving HP-completion of G.

Bernhart and Kainen [19] prove that an undirected planar graph admits a 2-page book
embedding if and only if it is sub-Hamiltonian, i.e., it can be made Hamiltonian by adding
edges while preserving its planarity. Theorem 1 is an immediate consequence of the result
in [19] for planar digraphs (see also Fig. 1); when we say that a 2UBE 〈π, σ〉 is embedding-
preserving we mean that the drawing Γ(π, σ) preserves the planar embedding of G.

I Theorem 1. A planar (plane) st-graph G admits a (embedding-preserving) 2UBE 〈π, σ〉 if
and only if G admits a (embedding-preserving) HP-completion G. Also, the order π coincides
with the order of the vertices along PG.
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Figure 1 (a) A plane st-graph G. (b) The dual of G is shown in gray. (c) An embedding-preserving
HP-completion of G. (d) An embedding-preserving 2UBE Γ of G corresponding to (c).

3 NP-Completeness for kUBE (k ≥ 3)

We prove that the kUBE Testing problem of deciding whether a digraph G admits an
upward k-page book embedding is NP-complete for each fixed k ≥ 3. The proof uses a
reduction from the Betweenness problem [67].
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Betweenness
Instance: A finite set S of elements and a set R ⊆ S × S × S of triplets.
Question: Does there exist an ordering τ : S → N of the elements of S such that for

any element (a, b, c) ∈ R either τ(a) < τ(b) < τ(c) or τ(c) < τ(b) < τ(a)?

We incrementally define a set of families of digraphs and prove some properties of these
digraphs. Then, we use the digraphs of these families to reduce a generic instance of
Betweenness to an instance of 3UBE Testing, thus proving the hardness result for k = 3.
We then explain how the proof can be easily adapted to work for k > 3.

For a digraph G, we denote by u  v a directed path from a vertex u to a vertex v
in G. Let γ = 〈π, σ〉 be a 3UBE of G. Two edges (u, v) and (w, z) of G conflict if either
π(u) < π(w) < π(v) < π(z) or π(w) < π(u) < π(z) < π(v). Two conflicting edges cannot be
assigned to the same page. The next property will be used in the following; it is immediate
from the definition of book embedding and from the pigeonhole principle.

I Property 1. In a 3UBE there cannot exist 4 edges that mutually conflict.

Shell digraphs. The first family that we define are the shell digraphs, recursively defined
as follows. Digraph G0, depicted in Fig. 2a, consists of a directed path P with 8 vertices
denoted as s0, q0, p−1, t−1, s′0, q′0, t′0, and p0 in the order they appear along P . Besides
the edges of P , the following directed edges exists in G0: (s0, s

′
0), (q0, q

′
0), (t−1, p0). Finally,

there is a vertex t0 connected to P by means of the two directed edges (p−1, t0) and (t′0, t0).
Graph Gh is obtained from Gh−1 with additional vertices and edges as shown in Fig. 2b. A
new directed path of two vertices sh and qh is connected to Gh−1 with the edge (qh, sh−1); a
second path of four vertices s′h, q′h, t′h, and ph is connected to Gh with the edge (th−1, s

′
h).

The following edges exist between these new vertices: (sh, s′h), (qh, q′h), (th−1, ph). Finally,
there is a vertex th connected to the other vertices by means of the two directed edges
(ph−1, th) and (t′h, th). For any h ≥ 0, the edges (sh, s′h) and (qh, q′h) are called the forcing
edges of Gh; the edges (ph−1, th) and (th−1, ph) are the channel edges of Gh; the edge (t′h, th)
is the closing edge of Gh. The vertices and edges of Gh \Gh−1 are the exclusive vertices and
edges of Gh. The following lemma establishes some basic properties of the shell digraphs.

I Lemma 2. Every shell digraph Gh for h ≥ 0 admits a 3UBE. In any 3UBE γ = 〈π, σ〉 of
Gh the following conditions hold for every i = 0, 1, . . . , h:
S1 all vertices of Gi are between si and ti in π;
S2 the channel edges of Gi are in the same page;
S3 if i > 0, the channel edges of Gi and those of Gi−1 are in different pages.

