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Abstract 

 

The Blind Image Deconvolution/Deblurring (BID) problem was realised in the early 

1960s but it still remains a challenging task for the image processing research 

community to find an efficient, reliable and most importantly a diversely applicable 

deblurring scheme. The main challenge arises from little or no prior information 

about the image or the blurring process as well as the lack of optimal restoration 

filters to reduce or completely eliminate the blurring effect. Moreover, restoration 

can be marred by the two common side effects of deblurring; namely the noise 

amplification and ringing artefacts that arise in the deblurred image due to an 

unrealizable or imperfect restoration filter. Also, developing a scheme that can 

process different types of blur, especially for real images, is yet to be realized to a 

satisfactory level.  

This research is focused on the development of blind restoration schemes for real life 

blurred images. The primary objective is to design a BID scheme that is robust in 

term of Point Spread Function (PSF) estimation, efficient in terms of restoration 

speed, and effective in terms of restoration quality. A desired scheme will require a 

deblurring measure to act as a feedback of quality regarding the deblurred image and 

lead the estimation of the blurring PSF. The blurred image and the estimated PSF can 

then be passed on to any classical restoration filter for deblurring. 

The deblurring measures presented in this research include blind non-Gaussianity 

measures as well as blind Image Quality Measures (IQMs). These measures are blind 

in the sense that they are able to gauge the quality of an image directly from it 
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without the need to reference a high quality image. The non-Gaussianity measures 

include spatial and spectral kurtosis measures; while the image quality analysers 

include the Blind/Reference-less Image Spatial QUality Evaluator (BRISQUE), 

Natural Image Quality Evaluator (NIQE) index and Reblurring based Peak Signal to 

Noise Ratio (RPSNR) measure. BRISQUE, NIQE and spectral kurtosis, are 

introduced for the first time as deblurring measures for BID. RPSNR is a novel full 

reference yet blind IQM designed and used in this research work. Experiments were 

conducted on different image datasets and real life blurred images. Optimization of 

the BID schemes has been achieved using a gradient descent based scheme and a 

Genetic Algorithm (GA). Quantitative results based on full-reference and non-

reference IQMs, present BRISQUE as a robust and computationally efficient blind 

feedback quality measure.  

Also, parametric and arbitrarily shaped (non-parametric or generic) PSFs were 

treated for the blind deconvolution of images. The parametric forms of PSF include 

uniform Gaussian, motion and out-of-focus blur. The arbitrarily shaped PSFs 

comprise blurs that have a much more complex blur shape which cannot be easily 

modelled in the parametric form. A novel scheme for arbitrarily shaped PSF 

estimation and blind deblurring has been designed, implemented and tested on 

artificial and real life blurred images. The scheme provides a unified base for the 

estimation of both parametric and arbitrarily shaped PSFs with the BRISQUE quality 

measure in conjunction with a GA.  

Full-reference and non-reference IQMs have been utilised to gauge the quality of 

deblurred images for the BID schemes. In the real BID case, only non-reference 

IQMs can be employed due to the unavailability of the reference high quality image. 

Quantitative results of these images depict the restoration ability of the BID scheme.  

The significance of the research work lies in the BID scheme‘s ability to handle 

parametric and arbitrarily shaped PSFs using a single algorithm, for single-shot 

blurred images, with enhanced optimization through the gradient descent scheme and 

GA in conjunction with multiple feedback IQMs.  
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Signal: A signal usually refers to a 1-D array of elements that represents a continuous 

signal in its discrete form.  

 

Image: An image is a 2-D signal. The terms signal and image are used 

interchangeably in this thesis.  

 

Noise: The term noise refers to the inherent degradation in image resulting from the 

recording medium's imprecision or corruption by the electronic circuitry present. The 

level of inherent noise cannot be gauged due to absence of a noise free source signal. 

 

Noiseless: A noiseless image means no noise has been added to the source image 

apart from any inherent noise already present in the image.  

 

Blur: A degradation of the image data due to its convolution with the impulse 
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parameter(s) is regarded as parametric blur. A non-parametric blur, also termed as 

arbitrarily shaped blur, refers to blur that has a complex shape and cannot be 

modelled in parametric form. 

 

Robustness: It is defined as the ability of a scheme in producing results as expected 

and over a wide range of source data. 

 

Efficiency: Efficiency of a scheme is computed as the time it takes on average to 

produce a result from the moment the scheme starts performing its task. This is also 

referred to as computational efficiency which is calculated in seconds for an 

algorithm.  

 

Quality: Quality of the image refers to the quantitative measurement of the image's 

appearance using a quality measure. The different factors that usually contribute to 
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Chapter 1  

Introduction 

 

1.1. Background  

With the technological advances that have taken place over the past few decades, 

most of blurred image data is sourced from handheld and mobile phone cameras, 

satellites, CCTVs and other imaging sources. Images often suffer from degradation 

due to imperfection in the capturing and imaging process, with a recorded image 

inevitably emerging as a degraded version of the original image. These degradations 

are caused from various sources like lens defocus, optical imperfections in the case 

of a digital camera or atmospheric blurring in the case of satellite/aerial photography, 

etc. The use of handheld cameras, especially by amateur photographers, has resulted 

in blurred images caused mostly from camera shake or failure to focus the camera 

properly. Some examples of such blurred images are shown in Fig. 1.1. These images 

are deblurred in the later part of the thesis. 

In addition to these blurring effects, noise may corrupt any recorded image. Noise 

can be introduced into the system by the creating medium or by the recording 

medium or simply because of measurement imprecision. Noise may appear due to 

the inability of the restoration filter to estimate the image data perfectly and is 

regarded as deblurring noise. Apart from noise, ringing may occur in the restored 

image due to the imperfect estimation of blur. Ringing occurs for a restoration filter 
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if it assumes the image's frequency sample is periodic which leads to high frequency 

drop-off at the image boundaries. Undoing these imperfections, in some cases, is 

crucial for many image processing and multidimensional signal processing tasks.  

 

 

Fig. 1.1 Examples of real life blurred images. 

 

Nowadays, cameras come fitted with image stabilization and auto-focusing 

techniques to handle the imperfections of camera handshake and improper focusing, 

respectively. They also include much faster shutters, more sensitive imaging sensors 
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and anti-camera shake mechanisms. Optical image stabilization systems usually 

contain either a moving image sensor or an optical element to reduce camera motion. 

Auto-focusing involves the estimation of correct focus by single or multiple sensors 

using light metering techniques, which in turn controls an electromechanical system 

that adjusts the focus of the optical system. These systems are technologically 

demanding as their goal is to remove blur without increasing noise level. This 

usually results in a higher cost, more weight and high energy consumption [1]. Even 

with these solutions provided by the digital camera industry, camera handshake blur 

can only be handled in a limited manner [2]. 

Other hardware solutions have been formulated to tackle the blurring problem by 

capturing much better images in the first place [3, 4]. Some of these mechanisms 

involve coded aperture [4-6], coded exposure [3, 7] and multiple camera based Point 

Spread Function (PSF) estimation [8, 9]. Numerous image processing algorithms 

provide effective solutions to post-process the blurred images, estimate the 

degradations and deblur the images to an acceptable level. The field of digital image 

processing which studies and handles the restoration process is called digital image 

restoration.  

The field of image restoration can be dated back to the early 1960s problem of non- 

linear filtering of convolved signals. It refers to the estimation of the original image 

from a noisy, convolved version by using some prior information about the 

degradation phenomenon. The main goal of the restoration is to estimate the 

degradation and apply an inverse process in order to recover the original signal(s). 

Image restoration is an ill-posed inverse problem because in many cases prior 

information is either unavailable or very limited. Major work in the field is related to 

the restoration of astronomical images and still interests many researchers. 

Nonetheless it has now found applications in computer vision [10], remote sensing 

[11], medical imaging [12], etc, and particularly increased interests in law 

enforcement agencies. Image restoration solutions provided by Blind Image 

Deconvolution (BID) can be used for restoration of biomedical images [12-14], 

aerial and satellite photography [15, 16], handheld camera pictures and videos [17-

20], audio and seismic signals [21, 22], remote sensing data [23], industrial 

tomography images [24], astronomical photos [25, 26] and other sources of signals 

and images as well. 

A variety of Blind Image Deconvolution/Deblurring (BID) schemes and restoration 

filters have been proposed over the years that try to estimate the pristine image. This 
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collection of methods ranges from the time domain to the frequency domain, 

simultaneous or separate PSF estimation technique, parametric to non-parametric, 

etc. Examples include the Richardson-Lucy method [27], Total Variation [28],  

Maximum Likelihood (ML) method [29, 30], Minimum Entropy Deconvolution 

(MED) [31], Non-negativity And Support- constraint Recursive Inverse Filter (NAS-

RIF) [32], simulated annealing [33], and multi-channel blind deconvolution [33].  

Blind Signal Separation (BSS) is another area where the aim to recover original 

signals from a set of mixtures without any prior knowledge of the original signals 

themselves [34, 35]. Assuming statistical independence of the source signals, it 

implies that according to the Central Limit Theorem (CLT) the output signals of a 

linear system are closer to a Gaussian distribution. So a general scheme exists to find 

independent signals that are maximally non-Gaussian. This also forms the basis of 

Independent Component Analysis (ICA) [36], an active research topic [37].  

These methods provide solutions to some extent to the BID problem but lacking in 

terms of robustness, computational efficiency and restoration quality. Mainly, the 

robustness of these schemes remains or becomes questionable when real-life blurred 

images are to be restored. This is because unlike artificial deblurring, real deblurring 

suffers heavily from deblurring noise and ringing effects. These effects hinder the 

restoration process by interfering with and changing the statistical properties of the 

image data leading to inefficient PSF estimation. Noise in the images can be caused 

by the recording device‘s sensitivity to different environmental factors like poor 

lighting condition. The other form of visual artefacts includes ringing that appears 

near strong edges in the image. Ringing was commonly believed to be Gibbs 

phenomenon occurring from the inability of finite Fourier basis in modelling step 

signals occurring in the images [38]. However, it has been demonstrated that ringing 

mainly occurs due to errors in the estimated PSF [39].  

The blurred images may have been degraded by arbitrarily shaped PSFs that are 

complex and cannot be easily modelled by the usual parametric blur models [17, 18, 

40-45]. Nowadays, most of the BID schemes focus mainly on deblurring images 

corrupted by arbitrarily shaped motion blur PSFs. Not only because it commonly 

occurs in real life image acquisition but also because it is more challenging. This 

type of blur ensues mainly from camera shakes or movement of objects or 

background in the focal range. The PSFs of such blurs are usually arbitrarily shaped 

and sometimes even space-invariant. Restoring such images requires more effort, 

with complex procedures being applied to approximate the blur kernel as well as to 
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restore the image to its pristine form while deterring occurrence of deblurring noise 

and ringing artefacts. This research addresses the problem of blind image restoration, 

and has developed image processing approaches to tackle the ill-posed deblurring 

problem.  

1.2. Research Scope 

The research deals with the blind deblurring of noiseless images corrupted by space 

invariant blurs. The space invariant blur includes both parametric and non-parametric 

(arbitrarily shaped) Point Spread Functions (PSFs). Images include both artificially 

blurred and real life blurred images from handheld camera.  

The research does not deal with denoising (noise removal) from an image may it be 

either inherent, artificially added noise or deblurring noise. Ringing reduction is also 

out of scope in this research work. 

1.3. Aims 

To design and investigate efficient Blind Image Deblurring (BID) schemes for 

deblurring of real life blurred images with focus on: robustness in estimation of 

parametric and arbitrarily shaped Point Spread Function (PSF), computational 

efficiency and deblurring quality.  

1.4. Objectives 

The main objectives of this research were as follows:  

 To review the existing BID schemes presented in the relevant literature and 

develop an understanding of existing spatial non-Gaussianity based BID 

schemes.  

 To design and demonstrate the working of a robust quality measure for BID. 

 To develop and test a BID scheme for the deblurring of space invariant 

parametric and non-parametric PSF blurred images.  

 To test the proposed BID scheme(s) to restore naturally blurred images. 

 To analyse the computational efficiency and deblurring quality of the BID 

scheme.  

 To produce a user friendly Graphical User Interface (GUI) for the BID 

scheme(s). 
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1.5. Research Methodology 

The research work started with an analysis of existing BID schemes covered in the 

literature study. New ideas to efficiently tackle the restoration problem were then 

proposed, designed, implemented and evaluated. Testing on both real and artificially 

blurred images was performed to evaluate the robustness and efficiency of the 

proposed scheme. MATLAB based computer simulations were carried out. 

Comparisons against some benchmark restoration schemes were performed to 

estimate the efficiency of the proposed BID schemes. Upon successful validation and 

verification of the results, some research work was published in peer reviewed 

international journals and disseminated at international conferences. A GUI toolbox 

was developed to allow for easily usable and fast deblurring of corrupted images.  

1.6. Significance of Research Work 

The research work is focused towards providing image restoration solutions. The 

developed BID scheme provides the ability to handle both parametric and arbitrarily 

shaped PSFs using a single algorithm. The new BID scheme does not require any 

prior knowledge about the image or the blurring process. It is completely blind and 

operates on only a single-shot of the blurred image for its recovery. Optimization in 

terms of computational efficiency for the BID scheme has been achieved using 

Genetic Algorithm (GA) and gradient decent scheme. Different Image Quality 

Measures (IQMs) and restoration filters are investigated to enhance the deblurring 

quality.  

1.7. Thesis Structure 

Chapter 2 introduces the blind deconvolution problem and discusses the commonly 

occurring blurring PSF types. Functionalities of some restoration filters and image 

quality measures used for restoration are also detailed. Chapter 2 also provides a 

review of some of the existing schemes and methods in the literature and provides 

information about the methodology of some of the schemes considered in this 

research. The literature study was subsequently used to identify gaps and limitations 

in the existing BID methodologies. The information gained was used to form a base 

for new ideas to tackle the restoration problem. The spatial non-Gaussianity based 

BID scheme was researched in depth as a motivation for seeking more robust and 

efficient deblurring measures. 
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Chapter 3 explains a new spectral non-Gaussianity based measure for BID and 

presents experimental results for both artificial and real blurred images. The measure 

was proposed as an efficient and robust alternative to the previously used spatial non-

Gaussianity measures. Spectral kurtosis based BID schemes using gradient descent 

and GA based optimizations are provided. However, the new measure‘s sensitivity to 

deblurring noise and ringing artefacts led us to look for measures that can tackle 

these problems. 

Chapter 4 introduces the use of non-reference or blind IQMs as possible substitutes 

to the higher order cumulant based non-Gaussianity measures. A novel full-reference 

but blind spatial domain IQM and a BID scheme based on the IQM were also 

proposed. BID schemes for these different IQMs were designed and evaluated using 

both real and artificially blurred images. The Blind/Reference-less Image Spatial 

Quality Evaluator (BRISQUE) depicts efficient performance among all other 

measures. The restoration of blurred images by parametric PSFs has been tackled to 

a degree where the PSF parameter values are reasonably well approximated and the 

deblurred images are of high quality as compared with other benchmark scheme.  

Chapter 5 introduces a novel blind deblurring scheme visualized for deblurring 

images corrupted by non-parametric (arbitrarily) shaped PSF. The scheme using the 

existing deblurring measures is able to estimate arbitrarily shaped blurring PSFs. 

BRISQUE IQM was used to evaluate the performance of the BID scheme with 

experimental results on both synthetic and real life blurred images; presented and 

compared against other benchmark BID schemes.  

Chapter 6 presents a GUI Toolbox developed to readily deploy and apply the 

proposed BID schemes. It encompasses all the feedback IQMs used in conjunction 

with the GA based optimization scheme. Its features are discussed in detail and the 

chapter presents a practical lab session worksheet format to guide the user.  

Chapter 7 discusses and analyses all the IQMs and the proposed BID scheme based 

on them. It also discusses their advantages and limitations. 

Chapter 8 summarizes and concludes the research and gives direction for further 

research. It also discusses the major contributions of this research study towards the 

field of BID. 

Appendices provide comprehensive results of different schemes for the images used 

in experimentation of the deblurring measures over a wide range of blurring PSF 

parameter values and a large set of images. It also includes additional information on 

the MATLAB‘s optimization technique used.    
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Chapter 2  

Image Deblurring: Concepts and 

Techniques 

 

2.1. Introduction 

The field of BID spans over a period of four decades and has applications in diverse 

fields. A wide range of mathematical and image processing techniques have been 

used to tackle the challenges involved. In this chapter a review of some basic 

concepts in the field of BID is presented. The degradation model, different blur types 

and a number of restoration filters are discussed. Past literature encompassing BID 

techniques is reviewed in depth. This chapter also provides a review of some of the 

existing techniques in literature, providing relevance or a comparison to the approach 

described in this research work. 

2.2. Problem Formulation 

Image restoration algorithms are usually based on some form of degradation model 

that establishes the relationship between an original and the blurred images of an 

imaging system. The blurred image is assumed to be the result of the convolution 

between the original image and the transfer function (degradation function) of the 

imaging system. The key to restoration is to estimate the degradation function. Any 
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imperfection of the imaging system or environment can induce degradation to the 

captured image.  

If the image formation process can be modelled as a linear system, a recorded image 

can be represented as the output of the convolution of the spatial impulse response or 

Point Spread Function (PSF) of the linear blurring system with the original image 

(scene). Let m and n be the spatial image coordinates and f present the original image 

without any form of degradation, h be the PSF and the output of the system be given 

by g. Mathematically, for a stationary impulse response of the system across the 

image (i.e. a spatially invariant stationary PSF), the discrete form of the convolution 

according to [46, 47] is given by, 

  vfhg  *  (2.1) 

where * represents the 2-D convolution operator and v represents additive noise. Fig. 

2.1 shows the blurring model of a camera. The frequency domain model obtained 

using the Fourier Transform is, 

  VHFG   (2.2) 

 

 

Fig. 2.1 Image blurring model of a camera.  

 

The goal of deblurring is to produce a good approximation of the original image f‟. 

This process is generally known as convolution filtering or deconvolution [46] and 

deblurring in the case of the restoration of blurred images.  

In the noise free case, having prior knowledge of the PSF H, Eqn. 2.3 can be used to 

find F‟, an approximation of F, by,  

 GHF 1'   (2.3) 

such that, 

f = observed scene (image)
h = impulse response of 

the system g = captured scene (image)
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 FF '  (2.4) 

This is known as inverse filtering [48]. If the exact parameters for the convoluting 

signal are known, it is reasonably expected that the original signal can be recovered 

accurately. 

In many cases, however, detailed information about the unwanted components of the 

signal is not available thus rendering the method of inverse filtering no longer 

feasible. Fig. 2.2 shows the deblurring model depicting restoration for real life 

blurred image. The original image and the blurring kernel are both unknown/ 

unavailable.  

 

 

Fig. 2.2 Real life deblurring model. The original scene and the camera PSF information are not 
available.  

 

Also, if the Fourier transform of the PSF contains zeros, the inverse filtering 

becomes a poor restoration technique. This predicament of deconvolution of the two 

signals when both are unknown is termed ‗blind deconvolution‘ [49, 50]. Stockham 

et al. in [49] were the first to coin the term for this problem.  

2.3. Blur Models 

The following section briefly describes some of the common blur types. The blurring 

functions are usually related to the following two classes: 

  

 Space invariant 

These constitute the general form of blur PSFs that are independent of 

image pixel location. The blurring function produces a uniform blurring 

effect during convolution for each pixel location. 

 Space variant 

These constitute the blurring PSFs that create a different blurring effect 

depending on image pixel location. This results in the blurring effect 

being different for different pixels. 

? f ? h
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PSFs can be commonly distinguished in the following two groups based on their 

shape/form namely parametric and non-parametric: 

 

 Parametric form 

These PSFs can be easily defined using a functional or parametric form. 

Usually an equation suffices to describe/generate the PSF. The PSF can 

be decomposed in a set of parameter(s) and can be reasonably 

approximated by these parameters.  

 Arbitrarily shaped (non-parametric form)  

These PSFs usually have a complex shape and cannot be defined by an 

equation of their parameters. Decomposing the PSF in a set of parameters 

is not possible due to the complex shape of the PSF. Deblurring images 

corrupted by such PSFs is a very challenging task.  

 

Although there have been some proposed methods for recovering space-variant 

blurring, the majority of existing deblurring methods were developed for tackling 

space-invariant blurring PSF [51-56]. Blind restoration of space-invariant 

degradations is still considered a rather challenging problem. This research focuses 

on space-invariant PSFs, and, in the context of this research work, ―blur‖ refers to a 

linear, space-invariant degradation, i.e., a convolution, with or without noise, unless 

stated otherwise. 

2.3.1. Gaussian Blur 

The Gaussian blur (or Gaussian smoothing) is the result of filtering an image by a 

low pass filter estimated by a 2-D Gaussian function. The Gaussian filter in two 

dimensions over PSF rows and columns, m and n, according to [48] is given as 

 2

22

2

)(

22

1
),( 



nm

enmh



  
(2.5) 

The PSF for atmospheric turbulence blur can be described by Eqn. 2.5 which can be 

regarded as a Gaussian blurring [57, 58]. Fig. 2.3 shows the Gaussian blur PSF of 

size 15x15 and its respective Optical Transfer Function (OTF). The OTF or Fourier 

transform approximation of the Gaussian PSF is also a Gaussian function. Fig. 2.4(a) 

shows the effect of atmospheric turbulence blur (approximated by Gaussian blur). 
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The low pass filter blurs the image especially the edges (high pass signal). The image 

when restored by deblurring becomes crisper with the edges recovered.  

 

(a)      (b) 

Fig. 2.3 Perspective plot of a Gaussian PSF of size 15x15 with variance σ=2.5 (a) and its 
respective frequency domain representation (b). 

 

 

 

(a) 

 

 

(b) 

Fig. 2.4 (a) Blurred video frame (b) Deblurred using estimated atmospheric turbulence PSF.  

2.3.2. Motion Blur 

Motion blurs are due to relative motion between the recording device and the scene. 

This can be in the form of a translation, a rotation, a sudden change of scale, or some 

combinations of these. Here only the usual case of a global translation is considered.  
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(a)      (b) 

Fig. 2.5 Perspective plot for a PSF of linear motion blur of length 15 and angle 0 degrees (left) 
and its Fourier transform (right). 

 

When the scene to be recorded translates relative to the camera at a constant velocity 

under an angle of   radians with the horizontal axis during the exposure interval, 

the distortion is one-dimensional. Denoting the length of motion by L, the angle by 

φ, the PSF is given by Eqn. 2.6 with reference to [59] 
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where m and n are the PSF pixel coordinates. Fig. 2.5(a) shows the PSF obtained 

with application of Eqn. 2.6 for linear motion for length of 15 pixels and at an angle 

of zero degrees while its spectral domain representation is shown in Fig. 2.5(b). Fig. 

2.6 shows the effect of motion blurring on the book image. The filter spreads the 

effect of the neighbouring pixels in the direction of motion. 

 

Fig. 2.6 Image of book depicting vertical motion blur. Video of the book being slid was captured 
using Microsoft Lifecam. This particular frame was extracted afterwards. 
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2.3.3. Camera Out-of-Focus Blur 

When a camera takes a 3-D scene onto a 2-D imaging plane, some parts of the scene 

are in focus while other parts are not. If the aperture of the camera is circular, the 

image of any point source is a small disk, known as the Circle Of Confusion (COC). 

The degree of defocus (diameter of the COC) depends on the focal length and the 

aperture value of the lens, and the distance between the camera and object. An 

accurate model not only describes the diameter of the COC, but also provides the 

intensity distribution within the COC. However, if the degree of defocusing is large 

relative to the wavelengths considered, a geometrical approach can be followed 

resulting in a uniform intensity distribution within the COC. The spatially continuous 

out-of-focus blur of radius R, with PSF coordinates m and n, is given by Eqn. 2.7 

with reference to [59] 

 

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
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

elsewhere           0

 if     
1
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222

2
Rnm

RCRnmb   (2.7) 

where C is a constant that must be chosen so that energy conservation law is 

satisfied. Fig. 2.7 shows the original PSF (left) and its spectral domain representation 

(right). One can notice the low pass behaviour (in this case both horizontally and 

vertically) in Fig. 2.7 (left), as well as characteristic pattern of spectral zeros in Fig. 

2.7 (right).  

 

 

Fig. 2.7 Perspective plot of camera out of focus PSF for R=17 (left) and its Fourier transform 
(right). 

 

Fig. 2.8 shows an image of the MATLAB book and its out of focus version captured 

by manually changing the focus away from the focal point on the Microsoft Lifecam. 

The small size text becomes unreadable as a result of defocusing.  
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(a) 

 

 
(b) 

Fig. 2.8 (a) Original book image and (b) Out-of-focus blurred version captured using Microsoft 
LifeCam. 

 

2.4. Restoration Filters 

The following section introduces the reader to some of the classical restoration filters 

that were used or studied in this research work.  

2.4.1. Inverse Filtering 

The ideal approach to deblurring would be to estimate the inverse of the PSF that 

blurred the image and apply it to the blurred image and recover the original image. 

For a noiseless blurred image case, the direct inverse filtering can easily be applied in 

the spectral (frequency) domain [48], since the convolution process will be converted 

into multiplication. The inverse filtering process can be represented as. 

 
H

G
F '  (2.8) 

In most cases the blurring PSF is not available especially for real blurred images; 

however, there exist certain situations in which the blurring PSF may be 
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approximated. For example, in the case of motion blur, the blurring is due to linear 

movement or translation of the image pixels during exposure. The motion blur PSF 

can be represented by a sinc function in the spectral domain [60]. This leads to a 

straightforward approach to deblurring by multiplying the blurred image with the 

inverse of the PSF in the frequency domain. Though the inverse filtering method 

seems very simple in principle, estimating the correct values of the constants or 

coefficients of the corresponding PSF may be difficult in practical deblurring cases. 

The problem of estimating the correct coefficient values arises due to the presence of 

frequency domain zeros and noise amplification during deblurring. Since an inverse 

filter is generally a high pass filter, it amplifies the high frequency therefore the noise 

may get amplified significantly in the process. The presence of frequency domain 

zeros produces adverse effects in the deblurring process due to inaccurate filter 

estimation at these points. These issues limit the filter from being utilised in many 

deblurring applications. 

2.4.2. Wiener Filtering 

As inverse filtering is very sensitive to additive noise which gets amplified during 

this process, a simple approach is to reduce single degradation at a time. Thus, the 

method allows us to develop a restoration algorithm for each type of degradation 

which can simply be combined afterwards. The Wiener filtering is a linear estimation 

of the original image. The approach is based on a stochastic framework. The Wiener 

filter in Fourier domain can be expressed as follows [48]: 
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The Wiener filtering executes an optimal trade off between inverse filtering and 

noise smoothing [61]. It removes the additive noise and inverts blurring 

simultaneously. The Wiener filtering is optimal in terms of the Mean Squared Error 

(MSE) [48]. In other words, it minimizes the overall MSE in the process of inverse 

filtering and noise smoothing. 

