445 research outputs found

    Restoration of Atmospheric Turbulence Degraded Video using Kurtosis Minimization and Motion Compensation

    Get PDF
    In this thesis work, the background of atmospheric turbulence degradation in imaging was reviewed and two aspects are highlighted: blurring and geometric distortion. The turbulence burring parameter is determined by the atmospheric turbulence condition that is often unknown; therefore, a blur identification technique was developed that is based on a higher order statistics (HOS). It was observed that the kurtosis generally increases as an image becomes blurred (smoothed). Such an observation was interpreted in the frequency domain in terms of phase correlation. Kurtosis minimization based blur identification is built upon this observation. It was shown that kurtosis minimization is effective in identifying the blurring parameter directly from the degraded image. Kurtosis minimization is a general method for blur identification. It has been tested on a variety of blurs such as Gaussian blur, out of focus blur as well as motion blur. To compensate for the geometric distortion, earlier work on the turbulent motion compensation was extended to deal with situations in which there is camera/object motion. Trajectory smoothing is used to suppress the turbulent motion while preserving the real motion. Though the scintillation effect of atmospheric turbulence is not considered separately, it can be handled the same way as multiple frame denoising while motion trajectories are built.Ph.D.Committee Chair: Mersereau, Russell; Committee Co-Chair: Smith, Mark; Committee Member: Lanterman, Aaron; Committee Member: Wang, May; Committee Member: Tannenbaum, Allen; Committee Member: Williams, Dougla

    Image blur estimation based on the average cone of ratio in the wavelet domain

    Get PDF
    In this paper, we propose a new algorithm for objective blur estimation using wavelet decomposition. The central idea of our method is to estimate blur as a function of the center of gravity of the average cone ratio (ACR) histogram. The key properties of ACR are twofold: it is powerful in estimating local edge regularity, and it is nearly insensitive to noise. We use these properties to estimate the blurriness of the image, irrespective of the level of noise. In particular, the center of gravity of the ACR histogram is a blur metric. The method is applicable both in case where the reference image is available and when there is no reference. The results demonstrate a consistent performance of the proposed metric for a wide class of natural images and in a wide range of out of focus blurriness. Moreover, the proposed method shows a remarkable insensitivity to noise compared to other wavelet domain methods

    Efficient methodologies for real-time image restoration

    No full text
    In this thesis we investigate the problem of image restoration. The main focus of our research is to come up with novel algorithms and enhance existing techniques in order to deliver efficient and effective methodologies, applicable in real-time image restoration scenarios. Our research starts with a literature review, which identifies the gaps in existing techniques and helps us to come up with a novel classification on image restoration, which integrates and discusses more recent developments in the area of image restoration. With this novel classification, we identified three major areas which need our attention. The first developments relate to non-blind image restoration. The two mostly used techniques, namely deterministic linear algorithms and stochastic nonlinear algorithms are compared and contrasted. Under deterministic linear algorithms, we develop a class of more effective novel quadratic linear regularization models, which outperform the existing linear regularization models. In addition, by looking in a new perspective, we evaluate and compare the performance of deterministic and stochastic restoration algorithms and explore the validity of the performance claims made so far on those algorithms. Further, we critically challenge the ne- cessity of some complex mechanisms in Maximum A Posteriori (MAP) technique under stochastic image deconvolution algorithms. The next developments are focussed in blind image restoration, which is claimed to be more challenging. Constant Modulus Algorithm (CMA) is one of the most popular, computationally simple, tested and best performing blind equalization algorithms in the signal processing domain. In our research, we extend the use of CMA in image restoration and develop a broad class of blind image deconvolution algorithms, in particular algorithms for blurring kernels with a separable property. These algorithms show significantly faster convergence than conventional algorithms. Although CMA method has a proven record in signal processing applications related to data communications systems, no research has been carried out to the investigation of the applicability of CMA for image restoration in practice. In filling this gap and taking into account the differences of signal processing in im- age processing and data communications contexts, we extend our research on the applicability of CMA deconvolution under the assumptions on the ground truth image properties. Through analyzing the main assumptions of ground truth image properties being zero-mean, independent and uniformly distributed, which char- acterize the convergence of CMA deconvolution, we develop a novel technique to overcome the effects of image source correlation based on segmentation and higher order moments of the source. Multichannel image restoration techniques recently gained much attention over the single channel image restoration due to the benefits of diversity and redundancy of the information between the channels. Exploiting these benefits in real time applications is often restricted due to the unavailability of multiple copies of the same image. In order to overcome this limitation, as the last area of our research, we develop a novel multichannel blind restoration model with a single image, which eliminates the constraint of the necessity of multiple copies of the blurred image. We consider this as a major contribution which could be extended to wider areas of research integrated with multiple disciplines such as demosaicing

    A Detail Based Method for Linear Full Reference Image Quality Prediction

    Full text link
    In this paper, a novel Full Reference method is proposed for image quality assessment, using the combination of two separate metrics to measure the perceptually distinct impact of detail losses and of spurious details. To this purpose, the gradient of the impaired image is locally decomposed as a predicted version of the original gradient, plus a gradient residual. It is assumed that the detail attenuation identifies the detail loss, whereas the gradient residuals describe the spurious details. It turns out that the perceptual impact of detail losses is roughly linear with the loss of the positional Fisher information, while the perceptual impact of the spurious details is roughly proportional to a logarithmic measure of the signal to residual ratio. The affine combination of these two metrics forms a new index strongly correlated with the empirical Differential Mean Opinion Score (DMOS) for a significant class of image impairments, as verified for three independent popular databases. The method allowed alignment and merging of DMOS data coming from these different databases to a common DMOS scale by affine transformations. Unexpectedly, the DMOS scale setting is possible by the analysis of a single image affected by additive noise.Comment: 15 pages, 9 figures. Copyright notice: The paper has been accepted for publication on the IEEE Trans. on Image Processing on 19/09/2017 and the copyright has been transferred to the IEE

    A COMPARATIVE STUDY OF IMAGE FILTERING ON VARIOUS NOISY PIXELS

    Get PDF
    This paper deals with the comparative study of research work done in the field of Image Filtering. Different noises can affect the image in different ways. Although various solutions are available for denoising them, a detail study of the research is required in order to design a filter which will fulfill the desire aspects along with handling most of the image filtering issues. An output image should be judged on the basis of Image Quality Metrics for ex-: Peak-Signal-to-Noise ratio (PSNR), Mean Squared Error (MSE) and Mean Absolute Error (MAE) and Execution Time
    • …
    corecore