Note that Condition S1 uniquely defines the vertex ordering of Gh in every 3UBE. Namely,
the path sh  p0 precedes each path ti−1  pi (for i = 1, . . . , h), and each path ti−1  pi
precedes the path ti  pi+1 (for i = 1, . . . , h− 1) (see Fig. 3a for an example with h = 2).

Filled shell digraphs. Let Gh be a shell digraph. A filled shell digraph Hh,s (for h ≥ 0 and
s ≥ 1) is obtained from Gh by adding h + 2 groups α−1, α0, . . . , αh of s vertices each; see
Fig. 3b for an illustration. The vertices of group αi are denoted as vi,1, vi,2, . . . vi,s. These
vertices will be used to map the elements of the set S of an instance of Betweenness to an
instance of 3UBE Testing. For each vertex v−1,j of the set α−1 there is a directed edge
(p−1, v−1,j) and a directed edge (v−1,j , t−1). For each vertex vi,j of the set αi with i ≥ 0 and
i even, there is a directed edge (pi, vi,j). Finally, for each vertex vi,j of the set αi with i ≥ 0,
there is a directed edge (vi−1,j , vi,j).

SoCG 2019
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Channel edges

Forcing edges

Closing edge

s0

q0

p−1

t−1

s′0
q′0

t′0

p0

t0

G0

(a) G0

sh

q′h

t′h

ph−1

th−1

sh−1

s′h

ph

th

qh

Gh−1

Gh

(b) Gk

Figure 2 Definition of shell digraphs. Edges are oriented from bottom to top.

I Lemma 3. Every filled shell digraph Hh,s for s > 0 and even h ≥ 0 admits a 3UBE. In
any 3UBE γ = 〈π, σ〉 of Hh,s the following conditions hold for every i = −1, 0, 1, . . . , h:
F1 the vertices of the group αi are between pi and ti in π;
F2 if i ≥ 0 the vertices of αi are in reverse order with respect to those of αi−1 in π;
F3 if i ≥ 0 each edge (vi−1,j , vi,j) is in the page of the channel edges of Gi (for j = 1, . . . , s).

Observe that, by Condition F2, all groups αi with even index have the same ordering in
π and all groups with odd index have the opposite order. As mentioned above the vertices in
the groups αi will correspond to the elements of the set S of an instance of Betweenness
in the reduced instance of 3UBE Testing. If the reduced instance admits a 3UBE, the
order of the groups in π will give the desired order for the instance of Betweenness.

Λ-filled shell digraphs and hardness proof. Starting from a filled shell digraph Hh,s, a
Λ-filled shell digraph Ĥh,s is obtained by replacing some edges with a gadget that has two
possible configurations in any 3UBE of Ĥh,s. More precisely, we replace each edge (t′i, pi)
of Hh,s for i odd with the gadget shown in Fig. 4a. The gadget replacing (t′i, pi) will be
denoted as Λi. Notice that, this replacement preserves Conditions F1–F3 of Lemma 3.

I Lemma 4. Every Λ-filled shell digraph Ĥh,s for s > 0 and even h ≥ 0 admits a 3UBE. In
any 3UBE γ = 〈π, σ〉 of Ĥh,s the following conditions hold for every i = 1, 3, . . . , h− 1:
G1 the vertices of the gadget Λi are between t′i and pi in π;
G2 the vertices xi and yi are between wi and zi in π and there exists a 3UBE γ′ = 〈π′, σ′〉

of Ĥh,s where the order of xi and yi is exchanged in π′.
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s1
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s0
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p−1

t−1
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t2
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t′0

(a)

s1

p1
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s0

q0
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t−1
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t2

t1

s2

q2

α0

α−1

α1

α2

t′2

t′1

t′0

(b)

Figure 3 (a) A 3UBE of the shell digraph G2; the colors of the edges represent the pages. (b)
Definition of Hh,s for h = 2 and s = 5. In both figures edges are oriented from bottom to top.

t′i

pi

ui

wi

xi

yi

zi

αi

Λi

(a)

vi,a

xi

yi

vi,b

vi,c

(b)

Figure 4 (a) A gadget Λi (black edges). (b) The triplet edges of Gi (bold edges).

I Theorem 5. 3UBE Testing is NP-complete even for st-graphs.