2.4.3. Iterative Blind Deconvolution Method  

The Iterative Blind Deconvolution (IBD) method makes use of the Fast Fourier 

Transform (FFT) and the deterministic constraints in the form of non-negativity and 

finite support constraints. The algorithm is shown in Fig. 2.9, as given by [29, 32, 

62]. The image estimate is denoted by f‟, the PSF estimate by h‟, and the linearly 
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degraded image by g. Capital letters represent FFT versions of the corresponding 

signals. Subscript r denotes the iteration number of the algorithm. 

The iterative process can be summarised as follows: 

 

1. First, a non-negative valued initial estimate f0 is input to the process. 

2. This is Fourier transformed to give F‟r which is then inverted to form an 

inverse filter and used to form a new estimate of G, G‟r. 

3. G‟r is then transformed by inverse Fourier Transform (iFFT) to give gr. 

4. Then image non-negativity constraints are imposed to reveal a positive 

constrained estimate of gr.  

5. gr is then Fourier transformed to give the spectrum of G‟r. 

6. The spectrum G‟r is then inverted to form an inverse filter and multiplied by 

H‟r to estimate F‟r. 

7. F‟r is then inverse Fourier transformed to give fr.  

8. Image constraints are applied and an estimate of the image f‟r is achieved, this 

completes single iteration of the algorithm.  

 

The iterative loop is repeated until two positive functions with the required 

convolution have been found. 

Unfortunately, the IBD algorithm suffers from two main problems: 

 The inverse filter is difficult to define in regions where the inverted function 

possesses regions with low values. 

 Spectral zeros at frequencies in either F‟r and G‟r provide no information 

about that spatial frequency being a part of the blurring process. 

 

Implementation of this basic algorithm differs on the assumption on the true image 

and PSF, implementation of the assumptions and application in mind [62, 63]. The 

IBD method is popular because of its low complexity [29, 32]. Another advantage of 

this technique is its robustness to noise which results from the ill-posed nature of the 

blind image deconvolution problem. IBD algorithm also suffers from uncertain 

uniqueness, convergence, instability and sensitivity to initial image estimate [62]. 
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Fig. 2.9 Block diagram of Iterative Blind Deconvolution (IBD) algorithm [29, 32, 62] . 

 

2.4.4. Richardson-Lucy Algorithm 

Richardson presented an iterative method of restoring degraded images in [27] based 

on Bayes‘ theorem of conditional probability, by considering the image, PSF and 

degraded image probability functions. For an original image F, the PSF H, the 

degraded image presented by G, and the iteration k, Bayes‘ theorem may be 

employed as follows 
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Also considering Gk with respect to its dependence on F 
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Substituting Eqn. 2.12 in Eqn. 2.14, we get 
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The term P(F) on the right hand side is also the desired term. An initial estimate of it 

was suggested using Eqn. 2.12 which results in the iterative restoration method given 

in Eqn. 2.18 
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The main problem of blind Richardson-Lucy algorithm is that it requires an initial 

guess for the support size of blurring kernel. Although the blurring kernel is 

incorporated in the block-circulant matrix form, the support size must be either 

known or estimated, thus making the algorithm non-blind. 

2.4.5. Regularization Based Deblurring Algorithm 

Looking into the convolution model of blurring presented in Eqn. 2.2, the image 

estimate through inverse filtering is given by Eqn. 2.19 as follows  

  
H

V
F

H

G
F '  (2.19) 

The restoration error for this model is given by Eqn. 2.20 

  

2

'
H

V

H

V
FF   (2.20) 

Due to the ill-posed inverse problem, the restoration error will take very large values, 

particularly amplifying the high frequency noise [64]. Due to this problem, the 

system defined in Eqn. 2.19 yields solutions at points where the amplified high 

frequency noise masks the desired solution F. In accordance with the regularization 

theory [65], if prior information about the noise or original data can be incorporated, 

physically meaningful solutions to the ill-posed problem can be achieved. If we 

represent a regularization operator in the frequency domain by L then the regularized 
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restored image can be obtained by minimizing the cost function in Eqn. 2.20 in 

accordance with [66] 

  'LF  (2.21) 

provided the norm of the noise is known, the term is given in Eqn. 2.22  

  VHFG  '  (2.22) 

The above constrained minimization problem leads to the constrained least-squares 

or Tikhonov-Miller regularized solution [65, 66] , given by Eqn. 2.23 

  VHFG  '  (2.23) 

2.5. Image Quality Measures (IQMs) 

For BID, quality measures have been developed to evaluate the effectiveness of 

individual schemes or to evaluate different image processing algorithms. The 

performance of BID schemes in the past has been mainly subjected to error based 

performance measures that are already used by the existing signal processing 

community [48]. Most of these measures use an original and deblurred image pair to 

compute the error among them in order to construct a quantitative quality analysis. 

The original/uncorrupted image serves as a reference for high quality. In the past 

decade efforts were directed towards development of such quantitative image quality 

measures (IQMs) [67]. Error measures require both the original/reference and the 

observed/distorted image to be stationary with reference to each other; hence they do 

not allow any translational or rotational motion between the required images. Since 

the error measures require a reference image to compute the quality against it, they 

are regarded as full-reference quality measures in this research work.  

In contrast to error based measures, perceptual quality measures try to incorporate 

Human Visual System (HVS) characteristics; this is because the quantitative measure 

is mathematical only and hence may not be truly representative of the perceived 

quality [68]. However, by no means are the perceptual quality measures able to outdo 

the simplicity of error based measures, and thus offer a suitable alternative. HVS 

based quality measures are calculated from the image or its characteristics without 

the use of a reference image. Therefore they are usually regarded as non-reference or 

blind quality measures. In recent years, blind image quality measures (IQMs) have 

been the centre of attention in the field of image processing especially in BID. In 
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BID they can be used to estimate the blurring PSF. The quality measure used would 

optimize at or around the point where the true PSF is located. These quality measures 

are independent of a reference image and in this research work are regarded as non-

reference or blind IQMs.  

The field of image restoration lacks a promising comparison base for judging the 

effectiveness of competing algorithms. Until recently by far the most widely adopted 

quantitative measurement of image restoration performance used variants of error 

based measures, for example, Mean Squared Error (MSE), Signal to Noise Ratio 

(SNR) and Peak Signal to Noise Ratio (PSNR) etc. Lack of an effective performance 

evaluation measure exclusively for images has hampered the robust assessment of 

competing algorithms [67], with users of the community generally resorting to very 

generic or algorithm specific evaluation techniques. While others propose 

modification to quantitative performance criterion based on qualitative (visual) 

criterion to bring the error measures in-line with the HVS. HVS is subjective in itself 

in providing measureable as well as visual effect results. 

IQMs as described above can be divided into two types, namely full-reference and 

non-reference quality measures. A full-reference IQM relies on the availability of the 

original image as a reference for comparison against its distorted version, while non-

reference (blind or reference-less) IQM quantitatively determines the quality of the 

image directly from it or from its attributes. The list of both full-reference and non-

reference quality measures is quite long [69].  

IQMs were employed during the research work to judge the deblurred image quality, 

and include both full-reference and non-reference IQMs. Full-reference IQMs 

include: the Peak Signal to Noise Ratio (PSNR), Mean Structural SIMilarity 

(MSSIM) index [70-72] and the Universal Quality Index (UQI) [67]. Non-reference 

IQMs include: spatial kurtosis [36, 73] , spectral kurtosis [74-76], Blind/Reference-

less Image Spatial QUality Evaluator (BRISQUE) [77, 78] and Natural Image 

Quality Evaluator (NIQE) [79, 80]. These IQMs were selected with respect to their 

performance and robustness as detailed in the literature. A brief description of these 

quality measures is given below. 

2.6. Full-reference IQMs 

In error based performance evaluations, the restoration is evaluated by measuring the 

amount of improvement in image quality. To measure that improvement, one needs 

to have the original, the distorted and the restored images available in the measuring 
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process. Extent of restoration performance can generally be regarded as a process 

that takes in the original image f, the distorted image g and the restored image f‟, and 

returns a scalar value. This output value is thus a measure to indicate how much the 

image quality has been improved from the blurred image g to the restored image f‟ 

with respect to the original image f. Listed below are the variants of the error based 

performance measures, these measures are still employed and in fact the majority of 

the image processing schemes base their quality performance on these measures [81]. 

This is simply because these measures are easy to use and readily give a numerical 

value to match up, which in many cases, is quite well-liked, comprehensible, and 

reciprocal with signal processing community terminologies, e.g. decibel (dB). 

2.6.1. Peak Signal to Noise Ratio (PSNR) 

Evaluating deblurred image quality necessitates a measure. MSE is a very commonly 

employed quantitative measure in the signal and image processing community [48]. 

The MSE between two images f and g is given by,  
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PSNR provides quantitative image quality results by scaling the MSE according to 

the image range. For grayscale images with a pixel intensity range from 0 to 255, the 

PSNR is defined as, 
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PSNR is measured in decibels (dBs). A higher value of PSNR represents an image of 

high quality. The PSNR measure is not ideal, but is in common use. Its main failing 

is that the signal strength is estimated as maximum signal value, rather than the 

actual signal strength for the image. PSNR is a good measure for comparing 

restoration results for the same image, but PSNR comparison with different images 

may be meaningless. For example, an image with 15 dB PSNR may seem visually 

much superior to another image with 20 dB PSNR.  

2.6.2. Mean Structural SIMilarity Index (MSSIM) 

Structural SIMilarity (SSIM) index is an objective image quality metric that 

measures the structural similarity between two images by comparing of local patterns 
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of pixel intensities that have been normalized for luminance and contrast [71]. 

Assuming two images f and g, the SSIM is a function of the luminance l(f,g), contrast 

c(f,g) and structural similarity s(f,g) of the images.  
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where   is the mean,   is the standard deviation of the image signal and C1,C2,C3 

are constants. SSIM has been successfully used for denoising and classification [82, 

83]. A higher value of MSSIM represents an image of high quality. 

2.6.3. Universal Quality Index (UQI) 

The next IQM, UQI, analyses the loss of correlation, luminance and contrast 

distortion among the two images as the base for quality perception. The UQI for two 

image signals f and g is defined in Eqn. 2.30 as,  
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Rearranging Eqn. 2.30 we obtain, 
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The first term is the correlation coefficient of the two signals, whereas the second 

and third terms measure mean luminance and structural similarity. A higher value of 

UQI represents an image of high quality. 

 

Error based performance measures are usually applied to evaluate restoration 

performance, and have become a de-facto standard in the comparative study of 
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restoration algorithms. However, it is well known that such measures which are 

based on the MSE criterion, do not agree with HVS properties. This implies that 

performance assessment by means of SNR improvement is, to a certain extent, of a 

poor representation with respect to the HVS. Besides, it is found that the SNR 

improvement is of low precision in evaluating restoration performance. Therefore, 

apart from accuracy and precision, the SNR improvement as a measurement of 

restoration performance expresses an indistinct message. 

Every performance measure has its own set of advantages and drawbacks and cannot 

be used globally on every image under every condition, as demonstrated by 

Eskicioglu and Fisher in [69]. They carried out a suitability analysis on different 

objective quality measures for grayscale image compression. They argued about the 

sufficiency of a single scalar value to describe a variety of impairments. They further 

demonstrated that a set of numerical measures might reliably be used to specify 

magnitude of degradation in reconstructed images; however, the same evaluation 

scheme across different techniques may not bear the same optimal results. They 

suggested using a combination of numerical and graphical measures for a better 

image quality performance comparison.  

2.7. Non-Reference IQMs 

Over the last few years, the image and signal processing community have focused on 

the design of IQMs especially for the blind evaluation of image quality based on 

HVS. Two of the IQMs used in this research work are BRISQUE and NIQE. The 

other two IQMs, spatial and spectral kurtosis, are based on higher order cumulants of 

the data. The main advantage of such IQMs is that not only are they independent of a 

reference image, they are also independent of distortion specific features, such as 

ringing, noise, blur, or blocking. They have shown to compete well with top 

performing non-reference image quality analysers trained on human judgements of 

known distorted images.  

2.7.1. Non-Gaussianity as a Quality Measure  

Conventional image performance measures work on the principle of subjective 

(qualitative) performance measures or quantitative quality measures which are based 

on error/difference image. These conventional measures, both subjective and error 

based, tend to have their own pros and cons. Even a combination of subjective and 

error based objective measures, like HVS based performance systems, fall short in 

applicability, simply because of the very complex nature, limited knowledge and 
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implementation difficulties of human eye behaviour. These error based techniques 

are dependent on relational matching between two images; the observed and the 

reference. Therefore, relational based performance evaluation techniques require a 

reference image in addition to the observed and the restored image, which may not 

be available in any real life scenario, like digital camera photography. Hence, these 

performance indexes cannot be used as a performance maximization criterion or act 

as a feedback parameter. 

If the blur/noise and the image are assumed as two distinct independent sources, i.e. 

Gaussian and non-Gaussian respectively, one can rely on the basic approach of the 

BSS [73] to look for non-Gaussianity in the recovered signals. Non-Gaussianity has 

been used in [84, 85] for image denoising. 

As the image and degrading/distortion function on a distorted image are all distinct 

processes, they thus have a direct bearing on the information content of the image as 

the result of any restoration algorithm. The clear advantage offered by basing the 

performance index on the information content of the image rather than the reference 

image is that the original image is not required. Therefore associating performance 

index with the non-Gaussianity is associating it with an observed image or only the 

available blurred image itself.  

The obvious question of how it works can be answered as follows: the information 

content of a noise free and undistorted image is unique which does not remain the 

same when it is subjected to any degrading or distortion function. Hence, when any 

blurred image is treated by any deblurring algorithm, all it tries to do to bring the 

blurred image to its pristine form is to eradicate the distortions. From the perspective 

of the blurred image‘s information content or the space of non-Gaussianity, the 

algorithm tries to restore the image to its ―original‖ information content or to non-

Gaussianity, which otherwise happens to be at its minimum when it is blurred. 

Thus non-Gaussianity of the data can be employed as a performance measure, with 

or without the need of the original image as required by other measures, where it can 

serve as a feedback performance measure for the BID scheme. The quality index for 

comparing the performance of improvement/deterioration of any image can then be 

defined as, 
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where, J1 and JO, are non-Gaussianity of the original and the distorted image 

respectively. The advantage of using a non-Gaussianity based performance measure 

is not only that it works for both blind and non-blind situations, but also that it is 

robust against translational, orientation deviations etc.  

Various measures can be used for computing the Gaussianity/non-Gaussianity of the 

image, with kurtosis and negentropy being the main ones used. Spatial domain non-

Gaussianity measures were used for blind image deblurring and denoising by Yin 

and Hussain in [86] . The measure and scheme based on it are defined in Section 2.9. 

Non-Gaussianity measure in the frequency domain, termed spectral non-Gaussianity 

measure, has been investigated in this research work as an alternate, more robust and 

computationally efficient IQM as compared to spatial kurtosis. The new frequency 

domain non-Gaussianity IQM, spectral kurtosis, is presented in the research work 

illustrated in chapter 3.  

2.7.2. Blind/Reference-less Image Spatial QUality Evaluator 

(BRISQUE) 

BRISQUE is a spatial domain natural scene statistic based distortion-generic non-

reference IQM model. Rather than computing distortion specific features such as 

ringing, blur or blocking, it instead uses scene statistics of locally normalized 

luminance coefficients to quantify possible losses of ‗naturalness‘ in the image due 

to the presence of distortions; thereby leading to a holistic measure of quality. The 

BRISQUE model uses mapping from feature space to quality scores using a 

regression model that yields a measure of image quality. The features comprise the 

statistic measures of a generalized Gaussian distribution fitting of mean subtracted 

contrast normalized coefficients. For the distorted image g, mean subtracted contrast 

normalized coefficient at each pixel is obtained by subtracting the local mean signal 

value 
g  and then dividing by the local contrast function 

g  such that, 
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and C is a constant. w={wk,l|k=-U,….U,l=-V,….V} is a 2-D circular-symmetric 

Gaussian weighting function and U=V=3 was used to calculate the measure. A lower 

value of BRISQUE represents an image of high quality. 

2.7.3. Natural Image Quality Evaluator (NIQE) 

The next IQM measure, the non-reference NIQE, is a completely blind image quality 

analyzer that only makes use of measurable deviations from statistical regularities 

observed in natural images, without training on human-rated distorted images, and 

without any coverage of distorted images. The same model for image quality 

computation as in BRISQUE is used with the exception that NIQE uses natural scene 

statistics features from a staple of natural images unlike BRISQUE, which is trained 

on features obtained from both natural and distorted images as well as human 

judgment of image quality. A lower value of NIQE represents an image of high 

quality. 

2.8. Review of Image Deblurring Techniques 

Blind deconvolution is the process of estimating both the true image and the blurred 

image using partial information available/deduced from the blurred image and a 

study of the characteristics of the blurring system. Blind deconvolution is not a new 

area and various approaches have been proposed to solve the problem depending 

upon the particular degradation and image models [29, 33, 48, 62, 64, 87, 88]. 

In blind deconvolution, a convoluted version of an original signal is observed, 

without knowing whether it is the true signal or the convolution kernel or PSF. The 

problem is then to find a separating filter that can deconvolve the blurred image and 

give a good approximation of the real image. If the convolution blur is assumed to be 

known prior to deblurring, one of the classical image restoration techniques such as 

inverse filtering, least-squares filtering, or iterative filtering can be employed. In 

practical imaging situations, this however is almost never the case because the image 

capturing device‘s transfer function is unknown. Therefore, the true image must be 

estimated directly from the blurred image by using partial or no information about 

the blurring process and the true image, and thus becomes a case of blind 

deconvolution.  

Over the past few years, several methods have been developed for image deblurring. 



 

28 

 

These methods range from the spatial to the spectral domain, parametric to non-

parametric, and adaptive to batch operation. Examples include the Richardson-Lucy 

method [27], Total Variation [28],  Maximum Likelihood (ML) method [29, 30], 

Minimum Entropy Deconvolution (MED) [31], Non-negativity And Support- 

constraint Recursive Inverse Filter (NAS-RIF) [32], simulated annealing [33], and 

multi-channel blind deconvolution [33]. These methods do provide, to some extent, 

solutions to the BID problem; however many are not satisfactory in terms of 

robustness, computational efficiency and restoration quality. Mainly, the robustness 

of these schemes remains or becomes questionable when real-life blurred images are 

to be restored. 

The problem of blind deconvolution can be tackled in the spatial or spectral domain. 

The spectral domain approach offers a valuable insight into image and noise 

properties. The solutions provided by the existing deconvolution methods are not 

satisfactory in terms of stability, robustness, noise amplification and ringing artefacts 

[33]. For instance, the Richardson-Lucy method is iterative in nature, it estimates the 

blurring function during the deblurring process, and is computationally complex and 

intensive. The method also requires a good initial estimate of the blurring kernel in 

order to operate the algorithm.  

Categorizing the different approaches given over the years by many researchers is a 

difficult task. Schemes can be divided into parametric or non-parametric, iterative 

and non-iterative, spatial and spectral etc. Most of the blind deconvolution 

approaches can be divided into parametric and non-parametric. In applications where 

the blurring function can be assumed in advance (e.g. motion blur or defocus), it is 

possible to use a parametric model of the PSF instead, and then one can try to 

estimate the model‘s parameters. The main advantage is a small number of 

estimation parameters, however, in real life scenarios it is often difficult to derive a 

good model for the PSF [17, 18, 40-45]. 

Blind deconvolution approaches on the basis of implementation strategy can be 

divided into two main constituent classes [29]. 

 

 The first class identifies the blurring kernel (PSF) separately from the true 

image, which is to be used later with any of the classic image restoration 

algorithms. This class employs blur identification methods, which first 

estimate the blurring kernel and then utilize any non-blind deconvolution 

algorithm to find the source estimate. Examples of this class of algorithms 
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include methods like the zero-sheet separation method and identification by 

frequency domain zeros [89-92]. 

 The second class incorporates the estimation of the source image and the 

blurring kernel simultaneously. This class includes methods based on 

statistical or deterministic priors of the source image, the blurring kernel and 

noise. Using the mentioned priors, estimation of the source image is 

performed by some use of the maximization approach; total variation based 

deblurring is an example for this class of algorithms [28]. Since the source 

image and the blurring kernel are now variables in the problem, 

computational complexity is a major problem.  

The zero-sheet separation method and identification by frequency domain zeros 

method are briefly explained as follows. The identification by frequency domain 

zeros method utilises visual information acquired from investigating the zeros of the 

blurred image in the frequency domain for the cases of motion and out-of-focus 

blurred image. Zeros in the frequency domain result at points where the inverse of 

the blurring kernel does not exist. For a specific PSF they are in relation to its 

parameter(s). In the case of motion blurred image blurred by a PSF of length L, the 

zeros appear in the frequency domain at a length of L pixels away from the centre of 

the image spectrum. By observing the zeros, length of the blurring PSF is identified 

and then the blurred image is deblurred using the estimated PSF. Similarly, in the 

case of out-of-focus blurred image blurred by an out-of-focus PSF of radius R, the 

zeros form a ring at a length of R pixels from the centre of the image spectrum. The 

blurring PSFs radius is estimated from observing the zeros, the deblurring PSF is 

calculated for it and the blurred image is deblurred using the estimated deblurring 

PSF.  

The zero-sheet separation method relies on estimating the PSF from the zeros of the 

polynomial that defines the blurring PSF. The 2-D discrete transform of the blurred 

image is represented as a 2-D polynomial and then factored to yield all the transform 

components (zeros of the polynomial) up to an arbitrary complex scale factor and 

linear phase terms.  Once the zeros of the polynomial are identified, the deblurring 

PSF is formed from it and then the image is deblurred. Both these schemes deal with 

blind deblurring of images in the noiseless case and are prone to rounding errors 

resulting from the mathematical algorithms. 

Images constitute two main components, namely illumination and object reflectance 

[48, 50]. If i(m,n) presents the illumination and r(m,n) the reflectance component at 
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each pixel location (m,n), then the image pixel f(m,n) can be presented as,  
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Spatial or homomorphic filtering reduces illumination variations. By attenuating the 

low spatial frequencies relative to high frequencies, the contrast of the image is 

enhanced and the details are preserved [50]. Images are transformed to the log 

domain before processing where the log image is equivalent to the sum of the logs of 

illumination and reflectance components. In [46], Oppenheim et al. demonstrated the 

use of spatial filtering [93] in image enhancement with application to bandwidth 

reduction. They also suggested the use of convolutional filtering for restoring blurred 

images without prior information, thus providing the general concept of blind 

deconvolution. For an input x=x1*x2 (* denotes convolution), taking the z-transform 

results in,  

 )()()( 21 zXzXzX   (2.38) 

Taking the logarithm transform of Eqn. 2.38, one gets, 

 ))(ln())(ln())(ln( 21 zXzXzX   (2.39) 

Eqn. 2.39 shows the transformation from a convolution space to an additive space, 

thus enhancing simplicity in separating mixed (convolved) signals [94]. Oppenheim 

et al. [46] proposed the use of homomorphic filtering for deconvolution by separating 

the minimum phase and maximum phase signal from the input signal. Ulrych et al. 

[94] used homomorphic filtering for deconvolution of seismic signals by 

approximating a better wavelet to effectively separate the signal into a crustal and 

mantle response. Stockham et al. also suggested a homomorphic filtering based 

approach for deconvolving the signal by approximating the true signal directly [49]. 

In the noiseless case, the logarithm of Eqn. 2.2 can be presented as, 

 )log()log()log( FHG   (2.40) 

In accordance with the Central Limit Theorem (CLT), if there are many samples 
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available, the right hand side of the equation converges to log(H). Since only a single 

observation of the blurred signal is available, Stockham proposed segmenting the 

signal for this purpose. The idea was also extended to the power spectrum, although 

the results appear to be affected by unknown phase distortion.  

MED is another scheme that employs minimizing the entropy of the resulting signal. 

Originally proposed by Wiggins in [31] for the deconvolution of seismic data, it was 

modified by Ulrych et al. in [95] to include complex reflection coefficients, phase 

distortions and time delays related to seismic activity. The basic scheme involved 

separating the components of the system into a smooth wavelet and a series of 

impulses. The MED iteration as by [95] can be given as, 

 x
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Fx is the initial estimate of the image and 
n
xF 1  is the new estimate of the image. 

Convergence of the scheme depends upon the entropy norm B that is minimized in 

successive iterations. Different entropy norms have been suggested based on their 

convergence and error minimization properties. Wiggins in [31] proposed the 

varimax norm while Ulrych and Walker used a kurtosis norm in [95]. Cabrelli used a 

D norm for the same purpose [96]. Extending the scheme to the frequency domain, 

Sacchi et al. in [97] proposed applying frequency domain constraints over the mid 

frequency ranges of the convolved signal, to provide a dominant signal spectrum, 

thus avoiding heavy distortion by noise. Their algorithm is named as the frequency-

domain MED. 

If the Fourier transform of the PSF contains zeros, the inverse filtering becomes a 

poor restoration technique. Sondhi reviewed the digital image restoration methods of 

his era in [47]. In [47], Sondhi suggested a modification to the inverse filtering to 

overcome this difficulty. 

In [93], Gennery suggested determining the OTF, the Fourier Transform of the PSF, 

by looking at the zeros in the Fourier transform of a blurred image which might 

provide sufficient information about the parameters of the OTF. The method is 

limited to only certain usual forms of degradation and in the absence or low presence 

of noise in the image. In [89] Cannon proposed using the power spectrum as it 

provided a better identification of the zeros even in the presence of noise. 

Simultaneous deconvolution of the unknown PSF and the blurred image was first 

proposed by Ayers and Dainty in [62]. It suggests alternately iterating on each of the 

unknowns to estimate the true image and the PSF, thus making it a blind 
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deconvolution scheme. But the scheme suffers from noise amplification in successive 

iterations and depends on the initial estimates of both unknowns as well. 

The work undertaken by Schafer et al. in [98] marks the birth of deblurring 

algorithms that impose various constraints in order to converge on the true solution. 

Prior information about the signal and the blurring kernel can be incorporated in the 

algorithm in the form of a constraint operator. The iteration as in [98] is given by, 

 xx FyF  1  (2.42) 

 DCxy   (2.43) 

where λ is the convergence operator that can be a constant or a function of the 

independent variables and xF  is the initial estimate of the image. y is the original 

signal with the convolution signal D and the constraint operator C.  

Principal Component Analysis (PCA) is a mathematical procedure that uses an 

orthogonal transformation to convert a set of observations of possibly correlated 

variables into a set of values of uncorrelated variables called principal components. 

The number of principal components is less than or equal to the number of original 

variables. This transformation is defined in such a way that the first principal 

component has variance as high as possible (that is, it accounts for as much of the 

variability in the data as possible), and each succeeding component in turn has the 

highest variance possible under the constraint so it is orthogonal to the preceding 

components. So, PCA can be seen as a linear mixture that defines most variation of 

the data. Independent Component Analysis (ICA) is a much more powerful 

technique; capable of finding the underlying factors or sources when these classic 

methods fail completely. ICA forms the basis for the non-Gaussianity based BID 

scheme and is thus presented in detail in the following section.  