Proof sketch. 3UBE Testing is clearly in NP. To prove the hardness we describe a reduction
from Betweenness. From an instance I = 〈S,R〉 of Betweenness we construct an instance
GI of 3UBE Testing that is an st-graph; we start from the Λ-filled shell digraph Ĥh,s with
h = 2|R| and s = |S|. Let v1, v2, . . . , vs be the elements of S. They are represented in Ĥh,s

SoCG 2019
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r1

r2

r3

r1

r2

r3

S = { }
R = {r1, r2, r3}
r1 = ( )
r2 = ( )
r3 = ( )

Figure 5 A 3UBE of the st-graph GI reduced from a positive instance I = 〈S,R〉 of Betweenness;
the edge colors represent the corresponding pages. Edges are oriented from bottom to top.

by the vertices vi,1, vi,2, . . . , vi,s of the groups αi, for i = −1, 0, 1, . . . , h. In the reduction
each group αi with odd index is used to encode one triplet and, in a 3UBE of GI , the order of
the vertices in these groups (which is the same by Condition F2) corresponds to the desired
order of the elements of S for the instance I. Number the triplets of R from 1 to |R| and
let (va, vb, vc) be the j-th triplet. We use the group αi and the gadget Λi with i = 2j − 1 to
encode the triplet (va, vb, vc). More precisely, we add to Ĥh,s the edges (xi, vi,a), (xi, vi,b),
(yi, vi,b), and (yi, vi,c) (see Fig. 4b). These edges are called triplet edges and are denoted as Ti.
In any 3UBE of GI the triplet edges are forced to be in the same page and this is possible if
and only if the constraints defined by the triplets in R are respected. The digraph obtained
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s0

q0

p−1

t−1

p0

t0

t′0

(a)

vi,a

xi

yi

vi,b

vi,c

(b)

Figure 6 Reduction for kUBE Testing (example with k = 5). (a) Replacement of the forcing
edges. (b) Replacement of the gadget Λi. In both figures colors represent the pages.

by the addition of the triplet edges is not an st-graph because the vertices of the last group
αh are all sinks. The desired instance GI of 3UBE Testing is the st-graph obtained by
adding the edges (vh,j , th) (for j = 1, 2, . . . , s). Fig. 5 shows a 3UBE of the st-graph GI
reduced from a positive instance I of Betweenness. J

For k > 3, the reduction from an instance I of Betweenness to an instance GI of kUBE
Testing is similar. In the shell digraph every pair of forcing edges is replaced by a bundle
of k − 1 edges that mutually conflict (see Fig. 6a). The edges in each such bundle require
k − 1 pages and force all edges that conflict with them to use the k-th page. Analogously,
the two edges (ui, zi) and (wi, pi) of the gadget Λi are replaced by a bundle of k − 1 edges
that mutually conflict (see Fig. 6b); this forces the triplet edges to be in the k-th page.

I Corollary 6. kUBE Testing is NP-complete for every k ≥ 3, even for st-graphs.

4 Existential Results for 2UBE

Let f be an internal face of a plane st-graph, and let pl and pr be the left and the right path
of f ; f is a generalized triangle if either pl or pr is a single edge (i.e., a transitive edge), and
it is a rhombus if each of pl and pr consists of exactly two edges (see Figs. 7a and 7b).

Let G be a plane st-graph. A forbidden configuration of G consists of a transitive edge
e = (u, v) shared by two internal faces f and g such that sf = sg = u and tf = tg = v (i.e.,
two generalized triangles sharing the transitive edge); see Fig. 7c. The absence of forbidden
configurations is a necessary condition for the existence of an embedding-preserving 2UBE.
If G is triangulated, the absence of forbidden configurations is also a sufficient condition [65].

I Theorem 7. Any plane st-graph such that the left and the right path of every internal face
contain at least two and three edges, respectively, admits an embedding-preserving 2UBE.

Proof sketch. We prove how to construct an embedding-preserving HP-completion. The
idea is to construct G by adding a face of G per time from left to right, according to a
topological ordering of the dual graph of G. When a face f is added, its right path is attached
to the right boundary of the current digraph. We maintain the invariant that at least one
edge e in the left path of f belongs to the Hamiltonian path of the current digraph. The

SoCG 2019
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pl pr

tf

sf

f

(a)

pl pr

tf

sf

f

(b)

tf = tg = v

sf = sg = u

gf

e

(c)

Figure 7 (a) A generalized triangle G. (b) A rhombus (c) A forbidden configuration.

Hamiltonian path is extended by replacing e with a path that traverses the vertices of the
right path of f . To this aim, dummy edges are suitably inserted inside f . When all faces are
added, the resulting graph is an HP-completion G of G. The idea is illustrated in Fig. 8. J

e

(a)

e f

(b)

Figure 8 Idea of the construction in the proof of Theorem 7. Dummy edges are dashed.

The next theorem is proved with a construction similar to that of Theorem 7.

I Theorem 8. Let G be a plane st-graph such that every internal face of G is a rhombus.
Then G admits an embedding-preserving 2UBE.

5 Testing 2UBE for Plane Graphs with Special Faces

By Theorem 7, if all internal faces of a plane st-graph G are such that their left and right path
contain at least two and at least three edges, respectively, G admits an embedding-preserving
2UBE. If these conditions do not hold, an embedding-preserving 2UBE may not exist (see
Fig. 9a). We now describe an efficient testing algorithm for a plane st-graph G = (V,E)
whose internal faces are generalized triangles or rhombi (see Fig. 9b). We construct a mixed
graph GM = (V,E ∪ EU ), where EU is a set of undirected edges and (u, v) ∈ EU if u and v
are the two vertices of a rhombus face f distinct from sf and tf (red edges in Fig. 9c). For
a rhombus face f , the graph obtained from G by adding the directed edge (u, v) inside f
is still a plane st-graph (see, e.g. [17, 32]). Since there is only one edge of EU inside each
rhombus face of G, this implies the following property.
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I Property 2. Every orientation of the edges in EU transforms GM into an acyclic digraph.

(a) (b) (c)

Figure 9 (a) A plane st-graph that does not admit a 2UBE [66]. (b) A plane st-graph G whose
faces are generalized triangles or rhombi. (b) The mixed graph GM = (V,E,EU ).

I Theorem 9. Let G be a plane st-graph such that every internal face of G is either a
generalized triangle or a rhombus. There is an O(n)-time algorithm that decides whether G
admits an embedding-preserving 2UBE, and which computes it in the positive case.

Proof. The edges of EU are the only edges that can be used to construct an embedding-
preserving HP-completion of G. This, together with Theorem 1, implies that G admits
a 2UBE if and only if the undirected edges of GM can be oriented so that the resulting
digraph −−→GM has a directed Hamiltonian path from s to t. By Property 2, any orientation of
the undirected edges of GM gives rise to an acyclic digraph. On the other hand an acyclic
digraph is Hamiltonian if and only if it is unilateral (see, e.g. [5, Theorem 4]); we recall that
a digraph is unilateral if each pair of vertices is connected by a directed path (in at least one
of the two directions) [64]. Testing whether the undirected edges of GM can be oriented so
that the resulting digraph −−→GM is unilateral, and computing such an orientation if it exists,
can be done in time O(|V |+ |E|+ |EU |) = O(n) [64, Theorem 4]. A Hamiltonian path of
−−→
GM is given by a topological ordering of its vertices. J

6 Testing Algorithms for 2UBE Parameterized by the Branchwidth

In this section, we show that the 2UBE Testing problem is fixed-parameter tractable with re-
spect to the branchwidth of the input st-graph both in the fixed and in the variable embedding
setting. Since the treewidth tw(G) and the branchwidth bw(G) of a graph G are within a con-
stant factor from each other (i.e., bw(G)−1 ≤ tw(G) ≤ b 3

2bw(G)c−1 [70]), our FPT algorithm
also extends to graphs of bounded treewidth. Previously, the complexity of this problem was
settled only for graphs of treewidth at most 2 in the variable embedding setting1 [37].