Recent focus in the image deblurring domain is towards the deblurring of images 

corrupted by arbitrarily shaped PSFs resulting from camera handshake. Parametric 

blurs can be estimated by finding the original values of the blurring parameter(s) but 

arbitrarily shaped PSFs usually have a complex shape that cannot be modelled in a 

mathematical or parametric form thus making the PSF estimation difficult. Some of 

the BID schemes that deal with such PSFs include the BID of Shan et al. [39], Fergus 

et al. [17] and Whyte et al. [18].  

Shan et al. BID scheme deals with the blind deconvolution of images corrupted by 

motion PSFs both linear and arbitrarily shaped. It uses a single blurred image for 

http://en.wikipedia.org/wiki/Orthogonal_transformation
http://en.wikipedia.org/wiki/Variance
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estimating the blurring PSF and deconvolution through a unified probabilistic model 

for kernel estimation and unblurred image restoration. Their BID model focuses on 

handling inherent image noise effectively and reducing ringing artefacts by shrinking 

kernel errors during the estimation phase of the BID scheme. Image structures such 

as edges and sharpness of the deblurred image are utilised for ringing reduction. 

Their technique benefits from three main contributions. Firstly it uses a new model 

of the spatially random distribution of image noise which helps in reducing the 

kernel errors that arise during image noise reduction and blurring PSF estimation. 

Secondly a new smoothness constraint is imposed on low contrast areas in the latent 

image. This constraint suppresses ringing artefacts not only in smooth areas but also 

on textured ones in the near vicinity. The constraint in turn affects the kernel 

refinement stage as well. Thirdly an efficient optimization algorithm based on 

variable substitutions and Plancherel's theorem is utilised, that allows for 

computationally intensive optimization steps to be performed in the frequency 

domain. 

The scheme from Fergus et al. [17] estimates the blurring PSF and then the image is 

deconvolved using a Richardson-Lucy filter. The PSF estimation process depends on 

image statistics, especially pixel colour/ image gradients. Their scheme was designed 

to estimate in-plane motion PSF while neglecting out-of-plane (rotational) motion 

blur. The second scheme by Whyte et al. [18] extends the scheme of Fergus et al. by 

incorporating rotational blur constraints as well as employing it for two deblurring 

cases. In the first deblurring case their scheme has been used to deblur a single-shot 

image, while in the second deblurring case, it utilizes information from a noisy pair 

of blurred image along with a single-shot blurred image to estimate the blurring PSF.  

Many digital camera hardware assisted approaches to BID are also suggested. Coded 

aperture techniques use a patterned mask placed in the camera lens aperture to 

change the frequency features of out-of-focus blur in order to facilitate blur 

estimation and removal [5, 6]. These methods provide minimal modifications to the 

conventional camera resulting in portable imaging systems. They depend on scene 

depth information to perform shift-variant BID. Several hardware designs have been 

proposed and incorporated in the camera to estimate scene depth using out-of-focus 

cues, which can also be viewed as out-of-focus blurring PSF estimation methods. A 

modified multiple pinhole camera was used by Hiura and Matsuyama in [8] to 

estimate scene depth in different image textures and superimposing the image 

textures in a depth-dependent manner. 

Coded exposure techniques have been utilised for motion blur reduction by opening 
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and closing the shutter during exposure, attenuation of high frequencies due to 

motion blur can be prevented. Raskar et al. in [7] developed a coded exposure 

technique that opens and closes the shutter during exposure according to a pseudo-

random binary code. Agrawal and Xu in [3] presented another technique for code 

selection in order to make the resulting point spread function (PSF) invertible. Their 

technique presents a trade-off between PSF estimation and PSF invertiblity for the 

code selected. Levin et al. in [5] showed that sensor motion can render motion blur 

invariant to 1-D linear object motion by proposing to move the camera image sensor 

with a constant 1-D acceleration during exposure. Ben-Ezra and Nayar in [9] 

attached a low resolution video camera to a main camera, in order to estimate camera 

shake PSF from video frames, and then to remove blur from the main camera image.  

Some researchers proposed to move sensors for different purposes. Ben-Ezra et al. 

moved the sensor by a fraction of a pixel size between exposures for video super-

resolution [99]. Mohan et al. [100] moved the lens and sensor to deliberately 

introduce motion blur that acts like out-of-focus blur. Nagahara et al. [101] moved 

the sensor along the optical axis to make defocus blur depth-invariant.  

2.9. Independent Component Analysis (ICA)  

ICA is another technique based on the independency concepts of Blind Signal 

Separation (BSS), which provides a framework for deconvolution. Assuming the 

source and blurring signal to be independent and non-Gaussian, it tries to estimate 

the source signal as the most independent one. According to the CLT, this is the most 

non-Gaussian signal. ICA as a multivariate data analysis method has gained wide 

spread use in the image processing community [36, 102-104]. ICA has successfully 

been applied as the solution to the BSS problem [105]. But its application is not 

limited to BSS only, and many signal and image processing fields like image 

denoising, image segmentation and recognition and others have also benefited from 

this [85, 106].  

Independent Component Analysis (ICA) is a statistical and computational technique 

for revealing hidden factors that underlying sets of random variables, measurements, 

or signals. ICA defines a generative model for the observed multivariate data, which 

is typically given as a large database of samples. In the model, the data variables are 

assumed to be linear or nonlinear mixtures of some unknown latent variables, and the 

mixing system is also unknown. The variables are assumed to be non-Gaussian and 

mutually independent and they are called the independent components of the 



 

35 

 

observed data. These independent components (also called sources or factors) can be 

estimated by ICA. ICA can be seen as an extension to PCA and factor analysis [104]. 

ICA is one of the increasingly important tools in signal processing. It has gained its 

novelty in the successful solution of BSS problems [102, 103, 106]. It was initially 

proposed to provide a solution to the BSS problem [34] which aims at recovering a 

set of unobserved sources mixed in an unknown manner from a set of observations. 

Since its inception, numerous algorithms based on the ICA concept have been 

employed successfully in various fields of multivariate data processing, from 

biomedical signal applications and communications to financial data modelling and 

text retrieval. While linear mixtures of unknown sources have been examined 

thoroughly in the literature, the case of nonlinear ones remains an active field of 

research.  

2.9.1. ICA Problem Formulation 

The source separation problem was formulated around 1982 by Herault and Jutten et 

al. in [107] for motion decoding of vertebrates while the underlying ICA technique 

was first rigorously developed by Comon in [102] as a generalization of the PCA 

technique. ICA is one method for performing BSS that aims to recover unknown 

source signals from a set of their observations, in which they are mixed in an 

unknown manner. By minimizing the mutual information between the components of 

the output vectors of the demixing system, ICA tries to estimate both the mixing 

function and a coordinate system in which the source signal estimates become as 

mutually statistically independent as possible. 

For a source signal s, consider its recorded/captured version x as follows 

 sAx  .   (2.44) 

where A is a matrix of some unknown coefficients that define the representation and 

is known as the mixing matrix. In most cases, only linear functions are considered, 

because then the interpretation of the representation is simpler, and so is its 

computation. Both the mixing matrix A and the source signals are unknown.  

In this framework, one can determine the matrix A by the statistical properties of the 

transformed components y. In order to estimate the inverse of A, some basic 

assumptions are made such as the source signals are assumed to hold mutual 

statistical independence i.e. the knowledge of one element does not provide any 

information about other elements and that the source signals are not Gaussian.  

The goal of ICA is to find the original signal s from the mixture x. This is the BSS 
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problem [108]. Blind means that we know very little if anything about the original 

sources or we do not have any knowledge at all. 

ICA offers a simple solution to this BSS problem by considering just the statistical 

independence of the signals [73, 106]. If the signals are not Gaussian, it is even 

simpler to determine the inverse mixing coefficients W so that the source signals are 

statistically independent.  

 
sy

xWy





  

.
 (2.45) 

So, the ICA problem is now reduced to finding a linear representation in which the 

components are statistically independent. Also, one must keep in mind that ICA 

model holds strictly under the assumption that components are non-Gaussian and the 

mixing matrix A is orthogonal. 

2.9.2. Maximum Non-Gaussianity Principle 

Another very intuitive and important principle of ICA estimation is maximum non-

Gaussianity [73]. The idea is that according to the CLT, sums of non-Gaussian 

random variables are closer to Gaussian than the original ones. Therefore, if we take 

a linear combination y=∑bixi of the observed mixture variables, this will be 

maximally non-Gaussian if it equals to one of the independent components. This is 

because if it were a real mixture of two or more components, it would be closer to a 

Gaussian distribution, due to CLT. Thus, the principle can be quoted as follows 

  

“Find the local maxima of non-Gaussianity of a linear combination y=∑bixi under 

the constraint that the variance of y is constant. Each local maximum gives one 

independent component.” [36] 

 

Higher order cumulants have been used for BSS problem before [109]. Kurtosis, a 

fourth order cumulant, and negative entropy are two measures used in ICA to 

calculate the non-Gaussianity of a signal [73]. 

2.9.3. Limitations of ICA 

Although ICA-based schemes provide a framework to apply statistical independency 

concepts to blind deconvolution problems; their performance remains limited 

because of lack of observation samples, a prerequisite for BSS problems. Applying 

ICA on BSS or blind deconvolution problem requires fulfilling its pre-conditions, 
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which essentially means providing as many observations as underlying sources and 

independency among all observations.  

Further, only one underlying source or observation can have a Gaussian distribution. 

As the convoluted signal is reverberate of its own adjacent samples or pixels (in case 

of an image) which are mixed as per the proportion defined by the PSF; thus 

resulting in single observation only. In order to have multi-channel representation as 

required by ICA, one has to resort to some alternate representation technique. 

Recently a framework was developed under which a blurred image was redefined as 

multi-channel observations and thus the ICA based concept was applied to the 

problem of Blind Image Deconvolution (BID) [110].  

These ICA based algorithms do provide a feasible solution to the image 

deconvolution problem, however these methods fail to address the signal 

independency issues which have impeded exploration of real potentials of ICA in 

successful separation of underlying sources [111-113]. Further, existing ICA-based 

solutions have limited scope for image deconvolution problems because of small 

blurring kernel support, and very limited noise handling capacity along with 

deblurring. Also the independency assumption of ICA may not hold true in some 

practical situations. A new scheme that uses ICA with relaxed independency known 

as Dependent Component Analysis (DCA) was proposed by [114] to overcome this 

limitation. Its uniqueness and novelty is further marred by the fact that it is not 

completely blind at this moment as it requires an initial estimate of the blurring 

kernel to initialize the algorithm; therefore blind deconvolution still remains an 

exciting field of study.  

2.10. Spatial Non-Gaussianity Based Blind Image 

Deblurring (BID) Scheme  

The ICA-based algorithms have limited applicability in restoring the single frame 

blurred images. Therefore, either one has to provide multiple frame of the blurred 

images or to use some method to generate independent multi-channel observation 

from a single image for successful ICA-based deblurring. 

Yin & Hussain in [115] proposed a non-Gaussianity based single frame image 

deblurring scheme based on the principles of ICA. It uses a Wiener filter to deblur 

and denoise the image while the optimization procedure is based on GA. The 

methodology uses independency concept of ICA, in the sense that the independent 

nature of the original image over the blurred one is exploited. By utilizing this fact, 
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blurred image is tried to be restored by the application of any of the non-Gaussianity 

measures, i.e. kurtosis or negentropy, just like ICA employs them in BSS to separate 

the signals. As per CLT, images becoming more Gaussian as a result of increasing 

values of the blur, so using a non-Gaussianity measure, one can estimate the original 

image. Fig. 2.11 verifies this claim for the Barbara image in Fig. 2.10 for Gaussian 

blur of varying kernel width,  .  

 

 

Fig. 2.10 Barbara image used for non-Gaussianity analysis. 

 

 

Fig. 2.11 Gaussianity behaviour of Barbara image depicted by spatial kurtosis. The image 
becomes more Gaussian due to blurring. 

 

Spatial non-Gaussianity measures were used by this scheme to differentiate between 

the correlated (blurred image) and intermediate stages of recovery process till the 

time an uncorrelated (independent) image is achieved. During the restoration process 

the estimated PSF was optimized by a simple fixed point algorithm in an iterative 

manner. Their BID scheme uses GA based optimization of the fitness function. GAs 

have been widely used as an effective optimization algorithm for solving complex 

problems [116, 117]. A restored image is the one that has maximum possible 

independency. Fig. 2.12 presents the overview of the blind single frame image 

deblurring technique. 
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Fig. 2.12 Overview of the spatial non-Gaussianity based blind deconvolution scheme 

 

2.11. Summary 

An introduction to the topic of BID was provided with focus on the restoration filters 

and techniques used in this research work. Some of the classical restoration filters 

including Wiener, Richardson-Lucy and regularised filters were examined and their 

functionality discussed. A critical analysis of the existing BID techniques in 

literature was provided and schemes relevant to the research work were reviewed. 

The spatial non-Gaussianity based scheme, which forms the base for the spectral 

non-Gaussianity measure, was discussed in detail and its limitations reviewed. This 

leads the need to find more efficient and robust deblurring measures. The following 

chapter presents the spectral non-Gaussianity measure as an efficient alternate to the 

spatial non-Gaussianity measure.   
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Chapter 3  

The Spectral Kurtosis Based Non-

Gaussianity Measure for Blind Image 

Deblurring  

 

3.1. Introduction 

This chapter proposes the spectral kurtosis non-Gaussianity measure for BID and 

presents experimental results on both artificial and real blurred images. Spatial non-

Gaussianity measures suffer from deblurring noise and ringing artefacts which makes 

the robustness of the BID scheme based on them questionable, especially when real 

life blurred images are to be deblurred. This leads the need to develop new 

measure(s) or investigate other existing measures, those that are more robust and 

preferably computationally simple. The spectral kurtosis measure is presented as an 

efficient and robust alternative to the previously used spatial non-Gaussianity 

measures. The spectral kurtosis based BID schemes for gradient descent and GA 

based optimization are provided. Full-reference and non-reference IQMs have been 

used to quantitatively evaluate the quality of the deblurred images.  

The principle of ICA is used in BSS and deconvolution problems. In image 

restoration, such methods are often computationally intensive, and ringing and noise 

amplification artefacts from the deblurring process greatly affect the image statistics, 
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varying the calculated non-Gaussianity measures. The spatial kurtosis measure was 

previously used by Yin and Hussain in [115] as a fitness function for the GA to 

measure non-Gaussianity in the time domain. The spatial kurtosis measure 

maximizes/minimizes in the vicinity of true PSF parameter values indicating that the 

deblurring estimate is closest to the pristine image. It uses a Wiener filter in each 

iteration to generate a deblurred image estimate from the blurred one using a 

candidate PSF. This makes the spatial kurtosis based BID scheme computation-

intensive due to the transformation of the deblurred image in the frequency domain, 

estimated by the Wiener filter, back to the time domain to calculate the spatial 

kurtosis. The spatial kurtosis measure is also very sensitive to, and suffers from, 

ringing and noise degradations generated as a result of deblurring. To overcome 

these problems, an enhanced scheme is proposed that employs the non-Gaussianity 

principle of ICA on the spectral data rather than the image data itself. That is, 

spectral kurtosis is used as a measure of non-Gaussianity during the deblurring 

process. The deblurring process measures the non-Gaussianity of the image spectrum 

of the estimated images and the measure maximizes for the true blurring kernel. The 

spectral kurtosis measure, unlike the spatial kurtosis measure, is calculated in the 

frequency domain thus omitting the use of iFFT. 

3.2. The Spectral Kurtosis Based Non-Gaussianity 

Measure 

The blurring process makes the image more Gaussian by producing correlation 

among adjacent pixels. This trend follows for increasing value of blur, and was 

demonstrated by Hussain in [115, 118]. As a consequence of the CLT, the original 

image to be recovered from a mixed/degraded signal would be the one that has 

minimum Gaussianity or maximally non-Gaussian properties. Kurtosis, a fourth 

order cumulant, is generally employed to measure the non-Gaussianity of a signal. 

Mathematically the normalized spatial kurtosis of image data f is defined in Eqn. 3.1 

as,  

  3
}){(
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When f  has unit variance, spatial kurtosis is estimated as, 
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 3}{)( 4  fEfk  (3.2) 

Optimizing kurtosis function is not a trivial problem and resulting learning 

algorithms can be difficult to implement or become easily trapped in local minima. 

Spatial kurtosis is highly sensitive to outliers, and due to noise amplification and 

ringing effects from the restoration filter during the deblurring process, the measured 

non-Gaussianity varies, thus leading to a less precise approximation of PSF 

parameters. To increase the computational efficiency of the BID scheme and seek a 

more robust non-Gaussianity measure, spectral kurtosis is proposed as an alternative. 

Spectral kurtosis measures a signal‘s non-Gaussianity in the frequency domain. 

The spectral kurtosis measure resembles the Frequency Domain Kurtosis (FDK) of 

Dwyer [74], where the magnitude of the signal‘s spectrum is used to calculate the 

kurtosis value of the signal in the frequency domain. Though initially used to detect 

random signals, the measure has been widely used to detect bearing faults, noise in 

underwater signals and even subterranean termite detection [119-123].  

The spectral kurtosis measure is defined by Eqn. 3.3, 
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FK  (3.3) 

where F is the magnitude frequency domain value of signal f. It has been noted 

empirically that taking the logarithm to the base 10 of F, prior to calculating the 

spectral kurtosis, and during deblurring, provides a more distinct maximum. The 

measure has been shown to be more prone to the deblurring artefacts and much better 

pristine image estimates were obtained. The initial results of the spectral non-

Gaussianity based deblurring scheme developed by Khan and Yin were reported in 

[75, 76] . 

3.3. Spectral Kurtosis Based Non-Gaussianity Analysis 

For Blurred Images 

As per the CLT, the output of a linear system is more Gaussian compared to the input 

signal. In accordance, the image blurring process is assumed to make the blurred 

images more Gaussian than the pristine ones by producing correlation among the 

adjacent pixels of the image. If independency is assumed for the original signals, the 

same fact can be related in the frequency domain. Then the deblurring problem can 

be considered as separation of the convolved signals' spectrum by the use of 
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frequency domain non-Gaussianity measure. In order to perform deblurring based on 

frequency domain non-Gaussianity measure, an analysis of the image's blurring 

pattern is observed to substantiate that image's non-Gaussianity lessens as it is 

blurred more and more. Fig. 3.2, 3.3 and 3.4 verify this behaviour in the frequency 

domain of the image by using the spectral kurtosis measure. Images in Fig. 3.1 were 

blurred with Gaussian PSF of increasing variance (from 0.1 to 5). Also noted here is 

that spatial kurtosis for sub-Gaussian and super-Gaussian image shows an increasing 

and decreasing kurtosis value respectively while spectral kurtosis is always 

increasing. This makes the spectral kurtosis independent of the statistical nature of 

the image and the deblurring scheme easily automatable.  

 

 
(a)      (b)        (c) 

 

 
 (d)      (e)        (f) 

 

 
(g)      (h)        (i) 

Fig. 3.1 Test images used for non-Gaussianity analysis (a) Goldhill (b) Aerial-1 (c) Earth (d) 
Barbara (e) Parrot (f) Boat (g) Cameraman (h) Circles (i) Aerial-2. 



 

44 

 

 

 
    (a)      (b) 

 
    (c)      (d) 

 
    (e)      (f) 

Fig. 3.2 Gaussianity analysis for Goldhill, Aerial-1 and Earth images. (a), (c), (e) spatial 
kurtosis and (b), (d), (f) spectral kurtosis plots.  
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    (a)      (b) 

 
    (c)      (d) 

 
    (e)      (f) 

Fig. 3.3 Gaussianity analysis for Barbara, Parrot and Boat images. (a), (c), (e) spatial 
kurtosis and (b), (d), (f) spectral kurtosis plots.  

 

1 2 3 4 5

-1.05

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

Variance

S
p

a
ti
a

l 
K

u
rt

o
s
is

1 2 3 4 5

1.712

1.714

1.716

1.718

1.72

1.722

1.724

Variance

S
p

e
c
tr

a
l 
K

u
rt

o
s
is

1 2 3 4 5

-0.3

-0.25

-0.2

-0.15

-0.1

Variance

S
p

a
ti
a

l 
K

u
rt

o
s
is

1 2 3 4 5

2.306

2.308

2.31

2.312

2.314

2.316

2.318

2.32

2.322

Variance

S
p

e
c
tr

a
l 
K

u
rt

o
s
is

1 2 3 4 5

-0.9

-0.88

-0.86

-0.84

-0.82

-0.8

-0.78

-0.76

-0.74

-0.72

Variance

S
p

a
ti
a

l 
K

u
rt

o
s
is

1 2 3 4 5

1.625

1.63

1.635

1.64

1.645

1.65

Variance

S
p

e
c
tr

a
l 
K

u
rt

o
s
is



 

46 

 

 
     

 
    (a)      (b) 

 
    (c)      (d) 

 
    (e)      (f) 

Fig. 3.4 Gaussianity analysis for Cameraman, Circles and Aerial-2 images. (a), (c), (e) 
spatial kurtosis and (b), (d), (f) spectral kurtosis plots.   
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3.4. Spectral Kurtosis in Relation to Spatial Kurtosis 

Let f represent a zero mean signal with normal distribution and k its spatial kurtosis 

value, σf  its standard deviation, σ
2

f  its variance and μf(r)= μ
r
f  its r

th
 central moment 

or mean. Their frequency domain counterparts are depicted as F, K, σF, σ
2

F and 

r
FF r  )(  respectively. Signal f‘s normal distribution in the time domain and 

frequency domain are given by Eqns. 3.4 and 3.5, respectively  
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The relation between σ
2

f and σ
2

F can be expressed according to [124] in Eqn. 3.6 as, 

 
 

(3.6) 

The relationship between the spatial and the spectral kurtosis for the two cases of 

normalized and non-normalized kurtosis is evaluated as follows. 

3.4.1. Non-Normalized Spatial and Spectral Kurtosis 

The non-normalized kurtosis in time domains is given by Eqn. 3.7  
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and in frequency domain by Eqn. 3.8 
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Multiplying Eqn. 3.7 and Eqn. 3.8 we get 
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from Eqn. 3.6 we have σ
2

f σ
2

F =1. Putting this in Eqn. 3.9, we obtain  

 122 Ff
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The r
th

 central moment for normal distribution is given by  
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We calculate the fourth central moment which is in order used to calculate kurtosis.  

    4444 3!)!14( ffff fE    (3.12) 

Similarly 

 44 3 FF    (3.13) 

Multiplying Eqn. 3.12 and Eqn. 3.13 we get 

 
444444 9)3( )3( FfFfFf    (3.14) 

But σ
2

f σ
2

F =1 from Eqn. 3.6. So 

 944 Ff   (3.15) 

Putting this in Eqn. 3.10, we get 

 9kK  (3.16) 

3.4.2. Normalized Spatial and Spectral Kurtosis 

The normalized kurtosis in time domain is given by Eqn. 3.17 as follows  
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and in frequency domain by Eqn. 3.18 
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Rearranging them, we get 
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Multiplying Eqn. 3.19 and Eqn. 3.20 we obtain 
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Replacing σ
4

f σ
4

F and μ
4
f μ

4
F 

 with their respective values from Eqn. 3.6 and Eqn. 

3.15 and through further manipulation, we get 
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So, in general, for non-normalized and normalized kurtosis, the relationship between 

their time and frequency counterparts can be approximated by Eqn. 3.23 as 
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3.5. Proposed Spectral Kurtosis Based BID Scheme 

Using Gradient Descent Optimization 

A steepest descent BID scheme for spectral kurtosis maximization is presented. 

Assuming that uniform blur can be modelled by a parametric form, the scheme tries 

to estimate the true blurring parameters for the absolute maximum value of spectral 

kurtosis the deblurred image. The scheme is devised to handle any type of blur that 

can be modelled in a parametric form such as Gaussian, motion and out-of-focus 

blur. Gradient is computed against the parameter(s) of the blurring PSF, which is 

optimized in the direction of increasing kurtosis value till the pristine image is 

estimated. The scheme is simple and efficient and does not require any prior 

knowledge about the image or the blurring process. The algorithms and gradients are 

derived for a number of blurs, and the performance improvements are corroborated 

through a set of simulations. The benefit of using such a model of estimation is that it 

provides a united/single base for the BID scheme, allowing it to estimate any of the 

mentioned uniform blur types using the same scheme. The parametric model of blur 



 

50 

 

helps us simplify the search for the blurring PSF‘s parameter(s) value by optimizing 

the spectral kurtosis with respect to the blurred parameter until the desired result is 

obtained.  

Assume that Y is the deblurred image resulting from the deconvolution of the blurred 

image G with the Wiener restoration filter, given by Eqn. 3.24  

 


2

*

H

H
 (3.24) 

where δ is the noise to signal ratio. For simplicity of future derivation, w.r.t 

magnitude of the spectral data, we rewrite the above equation as 
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The kurtosis of the deblurred image Y is given by Eqn. 3.26 
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Eqn. 3.27 gives the expected value or mean of Y represented by μY(0)  
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Here M and N are the number of rows and columns of the image Y. Q1 and Q2 

represent the row and column number at which blurring starts occurring for actual 

image data and not the padded data around the rows and columns. The derivation of 

the gradient based BID algorithm scheme starts with differentiation of the cost 

function with respect to the parameter of the blurring function. In the proposed 

method a kurtosis based cost function for the deblurred image is employed. The 

parameter is updated iteratively using the steepest descent method, as shown in Eqn. 

3.28 

 )(1 YK
rrr    (3.28) 

under the constraint given in Eqn. 3.29 

 )()(
1

YKYK
rr  


 (3.29) 



 

51 

 

Where λ is the blurring PSF parameter, such as kernel width, length, or radius in case 

of Gaussian, motion or out-of-focus blur respectively, r is the iteration number, 

)(YK
r  is the kurtosis of the deblurred image for the current parameter, )(YK

r
  

represents the gradient matrix for the absolute kurtosis value and   is the 

convergence step size.  

Since  

 ))(sgn()()( YKYKYK    (3.30) 

Eqn. 3.28 can be rewritten as 

 ))(sgn()(1 YKYK
rrrr    (3.31) 

For α, a fixed scalar value can be used e.g. a=p
r
 where r is the iteration number and 

0<p≤1. For faster convergence, more efficient step computation schemes can also be 

employed. The gradient matrix is derived as follows.  
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where 
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Through further manipulations, we get 
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The term H



 needs to be calculated for specific types of blur.  

3.5.1. Gradient Matrix Derivation for Gaussian Blur Optical 

Transfer Function  

The derivation for the Gaussian blurring PSF is as follows. In case of Gaussian blur, 

the OTF for parametric model is given by Eqn. 3.38 
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with the σF of the OTF being reciprocal to σf of the PSF. For simplicity σF 
 will be 

just represented by σ in future calculations. Differentiating the OTF with respect to σ 

of the OTF as given in Eqns. 3.39 - 3.43, we get H



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3.5.2. Gradient Matrix Derivation for Motion Blur Optical Transfer 

Function 

The linear motion modelled here is the result of translation in the horizontal 

direction. In order to simplify the search for true blur parameters using the steepest 

descent scheme, we rotate the image until the blur can be assumed horizontal. This 

simplifies the case from two parameters i.e. length (L) and angle (φ) of blur. Now 

only the length of blur (L) needs to be optimized. The OTF for motion blur according 

to [87] is given by Eqn. 3.44 
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Differentiating the OTF with respect to the length parameter (L) of the OTF as given 

in Eqns. 3.45 – 3.50, we get 
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3.5.3. Gradient Matrix Derivation for Out-of-Focus Blur Optical 

Transfer Function  

The OTF for out-of-focus blur according to [87] is given by Eqn. 3.51 
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where J1 is the first order Bessel function. The Bessel function can be approximated 

by an exponential for sufficiently large data [125]. 
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Differentiating the OTF with respect to the radius parameter (R) of the OTF, Eqn. 