We use the SPQR-tree data structure [34] to efficiently handle the planar embeddings of
the input digraphs and sphere-cut decompositions [71] to develop a dynamic-programming
approach on the skeletons of the rigid components. For the definition of the SPQR-tree T of
a biconnected graph and the related concepts of skeleton skel(µ) and pertinent graph pert(µ)
of a node µ of T , types of the nodes of T (namely, S-,P-,Q-, and R-nodes), and virtual edges

1 To our knowledge, no efficient algorithm was known for treewidth 2 in the fixed embedding setting.
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of a skeleton, see [23]. To ease the description, we can assume that each S-node has exactly
two children [41] and that the skeleton of each node µ does not contain the virtual edge
representing the parent of µ. In particular, we will exploit the following property of T when
G is an st-graph containing the edge e = (s, t) and T is rooted at the Q-node of e.

I Property 3 ([34]). Let µ ∈ T with poles u and v. Without loss of generality, assume that the
directed paths connecting u and v in G are oriented from u to v. Then, pert(µ) is a uv-graph.

For the definition of branchwidth and sphere-cut decomposition, and for the related
concepts of middle set mid(e) and noose Oe of an arc e of the decomposition, and length
of a noose, see [23]. We denote a sphere-cut decomposition of a plane graph G = (V,E) by
the triple 〈T, ξ,Π =

⋃
a∈E(T ) πa〉, where T is a ternary tree whose leaves are in a one-to-one

correspondence with the edges of G, which is defined by a bijection ξ : L(T )↔ E(G) between
the leaf set L(T ) of T and the edge set E, and where πa is a circular order of mid(a), for
each arc a of T . In particular, we will exploit the property that each of the two subgraphs
that lie in the interior and in the exterior of a noose is connected and that the set of nooses
forms a laminar set family, that is, any two nooses are either disjoint or nested.

Without loss of generality, we assume that the input st-graph G contains the edge (s, t),
which guarantees that G is biconnected. In fact, in any 2UBE of G vertices s and t have to
be the first and the last vertex of the spine, respectively. Thus, either (s, t) is an edge of G
or it can be added to any of the two pages of the spine of a 2UBE of G to obtain a 2UBE
〈π, σ〉 of G ∪ (s, t). Clearly, the edge (s, t) will be incident to the outer face of Γ(π, σ).

Overview. Our approach leverages on the classification of the embeddings of each tricon-
nected component of the biconnected graph G. Intuitively, such classification is based on
the visibility of the spine that the embedding “leaves” on its outer face. We show that the
planar embeddings of a triconnected component that yield a 2UBE of the component can be
partitioned into a finite number of equivalence classes, called embedding types. By visiting
the SPQR-tree T of G bottom-up, we describe how to compute all the realizable embedding
types of each triconnected component, that is, those embedding types that are allowed by
some embedding of the component. To this aim we will exploit the realizable embedding
types of its child components. If the root of T , which represents the whole st-graph G,
admits at least one planar embedding belonging to some embedding type, then G admits a
2UBE. The most challenging part of this approach is handling the triconnected components
that correspond to the P-nodes, where the problem is reduced to a maximum flow problem
on a capacitated flow network with edge demands, and to the R-nodes, where a sphere-cut
decomposition of bounded width is used to efficiently compute the feasible embedding types.

Embedding Types. Given a 2UBE 〈π, σ〉, the two pages will be called the left page (the
one to the left of the spine) and the right page (the one to the right of the spine), respectively.
We write σ(e) = L (resp. σ(e) = R) if the edge e is assigned to the left page (resp. right
page). A point p of the spine is visible from the left (right) page if it is possible to shoot
a horizontal ray originating from p and directed leftward (rightward) without intersecting
any edge in Γ(π, σ). Let µ be a node of the SPQR-tree T of G rooted at (s, t). Recall
that, by Property 3, since T has been rooted at (s, t), the pertinent graph pert(µ) and
the skeleton skel(µ) of µ are s′t′-graphs, where s′ and t′ are the poles of µ . We denote
by sµ (by tµ) the pole of µ that is the source (the sink) of pert(µ) and of skel(µ). Let
〈πµ, σµ〉 be a 2UBE of pert(µ) and let Eµ be the embedding of Γ(πµ, σµ). We say that Eµ
has embedding type (or is of Type) 〈s_vis, spine_vis, t_vis〉 with s_vis, t_vis ∈ {L,R,N}
and spine_vis ∈ {L,R,B,N} where:
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Figure 10 Illustrations of the possible embedding types of a node µ with poles sµ and tµ; the
portion of the spine that is visible from the left or from the right is green. Pairs of embedding types
in the same dotted box are one the vertically-mirrored copy of the other. Embedding types on the
top are the horizontally-mirrored copy of the ones on the bottom. Embedding types -〈N,B,N〉
and -〈N,N,N〉 are the horizontal and vertical mirrored copies of themselves.
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Figure 11 Illustrations for Lemma 11. The 2UBEs of pert(µ) are of Type -〈L,B,N〉.

1. s_vis is L (resp., R) if in Eµ there is a portion of the spine incident to s and between s
and t that is visible from the left page (resp., from the right page); otherwise, s_vis is N .

2. t_vis is L (resp., R) if in Eµ there is a portion of the spine incident to t and between s
and t that is visible from the left page (resp., from the right page); otherwise, t_vis is N .

3. spine_vis is L (resp., R) if in Eµ there is a portion of the spine between s and t that is
visible from the left page (resp., from the right page); spine_vis is B if in Eµ there is a
portion of the spine between s and t that is visible from the left page, and a portion of
the spine between s and t that is visible from the right page; otherwise, spine_vis is N .

We also say that a node µ and pert(µ) admits Type 〈x, y, z〉 if pert(µ) admits an embedding
of Type 〈x, y, z〉. We have the following lemma.

I Lemma 10. Let µ be a node of T , let 〈πµ, σµ〉 be a 2UBE of pert(µ) and let Eµ be a
planar embedding of Γ(πµ, σµ). Then Eµ has exactly one embedding type, where the possibile
embedding types are the 18 depicted in Fig. 10.

Let 〈π, σ〉 be a 2UBE of G, let µ a node of T , and let 〈πµ, σµ〉 be the restriction of 〈π, σ〉
to pert(µ). Further, let 〈π′µ, σ′µ〉 6= 〈πµ, σµ〉 be a 2UBE of pert(µ).

I Lemma 11. If 〈π′µ, σ′µ〉 and 〈πµ, σµ〉 have the same embedding type, then G admits a 2UBE
whose restriction to pert(µ) is 〈π′µ, σ′µ〉.

Proof sketch. First, insert a possibly squeezed copy of Γ(π′µ, σ′µ) (Fig. 11b) inside Γ(π, σ)
(Fig. 11a) in the interior of the face fµ of the plane digraph Gµ resulting from removing
pert(µ) (except its poles) from Γ(π, σ). Second, suitably move parts of the boundary of fµ
along portions of the spine incident to the inserted drawing of pert(µ) (Fig. 11c). Then,
continuously move the copies of the poles of µ inside fµ towards their copies in Γ(π, σ),
without intersecting any edge, to obtain a drawing Γ′ of G (Fig. 11d). J
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Recall that, for each node µ of T , pert(µ) may have exponentially many embeddings, given
by the permutations of the children of the P-nodes and by the flips of the R-nodes. Lemma 11 is
the reason why we only need to compute a single embedding for each embedding type realizable
by pert(µ), i.e., a constant number of embeddings instead of an exponential number.

We first describe an algorithm to decide if G admits a 2UBE and its running time. The
same procedure can be easily refined to actually compute a 2UBE of G, with no additional
cost, by decorating each node µ ∈ T with the embedding choices performed at µ, for each of
its O(1) possible embedding types.

Testing Algorithm. The algorithm is based on computing, for each non-root node µ of T ,
the set of embedding types realizable by pert(µ), based on whether µ is an S-, P-, Q-, or an
R-node. Since, by Lemmas 10 and 11, G admits a 2UBE if and only if the pertinent graph of
the unique child of the root Q-node admits an embedding of at least one of the 18 possible
embedding types, this approach allows us to solve the 2UBE Testing problem for G.

Recall that the only possible embedding choices for G happen at P- and R-nodes. While
the treatment of Q- and S-nodes does not require any modification when considering the
variable and the fixed embedding settings, for P- and R-nodes we will discuss how to compute
the embedding types that are realizable by pert(µ) in both such settings. In particular, in
the fixed embedding scenario the above characterization needs to additionally satisfy the
constraints imposed by the fixed embedding on the skeletons of the P- and R-nodes in T .