3.53 – 3.57 
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The parameter of the blurring PSF model is optimized in the direction of increasing 

value of the absolute kurtosis till the gradient shows a flat point or the difference of 

kurtosis between successive iterations falls below a specified tolerance value.  

A conjugate gradient algorithm may be formed by reformulation the gradient 

optimization iterations to achieve a much higher convergence rate [126]. 

Expectation-minimization based algorithms can also provide an attractive alternative 

to the standard gradient-based searches [127, 128]. 

3.5.4. Experimental Setup for Gradient Based BID scheme 

The proposed scheme has been tested on various images degraded with different 

degrading functions. Experiments were conducted on both artificial and real blurred 

images for the three different types of blur. Several image quality measures were 

employed to evaluate the quality of the deblurred images. The full reference IQMs 

include the MSSIM index and the UQI. The blind\no-reference based IQMs used 

were BRISQUE and NIQE. Images from the Desktop Nexus image wallpaper 

database [129] were used in the experiments on the artificial blur case. The test 

images are shown in Appendix A in Fig. A.1. Real blurred natural images, captured 

by either the author or others, were used in the case of real blind image deblurring. 

Fig. 3.6 depicts some of the example images used in the experiments. The proposed 

scheme has been compared with Shan et al.'s BID scheme [39]. A brief summary of 

their scheme is provided in chapter 2, section 2.8.  

3.5.5. Deblurring Results for Artificially Blurred Images 

The estimated PSF parameters and comparisons of different quality measures for 

Gaussian deblurring using the proposed BID scheme are given in Table 3.1. As it can 

be seen that the estimated values of Gaussian blur width parameter (σ) are closer to 

its original values. For MSSIM and UQI a higher value is desirable, whereas for 

BRISQUE and NIQE a lower value indicates improvement in the image quality as 

explained earlier in Chapter 2. The proposed BID scheme shows higher MSSIM 

value which shows an improvement in the quality of the deblurred image as 
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compared to the original blurred image. The same behaviour is validated by higher 

values of UQI and lower values of BRISQUE and NIQE. Fig. 3.5 shows some 

examples of the restoration of Gaussian blurred images using the proposed BID 

scheme. 

Table 3.1. True PSF parameter estimation for Gaussian blurred images and quantitative comparison of the 

deblurred image using MSSIM, UQI, BRISQUE and NIQE quality measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blurred
Proposed 

Scheme
Blurred

Proposed 

Scheme
Blurred

Proposed 

Scheme
Blurred

Proposed 

Scheme

Img-01 1.63 1.85 0.85 0.90 0.99 0.99 56.69 18.28 7.28 8.40

Img-02 4.98 4.76 0.73 0.81 0.95 0.97 77.15 70.69 10.84 7.97

Img-03 5.13 5.26 0.62 0.68 0.94 0.96 79.32 73.12 11.85 9.05

Img-04 3.88 4.05 0.78 0.86 0.97 0.98 72.87 55.30 10.64 7.65

Img-05 0.71 0.68 0.88 0.95 0.99 1.00 25.45 19.06 3.80 3.88

Img-06 0.94 1.21 0.97 0.88 1.00 1.00 52.71 38.15 7.00 7.21

Img-07 2.07 2.18 0.52 0.74 0.94 0.97 61.24 40.69 7.40 7.76

Img-08 2.63 2.50 0.69 0.80 0.95 0.97 67.06 34.43 9.10 6.99

Img-09 3.45 3.32 0.67 0.76 0.97 0.98 67.54 54.20 10.28 6.86

Img-10 2.44 2.24 0.75 0.86 0.97 0.98 64.76 36.55 8.56 6.45

Img-11 1.64 1.82 0.75 0.88 0.98 0.99 54.33 26.65 6.56 6.59

Img-12 0.98 0.99 0.93 0.94 0.99 1.00 47.88 11.99 5.48 3.85

Img-13 1.38 1.53 0.89 0.96 0.99 0.99 45.66 24.88 6.66 5.94

Img-14 3.13 3.26 0.62 0.80 0.93 0.97 72.01 49.99 9.79 6.85

Img-15 4.18 4.13 0.79 0.81 0.97 0.98 80.98 58.73 10.61 8.11

Img-16 5.47 5.39 0.45 0.55 0.93 0.95 82.44 70.65 10.77 9.02

Mean 0.75 0.82 0.97 0.98 63.00 42.71 8.54 7.04

Variance 1.985E-02 1.069E-02 5.239E-04 1.956E-04 2.218E+02 3.685E+02 4.962E+00 2.172E+00

BRISQUE NIQE

Image
Original 

Sigma

Estimated 

Sigma

MSSIM UQI
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Fig. 3.5 (left) Gaussian blurred images and (right) their respective pristine image estimates 
using the proposed gradient based BID scheme. 

(a) (e)(a) (e)

(b) (f)(b) (f)

(c) (g)(c) (g)

(d) (h)(d) (h)
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Table 3.2 summarizes the results for out-of-focus deblurring along with the 

comparison of different image quality measures. Estimated values of out-of-focus 

blur radius parameter are in the near vicinity of original blurring parameter values. 

The proposed BID scheme shows higher MSSIM value which depicts the proposed 

BID scheme results in better quality deblurred images as compared to the blurred 

images with lower MSSIM values. The same behaviour is validated by higher values 

of UQI and lower values of BRISQUE and NIQE. Fig. 3.6 shows some examples of 

out-of-focus blurred images and their respective deblurred counterparts using the 

proposed scheme.  

 

Table 3.2. True PSF parameter estimation for out-of-focus blurred images and quantitative comparison of 

the deblurred image using MSSIM, UQI, BRISQUE and NIQE quality measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blurred
Proposed 

Scheme
Blurred

Proposed 

Scheme
Blurred

Proposed 

Scheme
Blurred

Proposed 

Scheme

Img-01 7.00 6.84 0.70 0.81 0.96 0.98 69.52 27.22 10.24 4.32

Img-02 8.85 9.20 0.70 0.76 0.94 0.97 76.69 44.17 10.42 5.34

Img-03 10.00 9.40 0.59 0.70 0.93 0.95 77.68 39.09 11.99 4.97

Img-04 11.50 11.47 0.69 0.84 0.93 0.97 76.05 32.21 12.35 5.55

Img-05 1.00 0.74 0.95 0.97 1.00 1.00 22.08 12.82 3.29 2.70

Img-06 2.50 2.46 0.97 0.93 1.00 1.00 60.49 14.96 8.15 5.54

Img-07 4.00 3.91 0.48 0.83 0.93 0.98 57.52 10.78 6.92 3.77

Img-08 5.50 4.72 0.64 0.59 0.94 0.94 68.54 29.01 9.56 5.19

Img-09 13.00 12.58 0.63 0.68 0.96 0.97 67.17 39.76 10.84 4.61

Img-10 14.50 14.14 0.63 0.61 0.93 0.95 73.93 45.10 12.12 5.31

Img-11 16.00 15.27 0.51 0.58 0.93 0.95 76.35 43.96 11.36 5.20

Img-12 17.50 18.74 0.73 0.79 0.96 0.98 77.13 37.51 11.19 4.75

Img-13 19.00 18.82 0.40 0.70 0.86 0.95 80.40 45.59 11.93 5.96

Img-14 20.50 20.03 0.42 0.65 0.82 0.93 83.63 46.97 11.43 5.83

Img-15 22.00 21.58 0.68 0.64 0.93 0.93 86.56 56.11 12.76 7.12

Img-16 23.50 22.89 0.38 0.47 0.89 0.91 84.80 57.47 11.57 7.85

Mean 0.63 0.72 0.93 0.96 71.16 36.42 10.38 5.25

Variance 2.785E-02 1.706E-02 1.928E-03 5.539E-04 2.229E+02 1.919E+02 5.614E+00 1.348E+00

Estimated 

Radius
Image

Original 

Radius

MSSIM UQI BRISQUE NIQE
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Fig. 3.6 (left) Out of focus blurred images and (right) their respective pristine image 
estimates using the proposed gradient based BID scheme. 

(a) (e)(a) (e)

(b) (f)(b) (f)

(c) (g)(c) (g)

(d) (h)(d) (h)
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Fig. 3.7 shows the deblurring result for motion blurred images. The results for 

motion deblurring are summarized in Table 3.3 and Table 3.4. Estimated values of 

motion blur length parameter are in the near vicinity of original blurring parameter 

values. The proposed BID scheme shows higher MSSIM value which depicts the 

proposed BID scheme results in better quality deblurred images as compared to the 

blurred images with lower MSSIM values. The same behaviour is validated by 

higher values of UQI and lower values of BRISQUE and NIQE. The proposed 

scheme in the case of motion deblurring are also compared to the BID scheme of 

Shan et al. [39]. Shan et al. BID scheme deals with the estimation of arbitrarily 

shaped motion blur PSF and deblurring of images by such PSF. The proposed BID 

scheme depicts higher MSSIM and UQI and lower BRISQUE and NIQE values as 

compared to Shan et al. BID scheme. This depicts the proposed scheme's efficiency 

in producing high quality deblurred images as compared to Shan et al. BID scheme. 

With reference to Tables 3.1-3.4, BRISQUE IQM shows an improvement of 32, 49 

and 41 percent for Gaussian, motion and out-of-focus blur respectively. While NIQE 

IQM shows an improvement of 18, 49 and 38 percent for Gaussian, motion and out-

of-focus blur respectively. 

 

Table 3.3. True PSF parameter estimation for motion blurred images and quantitative comparison of the 

deblurred image using MSSIM and UQI quality measures. 

 

Blurred Qi Shan
Proposed 

Scheme
Blurred Qi Shan

Proposed 

Scheme

Img-01 7 8 0.92 0.87 0.94 0.99 0.98 0.99

Img-02 8 8 0.87 0.89 0.93 0.99 0.99 0.99

Img-03 9 9 0.76 0.81 0.89 0.98 0.98 0.99

Img-04 10 10 0.86 0.82 0.93 0.98 0.98 0.99

Img-05 11 12 0.74 0.73 0.83 0.98 0.97 0.99

Img-06 12 12 0.92 0.89 0.92 0.99 0.99 1.00

Img-07 13 13 0.54 0.62 0.81 0.93 0.93 0.97

Img-08 14 13 0.77 0.86 0.86 0.96 0.98 0.98

Img-09 15 14 0.72 0.76 0.83 0.97 0.97 0.98

Img-10 16 15 0.73 0.79 0.83 0.96 0.97 0.97

Img-11 17 17 0.57 0.53 0.80 0.94 0.94 0.98

Img-12 18 19 0.78 0.77 0.83 0.97 0.97 0.99

Img-13 19 19 0.51 0.72 0.81 0.92 0.96 0.98

Img-14 20 21 0.55 0.67 0.77 0.89 0.95 0.97

Img-15 21 21 0.75 0.68 0.59 0.97 0.96 0.96

Img-16 22 24 0.50 0.55 0.67 0.93 0.93 0.96

Mean 0.72 0.75 0.83 0.96 0.97 0.98

Variance 1.923E-02 1.216E-02 8.268E-03 7.672E-04 3.581E-04 1.123E-04

MSSIM UQI

Image
Original 

Length

Estimated 

Length
 Blurred Qi Shan

Proposed 

Scheme
Blurred Qi Shan

Proposed 

Scheme

Img-01 7 8 0.92 0.87 0.94 0.99 0.98 0.99

Img-02 8 8 0.87 0.89 0.93 0.99 0.99 0.99

Img-03 9 9 0.76 0.81 0.89 0.98 0.98 0.99

Img-04 10 10 0.86 0.82 0.93 0.98 0.98 0.99

Img-05 11 12 0.74 0.73 0.83 0.98 0.97 0.99

Img-06 12 12 0.92 0.89 0.92 0.99 0.99 1.00

Img-07 13 13 0.54 0.62 0.81 0.93 0.93 0.97

Img-08 14 13 0.77 0.86 0.86 0.96 0.98 0.98

Img-09 15 14 0.72 0.76 0.83 0.97 0.97 0.98

Img-10 16 15 0.73 0.79 0.83 0.96 0.97 0.97

Img-11 17 17 0.57 0.53 0.80 0.94 0.94 0.98

Img-12 18 19 0.78 0.77 0.83 0.97 0.97 0.99

Img-13 19 19 0.51 0.72 0.81 0.92 0.96 0.98

Img-14 20 21 0.55 0.67 0.77 0.89 0.95 0.97

Img-15 21 21 0.75 0.68 0.59 0.97 0.96 0.96

Img-16 22 24 0.50 0.55 0.67 0.93 0.93 0.96

Mean 0.72 0.75 0.83 0.96 0.97 0.98

Variance 1.923E-02 1.216E-02 8.268E-03 7.672E-04 3.581E-04 1.123E-04

MSSIM UQI

Image
Original 

Length

Estimated 

Length
 Blurred Qi Shan

Proposed 

Scheme
Blurred Qi Shan

Proposed 

Scheme

Img-01 7 8 0.92 0.87 0.94 0.99 0.98 0.99

Img-02 8 8 0.87 0.89 0.93 0.99 0.99 0.99

Img-03 9 9 0.76 0.81 0.89 0.98 0.98 0.99

Img-04 10 10 0.86 0.82 0.93 0.98 0.98 0.99

Img-05 11 12 0.74 0.73 0.83 0.98 0.97 0.99

Img-06 12 12 0.92 0.89 0.92 0.99 0.99 1.00

Img-07 13 13 0.54 0.62 0.81 0.93 0.93 0.97

Img-08 14 13 0.77 0.86 0.86 0.96 0.98 0.98

Img-09 15 14 0.72 0.76 0.83 0.97 0.97 0.98

Img-10 16 15 0.73 0.79 0.83 0.96 0.97 0.97

Img-11 17 17 0.57 0.53 0.80 0.94 0.94 0.98

Img-12 18 19 0.78 0.77 0.83 0.97 0.97 0.99

Img-13 19 19 0.51 0.72 0.81 0.92 0.96 0.98

Img-14 20 21 0.55 0.67 0.77 0.89 0.95 0.97

Img-15 21 21 0.75 0.68 0.59 0.97 0.96 0.96

Img-16 22 24 0.50 0.55 0.67 0.93 0.93 0.96

Mean 0.72 0.75 0.83 0.96 0.97 0.98

Variance 1.923E-02 1.216E-02 8.268E-03 7.672E-04 3.581E-04 1.123E-04

MSSIM UQI

Image
Original 

Length

Estimated 

Length
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Table 3.4. True PSF parameter estimation for motion blurred images and quantitative comparison of the 

deblurred image using BRISQUE and NIQE quality measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Blurred Qi Shan
Proposed 

Scheme
Blurred Qi Shan

Proposed 

Scheme

Img-01 7 8 34.76 24.06 33.44 6.36 5.66 5.99

Img-02 8 8 64.96 36.54 30.68 7.06 5.15 3.91

Img-03 9 9 56.47 42.72 27.88 6.48 5.26 4.22

Img-04 10 10 65.95 38.15 21.61 8.99 5.66 4.38

Img-05 11 12 52.71 44.81 16.76 8.39 5.92 4.31

Img-06 12 12 67.19 21.62 30.10 9.37 6.35 4.47

Img-07 13 13 39.98 24.53 8.27 7.17 7.69 5.63

Img-08 14 13 39.23 35.90 26.18 7.28 8.69 6.29

Img-09 15 14 27.37 26.92 18.34 7.15 5.48 4.77

Img-10 16 15 26.16 24.41 25.42 7.26 4.84 4.84

Img-11 17 17 13.19 53.31 26.65 7.94 6.07 3.84

Img-12 18 19 27.51 26.16 28.34 9.07 5.33 3.99

Img-13 19 19 26.61 46.49 38.10 9.24 6.06 4.45

Img-14 20 21 25.01 45.83 34.55 8.10 5.23 4.31

Img-15 21 21 58.33 55.45 27.37 8.40 6.49 5.46

Img-16 22 24 49.09 45.29 44.78 6.07 5.92 5.62

Mean 42.16 37.01 27.40 7.77 5.99 4.78

Variance 2.794E+02 1.173E+02 7.024E+01 1.068E+00 9.149E-01 5.616E-01

Image
Original 

Length

Estimated 

Length

BRISQUE NIQE

 Blurred Qi Shan
Proposed 

Scheme
Blurred Qi Shan

Proposed 

Scheme

Img-01 7 8 0.92 0.87 0.94 0.99 0.98 0.99

Img-02 8 8 0.87 0.89 0.93 0.99 0.99 0.99

Img-03 9 9 0.76 0.81 0.89 0.98 0.98 0.99

Img-04 10 10 0.86 0.82 0.93 0.98 0.98 0.99

Img-05 11 12 0.74 0.73 0.83 0.98 0.97 0.99

Img-06 12 12 0.92 0.89 0.92 0.99 0.99 1.00

Img-07 13 13 0.54 0.62 0.81 0.93 0.93 0.97

Img-08 14 13 0.77 0.86 0.86 0.96 0.98 0.98

Img-09 15 14 0.72 0.76 0.83 0.97 0.97 0.98

Img-10 16 15 0.73 0.79 0.83 0.96 0.97 0.97

Img-11 17 17 0.57 0.53 0.80 0.94 0.94 0.98

Img-12 18 19 0.78 0.77 0.83 0.97 0.97 0.99

Img-13 19 19 0.51 0.72 0.81 0.92 0.96 0.98

Img-14 20 21 0.55 0.67 0.77 0.89 0.95 0.97

Img-15 21 21 0.75 0.68 0.59 0.97 0.96 0.96

Img-16 22 24 0.50 0.55 0.67 0.93 0.93 0.96

Mean 0.72 0.75 0.83 0.96 0.97 0.98

Variance 1.923E-02 1.216E-02 8.268E-03 7.672E-04 3.581E-04 1.123E-04

MSSIM UQI

Image
Original 

Length

Estimated 

Length
 Blurred Qi Shan

Proposed 

Scheme
Blurred Qi Shan

Proposed 

Scheme

Img-01 7 8 0.92 0.87 0.94 0.99 0.98 0.99

Img-02 8 8 0.87 0.89 0.93 0.99 0.99 0.99

Img-03 9 9 0.76 0.81 0.89 0.98 0.98 0.99

Img-04 10 10 0.86 0.82 0.93 0.98 0.98 0.99

Img-05 11 12 0.74 0.73 0.83 0.98 0.97 0.99

Img-06 12 12 0.92 0.89 0.92 0.99 0.99 1.00

Img-07 13 13 0.54 0.62 0.81 0.93 0.93 0.97

Img-08 14 13 0.77 0.86 0.86 0.96 0.98 0.98

Img-09 15 14 0.72 0.76 0.83 0.97 0.97 0.98

Img-10 16 15 0.73 0.79 0.83 0.96 0.97 0.97

Img-11 17 17 0.57 0.53 0.80 0.94 0.94 0.98

Img-12 18 19 0.78 0.77 0.83 0.97 0.97 0.99

Img-13 19 19 0.51 0.72 0.81 0.92 0.96 0.98

Img-14 20 21 0.55 0.67 0.77 0.89 0.95 0.97

Img-15 21 21 0.75 0.68 0.59 0.97 0.96 0.96

Img-16 22 24 0.50 0.55 0.67 0.93 0.93 0.96

Mean 0.72 0.75 0.83 0.96 0.97 0.98

Variance 1.923E-02 1.216E-02 8.268E-03 7.672E-04 3.581E-04 1.123E-04

MSSIM UQI

Image
Original 

Length

Estimated 

Length
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Fig. 3.7 (left) Motion blurred images and (right) their respective pristine image estimates 
using the proposed gradient based BID scheme. 

(a) (e)(a) (e)

(b) (f)(b) (f)

(c) (g)(c) (g)

(d) (h)(d) (h)
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3.5.6. Deblurring Results for Real Blurred Images 

The proposed deblurring scheme has also been performed on real images with 

motion blur, a typical problem facing amateur photographers, as well as atmospheric 

turbulence blur, a typical degradation in remote sensing. The deblurred images using 

the proposed scheme have been compared with pristine image estimates using the 

blind deconvolution scheme by Shan et al. in [39]. 
 

 

 

In the first case, a video was captured by a low quality camera. A blurred image 

frame, depicted in Fig. 3.8 (a), shows an approximate vertical motion blur with the 

small numbers at the bottom becoming unreadable. The blurred image contains a 

certain amount of noise due to poor lighting, one of the most difficult issues in 

deblurring. Fig. 3.8(b) shows the deblurred image estimate using the proposed 

scheme with the estimated blur kernel visible. Fig. 3.8(c) shows the deblurred image 

and the corresponding PSF estimated using the blind deconvolution scheme by Shan 

et al. The image in Fig. 3.8(c) seems to have recovered well; however, the text on the 

left is still unreadable since the PSF estimate using this scheme does not completely 

follow a uniform motion blur. Using the proposed scheme, a uniform motion PSF of 

length 21 pixels and angle zero degree was estimated. In Fig. 3.8(b), the digits in the 

     
(a)            (b)  

 

    

(c) 

Fig. 3.8 (a) Real motion blurred LABEL image (b) Deblurred using the proposed BID 
scheme (c) Deblurred using Shan et al. BID scheme  

(a) (b)

(c) (d)

(e) (f)
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deblurred image have become clear and easily readable. MATLAB‘s edgetaper 

function was used to reduce the ringing effect caused, by using the discrete Fourier 

Transform. 

Fig. 3.9 and Fig. 3.10 show the deblurring of motion blurred images resulting from 

object movement and camera handshake, respectively. The motion blur is almost 

linear at a certain angle. The images seem to have recovered well.  

 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 3.9 (a) Real motion blurred MATLAB_BOOK image (b) Deblurred using the proposed 
BID scheme (c) Deblurred using Shan et al. BID scheme.  
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Another motion blurred image taken by an ordinary digital camera along with its 

deblurred versions is shown in Fig. 3.11. Fig. 3.11(b) shows the pristine image 

estimate using the proposed scheme with the corresponding estimated PSF. Fig. 

3.11(c) shows the deblurred image and the corresponding PSF estimated using the 

blind deconvolution scheme by Shan et al. The image seems to have recovered well, 

with the main and sub-title text of the book more readable for our proposed scheme. 

However, some ringing is present for the deblurred image in Fig. 3.11(b) as ringing 

reduction apart from edge-taping is not utilized because it affects the image 

sharpness and statistics which in turn affect the IQM. 

 

 

(a) 
 

 

(b) 
 

 

 

(c) 

Fig. 3.10 (a) Real motion blurred BUILDINGS image (b) Deblurred using the proposed BID 
scheme (c) Deblurred using Shan et al. BID scheme.  
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Table 3.5 shows the deblurring results for real life motion blurred images using the 

proposed BID scheme. Quality of the deblurred images is compared using BRISQUE 

and NIQE IQMs of proposed BID scheme with Shan et al. BID scheme. A low value 

of BRISQUE and NIQE shows a better quality image. For the LABEL image, both 

the proposed scheme and Shan et al. scheme shows improvement in the quality of 

image after deblurring. For the DIP_BOOK and MATLAB_BOOK image, both the 

schemes fail to estimate the blur correctly. This is depicted by high values of 

BRISQUE for the two schemes as compared to that of the original blurred image. For 

the BUILDINGS image, the proposed scheme depicts a better quality deblurred 

image as compared to Shan et al. BID scheme and an overall improvement as 

compared to the original image.  

 

   

(a)     (b) 

 

 

(c) 

Fig. 3.11 (a) Real motion blurred DIP_BOOK image (b) Deblurred using the proposed BID 
scheme (c) Deblurred using Shan et al. BID scheme.  

(a) (b)

(c) (d)

(e) (f)
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The proposed scheme shows better quality for LABEL image depicted by NIQE as 

compared to Shan et al. BID scheme. NIQE values for the deblurred images of Shan 

et al. BID scheme are relatively lower as compared to the proposed BID scheme for 

DIP_BOOK, MATLAB_BOOK and BUILDINGS image. This depicts better image 

quality but in the case of DIP_BOOK NIQE value is more for the deblurred image 

than the original image which shows the deblurred image deteriorates. However, 

visual inspection of the deblurred images of Shan et al. scheme are compromised by 

ringing artefacts resulting from errors in kernel estimation. It can be concluded that, 

although BRISQUE and NIQE are a true representation of the deblurred image 

quality, they are independent of the ringing artefacts occurring in the deblurred 

images.   

 

 

3.6. Proposed Spectral Kurtosis Based BID Scheme 

Using Genetic Algorithm Optimization 

The proposed scheme is an extension of a previous blind image deconvolution 

approach using ICA and GA [115] but operates in the frequency domain. The 

estimated (deblurred) image is obtained using a Wiener filter as the deblurring filter. 

The spectral kurtosis based fitness function is used in the GA to find the blur 

parameters in an iterative manner. As the spectral kurtosis is calculated in the 

frequency domain, it limits the need to transform the signal backward and forward 

between the spatial and spectral domains during each iteration. This greatly improves 

Table 3.5 Quantitative comparison of pristine image estimates for real motion blurred images using 

BRISQUE and NIQE quality measures 

Image 

BRISQUE 

Original Manual Shan 
Proposed 

Scheme 

LABEL 56.080 27.350 52.000 54.070 

DIP_BOOK 29.770 17.780 40.210 45.680 

MATLAB_BOOK 5.480 15.490 28.840 48.550 

BUILDINGS 39.850 25.960 41.170 39.580 

 

Image 

NIQE 

Original Manual Shan 
Proposed 

Scheme 

LABEL 7.110 6.230 8.100 7.680 

DIP_BOOK 5.780 4.530 6.310 6.510 

MATLAB_BOOK 5.760 5.530 4.070 6.310 

BUILDINGS 7.010 5.440 6.410 6.850 
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the efficiency of the algorithm, especially when multiple PSF parameters are 

simultaneously searched.  

Fig. 3.12 depicts the schematic diagram of the proposed spectral non-Gaussianity 

based deblurring scheme. The PSF parameter estimation block updates the candidate 

PSF‘s parameters for increasing spectral non-Gaussianity until no more improvement 

is possible. The deblurring block of the algorithm then deblurs the image with the 

candidate PSF using a suitable restoration filter such as Wiener or Richardson-Lucy.  

 

The BID scheme is summarized as follows. 

 

 Initialize the GA parameters i.e. population, size, crossover rate, mutation 

rate etc. Initial population consists of chromosomes represented in binary 

encoding.  

 Perform an iteration and for different values of optimizing parameter (e.g. 

sigma in case of Gaussian blur, theta in case of motion blur etc); find the 

restored image through inverse/Wiener filtering in the spectral domain and 

calculate its spectral kurtosis (i.e. the fitness function) for different population 

samples. 

 Generate the child population for the next iteration by evolving from the 

parents on the basis of the fitness function in subsequent iterations 

(generations), through mutations and crossover. 

 Repeat the process again till the algorithm converges for the deblurring 

measure. 

 

For estimating motion blur parameters, 11-bit chromosomes were used to search the 

angle from 0 to 180 degrees. The blur angles from 180 to 360 are similar to blur 

angles 0 to 180 and can be estimated using the 11-bit chromosome. The radius of 

out-of-focus PSF was approximated by 8-bit chromosomes in the range of 0 to 31 

pixels. It was noted empirically that out-of-focus blur with radius above 23 pixels 

causes severe blurring and a lot of information is lost. The parameters (variance, 

angle and radius) were approximated to the precision of 0.125. In all cases, the 

population size was set to 100, while up to 3 bits of the chromosomes were randomly 

mutated every iteration.  
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Fig. 3.12 Schematic diagram of the spectral non-Gaussianity based deblurring scheme. 
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Selection, crossover and mutation are performed as "pseudo-random" walk through 

search space. Search space is defined by all possible encodings of solutions. 

Crossover includes combining two individuals to create new individuals for possible 

inclusion in next generation. Each crossover is performed with probability pc  

{0.5,…,0.8} and cross over points are selected at random. Mutation involves 

modification of components of the individual chromosomes with probability pm. pm 

 is usually a small number usually assumed in the range of {0.001,....,.0.01}. Roulette 

wheel selection is used to select the best fitting individuals among the population. 

The proposed scheme is easy to implement and often only few parameters need to be 

searched or optimized, e.g. variance in the case of Gaussian blur, angle and length of 

PSF in the case of motion blur, while radius in the case of out-of-focus blur. Apart 

from the GA based algorithm, other optimization procedures can also be used in the 

BID scheme to efficiently seek for the PSF parameters. 

3.6.1. Experimental Setup for GA based BID Scheme 

The proposed scheme has been tested on various images degraded with different 

degrading functions. Common blurring kernels or PSFs are Gaussian or atmospheric 

turbulence, motion and out-of-focus [57, 115].  

In the artificial deblurring case, the images were blurred without the presence of 

noise, while the real blurred images had a low level of noise present. In case of 

Gaussian PSF estimation, 6-bit chromosomes were used in the GA to represent and 

approximate the blur width within values of 0.5 to 5.5. Below 0.6 variance value, the 

spatial and spectral kurtosis values do not change much suggesting that the image has 

almost no blur effect. Above 5.5 variance value, the image is too blurred and does 

not recover well even if true PSF value is input. For estimating motion blur 

parameters, 11-bit chromosomes were used to search the angle from 0 to 180 

degrees. The blur angles from 180 to 360 are similar to blur angles 0 to 180 and can 

be estimated using the 11-bit chromosome. The radius of out-of-focus PSF was 

approximated by 8-bit chromosomes in the range of 0 to 31 pixels. It was noted 

empirically that out-of-focus blur with radius above 23 pixels causes severe blurring 

and a lot of information is lost. The parameters (variance, angle and radius) were 

approximated to the precision of 0.125. In all cases, the population size was set to 

100, while up to 3 bits of the chromosomes were randomly mutated every iteration.  

3.6.2. Restoration of Gaussian Blurred Images 

The 2-D Gaussian PSF for PSF pixel coordinates (m,n) is given by,  
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where σ is the width of the blurring kernel. Fig. 3.13 shows the restoration of 

Gaussian blurred Peppers image using spectral kurtosis. Fig. 3.14 displays the spatial 

and spectral kurtosis curves. Both non-Gaussianity curves optimize around the true 

variance of 2.8. Estimated PSF parameters, the PSNR values and comparison with 

various methods are given in Table 3.6. Estimated values for the Gaussian blur 

parameter, variance, are in the near vicinity of the true values. Once the parameter 

has been estimated, different restoration filters were used to assess their deblurring 

quality. The PSNR values show that the proposed BID scheme, with the highest 

PSNR values, in conjunction with the Wiener filter produce deblurred images with 

the highest deblurring quality. MATLAB based BID scheme is second in order of 

deblurred image quality however this scheme requires an initial PSF estimation and 

cannot be regarded as totally blind. 

   

     (a)         (b)  

Fig. 3.13 (a) Gaussian blurred Peppers image (b) Deblurred image using spectral kurtosis based 
scheme.  

 

 

 (a)          (b)  

Fig. 3.14 (a) Spatial kurtosis (b) Spectral kurtosis plot for Gaussian blurred Peppers image. 
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Table 3.6 Parameter estimation for Gaussian blurred images and PSNR of various deblurring methods. 

Image 
Original 

Variance 

Estimated 

Variance 

PSNR (dB) 

Blurred 
Regularized  

Filtering 

Richardson- 

Lucy Filter 

MATLAB 

Blind 

Deconvolution 

Proposed 

scheme  

with 

Wiener 

Filter 

Barbara 2.3 2.35 22.25 26.13 24.22 24.22 26.55 

Washsat 1.2 1.10 13.68 19.84 21.25 21.26 19.79 

Boat 3.9 3.88 24.46 26.64 24.68 24.69 28.07 

Cameraman 2.9 2.97 21.94 24.51 25.73 25.73 25.84 

Goldhill 3.5 3.75 22.88 23.09 23.66 23.66 24.08 

Lena 4.2 4.23 23.54 26.33 27.03 27.04 27.72 

Mandrill 5.3 5.35 19.66 24.07 20.81 20.81 25.02 

Peppers 2.8 2.70 27.92 26.20 26.42 26.42 29.18 

 

Fig. 3.14(b) shows an important point to observe regarding the Gaussian blur based 

non-Gaussianity analysis. The graph depicts a non-Gaussian behaviour in the early 

stages of blurring (up to 0.5 PSF variance) before the image starts to become more 

Gaussian as a result of further blurring. This is due to the finite PSF matrix which for 

small variances (usually from 0.1 up to .9) has unnecessary zero elements that during 

convolution result in smaller values than the expected average value. This in turn 

affects the image statistics.    

3.6.3. Restoration of Motion Blurred Images 

Fig. 3.15 shows a motion blurred Cameraman image and its deblurred result using 

the proposed method. The image was blurred with motion blur at an angle of 47 

degrees. The motion blur for PSF pixel coordinates (m,n) is described by [57, 115], 
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The true parameters were identified using the proposed scheme. In this case both the 

length of the blur and angle were estimated correctly. Fig. 3.16 depicts the spatial 

and spectral kurtosis curves. Both curves optimize near the angle of 47 degrees, 

correctly identifying the motion blur PSF parameter.  
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     (a)         (b)  

Fig. 3.15 (a) Motion blurred Cameraman image (b) Deblurred image using the spectral kurtosis 
based scheme.  

 

 

(a)          (b)  

Fig. 3.16 (a) Spatial kurtosis (b) Spectral kurtosis plot for motion blurred Cameraman image.  

 

Table 3.7 presents the estimated parameters and the PSNR values of the motion 

blurred and deblurred images. Estimated values for motion blur angle parameter, 

theta, are in the near vicinity of the true values. Once the parameter has been 

estimated, different restoration filters were used to assess their deblurring quality. 

The PSNR values show that the proposed BID scheme, with the highest PSNR 

values, in conjunction with the Wiener filter produce deblurred images with the 

highest deblurring quality. MATLAB based BID scheme is second in order of 

deblurred image quality however this scheme requires an initial PSF estimation and 

cannot be regarded as totally blind. 
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Table 3.7 Parameter estimation for motion blurred images and PSNR values of various deblurring 

methods. 

Image 

Origina

l 

Theta 

Estimated 

Theta 

PSNR (dB) 

Blurre

d 

Regularize

d  

Filtering 

Richardson

- 

Lucy Filter 

MATLAB 

Blind 

Deconvolution 

Proposed 

Scheme  

with Wiener 

Filter 

Barbara 32.35 32.48 18.72 21.56 22.06 22.06 23.12 

Washsat 63.13 63.13 19.16 20.75 23.63 23.55 24.12 

Boat 123.21 123.63 18.92 21.28 22.03 22.03 23.23 

Camerama

n 
47.45 47.38 15.29 19.53 20.87 20.90 20.88 

Goldhill 11.19 11.25 19.20 19.66 20.25 20.34 20.45 

Lena 111.21 110.38 19.74 21.37 22.08 21.97 22.17 

Mandrill 175.67 175.13 17.14 18.99 19.86 19.75 21.98 

Peppers 85.36 85.50 18.43 23.35 21.97 21.97 23.87 

3.6.4. Restoration of Out-of-Focus Blurred Images 

Fig. 3.17 presents the out-of-focus Barbara image and its restoration using the 

spectral kurtosis scheme. The spatially continuous out-of-focus blur of radius R is 

given by, 
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222

2
Rnm

RCRnmh   (3.60) 

where C is a constant that conserves the PSF energy. The Barbara image was blurred 

with blur radius of 12.3 pixels. Both non-Gaussianity curves optimize at the true blur 

radius. Fig. 3.18 shows the spatial and spectral kurtosis curves for the deblurring 

processes. Table 3.8 summarizes the results for the out-of-focus blur restoration.  

 

  
     (a)         (b)  

Fig. 3.17 (a) Out-of-focus blurred Barbara image (b) Deblurred image using the spectral 
kurtosis based scheme. 
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(a)          (b)  

Fig. 3.18 (a) Spatial kurtosis (b) Spectral kurtosis plot for out-of-focus blurred Barbara image. 

 

Detailed results for artificial deblurring of the three blurring types can be found in 

Appendix A. Images from the Desktop Nexus image database were used in the 

experiments and full reference quality measures, PSNR, MSSIM, UQI and non- 

reference image quality measures BRISQUE and NIQE, were used to evaluate the 

quality of the deblurred image.  

Table 3.8 presents the estimated parameters and the PSNR values of the out-of-focus 

blurred and deblurred images. Estimated values for out-of-focus blur radius are in the 

near vicinity of the true values. Once the parameter has been estimated, different 

restoration filters were used to assess their deblurring quality. The PSNR values 

show that the proposed BID scheme, with the highest PSNR values, in conjunction 

with the Wiener filter produce deblurred images with the highest deblurring quality. 

MATLAB based BID scheme is second in order of deblurred image quality however 

this scheme requires an initial PSF estimation and cannot be regarded as totally 

blind. 
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Table 3.8: Parameter estimation for out-of-focus blurred images and PSNR of various deblurring methods. 

Image 
Original  

Radius 

Estimated 

Radius 

PSNR (dB) 

Blurred 
Regularized  

Filtering 

Richardson- 

Lucy Filter 

MATLAB Blind 

Deconvolution 

Proposed 

Scheme  

with Wiener 

Filter 

Barbara 12.35 12.25 18.07 16.48 20.17 20.20 20.81 

Washsat 9.71 9.75 6.50 11.12 12.40 12.41 11.45 

Boat 15.10 15.13 17.78 18.53 19.26 19.34 20.79 

Cameraman 17.45 17.38 13.64 14.25 17.10 16.99 17.02 

Goldhill 22.25 21.50 14.94 13.53 15.54 15.67 16.10 

Lena 17.30 17.25 15.97 14.80 17.70 17.73 18.74 

Mandrill 19.70 19.75 16.05 15.77 15.75 15.76 17.45 

Peppers 27.79 27.75 15.85 12.78 16.40 16.40 16.77 

 

3.6.5. Deblurring Results for Real Blurred Images 

The proposed deblurring scheme has also been tested on several real images. The 

two blurring cases studied here include motion blur, a typical problem faced by 

amateur photographers, as well as atmospheric turbulence blur, a typical degradation 

in remote sensing.  

In the first case of motion deblurring, a video was captured by a low quality camera. 

A blurred image frame, depicted in Fig. 3.19 (a), shows an approximate vertical 

motion blur with the small numbers at the bottom becoming almost unreadable. The 

blurred image also contains certain amounts of noise due to poor lighting which is 

one of the most difficult issues in deblurring.  

Parameters were approximated by using a Wiener filter as the base for calculating 

both spatial and spectral non-Gaussianity values. Different restoration algorithms 

were compared for restoration quality. Fig. 3.19 (b) to (d) show the restoration 

results of different filters such as regularized, Wiener and Richardson-Lucy. The 

digits appear much more readable.  
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(a)       (b) 

 

  

 (c)      (d) 

Fig. 3.19 (a) Blurred image, (b) Deblurred using the proposed scheme with the regularized filter, 
(c) with the Wiener filter, (d) with the Richardson-Lucy. 

 

 

 

 

Fig. 3.20 (a) and (b) shows the spatial and spectral kurtosis plots vs. different angle 

values and PSF lengths. Results for three different PSF lengths are shown. The 

minimum kurtosis value in case of the spatial kurtosis measure was approximated as 

85 degree and length of 30 pixels. In case of spectral kurtosis, the blur angle was 

approximated as 84.75 degree with a PSF length of 30 pixels at the point of 

maximum spectral kurtosis.  

 

 

 

 

Deblurred Image

31  87 Deblurred Image
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(a) 

 

 
(b) 

Fig. 3.20 (a) Spatial kurtosis curves with maximum value of 4.21 for PSF length of 30 pixels, (b) 
Spectral kurtosis curves with maximum value of 5.6797 for PSF length of 30 pixels. 

 

Another motion blurred image taken by an ordinary digital camera and its deblurred 

version are shown in Fig. 3.21. Fig. 3.21(b) shows the deblurred image and the 

corresponding PSF (rescaled) estimated using the blind deconvolution scheme by 

Shan et al. in [39] . The image seems to have recovered well; however, the title of the 

book is still unreadable since the PSF estimated using this scheme does not 

completely follow a uniform motion blur. In the case of spectral kurtosis based 

deconvolution a uniform motion PSF of length 21 pixels and angle zero degree was 

estimated. In Fig. 3.21 (c), the text in the deblurred image becomes clear and easily 

readable. MATLAB‘s edgetaper function was used to reduce the ringing effect 

caused by using the discrete Fourier Transform. Fig. 3.21 (d) shows the ringing 

effect if edgetaping is not used for the proposed scheme.  
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(a)       (b) 

 

  
(c)       (d) 

Fig. 3.21 (a) Blurred image, (b) Deblurred using blind deconvolution scheme of Shan et al. 
(estimated PSF is also shown) (c) Deblurred using the proposed spectral kurtosis based scheme 

(estimated PSF is also shown) (d) Ringing effect is visible in the deblurred image when 
edgetaping is not used.  

 

 

Fig. 3.22 (a) and (b) shows the result of the proposed scheme on the NASA Moon 

Surface image. The blur can be modelled as atmospheric turbulence, which is given 

by Eqn. 3.61 according to [57] as follows, 

 2

22

2

)(

);,( 

nm

Cenmh




  
(3.61) 

where C is a constant, σ is the burring width and m,n are PSF pixel coordinates. The 

proposed scheme using spectral kurtosis estimated the variance of 0.7 for the blurred 

image.  
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(a)                           (b) 

Fig. 3.22 (a) Blurred moon surface image (courtesy of NASA), (b) Spectral kurtosis based 

deblurring. 

3.7. Evaluation and Discussion 

3.7.1. Limitations 

The proposed scheme has been evaluated for noiseless blurred images. Its 

performance for noisy blurred images needs to be investigated. The scheme highly 

depends on ideal restoration filter (no noise amplification and ringing during 

deblurring). At present, a functional form of the PSF is assumed which is a limited 

form model of real PSFs. The real images deblurred using the proposed scheme here 

had an almost uniform shape which could be estimated by PSFs with functional form 

as given in [57]. These real blurred images were assumed to be noise free but manual 

adjustment of the NSR (Noise-to-Signal Ratio) parameter δ was still needed for the 

restoration filter. Real blurred images in many cases appear corrupted by PSFs that 

are usually arbitrarily shaped and may be space variant.  

3.7.2. Computational Efficiency of the Spectral Kurtosis Measure 

Unlike the spatial kurtosis measure, the spectral kurtosis measure is calculated in the 

frequency domain thus omitting the need to transform the data back into the time 

domain. This saves valuable computation time during the deblurring process. For an 

image with N  elements or MxM  dimensions, the FFT algorithm by Cooley and 

Tukey reduces the number of computations from 2N  (or 
4M ) to NN 2log  [130]. A 

single iteration for calculating the spatial kurtosis measure takes about twice the time 

as compared to the spectral kurtosis measure. This is shown in Table 3.9 for the FFT- 

iFFT cycle.  

However, the MATLAB‘s Wiener filter implementation also has other severe 

overheads losing per iteration efficiency. The average percentage efficiency in 

computation time per iteration for the FFT-iFFT cycle is 44 percent and for the 
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MATLAB‘s Wiener filter based deblurring it is 8 percent. The execution time 

depicted for the Wiener filter show deblurring schemes for both measures takes 

almost the same time per iteration. The spectral kurtosis with a low overhead 

deblurring filter will have low execution time especially when deblurring large size 

images or when multiple parameters need to be estimated. This is very important, 

especially when the deblurring is done online where the resources are very limited.  

Table 3.9: Comparison of per iteration execution speeds for spatial and spectral kurtosis measures. 

 

3.7.3. Discussion 

Spectral kurtosis is introduced as an alternate to spatial kurtosis for the estimation of 

parametric blur parameters. Spectral kurtosis is also independent of the statistical 

nature of an image.  The absolute value of spectral kurtosis is maximised at or in the 

near vicinity of the true values of PSF parameters. To search for this optimum point, 

initially a gradient based search algorithm was used which was later replaced by  

GA. Results for the artificial and real blurred images using both search algorithms 

shows that spectral kurtosis serves as a suitable alternative to the spatial kurtosis 

measure. The spectral kurtosis measure is able to estimate blurring parameter values 

for the parametric Gaussian, motion and out-of-focus blur. The IQMs used for 

computing the deblurred image quality shows that the quality of blurred images 

improves using the estimated PSFs.  

The spectral kurtosis measure was investigated for parametric blurs only. Deblurring 

was performed on noise free images in the artificial blurring case and with inherent 

image noise in the real blurred case.  

The spectral kurtosis is computationally efficient with the deblurring speed almost 

doubled for the FFT-iFFT cycle for images larger than 256 x 256 pixels. However, 

the overall improvement in computational speed was marred by the MATLAB based 

implementation of Wiener filter employed in the proposed BID scheme.  

In comparison with Shan et al. BID scheme, which can estimate parametric and 

Spatial 

Kurtosis

Spectral 

Kurtosis
Ratio

Spatial 

Kurtosis

Spectral 

Kurtosis
Ratio

32x32 12 8 1.50 6 6 1.00

64x64 13 8 1.63 15 13 1.15

128x128 19 13 1.46 48 44 1.09

256x256 35 20 1.75 204 189 1.08

512x512 229 87 2.63 848 771 1.10

1024x1024 779 332 2.35 3817 3427 1.11

Image 

Dimensions
Wiener Filter IterationFFT-iFFT Cycle

Execution Time (ms)
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arbitrarily shaped PSFs, the proposed BID scheme is designed for the estimation of 

parametric blurs only. In the artificial deblurring case for parametric blurs i.e. 

Gaussian, motion and out-of-focus blur, the proposed scheme produced better quality 

deblurred images as compared to the Shan et al. BID scheme. This is shown by high 

values of MSSIM and UQI and low values of BRISQUE and NIQE in Table 3.1-3.4.  

For the deblurring of real life motion blurred images, the proposed BID scheme 

shows better quality deblurred images for the BUILDINGS and LABEL image for 

BRISQUE IQM as compared to the original blurred image. The proposed scheme 

showed even better result as compared to Shan et al. for the BUILDINGS image. For 

the LABEL image, Shan et al. scheme showed better result as compared to the 

proposed scheme. However, for DIP_BOOK and MATLAB_BOOK images both the 

proposed and Shan et al. scheme further deteriorated the original blurred images.  

In most of the real deblurring cases, Shan et al. BID scheme shows lower quality as 

compared to the original blurred image. The deblurred images of Shan et al. are 

marred by ringing artefacts due to kernel errors in the PSF estimation stage.    

For the NIQE IQM, the proposed scheme shows better result for the BUILDINGS 

image.  

The proposed scheme was enhanced by using a GA based optimization technique 

instead of the gradient based optimization technique. This improved the overall 

convergence of the BID scheme in estimating the PSF parameter values. The GA 

based BID scheme was used to compare the deblurring results for multiple filters 

including Wiener filter, Richardson-Lucy filter, Regularization filter and MATLAB 

Iterative Blind Deconvolution (IBD) filter. Wiener filter based estimates show high 

PSNR values as compared to other filters showing the deblurred images are of high 

quality.  

3.8. Summary 

In this chapter, the spectral kurtosis based BID scheme was investigated as an 

alternative to the spatial kurtosis based BID scheme. Its performance was 

systematically evaluated and compared with a spatial kurtosis based BID scheme 

using artificially blurred and real life blurred images. Spectral kurtosis is 

computationally efficient and independent of the statistical nature of the image. The 

proposed BID scheme is simple, efficient, easy to implement and operates on a single 

blurred image for restoration. A comparison with spatial kurtosis and other blind 

restoration filters indicates the efficiency and improved performance of the proposed 
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scheme. The proposed scheme was enhanced by using a GA based optimization 

technique in conjunction with Wiener filter.  

Chapter 4 investigates BRISQUE, NIQE and RPSNR measures as alternative IQMs 

to spatial and spectral kurtosis.  
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Chapter 4  

Image Quality Measures for Blind 

Image Deblurring 

 

4.1. Introduction 

This chapter introduces the use of non-reference (reference-less or blind) Image 

Quality Measures (IQMs) as possible substitutes to the non-Gaussianity based 

deblurring measures. In simulated blurring cases the pristine image and deblurred 

image can be used to calculate quality measures such as PSNR, MSSIM, UQI etc. 

However, in the BID case, the source image is unavailable and an error image among 

the source and deblurred image cannot be calculated. This in turn leads to the 

impossibility of measuring the improvement in terms of error based or full-reference 

quality measures. It therefore raises the need to look for quality measures that can 

judge the deblurred image‘s quality without the need for a reference pristine image, 

or in other words, a measure that does not require a reference. In this research work, 

the existing blind IQMs BRISQUE and NIQE have been investigated as alternate 

deblurring measures for BID. A novel full-reference yet blind quality measure is also 

proposed as IQM for blind deblurring. 
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4.2. BRISQUE and NIQE as Deblurring Measures 

As discussed in Section 2.6.2 and Section 2.6.3 , BRISQUE and NIQE are two non-

reference quality measures recently proposed by Mittal et al. in [77] and [79]. Since 

neither of these quality measures require a reference image, it makes them good 

candidates by which to judge the quality of the deblurred image in BID. Using these 

measures, a deblurred image can be regarded as the best approximation of the 

original image at the point where the measures minimize. Fig. 4.1(a) shows the 

deblurring result of the motion blurred Barbara image. The image was blurred with a 

motion blur PSF of length 11 pixels and angle 25 degrees. Fig. 4.1(b) and Fig. 4.1(c) 

show the BRISQUE and NIQE plots for different angles of motion blur. Both these 

measures minimize in the near vicinity of the true blurring PSF parameters. The 

angles estimated by BRISQUE and NIQE are 26 and 25 degrees, respectively.  

 

 

Fig. 4.1 Deblurring result for motion blurred Barbara image (a) Blurred image (b) BRISQUE 
plot (c) NIQE plot. 
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4.3. Reblurring Based Quality Measure for Blind 

Image Deblurring 

Fig. 4.2 shows the schematic overview of the reblurring based blind deblurring 

scheme. Detailed explanation along with mathematical formulation is given in 

Section. 4.3.1. The blurred image g is passed onto the restoration filter where it is 

deblurred to obtain the original image estimate f‟. A candidate restoration PSF h 

from a list of PSFs is passed onto the deblurring filter and the image is restored. The 

original image estimate f‟ is then reconvolved with the candidate PSF h to re-enact 

blurring in the image and get the reblurred image g‟. If the restoration filter produces 

a noise-free and ringing-free image or a near approximate; only the candidate PSF, 

similar to the actual PSF h, will be able to reproduce the same blur. To measure the 

similarity between the original blurred and reblurred images, full-reference IQMs can 

be employed. Any of the full-reference IQMs PSNR, MSSIM, UQI, etc can be 

employed. In this research, the PSNR measure has been utilized for comparison thus 

naming the proposed measure Reblurring based PSNR (RPSNR).  

 

Fig. 4.2 Schematic diagram of the reblurring based BID scheme. 

4.3.1. Mathematical Formulation 

The mathematical derivation for the reblurring based BID scheme using the Wiener 

filter is presented as follows. The frequency domain blurring model in noiseless case 
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is given by Eqn.4.1, 

  HFG   (4.1) 

The goal of deblurring is to find F‟, an approximation of F, by using Wiener filter, 

such that, 

 FF '  (4.2) 

The Wiener restoration filter, given by Eqn. 3.24  
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W  (4.3) 

where δ is the NSR. For simplicity of future derivation, w.r.t magnitude of the 

spectral data, we rewrite Eqn. 4.3 as 
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Restoration by Wiener filter results in the original image estimate F‟ which is 

equivalent to the original image with some Wiener filter approximation error/noise, 

 .  

  FF '  (4.5) 

  depends on the NSR value, δ. A low NSR value results in a sharper image with 

more noise and a higher value of   while a high value NSR results in smooth 

image with more residual blur. The trade-off between image noise/sharpness and 

smoothness/residual blur is subjective to the user and can be achieved by adjusting 

the NSR parameter. 

Let Ĥ represent the candidate deblurring filter. The candidate filter can be assumed 

as different version of the true PSF H with some error defined by ∆H, such that,  

 HHH ˆ  (4.6) 

or alternatively 

 HHH  ˆ  (4.7) 

 HHH  ˆ  (4.8) 

The deblurring estimate F‟ is approximated using the Wiener filter in Eqn. 4.9  
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Replacing HHH  ˆ  from Eqn. 4.7, we get  
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The deblurring result can be categorized into two different scenarios. In the first case, 

Wiener filter restoration is performed for a candidate filter similar to the original 

blurring PSF. In the other scenario where the Wiener filter is provided with a 

candidate PSF different from the original blurring PSF. The functionality of the 

reblurring based BID scheme is explained for the two scenarios as follows 

 

CASE A  

If the candidate filter is similar enough to the original blurring PSF, Ĥ=H, the kernel 

error among them becomes zero. i.e. ∆H=0. Replacing Ĥ=H and ∆H=0 in Eqn.4.10, 

we get  
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or 
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The deblurring simplifies to the blurred image, G=F.H, being treated by the Wiener 

filter with the candidate filter similar to the original blurring PSF. In this case the 

deblurred image is a mixture of the original image and the restoration filter error  .  

  FF '

 

(4.13) 

The restoration error occurs more at spectral zeros of the candidate filter. The 

restored image in the case of Ĥ=H is a near estimate of the actual un-blurred image. 

Reblurring Eqn.4.13 results in achieving the original blurred image with an additive 

noise/error  

   HGHFHFHF  )(''  (4.14) 

The reblurred image in this case is the best approximate of the original blurred 

image. When the candidate filter Ĥ is similar to original blurring filter H, the Wiener 
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filter error   is less, for a specific NSR value. Low ringing is also achieved in the 

deblurred image due to less kernel error [39]. 