Note that a leaf Q-node only admits embeddings of type -〈L,L,L〉 or -〈R,R,R〉. Also,
combining 2UBEs of the two children of an S-node µ always yields a 2UBE of pert(µ), whose
embedding type can be easily computed. In [23] we prove the following.

I Lemma 12. Let µ be an S-node. The set of embedding types realizable by pert(µ) can be
computed in O(1) time, both in the fixed and in the variable embedding setting.

P-nodes. Let µ be a P-node with poles sµ and tµ. Recall that an embedding for a P-node
is obtained by choosing a permutation for its children and an embedding type for each child.
Our approach to compute the realizable types of pert(µ) consists of considering one type at a
time for µ. For each embedding type, we check whether the children of µ, together with their
realizable embedding types, can be arranged in a finite number of families of permutations
(which we prove to be a constant number) so to yield an embedding of the considered type.
In order to ease the following description, consider that the arrangements of the children
for obtaining some embedding types can be easily derived from the arrangements to obtain
the (horizontally) symmetric ones by (i) reversing the left-to-right sequence of the children
in the construction and (ii) by taking, for each child, the horizontally-mirrored embedding
type; for instance, the arrangements to construct an embedding of Type -〈L,L,N〉 can
be obtained from the ones to construct an embedding of Type -〈R,R,N〉, and vice versa.
Moreover, two embedding types, namely Type -〈N,B,N〉 and Type -〈N,N,N〉, are
(horizontally) self-symmetric. As a consequence, in order to consider all the embedding types
that are realizable by pert(µ) we describe how to obtain only 10 “relevant” embedding types
(enclosed by a solid polygon in Fig. 10): -〈R,R,R〉, -〈N,R,N〉, -〈R,B,R〉, -〈L,B,R〉,
-〈N,R,R〉, -〈N,B,R〉, -〈R,R,N〉, -〈R,B,N〉, -〈N,B,N〉, and -〈N,N,N〉.
Next, we give necessary and sufficient conditions under which the pertinent graph of

a P-node admits an embedding of Type -〈N,R,R〉. Then, we show how to test these
conditions efficiently by exploiting a suitably defined flow network. The conditions for the
remaining types, given in [23], can be tested with the same algorithmic strategy.
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Figure 12 Case 1 (a) and Case 2 (b) of Lemma 13 for a P-nodes µ of Type -〈N,R,R〉. The
spine is colored either green, blue, or black. The green part is the portion of the spine that is visible
from the right, the black parts correspond to the bottom-to-top sequences of the internal vertices of
pert(µ) inherited from the 2UBEs of the children of µ, the blue parts join sequences inherited from
different children. (c) Capacitated flow network N with edge demands corresponding to (b).

I Lemma 13 (Type -〈N,R,R〉). Let µ be a P-node. Type -〈N,R,R〉 is admitted by µ
in the variable embedding setting if and only if at least one of two cases occurs. (Case 1)
The children of µ can be partitioned into two parts: The first part consists either of a Type-
-〈R,R,R〉 Q-node child, or of a Type- -〈N,R,R〉 child, or both. The second part consists

of any number, even zero, of Type- -〈L,B,R〉 children. (Case 2) The children of µ can be
partitioned into three parts: The first part consists either of a Type- -〈R,R,R〉 Q-node child,
or of a non-Q-node Type- -〈R,R,R〉 child, or both. The second part consists of any number,
even zero, of Type- -〈R,B,R〉 children. The third part consists of any positive number of
Type- -〈N,B,R〉 or Type- -〈L,B,R〉 children, with at most one Type- -〈N,B,R〉 child.

Regarding the time complexity of testing the existence of a Type- -〈N,R,R〉 embedding
of pert(µ), we show that deciding if one of (Case 1) or (Case 2) of Lemma 13 applies can
be reduced to a network flow problem on a network N with edge demands. The network for
(Case 2) is depicted in Fig. 12c. The details of this construction are given in [23].

I Lemma 14. Let µ be a P-node with k children. The set of embedding types realizable by
pert(µ) can be computed in O(k2) time in the variable embedding setting.

The fixed embedding scenario for a P-node µ can be addressed by processing the children
of µ in the left-to-right order defined by the given embedding of G. The details of such an
approach are given in [23], where the following is proven.