 

CASE B  

If the candidate filter is different from the original blurring PSF i.e. HH ˆ , the 

kernel error among them is equal to HHH  ˆ . Replacing HHH ˆ  in Eqn. 

4.10, we get  
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The two parts of the Wiener restoration in Eqn.4.17 result in erroneous deblurring 

due to a difference between the approximated PSF and the original blurring PSF. The 

erroneously deblurred image is given by HHF   . The complete deblurring 

output is given by Eqn. 4.17  

   FF '

 

(4.20) 

The restored image in this case is a mixture of the estimated image error 

HHF    and the usual restoration filter error  . The presence of kernel error 

results in an erroneous restoration and more ringing. Reblurring in this case by the 

candidate filter results in a blurred image different than the original blurred image 

 HFHF )(ˆ'    (4.21) 

 GG ˆ
 

(4.22) 

As an example of the functioning of the scheme, we look into Fig. 4.3. Fig. 4.3(a) 

shows the original image which was blurred with motion PSF at an angle of 37 

degrees, shown in Fig. 4.3(b). Fig. 4.3(c) shows the image deblurred with PSF of 

angle 37 degrees. The deblurred image is similar to the original image with 

negligible level noise and ringing. Fig. 4.3(e) and (g) shows the deblurred image for 

motion PSFs of angle 16 and 52 degrees respectively. The deblurred images are 

corrupted by noise and ringing artefacts. The image deblurred with a blur kernel 
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similar to the true PSF shown in Fig. 4.3(c) is the one which will reproduce a similar 

blur when reblurred.  

 

Fig. 4.3 (a) Original image (b) Blurred image (c)(e)(g) Images deblurred with PSF angle 37, 16 
and 52, with their respective reblurred images in (d),(f) and (h). 

(a) (b)

(c) (d)

40.8981

40.8981

40.8981

40.8981

(e) (f)

(g) (h)

38.6631 38.6631

39.279439.2794
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Fig. 4.4 RPSNR plot for deblurring of motion blurred Barbara image with PSF angle 37 
degrees. The RPSNR measure estimates the true blurring angle as 38 degrees at its maxima. 

 

Fig. 4.4 shows the RPSNR plot for the deblurring of the blurred Barbara image in 

Fig. 4.3(b), blurred with a motion PSF angle of 37 degrees. The RPSNR measure 

during deblurring estimates the true blurring angle as 38 degrees at its maxima.  

 

Fig. 4.5 RPSNR plot for deblurring of Gaussian blurred image with true blur variance of 2. The 
RPSNR measure incorrectly identifies the true blur variance as 0.5 . 

 

The reblurring based BID scheme is limited to the deblurring of motion blurred 

images. The deblurring results for artificially blurred Gaussian and out-of-focus 

images shows that the RPSNR measure fails to depict a global maximum value near 
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the true blur parameters. Fig. 4.5 and Fig. 4.6 show the deblurring results in case of 

Gaussian and out-of-focus blurred images. The most probable reason being that the 

blurred image which presents a smooth version of the image, depicts less difference 

to the original image especially at low levels of blur. This is wrongly perceived by 

the error based PSNR measure and thus results in an incorrect PSF parameter 

estimation.  

 

Fig. 4.6 RPSNR plot for deblurring of out-of-focus blurred image with true blur radius of 11. 
The RPSNR measure incorrectly identifies the true blur radius as 1. 

 

4.4. Experimental Setup  

Simulations were carried out to test the efficiency of the blind IQMs BRISQUE and 

NIQE and the full-reference blind IQM RPSNR. BRISQUE, NIQE and RPSNR have 

been tested as alternative deblurring measures. Experiments include testing of 

artificially blurred images as well as real blurred images. In the artificial blurring 

case the three types of parametric blurs, Gaussian, motion and out-of-focus blur, 

have been considered. RPSNR based BID was tested using the scheme shown in Fig. 

4.2. BRISQUE and NIQE measures were directly employed to estimate the blurring 

PSF parameters at their minima.  
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4.5. Deblurring Results for Artificially Blurred Images 

Fig. 4.7 shows the Cameraman image with blur at an angle of 35.35 degrees. The 

corresponding RPSNR, spatial and spectral kurtosis plots for deblurring are also 

shown. The RPSNR error measure estimated the angle as 32.5 degrees while spatial 

and spectral kurtosis estimated 32.25 as the blur angle. Angle step size in this case 

was 0.25 degrees. This shows that the RPSNR measure maximizes in the near 

vicinity of the true blurring parameter value.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

Fig. 4.7 (a) Blurred image (b) RPSNR plot (c) Spatial kurtosis plot (d) Spectral kurtosis plot. 
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Table 4.1 summarizes the RPSNR results for the artificially blurred Waterloo 

Bragzone images. In this case, motion blurred images were used and the blur angle, 

theta, was estimated. The estimated values are in close vicinity of the theta values 

used to blur the images. PSNR in decibels (dBs) has been calculated for three set of 

images: blurred and reblurred, original and blurred and original and deblurred. A 

higher value of PSNR shows image of high quality.  

For the original-deblurred case, the PSF estimates produce high quality deblurred 

images as shown by the high PSNR values. The deblurred images when reconvolved 

with the estimated PSF produce the reblurred images. When the candidate PSF is 

near to the original PSF, the reblurred image produces a similar blurring effect as in 

the originally blurred image. The original blurred image and the reblurred image are 

compared using PSNR and shown by the blurred-reblurred pair column in Table. 4.1. 

The high values of PSNR depict the reblurred images are in close approximation of 

the original blurred images.  Therefore the reblurring based BID scheme can estimate 

the blurring PSFs in case of motion blurred images. 

Table 4.1 PSNR comparison for the RPSNR based BID scheme 

 
 

 

Table 4.2 summarizes the results for the deblurring of images artificially blurred by 

Gaussian blur of varying standard deviation from 1 to 5 pixels with a step size of 0.5 

pixels. Results for 23 images from the Desktop Nexus image database are compiled. 

Variance parameter was estimated using three different IQMs i.e. BRISQUE, NIQE 

and RPSNR. NSR values of Wiener filter at the point of maximum IQM values are 

also presented. BRISQUE and NIQE estimates for the Gaussian blurring case are 

near to the true value of variance. 

 RPSNR in the Gaussian blurring case fails to correctly estimate the true variance 

values. The deblurred image quality for these three IQMs has been compared using 

PSNR, MSSIM, UQI, BRISQUE and NIQE. In the Gaussian blur case, BRISQUE 

Blurred – 

Reblurred

Original – 

Blurred

Original – 

Deblurred

Barbara 32.35 32 47.03 18.72 22.42 3.00E-03

Washsat 63.13 62.875 42.71 19.16 19.37 3.00E-04

Boat 123.21 122.125 46.61 18.92 22.18 3.00E-03

Cameraman 47.45 46 40.84 15.29 24.41 4.00E-03

Goldhill 11.19 11.5 51.99 19.2 25.84 4.00E-04

Lena 111.21 110.5 44.82 19.74 26.09 4.00E-04

Mandrill 175.67 176.75 32.75 17.14 19.24 4.00E-04

Peppers 85.36 85.5 32.97 18.43 18.92 3.00E-04

Image
Original 

Theta

Estimated 

Theta

PSNR (dB)

Wiener-Filter 

NSR Used
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based deblurred images are estimated as the ones with the best visual quality as 

compared to NIQE and RPSNR. This is shown by the high values of PSNR, MSSIM 

and UQI and by low values of NIQE. 
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Table. 4.2 Artificial Deblurring Results for Gaussian blurred images using RPSNR, BRISQUE and NIQE measures. Deblurred image quality is also compared. 

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID RPSNR BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

Img-01 1.00 1.00 0.90 0.50 4.00E-03 4.00E-06 5.70E-04 33.36 22.60 16.32 0.94 0.97 0.35 1.00 1.00 1.00 42.97 17.78 148.54 5.69 53.80 25.51

Img-01 1.50 1.50 1.30 0.50 1.00E-04 4.00E-07 5.97E-04 30.09 10.06 10.46 0.87 0.77 0.03 1.01 0.96 1.00 52.84 12.90 104.42 7.10 61.77 27.44

Img-02 2.00 2.10 1.80 0.50 4.00E-05 3.00E-07 7.91E-04 29.10 9.28 7.71 0.90 0.74 0.03 0.97 0.86 0.96 62.37 40.86 145.64 8.03 43.72 28.80

Img-02 2.50 2.50 2.60 0.50 1.00E-05 4.00E-07 9.58E-04 27.52 10.57 3.93 0.86 0.53 0.05 0.92 0.88 0.91 67.59 36.52 111.73 8.29 38.20 29.50

Img-03 3.00 3.10 3.40 0.50 4.00E-05 4.00E-07 9.97E-04 25.53 11.34 5.88 0.70 0.73 0.09 1.00 0.98 1.00 73.93 37.04 97.20 7.71 24.54 31.92

Img-03 3.50 3.60 3.20 0.50 9.00E-04 6.00E-03 7.31E-04 24.81 26.13 6.44 0.67 0.76 0.74 1.00 1.00 0.99 76.35 61.90 67.31 7.67 8.37 32.12

Img-04 4.00 4.10 4.00 0.50 1.00E-06 8.00E-05 9.62E-04 27.62 29.91 1.55 0.78 0.21 0.81 0.99 0.99 0.98 74.89 4.62 50.34 11.10 6.22 32.79

Img-04 4.50 4.30 4.60 0.50 1.00E-06 4.00E-03 9.77E-04 26.94 29.45 2.47 0.76 0.15 0.83 0.99 0.99 0.98 75.34 10.51 71.90 14.53 10.33 32.84

Img-05 5.00 4.20 4.90 0.50 8.00E-07 1.00E-03 2.09E-04 23.55 23.97 5.14 0.63 0.10 0.67 0.99 1.00 0.99 75.10 21.85 73.71 15.72 9.46 32.81

Img-05 1.00 1.10 0.80 0.50 8.00E-04 1.00E-03 9.45E-04 31.39 32.11 11.99 0.91 0.93 0.91 1.00 1.00 1.00 32.39 3.68 19.95 4.93 6.49 24.47

Img-06 1.50 1.30 1.10 0.50 8.00E-03 4.00E-06 9.64E-04 33.67 18.98 15.19 0.97 0.98 0.19 0.95 0.92 0.96 61.24 48.16 95.45 6.71 28.88 28.38

Img-06 2.00 1.80 2.40 0.50 1.00E-03 5.00E-06 5.47E-04 31.24 21.93 13.59 0.95 0.96 0.37 0.92 0.88 0.95 66.80 36.27 50.77 6.35 15.30 29.54

Img-07 2.50 2.90 2.30 0.50 8.00E-03 1.00E-07 8.83E-04 21.39 8.48 2.32 0.50 0.59 0.04 1.00 0.89 1.02 67.52 61.05 137.87 6.82 34.73 29.69

Img-07 3.00 3.10 3.20 0.50 1.00E-03 2.00E-07 2.10E-06 20.87 10.50 2.29 0.46 0.59 0.10 0.99 0.94 0.97 71.10 58.47 94.43 7.28 33.43 30.51

Img-08 3.50 3.40 3.40 0.50 4.00E-03 1.00E-03 9.05E-04 22.66 24.39 4.13 0.64 0.71 0.72 1.00 1.00 0.99 73.49 63.68 58.30 8.64 8.09 31.96

Img-08 4.00 3.90 4.00 0.50 1.00E-06 1.00E-04 8.73E-04 22.16 23.64 7.51 0.62 0.09 0.64 0.99 1.00 0.99 75.95 48.37 57.37 17.99 6.73 32.34

Img-09 4.50 4.20 4.30 0.50 1.00E-06 4.00E-03 1.00E-03 22.52 23.13 4.94 0.63 0.15 0.68 0.99 1.00 0.99 72.88 13.98 75.96 12.64 9.17 31.71

Img-09 5.00 4.30 4.90 0.50 8.00E-07 1.00E-03 9.97E-04 22.16 22.78 5.94 0.62 0.09 0.67 0.98 1.00 0.99 74.40 23.02 73.13 17.26 9.19 32.39

Img-10 1.00 1.10 1.00 0.50 4.00E-04 1.00E-06 5.14E-04 31.25 15.72 11.16 0.94 0.89 0.16 1.00 1.00 1.00 32.72 1.93 144.92 4.51 63.21 24.73

Img-10 1.50 1.40 1.20 0.50 4.00E-04 1.00E-08 8.06E-04 27.95 6.22 9.68 0.86 0.89 0.01 1.00 0.90 1.00 48.51 6.45 133.97 4.77 5.41 26.38

Img-11 2.00 2.00 1.90 0.50 8.00E-06 4.00E-08 7.38E-04 25.24 6.55 0.02 0.71 0.34 0.02 1.00 0.81 0.99 60.03 65.12 141.21 16.57 56.34 28.46

Img-11 2.50 2.60 2.40 0.50 1.00E-06 1.00E-08 7.41E-04 24.20 5.73 5.59 0.66 0.16 0.01 0.98 0.77 0.99 67.72 47.98 152.65 23.90 21.73 30.10

Img-12 3.00 3.10 2.50 0.50 1.00E-05 4.00E-07 9.87E-04 26.71 11.38 4.03 0.82 0.55 0.03 0.99 0.96 0.99 67.30 40.97 116.95 9.53 31.67 30.02

Img-12 3.50 3.40 3.20 0.50 1.00E-06 4.00E-07 9.97E-04 25.99 13.56 3.97 0.80 0.12 0.07 0.99 0.98 0.99 68.67 22.79 77.82 18.38 22.10 30.32

Img-13 4.00 3.40 4.10 0.50 8.00E-07 1.00E-07 9.31E-04 20.78 8.72 5.27 0.57 0.15 0.05 0.94 0.83 0.94 74.89 6.94 99.34 20.26 39.68 32.97

Img-13 4.50 4.70 4.70 0.50 1.00E-02 4.00E-07 8.97E-04 20.20 10.71 2.09 0.53 0.64 0.09 0.98 0.88 0.93 76.93 74.42 43.82 10.70 38.32 33.11

Img-14 5.00 5.00 5.10 0.50 4.00E-07 1.00E-06 8.30E-04 19.72 15.65 9.61 0.51 0.07 0.27 0.88 0.91 0.90 81.42 42.77 21.65 25.67 10.22 33.58

Img-14 1.00 1.00 1.00 0.50 4.00E-04 1.00E-06 6.00E-04 30.49 16.16 13.09 0.95 0.91 0.27 0.95 0.93 0.98 31.80 8.89 141.28 3.20 36.03 24.82

Img-15 1.50 1.30 1.80 0.50 1.00E-04 8.00E-07 6.93E-04 28.75 12.20 7.45 0.94 0.76 0.07 1.00 0.98 1.00 46.38 47.68 129.68 7.36 38.09 28.37

Img-15 2.00 2.00 2.30 0.50 1.00E-05 4.00E-07 6.72E-04 27.06 12.40 0.82 0.90 0.30 0.09 1.00 0.99 1.00 58.32 94.16 118.53 15.25 26.98 29.57

Img-16 2.50 2.40 2.60 0.50 1.00E-05 4.00E-07 9.75E-04 22.24 10.74 1.71 0.62 0.60 0.11 1.00 0.97 0.99 64.25 28.54 82.80 6.92 32.50 29.14

Img-16 3.00 3.10 2.70 0.50 4.00E-05 4.00E-03 9.92E-04 21.47 23.02 2.83 0.57 0.70 0.70 1.00 1.00 0.99 69.55 38.40 57.71 7.27 7.01 30.71

Img-17 3.50 3.30 3.80 0.50 1.00E-02 1.00E-05 9.43E-04 19.18 18.54 0.09 0.68 0.71 0.32 1.00 0.99 0.99 66.27 62.84 49.10 8.37 13.14 30.74

Img-17 4.00 3.90 4.10 0.50 4.00E-05 1.00E-07 9.25E-04 18.80 7.81 0.04 0.67 0.54 0.03 1.00 0.95 0.96 68.07 37.50 133.01 8.39 41.31 31.64

Img-18 4.50 4.00 5.10 0.50 1.00E-07 4.00E-06 9.99E-04 18.83 14.28 11.14 0.69 0.02 0.30 0.89 0.99 0.98 85.16 118.79 115.22 50.30 13.09 36.41

Img-18 5.00 4.70 5.10 0.50 4.00E-07 4.00E-03 9.87E-04 18.40 19.48 10.27 0.67 0.05 0.68 0.94 0.99 0.97 87.02 139.45 73.65 48.51 9.92 36.00

Img-19 1.00 1.00 1.30 0.50 8.00E-04 4.00E-03 5.25E-05 26.93 26.66 6.48 0.92 0.93 0.91 1.00 1.00 1.01 47.45 24.76 29.98 5.66 10.25 25.94

Img-19 1.50 1.40 1.80 0.50 4.00E-04 4.00E-06 8.45E-04 23.91 16.93 0.67 0.84 0.88 0.30 1.00 1.00 1.00 60.17 15.62 78.43 5.21 21.34 28.01

Img-20 2.00 2.00 2.20 0.50 8.00E-06 1.00E-06 8.91E-04 25.85 14.99 0.83 0.85 0.27 0.18 1.00 0.98 0.99 60.74 89.74 101.29 14.08 25.30 28.72

Img-20 2.50 2.60 2.60 0.50 4.00E-06 4.00E-07 8.48E-04 24.56 10.41 0.30 0.81 0.31 0.06 0.99 0.91 0.98 68.68 3.48 110.03 11.49 36.19 29.97

Img-21 3.00 3.00 2.90 0.50 8.00E-06 1.00E-03 8.50E-04 21.53 23.35 1.06 0.51 0.36 0.67 0.87 0.91 0.96 66.27 36.43 51.32 17.07 8.82 32.18

Img-21 3.50 3.30 3.50 0.50 4.00E-06 8.00E-03 9.83E-04 20.83 22.16 3.82 0.47 0.40 0.57 0.51 0.88 0.85 69.64 14.00 69.34 7.98 10.15 31.93

Img-22 4.00 4.00 3.90 0.50 4.00E-06 8.00E-03 9.97E-04 20.42 21.29 6.96 0.59 0.26 0.65 1.00 1.00 1.00 79.34 8.65 68.39 12.74 9.40 32.22

Img-22 4.50 4.50 4.10 0.50 1.00E-06 8.00E-02 8.47E-04 20.51 19.89 8.51 0.74 0.13 0.75 0.99 0.98 0.97 86.02 29.84 77.29 16.37 11.32 33.79

Img-23 5.00 4.70 4.60 0.50 8.00E-07 7.00E-02 8.15E-04 20.08 19.77 11.49 0.73 0.08 0.73 0.97 1.04 0.97 87.90 71.48 81.29 21.74 11.67 34.29

Mean 1.12E-03 4.38E-03 8.06E-04 24.63 16.97 5.93 0.73 0.49 0.36 0.97 0.95 0.98 66.19 39.56 89.66 12.81 23.55 30.42

PSNR MSSIM UQI BRISQUE NIQE

Deblurring Quality Measured By
Estimated NSREstimated Variance

Blur 

Variance
Image 
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Table 4.3 summarizes the results for the deblurring of artificially motion blurred 

images for varying PSF length and angle. The length of the blurring PSF varies as 

7,9,16 and 23 pixels while the angle of the PSF varies as 11,17,25,45 and 65 degrees. 

Results for 23 images from the Desktop Nexus image database are compiled. 

Blurring parameter was estimated using three different IQMs i.e. BRISQUE, NIQE 

and RPSNR. NSR values of Wiener filter at the point of maximum IQM values are 

also presented. BRISQUE, NIQE and RPSNR estimates for the motion blurring case 

are near to the true value of blur parameter. The deblurred image quality for these 

three IQMs has been compared using PSNR, MSSIM, UQI, BRISQUE and NIQE. In 

the motion blur case, RPSNR based deblurred images are estimated as the ones with 

the best visual quality as compared to NIQE and BRISQUE. This is shown by the 

high values of PSNR, MSSIM, UQI and low values of BRISQUE in Table. 4.3.  

Table. 4.4 summarizes the results for the deblurring of artificially blurred out-of-

focus images for varying PSF radius of 2, 4,6,10 and 11 pixels. Results for 23 images 

from the Desktop Nexus image database are compiled. Blurring parameter was 

estimated using three different IQMs i.e. BRISQUE, NIQE and RPSNR. NSR values 

of Wiener filter at the point of maximum IQM values are also presented. BRISQUE 

and NIQE radius estimates for the out-of-focus blurring case are near to the true 

radius values. RPSNR in the out-of-focus blur case fails to correctly estimate the true 

radius values. The deblurred image quality for these three IQMs has been compared 

using PSNR, MSSIM, UQI, BRISQUE and NIQE. In the out-of-focus blur case, a 

single IQM among  RPSNR, BRISQUE and NIQE cannot be judged as the best 

deblurring measure. PSNR and UQI show NIQE as the best IQM while MSSIM and 

BRISQUE based quality depicts BRISQUE base deblurred images as high quality 

images. NIQE based quality measurement shows RPSNR based deblurring estimates 

as high quality. In the case of out-of-focus images, deblurring results in ringing and 

residual blur which mars the performance of these IQMs.  
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Table. 4.3 Artificial Deblurring Results for motion blurred images using RPSNR, BRISQUE and NIQE measures. Deblurred image quality is also compared.  

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

Img-01 A 11 13 11 11 1.00E-03 1.00E-04 1.00E-07 31.12 28.87 16.20 0.75 0.89 0.18 1.00 0.98 0.99 16.08 45.97 132.31 6.97 10.23 24.68

Img-01 A 17 17 17 17 1.00E-05 1.00E-07 1.00E-05 23.08 14.20 23.08 0.14 0.47 0.47 1.04 0.98 1.04 44.26 128.28 44.26 14.33 17.58 16.33

Img-02 A 25 25 25 25 1.00E-07 1.00E-06 1.00E-07 12.15 16.92 12.15 0.26 0.13 0.13 0.85 0.95 0.85 89.10 80.16 89.10 21.48 20.41 23.48

Img-02 A 45 45 45 45 1.00E-05 1.00E-06 1.00E-06 17.72 15.14 15.14 0.21 0.33 0.21 0.92 0.46 0.46 52.27 63.88 63.88 12.25 17.87 19.87

Img-03 A 65 65 65 65 1.00E-05 1.00E-05 1.00E-02 23.60 23.60 28.97 0.57 0.57 0.90 1.00 1.00 1.00 22.65 22.65 24.48 12.28 12.28 6.06

Img-03 A 11 11 11 11 1.00E-07 2.00E-07 1.00E-06 12.65 13.47 17.00 0.17 0.15 0.30 0.97 0.98 0.99 153.59 153.59 143.43 37.46 38.06 21.68

Img-04 A 17 17 17 17 3.00E-03 1.00E-07 1.00E-05 27.62 14.32 21.66 0.14 0.83 0.43 0.95 0.90 0.93 9.47 96.22 53.56 3.97 23.90 15.97

Img-04 A 25 25 25 25 7.00E-04 4.00E-07 1.00E-03 25.47 12.00 25.63 0.13 0.75 0.76 0.93 0.77 0.92 14.40 92.61 12.79 6.27 17.72 7.68

Img-05 A 45 45 45 43 1.00E-03 1.00E-06 1.00E-05 27.66 16.08 21.75 0.18 0.86 0.43 1.00 0.98 1.01 7.19 153.59 50.41 5.94 39.39 17.12

Img-05 A 65 65 65 65 1.00E-05 1.00E-06 2.00E-04 20.41 13.28 24.07 0.12 0.38 0.66 1.01 0.95 1.00 61.04 77.43 65.86 13.56 36.96 10.38

Img-06 A 11 11 11 11 1.00E-03 1.00E-06 2.00E-04 27.93 16.35 26.81 0.23 0.81 0.70 0.88 0.85 0.90 23.47 82.64 29.61 5.71 24.27 13.01

Img-06 A 17 15 17 17 1.00E-03 1.00E-06 1.00E-05 24.48 12.58 17.81 0.16 0.71 0.33 0.85 0.75 0.81 27.16 95.30 48.77 5.32 19.87 17.15

Img-07 A 25 25 25 25 1.00E-07 1.00E-06 1.00E-04 15.06 18.87 26.46 0.50 0.33 0.83 0.98 0.99 0.99 94.26 75.26 35.60 16.17 12.38 10.51

Img-07 A 45 45 45 45 1.00E-02 1.00E-06 1.00E-04 22.68 16.83 23.92 0.41 0.78 0.75 0.99 0.99 0.99 35.13 60.68 31.29 7.20 13.00 11.92

Img-08 A 65 65 65 65 1.00E-02 2.00E-05 1.00E-02 23.24 19.52 23.24 0.44 0.75 0.75 1.00 0.99 1.00 21.88 50.48 21.88 6.88 11.26 8.88

Img-08 A 11 13 11 11 1.00E-05 1.00E-05 1.00E-06 15.60 17.35 13.53 0.39 0.26 0.24 0.96 0.95 0.89 52.82 33.61 55.90 10.60 11.29 15.33

Img-09 A 17 19 17 15 1.00E-04 1.00E-06 2.00E-06 26.15 19.42 20.12 0.35 0.70 0.37 1.00 1.00 1.00 32.80 64.06 69.22 6.58 11.99 12.12

Img-09 A 25 25 25 25 1.00E-06 1.00E-06 1.00E-06 17.49 17.49 17.49 0.28 0.28 0.28 1.00 1.00 1.00 75.92 75.92 75.92 15.97 15.97 17.97

Img-10 A 45 45 45 45 1.00E-04 1.00E-05 1.00E-05 20.56 17.37 17.37 0.33 0.50 0.33 0.99 0.99 0.99 24.30 37.77 37.77 8.28 11.77 13.77

Img-10 A 65 65 65 65 3.00E-02 1.00E-06 1.00E-02 20.81 13.97 21.51 0.20 0.66 0.70 0.99 0.96 0.99 35.29 69.48 26.33 7.45 15.46 7.83

Img-11 A 11 11 11 11 4.00E-03 1.00E-05 1.00E-05 30.58 25.92 25.92 0.71 0.93 0.71 0.98 0.93 0.93 24.44 60.10 60.10 3.26 13.27 15.27

Img-11 A 17 17 17 17 1.00E-04 1.00E-05 1.00E-05 27.84 23.94 23.94 0.64 0.82 0.64 0.96 0.95 0.95 34.60 38.36 38.36 8.13 9.77 11.77

Img-12 A 25 25 25 25 3.00E-07 1.00E-06 1.00E-06 14.70 16.96 16.96 0.22 0.16 0.22 0.90 0.92 0.92 81.96 74.54 74.54 16.79 15.59 17.59

Img-12 A 45 45 45 45 1.00E-03 1.00E-06 1.00E-05 23.95 14.97 17.49 0.17 0.69 0.27 0.92 0.89 0.90 21.56 63.53 55.88 4.55 14.66 12.23

Img-13 A 65 65 65 65 1.00E-02 1.00E-04 1.00E-02 27.17 26.51 27.17 0.83 0.92 0.92 0.98 0.95 0.98 20.38 27.26 20.38 5.58 6.57 7.58

Img-13 L 7 7 7 7 1.00E-04 1.00E-05 1.00E-02 28.37 24.33 26.32 0.73 0.87 0.87 0.92 0.96 0.93 52.77 76.17 9.67 9.48 13.43 6.99

Img-14 L 9 9 9 9 1.00E-06 1.00E-03 1.00E-02 17.51 27.22 24.54 0.84 0.42 0.81 0.91 0.94 0.95 75.07 15.29 13.49 12.40 3.49 5.66

Img-14 L 16 16 16 16 3.00E-04 1.00E-03 1.00E-02 23.59 23.75 21.48 0.75 0.73 0.69 0.91 0.97 0.95 13.53 8.40 24.70 4.78 3.62 5.95

Img-15 L 23 23 23 23 1.00E-05 1.00E-03 1.00E-02 14.44 19.65 20.60 0.57 0.21 0.71 0.93 0.97 0.98 66.22 31.97 36.50 10.91 5.91 10.01

Img-15 L 7 7 7 7 1.00E-04 1.00E-04 1.00E-02 26.64 26.64 28.86 0.70 0.70 0.90 1.00 1.00 1.00 87.84 87.84 3.53 8.57 8.57 5.98

Img-16 L 9 9 9 9 3.00E-03 1.00E-05 1.00E-02 25.67 21.88 24.10 0.63 0.87 0.82 1.00 1.00 1.00 4.41 45.38 6.66 4.34 6.81 6.33

Img-16 L 16 16 16 16 2.00E-03 1.00E-02 1.00E-02 22.72 21.34 21.34 0.70 0.78 0.70 0.99 0.99 0.99 11.31 31.65 31.65 3.69 4.45 6.45

Img-17 L 23 23 23 23 1.00E-06 4.00E-02 1.00E-02 12.86 17.76 18.68 0.57 0.21 0.57 0.98 0.99 0.99 105.28 43.70 33.08 24.36 12.48 11.35

Img-17 L 7 7 7 7 2.00E-02 8.00E-02 1.00E-02 25.93 21.83 27.01 0.89 0.92 0.92 0.99 0.99 1.00 19.94 28.68 17.04 9.01 10.89 10.71

Img-18 L 9 9 9 9 1.00E-02 1.00E-06 1.00E-02 24.33 16.90 24.33 0.29 0.87 0.87 1.00 1.00 1.00 48.20 112.45 48.20 8.18 21.74 10.18

Img-18 L 16 16 16 16 1.00E-05 5.00E-06 1.00E-02 14.20 12.77 20.49 0.16 0.20 0.69 0.99 0.98 1.00 69.63 59.40 46.59 33.47 47.31 11.28

Img-19 L 23 23 23 23 1.00E-05 3.00E-02 1.00E-02 13.76 17.57 18.15 0.53 0.31 0.56 0.96 0.99 0.99 89.99 53.55 46.28 12.17 10.40 12.11

Img-19 L 7 7 7 7 1.00E-02 2.00E-02 1.00E-02 26.92 25.94 26.92 0.91 0.91 0.91 1.00 1.00 1.00 19.89 24.63 19.89 6.13 7.01 8.13

Img-20 L 9 9 9 9 8.00E-02 2.00E-02 1.00E-02 23.61 26.29 27.04 0.88 0.84 0.89 0.99 0.96 0.98 46.02 31.32 24.87 5.53 4.53 6.30

Img-20 L 16 16 16 16 1.00E-06 2.00E-02 1.00E-02 13.55 23.09 23.65 0.76 0.17 0.77 0.89 0.94 0.97 60.66 40.16 33.85 18.51 5.03 6.51

Img-21 L 23 23 23 23 1.00E-03 2.00E-07 1.00E-02 19.43 9.93 18.52 0.14 0.58 0.49 0.63 0.74 0.81 19.86 153.59 25.21 7.64 29.36 14.14

Img-21 L 7 7 7 7 1.00E-03 4.00E-06 1.00E-02 28.35 21.83 25.86 0.60 0.90 0.84 1.20 1.05 1.23 38.22 96.09 9.98 8.12 18.51 8.31

Img-22 L 9 9 9 9 1.00E-04 1.00E-02 1.00E-02 23.95 24.25 24.25 0.84 0.75 0.84 1.00 1.00 1.00 30.31 18.85 18.85 8.08 3.97 5.97

Img-22 L 16 16 16 16 1.00E-05 4.00E-02 1.00E-02 16.30 20.73 22.06 0.73 0.28 0.74 0.99 1.01 1.00 35.32 46.30 33.76 16.85 6.31 7.97

Img-23 L 23 23 23 23 1.00E-06 2.00E-02 1.00E-02 12.60 19.15 19.50 0.66 0.18 0.66 0.97 0.97 0.99 134.16 44.16 34.65 21.21 9.57 10.95

Mean 4.46E-03 6.52E-03 5.37E-03 21.65 19.31 21.98 0.48 0.59 0.62 0.96 0.94 0.96 46.77 63.84 41.78 11.03 15.00 11.72

NIQEPSNR MSSIM UQI BRISQUE

Deblurring Quality Measured By
Estimated NSREstimated value

Blur Angle (A) / Blur 

Length (L)
Image 
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Table. 4.4 Artificial Deblurring Results for out-of-focus blurred images using RPSNR, BRISQUE and NIQE measures. Deblurred image quality is also compared. 

 

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

BRISQUE 

BID
NIQE BID

RPSNR 

BID

Img-01 2 3 2 2 2.00E-07 1.00E-05 1.00E-02 12.44 26.90 13.35 0.95 0.54 0.05 0.97 1.00 0.99 25.74 68.59 153.42 15.52 28.04 23.47

Img-01 4 5 4 2 1.00E-07 1.00E-06 1.00E-02 10.22 16.79 12.06 0.74 0.14 0.03 0.96 1.00 0.98 32.81 74.75 138.99 17.08 23.27 20.89

Img-02 6 8 5 2 1.00E-07 1.00E-02 1.00E-02 24.21 26.62 13.57 0.77 0.82 0.06 0.94 0.94 0.92 52.45 50.63 153.59 6.41 23.18 9.16

Img-02 10 8 6 2 1.00E-07 1.00E-02 1.00E-02 23.39 22.23 13.10 0.67 0.61 0.07 0.92 0.91 0.90 53.68 63.90 146.02 7.73 26.15 8.78

Img-03 11 13 7 2 2.00E-07 1.00E-03 1.00E-02 20.19 20.99 12.99 0.57 0.38 0.41 0.96 0.98 0.98 47.24 47.70 144.15 5.69 27.72 7.05

Img-03 2 3 2 2 3.00E-07 1.00E-04 1.00E-02 15.98 30.37 13.59 0.95 0.80 0.18 0.99 0.99 0.99 39.33 32.55 153.98 9.72 29.95 12.44

Img-04 4 7 4 2 1.00E-07 1.00E-06 1.00E-02 7.45 17.26 13.15 0.84 0.12 0.01 0.79 0.99 0.97 45.48 56.26 152.86 22.21 27.02 34.68

Img-04 6 9 5 2 3.00E-04 3.00E-03 1.00E-02 21.36 29.56 13.10 0.78 0.79 0.42 0.93 0.99 0.97 51.28 23.30 50.90 5.37 35.08 8.47

Img-05 10 12 5 2 1.00E-06 1.00E-02 1.00E-02 22.95 22.54 13.60 0.60 0.57 0.07 0.98 0.99 0.97 41.80 47.40 131.25 7.07 33.15 9.72

Img-05 11 12 7 2 1.00E-07 1.00E-02 1.00E-02 23.07 22.05 13.68 0.59 0.55 0.02 0.99 0.99 0.97 44.21 60.84 151.29 7.95 30.08 9.58

Img-06 2 4 2 2 4.00E-03 1.00E-04 1.00E-02 15.56 31.95 14.57 0.98 0.75 0.15 0.92 0.93 0.87 29.84 34.82 61.60 12.93 23.33 14.61

Img-06 4 7 4 2 1.00E-07 1.00E-05 1.00E-02 9.00 22.53 14.08 0.92 0.30 0.04 0.73 0.95 0.86 52.11 43.38 153.59 18.19 27.70 25.57

Img-07 6 4 5 2 3.00E-04 2.00E-04 1.00E-02 17.42 18.10 9.59 0.42 0.22 0.12 1.01 1.00 0.92 23.35 34.32 42.22 7.32 46.76 9.89

Img-07 10 12 6 2 3.00E-06 2.00E-02 1.00E-02 19.54 18.62 12.43 0.36 0.33 0.03 0.92 0.97 0.95 35.53 59.64 116.54 8.09 32.84 10.16

Img-08 11 12 6 2 1.00E-07 1.00E-03 1.00E-02 21.12 19.42 13.30 0.55 0.39 0.06 0.98 0.98 0.98 49.22 41.90 151.45 4.47 26.84 6.17

Img-08 2 3 2 2 4.00E-03 1.00E-03 1.00E-02 18.61 32.04 13.89 0.94 0.92 0.01 1.00 1.00 1.00 28.19 14.25 53.27 4.51 21.96 9.59

Img-09 4 7 4 2 1.00E-03 1.00E-05 1.00E-02 8.15 20.44 11.59 0.68 0.32 0.01 0.86 1.00 0.97 22.55 70.00 54.64 12.13 25.92 19.34

Img-09 6 4 7 2 3.00E-04 1.00E-02 1.00E-02 22.76 23.90 12.43 0.64 0.69 0.08 1.00 1.00 0.98 32.08 57.86 47.38 6.98 27.12 5.88

Img-10 10 12 5 2 1.00E-06 1.00E-02 1.00E-02 21.59 20.85 12.67 0.60 0.56 0.09 0.98 0.99 0.98 48.28 49.36 137.35 7.17 37.09 9.91

Img-10 11 12 7 2 2.00E-07 4.00E-04 1.00E-02 20.19 19.04 12.71 0.59 0.28 0.04 0.98 0.98 0.98 49.88 47.70 151.61 7.16 32.33 5.55

Img-11 2 3 2 2 1.00E-06 1.00E-04 1.00E-02 13.71 30.31 13.30 0.93 0.82 0.12 0.97 1.00 0.97 26.49 25.66 154.01 6.83 23.70 22.10

Img-11 4 5 4 2 1.00E-07 1.00E-05 1.00E-02 11.50 21.05 10.92 0.60 0.40 0.07 0.95 1.00 0.95 29.29 50.46 151.48 12.12 32.04 16.08

Img-12 6 8 5 2 1.00E-07 1.00E-03 1.00E-02 20.96 25.71 13.22 0.78 0.66 0.42 0.98 0.99 0.98 39.58 29.58 147.93 4.14 29.10 6.45

Img-12 10 13 7 2 1.00E-06 3.00E-02 1.00E-02 23.62 23.64 13.55 0.73 0.73 0.02 0.98 0.99 0.97 44.66 72.30 132.20 9.73 29.30 11.38

Img-13 11 13 6 2 5.00E-06 1.00E-02 1.00E-02 19.61 17.93 12.38 0.41 0.31 0.09 0.91 0.89 0.89 54.98 55.42 111.26 7.90 28.57 10.85

Img-13 2 3 2 2 1.00E-06 1.00E-03 1.00E-02 19.58 33.34 14.02 0.98 0.94 0.50 0.97 0.97 0.93 31.18 24.90 154.13 5.49 31.02 8.35

Img-14 4 6 4 4 1.00E-06 1.00E-05 1.00E-07 7.68 21.41 8.62 0.14 0.44 0.02 0.82 0.95 0.86 90.79 46.37 153.58 10.90 52.63 47.57

Img-14 6 8 4 2 1.00E-06 1.00E-02 1.00E-02 19.76 20.64 11.78 0.57 0.50 0.47 0.91 0.93 0.89 40.35 37.66 153.31 5.24 30.53 8.29

Img-15 10 12 7 2 1.00E-07 1.00E-02 1.00E-02 21.69 21.17 14.34 0.72 0.66 0.09 0.99 0.99 0.98 48.89 61.26 151.16 8.01 29.21 9.91

Img-15 11 12 7 2 1.00E-06 2.00E-02 1.00E-02 21.73 20.63 13.96 0.71 0.67 0.03 0.99 0.99 0.98 50.54 70.15 133.56 9.38 32.04 10.28

Img-16 2 3 2 2 1.00E-06 1.00E-03 1.00E-02 17.22 30.63 13.85 0.94 0.94 0.40 1.00 1.00 0.99 35.81 21.35 153.72 3.95 19.38 10.42

Img-16 4 6 4 4 1.00E-07 2.00E-02 1.00E-07 20.30 24.32 8.62 0.14 0.78 0.50 0.99 1.00 0.93 86.32 49.61 153.59 5.90 52.16 7.73

Img-17 6 8 7 2 7.00E-04 2.00E-06 1.00E-02 7.08 8.89 10.31 0.65 0.03 0.01 0.88 0.95 0.98 26.27 114.89 60.99 43.52 28.31 33.67

Img-17 10 11 10 2 1.00E-06 1.00E-07 1.00E-02 6.46 8.65 12.76 0.60 0.06 0.02 0.81 0.96 0.98 38.56 78.45 137.24 56.05 29.20 34.26

Img-18 11 11 10 2 4.00E-07 1.00E-07 1.00E-02 6.23 7.77 13.18 0.61 0.02 0.05 0.76 0.90 0.96 59.57 125.53 153.39 54.93 34.44 28.05

Img-18 2 3 4 2 1.00E-06 1.00E-03 1.00E-02 18.36 13.86 15.02 0.95 0.15 0.08 0.99 0.97 0.99 24.41 144.26 154.37 43.00 27.50 21.90

Img-19 4 5 6 2 1.00E-07 2.00E-02 1.00E-02 21.88 19.50 9.90 0.70 0.48 0.04 1.00 0.99 0.97 36.33 57.79 153.83 14.48 44.93 11.89

Img-19 6 7 5 2 1.00E-07 1.00E-06 1.00E-02 7.34 9.09 10.73 0.62 0.06 0.04 0.89 0.96 0.97 49.76 138.91 153.59 56.48 33.70 50.91

Img-20 10 8 10 2 1.00E-07 2.00E-07 1.00E-02 7.97 9.33 13.15 0.65 0.04 0.01 0.79 0.86 0.94 48.42 60.03 143.86 58.81 32.47 41.30

Img-20 11 9 10 2 1.00E-07 1.00E-07 1.00E-02 7.02 8.10 12.67 0.64 0.02 0.01 0.72 0.81 0.93 48.94 70.59 145.59 70.05 43.14 30.30

Img-21 2 3 4 2 1.00E-06 1.00E-06 1.00E-02 7.12 5.72 13.27 0.91 0.01 0.03 0.68 0.65 0.78 26.42 153.59 156.05 65.28 26.89 51.49

Img-21 4 6 5 2 1.00E-07 2.00E-02 1.00E-02 20.76 22.89 10.94 0.51 0.58 0.41 0.85 0.82 0.75 35.18 49.68 153.59 12.58 49.78 11.27

Img-22 6 4 7 2 3.00E-04 1.00E-06 1.00E-02 11.03 8.35 11.29 0.58 0.04 0.02 0.99 0.94 0.99 33.72 126.12 48.13 44.03 37.23 25.52

Img-22 10 7 10 2 1.00E-04 1.00E-07 1.00E-02 7.68 9.26 13.61 0.68 0.04 0.01 0.88 0.94 0.96 57.04 70.55 62.08 59.96 28.49 33.08

Img-23 11 13 10 2 1.00E-06 1.00E-07 1.00E-02 6.47 8.10 13.20 0.67 0.02 0.01 0.78 0.90 0.96 59.42 84.85 131.78 43.33 28.34 25.29

Mean 2.45E-04 5.13E-03 9.56E-03 15.73 19.83 12.62 0.68 0.43 0.12 0.92 0.95 0.95 42.84 62.20 127.79 20.13 31.55 18.43

NIQE
Image Blur Radius

Estimated Radius Estimated NSR
Deblurring Quality Measured By

PSNR MSSIM UQI BRISQUE
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For different blur types (Gaussian, motion and out-of-focus), it is difficult to isolate a 

single measure as the best one among the non-reference IQMs just based on their 

deblurred image quality scores since their performance varies. In order to select 

among the BRISQUE, NIQE and RPSNR IQMs, the estimated NSR for the different 

IQMs is also analyzed. It is observed that the BRISQUE measure estimates the PSF 

parameters for relatively lower NSR values as compared to NIQE and RPSNR. A 

lower NSR value for the Wiener filter based deconvolution results in a comparatively 

sharper image as compared to a higher NSR value. Also, low NSR values depict the 

presence of deblurring noise. In accordance, the BRISQUE based deblurred images 

are visually much better due to the presence of sharp edges. Due to this, BRISQUE 

was selected as the blind IQM to be used in the later research work. 

4.6. Deblurring Results for Real Blurred Images  

Deblurring results of the blind IQMs for real images are presented. These include 

images under the effect of different types of blur including atmospheric blur, motion 

blur and out-of-focus blur. The deblurring results are compared to the spatial and 

spectral kurtosis based estimates to gauge the efficacy of the deblurring measures. 

The estimated PSF parameter values are given in Table. 4.5.  

 

Table 4.5 Deblurring results for real life motion blurred images.  

 

 

Length Angle NSR Length Angle NSR

Fig. 4.7(a) 71 -2 4.00E-03 77 3 4.00E-02

Fig. 4.8(a) 19 80 4.00E-02 19 90 4.00E-02

Fig. 4.9(a) 16 161 4.00E-03 21 160 4.00E-03

Length Angle NSR Length Angle NSR

Fig. 4.7(a) 71 0 4.00E-03 73 3 4.00E-03

Fig. 4.8(a) 15 81 4.00E-02 17 87 4.00E-03

Fig. 4.9(a) 20 161 4.00E-03 17 156 4.00E-03

Length Angle NSR

Fig. 4.7(a) 77 3 4.00E-03

Fig. 4.8(a) 19 80 4.00E-02

Fig. 4.9(a) 21 156 4.00E-03

Estimated Values

Image Spatial Kurtosis Spectral Kurtosis

RPSNR

BRISQUE NIQE 
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Fig. 4.8 (a) shows an image under motion blur with the book title unreadable. The 

image was taken by an ordinary digital camera with the person holding the book 

moving in front of the camera. The image in Fig. 4.8(b), (d) and (e) seem to have 

recovered well by deblurred with PSF estimated using the spatial kurtosis, RPSNR 

and BRISQUE based BID schemes, respectively. In the case of spectral kurtosis and 

NIQE based BID scheme, the images in Fig. 4.8(c) and Fig. 4.8(f) do not recover 

well. 

 

Fig. 4.8. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure. (d) RPSNR measure (e) BRISQUE measure and (f) NIQE measure based BID scheme. 

 

Deblurring result for another motion blurred image is shown in Fig. 4.9. A blurred 

                
(a)                                                                                   (b) 

 

 

                
(c)                                                                                   (d) 

 

 

                
(e)                                                                                   (f) 
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image frame extracted from a video captured by a low quality camera, depicted in 

Fig. 4.9(a), shows an approximate vertical motion blur with the small numbers at the 

bottom becoming unreadable. The blurred image contains a certain amount of noise 

due to poor lighting, one of the most difficult issues in deblurring. The image does 

not seem to have recovered well for spatial kurtosis and RPSNR based BID schemes 

in Fig. 4.9(b) and Fig. 4.9(d) respectively. The image was not recovered well and the 

digits in the image are unreadable. Reasonable recovery is visible for the spectral 

kurtosis and BRISQUE based BID schemes. The images in these cases present 

readable digits however the images appear smooth due to the presence of residual 

blur. The residual blur appears as a result of using a high NSR value in the Wiener 

filter which does not completely remove the blur. The best recovery is visible for the 

NIQE based BID scheme shown in Fig. 4.9(f). Deblurring in this case shows a 

reasonably sharper image but the kernel error among the estimated PSF and the 

actual blurring PSF results in the ringing visible in the deblurred image in Fig.4.9(f).  
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Fig. 4.9. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure. (d) RPSNR measure (e) BRISQUE measure and (f) NIQE measure based BID scheme. 

 

Result for another motion blurred image is shown in Fig. 4.10. Though all the IQMs 

except spatial kurtosis show reasonably well deblurring results, the presence of 

ringing artefacts suggests that error exists among the estimated PSF and the original 

blurring PSF. Comprehensive results on real life motion and out-of-focus blurred 

images are given in Appendix B.  

                 
(a)                                                                                (b) 

 

 

                 
(c)                                                                                (d) 

 

 

                 
(e)                                                                                 (f) 
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Fig. 4.10. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure. (d) RPSNR measure (e) BRISQUE measure and (f) NIQE measure based BID scheme. 

 

                    
(a)                                                                           (b) 

 

 

                    
(c)                                                                           (d) 

 

 

                    
(e)                                                                           (f) 
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4.7. Discussion 

In this chapter, the existing blind IQMs BRISQUE, NIQE and a novel full-reference 

blind quality measure RPSNR were investigated as alternative deblurring measures 

to spatial and spectral kurtosis for BID.  

RPSNR based PSF estimates produce high quality deblurred images as shown by the 

high PSNR values of the original-deblurred pair. The deblurred images when 

reconvolved with the estimated PSF produce the reblurred images. It was shown that 

if the candidate PSF is near the original PSF, it will produce similar blurring in the 

reblurred image as the original blurred image (Table 4.1).  

Experiments include testing of artificially blurred as well as the real blurred images. 

In the artificial blurring case, the three types of parametric blurs i.e. Gaussian, 

motion and out-of-focus blur were considered. For the Gaussian deblurring results 

(Table. 4.2), BRISQUE based deblurred images were estimated to have better visual 

quality as compared to the NIQE and RPSNR estimates. In the case of motion 

deblurring (Table. 4.3), RPSNR based deblurred images produced better visual 

quality as compared to the NIQE and BRISQUE estimates. However, for the out-of-

focus deblurring (Table. 4.4), none of the IQMs i.e.  RPSNR, BRISQUE and NIQE 

could produce better results for all the quality measures. In the out-of-focus 

deblurring case, the results show ringing and residual blur in the image. For the real 

life motion blurred images, BRISQUE based PSF estimates show high quality 

deblurred images as compared to spatial and spectral kurtosis, RPSNR and NIQE 

deblurring measures (Table. B.2).  

Table 4.6 compares the computation time per iteration of the blind IQMs on a 

multiple core machine. Spatial and spectral kurtosis depict low computation time due 

to their simple computation while RPSNR depicts a slightly higher computation 

time, probably due to the overhead caused at the reblurring stage. NIQE shows 

relatively lower computation time than BRISQUE due to its implementation as code 

rather than executables as used in BRISQUE. On average, the IQMs show a 50 % 

reduction in computation time over four processor cores. 

Table 4.6 Computation time per iteration for different blind IQMs over different number of cores. 

 

1 2 4

Spatial 99 73 44

Spectral 90 69 38

RPSNR 149 121 76

NIQE 194 127 95

BRISQUE 215 163 112

Number of Cores
IQM
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In order to single out an IQM as the deblurring measure, the NSR values of the 

Wiener filter corresponding to the estimated PSFs were also analyzed. It was 

observed that BRISQUE estimates the PSF for relatively lower NSR values, resulting 

in comparatively sharper image. However, this induces relatively more deblurring 

noise in the image. Based on the low NSR values, BRISQUE was selected as the 

deblurring measure for arbitrarily shaped PSF estimation BID scheme of Chapter 5. 

The computational efficiency of the blind IQMs based BID schemes is also 

compared.  Spectral kurtosis is found to be the most computationally efficient IQM 

for BID. This is attributed to its calculation in the frequency domain which omits 

iFFT during each computational iteration of the BID algorithm. However, BRISQUE 

is the most computationally inefficient of the IQMs for BID. This is due to the use of 

support vector machine for calculating the image quality, which itself takes more 

processing time.  

4.8. Summary 

In this chapter, a novel full-reference yet blind quality measure RPSNR was 

proposed as deblurring measure. The RPSNR deblurring measure along with 

BRISQUE and NIQE IQMs have been investigated as alternative deblurring 

measures to spatial and spectral kurtosis.  

The proposed RPSNR performs well in the case of deblurring of motion blurred 

images. However, due to the presence of residual blur in the deblurred images, the 

RPSNR measure could not to correctly estimate the PSF parameter values.  

The BRISQUE measure shows high quality deblurred images for real life motion 

blurred images; however, it was found to be computationally inefficient. The 

selection of IQM for further experimentation was based on the quality of deblurred 

images. Therefore, BRISQUE was selected as the suitable IQM for BID scheme. 

In real life, the blurs are more complex as compared to the parametric blurs, which 

cannot be modelled correctly using the parametric PSF models presented earlier. 

Chapter 5 presents arbitrarily shaped PSF estimation scheme to tackle the problem of 

blind deblurring of images corrupted by arbitrarily shaped PSFs. 
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Chapter 5  

Arbitrarily Shaped Point Spread 

Function Estimation and Blind Image 

Deblurring Scheme 

 

5.1. Introduction 

The research work in this chapter focuses on an interesting challenge faced in BID. It 

relates to the estimation of arbitrarily shaped (non-parametric or generic) PSFs of 

motion blur caused by camera handshake. These PSFs exhibit much more complex 

shapes than their parametric counterparts and deblurring in this case requires intricate 

ways to estimate the blur and effectively remove it. This chapter introduces a novel 

blind deblurring scheme visualized for deblurring images corrupted by arbitrarily 

shaped PSFs. It is based on GA and utilizes the BRISQUE measure as the fitness 

function for arbitrarily shaped PSF estimation. The proposed BID scheme has been 

compared with other deblurring schemes that include the single image motion 

deblurring scheme of Fergus et al. [17] and the single/noisy-paired motion deblurring 

scheme of Whyte et al. [18].  
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5.2. Arbitrarily Shaped PSFs 

Until now, the PSF for uniform blurring has been estimated using the functional form 

for some common types of blur i.e. the Gaussian blur, motion blur and out-of-focus 

blur. In real life, especially in the case of motion blur resulting from camera 

handshake, the blur follows convoluted paths resulting in complex shaped PSFs [17, 

45]. There exist many schemes in the literature dealing with the restoration of such 

images with some listed in [17, 18, 39, 41, 42, 44]. Their shape cannot be easily 

modelled by a simple equation or defined by a mathematical model for a set of its 

parameter(s). PSFs in such cases exhibit an arbitrary shape and deblurring in this 

case requires intricate ways to estimate the blur and effectively remove it. Arbitrarily 

shaped PSFs have been shown to exist in the case of atmospheric turbulence blur as 

well [131]. This chapter focuses on the challenging task of restoring of images 

blurred by arbitrarily shaped PSF resulting from motion blur due to camera 

handshake. 

Some examples of real blurred images corrupted by arbitrarily shaped PSFs are 

shown in Fig. 5.1(a), with their close-ups in Fig. 5.1(b). The camera shake pictures 

exhibit PSFs far different from that found when linear motion was investigated. The 

hand sketched PSFs are shown in Fig. 5.1(c). Though modelling or defining them 

using a large set of parameters is not impossible, estimating the blurring PSF for a 

large set of blurring PSF parameter(s) values becomes challenging, computationally 

and in terms of convergence of the BID scheme.  