I Lemma 15. Let µ be a P-node with k children. The set of embedding types realizable by
pert(µ) can be computed in O(k) time in the fixed embedding setting.

Lemmas 12 and 15 yield a counterpart, in the fixed embedding setting, of the linear-time
algorithm by Di Giacomo et al. [37] to compute 2UBEs of series-parallel graphs.

I Theorem 16. There exists an O(n)-time algorithm to decide whether an n-vertex series-
parallel st-graph admits an embedding-preserving 2UBE.
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Figure 13 Illustrations for the R-node case. (a) A partial sphere-cut decomposition of the graph
skel(µ) ∪ (sµ, tµ) rooted at the edge (sµ, tµ), where µ is an R-node. The nooses are dotted curves.

R-nodes. Let µ be an R-node and (T, ξ,Π) be a sphere-cut decomposition of skel(µ)∪(sµ, tµ)
of width β, rooted at the node ρ with ξ(ρ) = (sµ, tµ); refer to Fig. 13a. Each arc a of T
is associated with a subgraph skela of skel(µ) and with a subgraph perta of pert(µ), both
bounded by the noose of a. Let a1 and a2 be the two arcs leading to a from the bottom of T .
Intuitively, our strategy to compute the embedding types of pert(µ) is to visit T bottom-up
maintaining a succinct description of size O(β) of the properties of the 2UBEs of perta. To
this aim, we construct cycles composed of directed edges that are in one-to-one correspondence
with maximal directed paths along the outer face of skela1 and skela2 (Figs. 13b and 13c),
which we use to define an auxiliary graph A whose 2UBEs concisely represent the possible
2UBEs of perta obtained by combining the 2UBEs of perta1 and perta2 (Fig. 13d). When
we reach the arc a∗ incident to ρ with skela∗ = skel(µ), we use the computed properties to
determine the embedding types realizable by pert(µ). We provide full details in [23].

I Lemma 17. Let µ be an R-node whose skeleton skel(µ) has k children and branchwidth β.
The set of embedding types realizable by pert(µ) can be computed in O(2O(β log β) ·k) time, both
in the fixed and in the variable embedding setting, provided that a sphere-cut decomposition
〈Tµ, ξµ,Πµ〉 of width β of skel+(µ) is given.

By Lemmas 12, 14, 15 and 17 and since T has O(|G|) size [34, 41], we get the following.

I Theorem 18. There exists an O(2O(β log β) · n+ n2 + g(n))-time algorithm to decide if an
n-vertex planar (plane) st-graph of branchwidth β admits a (embedding-preserving) 2UBE,
where g(n) is the computation time of a sphere-cut decomposition of an n-vertex plane graph.

Observe that g(n) is O(n3) by the result in [71]. Thus, we get the following.

I Corollary 19. There exists an O(2O(β log β) · n+ n3)-time algorithm to decide whether an
n-vertex planar (plane) st-graph of branchwidth β admits a (embedding-preserving) 2UBE.

Since the branchwidth of a planar graph G is at most 2.122
√
n [48], Corollary 19

immediately implies that the 2UBE Testing problem can be solved in sub-exponential time.

I Corollary 20. There exists an O(2O(
√
n log

√
n) + n3)-time algorithm to decide whether an

n-vertex planar (plane) st-graph admits a (embedding-preserving) 2UBE.
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7 Conclusion and Open Problems

Our results provide significant advances on the complexity of the kUBE Testing problem.
We showed NP-hardness for k ≥ 3; we gave FPT- and polynomial-time algorithms for relevant
families of planar st-graphs when k = 2. We point out that our FPT-algorithm can be refined
to run in O(n2) time for st-graphs of treewidth at most 3, by constructing in linear time a
sphere-cut decomposition of their rigid components. We conclude with some open problems.

The main open question is about the complexity of the 2UBE Testing problem, which
has been conjectured to be NP-complete in the general case [55].
The digraphs in our NP-completeness proof are not upward planar. Since there are
upward planar digraphs that do not admit a 3UBE [58], it would be interesting to study
whether the problem remains NP-complete for three pages and upward planar digraphs.
Finally, it is natural to investigate other families of planar digraphs for which a 2UBE
always exists or polynomial-time testing algorithms can be devised.
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