 

Fig. 5.1 Examples of arbitrarily shaped PSFs. Row (a) Real blurred images Row (b) Image 
sections and Row (c) Corresponding hand sketched PSFs. 

(a)

(b)

(c)
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5.3. Proposed Blind Deblurring Scheme for Arbitrarily 

shaped PSF Estimation 

The main concept behind the proposed BID scheme is stated as follows: 

 

Any parametric or non-parametric uniform PSF can be approximated by estimating 

its coefficients‟ values using a deblurring measure as feedback of deblurred image 

quality to the BID scheme. 

 

A PSF can be assumed as an array of random values under the constraints mentioned 

below: 

 

 The PSF has a finite support size, with a finite number of rows and columns m 

and n, respectively. 

 The energy of the PSF is maintained i.e.  
nm

nmh
,

1),(  

 The PSF is space invariant. The same blurring/averaging effect is presented by 

the blurring kernel at each pixel location.  

 The PSF coefficients are non-negative.  

 

During each iteration, a coefficient value is updated in the direction of improved 

deblurred image quality which can be calculated using any restoration measure e.g. 

spatial or spectral non-Gaussianity measures, non-reference or full-reference IQMs 

etc. The process can be evaluated for a fixed number of iterations or it can be 

terminated when the difference in the measure value in subsequent iterations is lower 

than a specified threshold value.  

Fig. 5.2 shows a glimpse of the restoration process by estimating the PSF 

coefficients. The original PSF is depicted in Fig. 5.2 (a) while the estimation process 

is illustrated in Fig. 5.2 (b). From an initial set of random values, the process keeps 

on estimating/changing the PSF weights till the deblurring measure stops showing 

improvement.  
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Fig. 5.2 (a) Blurring PSF (b) An overview of the PSF estimation process through different steps.  

 

The deblurring scheme is optimized using GA. An added advantage of such a BID 

scheme is that the same method can easily be extended for estimating other types of 

blur apart from camera handshake. Also, the BID scheme based on GA is flexible 

and so it can be easily incorporated with any deblurring measure as the fitness 

function. Details of the GA based optimization are as follows: 

 

 Step 1: Initialize the GA parameters i.e. population, size, crossover rate, 

mutation rate etc. 

 Step 2: Generate an initial chromosome population where each chromosome 

contains information about all the coefficients of the finite support size PSF. 

 Step 3: Perform iteration and find the restored image through Wiener filtering 

for all the chromosomes.  

 Step 4: Calculate fitness function values for the initial population. 

(a)

(b)
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 Step 5: Select the best fitting group of chromosomes based on either roulette 

or threshold based selection. 

 Step 6: Generate a new population from the chromosomes selected in Step 5 

through crossover and mutation. Each crossover is performed with 

probability pc  {0.5,…,0.8} and cross over points are selected at random. 

Mutation involves modification of components of the individual 

chromosomes with probability pm. pm  is usually a small number usually 

assumed in the range of {0.001,....,.0.01}. Roulette wheel selection is used to 

select the best fitting individuals among the population. 

 Step 7: Repeat the process again from Step 3 till the algorithm converges for 

the deblurring measure. 

5.4. Experimental Setup  

Test images include images from the Waterloo Bragzone grayscale image dataset as 

well as a collection of real life blurred images that were captured by the author. The 

camera used to capture the real blurred images was a Sony DSC-W310. The real life 

camera handshake images demonstrate a reasonable amount of noise. Noise can 

affect the deblurring results by changing the statistical properties of the image. 

Initially a self-coded GA variant was employed for optimizing the search. After 

MATLAB released support for GA in its optimization toolbox (see Appendix D for 

details), the proposed BID was successfully implemented on it and evaluated using 

parallel processing cores. The proposed BID scheme‘s estimated PSF coefficients are 

not exactly the same as the original PSF but are rather a near approximation of the 

original blurring PSF. This affects the brightness and contrast of the deblurred 

images thus rendering the full-reference IQMs (PSNR, MSSIM, UQI etc) invalid for 

quantitative image quality evaluation. Rather, non-reference IQMs BRISQUE and 

NIQE were used for this purpose. BRISQUE was also used as the deblurring 

measure for the restoration of the images due to its efficient deblurring performance 

depicted in chapter 4. The BRISQUE model was used over NIQE because of its 

exceptional predictive performance. The proposed BID scheme requires a fixed PSF 

size input from the user. In this regard, a method for visual judgement based PSF size 

estimation prior to deblurring is discussed in Section 5.5. In the case of real blurred 

images, the PSF size was estimated by inspecting a blur region in the image. 

Deblurring results for artificially blurred and real blurred images are presented 

below.  
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5.5. PSF Support Size Estimation  

In order to estimate the PSF support size, a simple technique is proposed here. 

Initially, the GA is run for different sizes of PSF for only a few iterations. The results 

are then visually judged for ringing artefacts. The ringing artefacts are severe if the 

initial PSF estimate is bigger in size than the actual blur PSF which creates 

estimation error among them. The user can thus pick a PSF size which shows 

reduced ringing for the deblurred image. Fig. 5.3 shows the image deblurred for 

varying sizes of PSF. The initial blur PSF size was 8x7 coefficient matrix. The 5x5 

matrix PSF depicts image sharpness as compared to the 3x3 matrix. All other bigger 

size matrices result in severe ringing in the deblurred image. The deblurring result 

for the 5x5 size estimated PSF is shown in Fig. 5.4. 

 

 

 

Fig. 5.3 Deblurring results for varying PSF sizes. A smaller PSF coefficient matrix results in 
almost no deblurring, while ringing artefacts are observed PSF sizes larger than 5x5.  

 

 

3x3 PSF size 5x5 PSF size 7x7 PSF size 9x9 PSF size 11x11 PSF size

3x3 PSF size 5x5 PSF size 7x7 PSF size 9x9 PSF size 11x11 PSF size



 

113 

 

 

Fig. 5.4 Deblurring result for arbitrarily shaped PSF of size 5x5 pixels estimated by visual 
judgment of ringing artefacts. (a) Original image (b) Blurred image (c) Deblurred image (d) 

Blurring PSF and (e) Estimated PSF of size 5x5 pixels. 

 

5.6. Deblurring Results for Artificially Blurred Images 

Since the BID scheme can also be extended for uniform parametric blurs, the 

algorithm was first evaluated for the less complex parametric form blurs before 

testing it for arbitrarily shaped PSFs. Deblurring results for Gaussian, motion and 

out-of-focus blur are presented below. Detailed deblurring results for parametric and 

arbitrarily shaped PSF estimation are presented in Appendix C.  

5.6.1. Restoration of Parametric PSF Blurred Images  

The first set of tests included deblurring images blurred by Gaussian PSF. Fig. 5.5 

shows the deblurring results for images blurred by different Gaussian PSFs. It can be 

observed that the estimated PSF takes on a rough shape of the blurring PSF as 

viewed in Fig. 5.5(e). Results presented here were obtained when the algorithm 

stopped, as the tolerance value for the fitness function was attained. The restored 

image appears sharper and much more detailed than its blurred counterpart.  

 

 

(a)                                               (b)                                                  (c) 

 

  

 (d)                                   (e) 
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Fig. 5.5 Deblurring result for image blurred by Gaussian PSF of size 11 x 11 pixels and variance 
σ

2
=2. (a) Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) 

Estimated PSF.  

 

The second set of tests included deblurring images artificially blurred by motion blur. 

Fig. 5.6 shows the deblurring results for the Lena image blurred by motion blur PSF 

of length 11 pixels and angle 23 degrees. The estimated PSF is a near approximation 

of the blurring kernel achieved for the fixed iterations of the deblurring algorithm.  

Fig. 5.7 shows the deblurring result of the Barbara images under the influence of out-

of-focus blur of radius 9 pixels. Deblurring results show the estimated PSF 

converging towards the original blur PSF. For large out-of-focus blur, a lot of 

attenuation occurs for the high frequency elements in the image and recovery in this 

case is not that sharp as observed for the Barbara image in Fig. 5.7 (c)  

 

 

 

 

 

 

 

 

   

                        (a)                       (b)                         (c) 

 

  

(d)                   (e) 
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Fig. 5.6 Deblurring result for image blurred by motion blur PSF of length 11 pixels and angle 
23°. (a) Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) 

Estimated PSF. 

 

 

Fig. 5.7 Deblurring result for image blurred by out-of-focus blur PSF of radius 9 pixels. (a) 
Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated PSF. 

 

   

                        (a)                       (b)                         (c) 

 

  

(d)                   (e) 

 

                   (a)                           (b)                                (c) 

 

  

(d)                   (e) 
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5.6.2. Deblurring Images Blurred by Arbitrarily Shaped PSFs 

Arbitrarily shaped PSFs were used to blur the images and then recover using the 

proposed scheme. Deblurring results shown in Fig. 5.8 – 5.11 depict that the 

proposed algorithm was able to estimate the blurring shape/coefficients to a great 

extent. The deblurred images appear sharper than their blurred counterparts.  

In Fig. 5.9 it can be observed that the estimated PSF was of size 5 x 5 pixels while 

the actual blurring kernel was of size 15 x 11 pixels. The size for the estimated PSF 

was selected as 5 x 5 pixels, for a bigger support size resulted in increased ringing in 

the deblurred image. A 5 x 5 coefficient matrix turned out as the best choice for 

estimating the original PSF‘s major coefficient values. Fig. 5.10(e) and Fig. 5.11(e) 

depict the estimated PSFs have slight resemble in shape to their respective blurring 

kernels. 

 

 

Fig. 5.8 Deblurring result for Bird image blurred by arbitrary PSF of size 9 x 9 pixels. (a) 
Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated PSF. 

 

 

 

 

                   (a)                           (b)                                (c) 

 

  

(d)                   (e) 
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Fig. 5.9 Deblurring result for Cameraman image blurred by arbitrary PSF of size 15 x 11 pixels. 
(a) Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated 

PSF. 

 

 

 

Fig. 5.10 Deblurring result for Lena image blurred by arbitrary PSF of size 16 x 10 pixels. (a) 
Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated PSF. 

 

 

 

                   (a)                            (b)                       (c) 

 

  

(d)                   (e) 

 

                   (a)                           (b)                                (c) 

 

  

(d)                   (e) 
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Fig. 5.11 Deblurring result for Mandrill image blurred by arbitrary PSF of size 11 x 14 pixels. 
(a) Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated 

PSF. 

 

Table 5.1 illustrates the quantitative IQMs values for the deblurred images using the 

arbitrarily shaped PSF estimation scheme. BRISQUE and NIQE values for the 

original, blurred and deblurred image are shown for comparison of deblurring 

quality. Low values of BRISQUE and NIQE represent high quality images. For Fig. 

5.11(c), both NIQE and BRISQUE show improvement in the image. It can be seen 

that the ringing in the deblurred image is minimal. Though the deblurred images in 

Fig. 5.5 - 5.11 are recovered well as observed visually, the BRISQUE and NIQE 

values erroneously depict the deblurred images are of less quality. This is due to the 

presence of residual blur left from incomplete deblurring using the PSF estimates 

that are not the same as the original blurring PSFs. The tests also show that 

BRISQUE and NIQE IQMs may not be ideal blind IQMs and more effort is still 

needed to enhance their performance.  

 

 

 

 

 

 

                   (a)                           (b)                                (c) 

 

  

(d)                   (e) 
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Table 5.1 Deblurring results for artificially blurred images. Deblurred image quality is evaluated using 

BRISQUE and NIQE IQMs. 

 

5.7. Restoration of Real Blurred Images 

Real life blurred images were used to test the efficacy of the deblurring scheme for 

practical application. The images depict motion blur resulting from camera 

handshake. A brief discussion on the deblurring scheme of Fergus et al. [17] and 

Whyte et al. [18] as benchmark for comparison is provided below. These schemes 

were picked out due to the availability of their code. Other schemes were omitted 

from comparison due to their code complexity and large computation time. 

The scheme from Fergus et al. estimates the blurring PSF and then deconvolves the 

Fig. 5.5(d) Gaussian 11x11 σ
2
=2.0

Fig. 5.6(d) Motion 5x11 L=11, A=23

Fig. 5.7(d) Out-of-focus 19x19 R=9

Fig. 5.8(d) Arbitrary 9x9 -

Fig. 5.9(d) Arbitrary 15x11 -

Fig. 5.10(d) Arbitrary 16x10 -

Fig. 5.11(d) Arbitrary 11x14 -

Original Blurred Deblurred

Fig. 5.5 6.68 35.88 47.27

Fig. 5.6 10.26 16.67 52.07

Fig. 5.7 50.12 30.57 63.38

Fig. 5.8 14.30 14.67 39.11

Fig. 5.9 14.13 17.95 36.43

Fig. 5.10 15.45 20.77 49.80

Fig. 5.11 30.07 49.04 42.27

Original Blurred Deblurred

Fig. 5.5 5.11 4.57 6.89

Fig. 5.6 5.11 4.69 7.19

Fig. 5.7 4.98 6.12 9.66

Fig. 5.8 4.74 4.74 7.43

Fig. 5.9 5.50 5.94 7.56

Fig. 5.10 4.98 5.72 6.30

Fig. 5.11 6.42 8.85 7.94

Image Quality Measured Using NIQE

σ
2
=Variance, L=length, A=Angle, R=Radius

Figure 

Number

Blurring 

Filter
Size (pixels)Parameter Values

Image Quality Measured Using 

BRISQUE 
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image using a Richardson-Lucy filter. The PSF estimation process depends on image 

statistics, especially pixel colour/ image gradients. Their scheme was designed to 

estimate in-plane motion PSF while neglecting out-of-plane (rotational) motion blur. 

The second scheme by Whyte et al. extends the scheme of Fergus et al. by 

incorporating rotational blur constraints as well as employing it for two deblurring 

cases. In the first deblurring case their scheme has been used to deblur a single-shot 

image, while in the second deblurring case, it utilizes information from a noisy pair 

of blurred image along with a single-shot blurred image to estimate the blurring PSF.  

Fig 5.12 shows the deblurring results for the Ian_1 image from the source in [132]. 

The blurred image is shown in Fig.5.12(a). The deblurred image using the proposed 

BID scheme is shown in Fig. 5.12(b) with the estimated PSF in Fig. 5.12(e). The 

blurred image after restoration is reasonably clear with some ringing in Fig. 5.12(b) 

for the proposed scheme. However, the best result in terms of visual quality is 

achieved for the Fergus et al. based BID scheme in Fig. 5.12(c). Whyte et al.‘s 

scheme was unable to estimate the blurring kernel properly and the deblurred image 

in Fig. 5.12(d) contains large residual blur and ringing.  

Deblurring results of the Basilica image are shown in Fig. 5.13. The blurred image in 

Fig. 5.13(a) was deblurred using the proposed BID scheme. The deblurred image and 

the corresponding estimated PSF are shown in Fig, 5.13(b) and Fig.5.13(e). The 

image seems to have recovered well as compared to the deblurred images in 

Fig.5.13(c) and (d) for the BID schemes of Fergus et al. and Whyte et al., 

respectively. Looking at the estimated PSFs in Fig. 5.13(f) and Fig.5.13(g), it can be 

seen the estimated PSFs are approximated for few points as compared to the 

estimated PSF using the proposed scheme in Fig.5.13(e).  

Fig. 5.14 shows the deblurring results for the Monument image. The blurred image in 

Fig. 5.14 (a) was deblurred using the proposed scheme, Fergus et al. and Whyte et al. 

scheme in Fig. 5.14(b), (c) and (d) with their respective estimated PSFs shown in 

Fig. 5.14 (e), (f) and (g). In Fig. 5.14, the image seems to have recovered well, but 

looking it in detail, the text in the image is unreadable, as shown in Fig. 5.15 

None of the BID schemes were able to estimate the PSF of the real life blurred image 

perfectly. For the proposed BID scheme, the rationale behind its inefficiency can be 

related to the lack of more extreme image and PSF constraints. However, even in the 

case of the deblurring schemes of Fergus et al. and Whyte et al., much more 

advanced image constraints and in-plane/out-plane PSF constraints fail to enhance 

the deblurring performance. This is probably due to blur models and image/blur 
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statistics constraints that leave large uncertainties in the modelling and computation 

of the blurring kernel [39, 45]. Also, the presence of noise in the blurred images may 

affect the deblurring outcome.  

 

 

Fig. 5.12 Deblurring result for Ian_1 image blurred by arbitrary PSF resulting from camera 
handshake (a) Blurred image. Deblurred using (b) Proposed BID scheme (c) Fergus et al. 

scheme (d) Whyte et al. scheme with their respective estimated PSFs in (e), (f) and (g).  

 

(e) (f) (g)

(b)

(d)(c)

(a)
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Fig. 5.13 Deblurring result for Basilica image blurred by arbitrary PSF resulting from camera 
handshake (a) Blurred image. Deblurred using (b) Proposed BID scheme (c) Fergus et al. 

scheme (d) Whyte et al. scheme with their respective estimated PSFs in (e), (f) and (g).  

 

 

(e) (f) (g)

(b)

(d)(c)

(a)
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Fig. 5.14 Deblurring result for Monument image blurred by arbitrary PSF resulting from 
camera handshake (a) Blurred image. Deblurred using (b) Proposed BID scheme (c) Fergus et 

al. scheme (d) Whyte et al. scheme with their respective estimated PSFs in (e), (f) and (g).  

 

 

(e) (f) (g)

(b)

(d)(c)

(a)
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Fig. 5.15 Deblurring results for section of Monument image using (a) Proposed BID scheme (b) 
Fergus et al. scheme and (c) Whyte et al. scheme. The text in the image is unreadable in all 

cases. 

5.8. Discussion 

A novel BID scheme based on GA and utilizing BRISQUE measure as the fitness 

function is presented for deblurring images corrupted by arbitrarily shaped PSFs. The 

proposed BID scheme can estimate any parametric or non-parametric PSF 

coefficients‘ values using any IQM as deblurring measure for feedback of deblurred 

image quality to the BID scheme. During each iteration, a coefficient value is 

updated in the direction of improved deblurred image quality which can be measured 

using the blind IQM. The process can be evaluated for a fixed number of iterations or 

it can be terminated when the difference in the measure value in subsequent 

iterations is lower than a specified threshold value.  

The proposed BID scheme‘s estimated PSF coefficients are not exactly the same as 

the original PSF but are rather a near approximation of the original blurring PSF. 

This affects the brightness and contrast of the deblurred images thus rendering the 

(a)

(b)

(c)
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full-reference IQMs (PSNR, MSSIM, UQI etc) invalid for quantitative image quality 

evaluation. Hence, non-reference IQMs BRISQUE and NIQE were used for 

computation of deblurred image quality.  

Initially a self-coded GA variant was employed for optimizing the search algorithm 

which was later replaced by MATLAB based GA in its optimization toolbox. The 

proposed BID was successfully evaluated using parallel processing cores. The 

proposed BID scheme requires a fixed PSF size input from the user. In this regard, a 

method for visual judgement based PSF size estimation prior to deblurring is 

discussed in Section 5.5. In the case of real blurred images, the PSF size was 

estimated by inspecting a blur region in the image. 

Since the BID scheme can also be extended for uniform parametric blurs, the 

algorithm was first evaluated for the less complex parametric form blurs before 

testing it for arbitrarily shaped PSFs. Results presented here were obtained when the 

algorithm stopped, as the tolerance value for the fitness function was attained. The 

restored images appear sharper and much more detailed than its blurred counterpart.  

Real life blurred images were used to test the efficacy of the deblurring scheme for 

practical application. The images depict motion blur resulting from camera 

handshake. The proposed BID scheme was compared with other deblurring schemes 

used as benchmark. These included the single image motion deblurring scheme of 

Fergus et al. [17] and the single/noisy-paired motion deblurring scheme of Whyte et 

al. [18]. The proposed scheme was well as the benchmark BID schemes were unable 

to estimate the PSF of the real life blurred image perfectly. The proposed BID 

scheme was probably inefficient due to the lack of more extreme image and PSF 

constraints. On the other hand, the deblurring schemes of Fergus et al. and Whyte et 

al. with much more advanced image constraints and in-plane/out-plane PSF 

constraints failed to enhance the deblurring performance. This could be probably due 

to the usage of blur models and image/blur statistics constraints that leave large 

uncertainties in the modelling and computation of the blurring kernel [39, 45]. The 

presence of image noise can also be a factor in the inefficient recovery of the blurred 

images. 

5.9. Summary 

Arbitrarily shaped PSFs resulting from motion blur and camera handshake, usually 

present a complex form. The problem of deblurring of images corrupted by such 

PSFs has been analyzed and a BID scheme is proposed. The proposed BID can 
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handle both parametric and arbitrarily shaped PSF estimation using a single 

algorithm, for single-shot blurred images, with enhanced optimization through GA. 

The deblurring results show effective PSF estimation capability for parametric and 

arbitrarily shaped PSFs in the case of artificially blurred images. For real life blurred 

images resulting from camera handshake, the proposed scheme as well as the 

benchmark schemes strive to correctly estimate the blurring kernel for image 

restoration. Different IQMs and restoration filters can be easily incorporated in the 

proposed BID in order to investigate their performance in enhancing the deblurring 

quality. Modelling and deblurring the complex camera handshake PSFs 

effectively/perfectly still remains a challenging task.  

A GUI based BID toolbox was created, as it is required to readily deploy and apply 

the proposed BID schemes. It encompasses all the feedback IQMs based BID 

schemes, used in conjunction with the GA based optimization scheme. Its features 

are discussed in detail in chapter 6 and presented in the format of a practical lab 

session worksheet in order to guide the user 
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Chapter 6  

Graphical Interface Based Blind Image 

Deblurring Toolbox  

 

6.1. Introduction 

A GUI enables the user to easily access and use software. It can save valuable time 

and avoid trouble by evaluating user desired function through a platform of function 

button and other easy access tools. The lack of GUI results in creating unnecessary 

difficulty for the user to operate the BID scheme. Most of the BID schemes visited in 

the literature that result from scientific research usually lack a GUI and are thus not 

available in the form of toolboxes or individual software. Some of the major reasons 

are as follows:  

 

 BID algorithms may not be completely automated because of their 

dependency on such human intervention at different stage(s) of deblurring 

that cannot be covered by the GUI tools. In such cases multiple files of codes 

are rather utilized to perform the BID in multiple stages manually by 

obtaining result from one code file and putting it in another code file as in the 

case of Shan et al. [39] BID scheme. 

 Most of the BID schemes usually address a limited range of the deblurring 
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problems i.e. either dealing with parametric or non-parametric blur, space 

invariant or variant blur etc. GUI development in such case would only be 

useful for limited users.  

 BID schemes may not be computationally efficient or they may require 

further modifications to enhance their deblurring results and thus 

incorporating them in form of GUI at early stages is not desired.  

 

The benchmark BID schemes (Shan et al. [39], Fergus et al. [17] and Whyte et al. 

[18]) used for comparison in this research work also lack a graphical interface. Shan 

et al.'s BID scheme requires command line input to Windows batch files and lacks 

GUI. The user has to input different parameter values to the batch file required to 

conduct BID on the image. Fergus et al. and Whyte et al. BID schemes use 

MATLAB code and require user interaction in image loading, parameter setting in 

code files to deblurring result presentation. Recently presented BID schemes  

In this research, a GUI toolbox for non-blind image deblurring was developed during 

the early stages and was regularly updated to incorporate many additional features 

including region based deblurring, blind IQMs for BID and parametric and non-

parametric PSF estimation. After the successful use of blind IQMs for BID, the 

toolbox was updated to incorporate a GA based BID scheme which can use any of 

the blind IQMs as a fitness function. It can estimate parametric and arbitrarily shaped 

PSFs as well.   

6.2. Key Features of the Developed GUI Toolbox 

The toolbox and the related GUI have features incorporated which allow for: 

 

 Deblurring the complete image or section of it. A moveable bounding box is 

provided for the user to select any or whole region of the image to deblur as 

shown in Fig. 6.1 and Fig. 6.2.  

 Deblurring with different restoration filters: Wiener, Richardson-Lucy and 

Regularized. The user can select among any of these classical restoration 

filters and update their parameter settings.  

 Sliders for setting values for the PSF parameter(s) in the case of non-blind 

deconvolution.  

 Deblurring different types of blurs, Gaussian, motion and out-of focus blur. 
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 Setting values for the PSF parameters, e.g. PSF size and variance for 

Gaussian blur, length and angle for motion blur, and radius for out-of-focus 

blur for non-blind deconvolution. The parameter values can be set manually. 

 Ringing reduction by using edge-taping technique applied to the image prior 

to deblurring. This feature is embedded in the code and is always applied to 

the image. 

 File loading and saving and layout change. Image file can be loaded for BID 

and the deblurred result can be saved using a Windows based file explorer. 

 The GUI can execute the code in either serial or parallel mode as desired by 

the user. 

 The GUI allows for easy modification and amendment of the features. 

 

The toolbox is built using MATLAB and its GUI implementation framework named 

GUIDE as it allows for an easy creation and updating of the GUI. GUIDE based GUI 

is coded by separate function allowing for easy access and incorporation of future 

updates. The MATLAB based GUI also supports parallel processing by simply using 

its distributed computing techniques. The following sections discuss briefly the 

design and implementation of the toolbox. 

6.3. Toolbox Design 

The flowchart for the toolbox is presented in Fig. 6.1 shows the workflow of the 

toolbox. The toolbox‘s functionality can be divided into three main parts: the data 

input, BID algorithm execution and the deblurring output section.  

6.3.1. Data Input  

The toolbox takes the image file in three common image formats at the moment i.e. 

jpeg, tiff and png. Other formats are also available as optional to the user. After the 

GUI loads, the user can load an image file by browsing through the computer 

directory and locating the image file as shown in Fig. 6.2. Once the image is loaded, 

the user can relocate the bounding box that selects the image section as shown in Fig. 

6.3. By default, it covers the whole image. The user then needs to specify the initial 

PSF size used for estimation. 

The user can also select among different deblurring filters i.e. Wiener, Richardson-

Lucy and Regularized filter as shown in Fig. 6.4. Settings of the filter need also be 

input e.g. NSR for Wiener filter, number of iterations for Richardson-Lucy filter etc.  
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Fig. 6.1 Flowchart presenting the BID Toolbox implementation. 
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Fig. 6.2 The image loading window available in the BID Toolbox for easy selection of image 
data. 

 

 

 

(a) 

 

(b) 

Fig. 6.3 Bounding box used in GUI for image region selection. (a) By default the whole image is 
selected (b) User specified image region for BID. 
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Fig. 6.4 Different filters available for BID in the GUI Toolbox. 

 

The user has the choice of selecting among different IQMs as fitness function for the 

GA. List of the IQMs is given in Fig. 6.5.  

 

Fig. 6.5 Different deblurring measures available for BID in the GUI Toolbox. 

 

The GA settings need to input by the user as well, if not the default values for 

number of iterations, initial population size, fitness function tolerance etc are used. 

Advanced settings of the algorithm include parameter tuning for mutation rate, 

crossover rate, parallel processing etc. The setup screen is shown in Fig. 6.6.  

 

Fig. 6.6 GA setup screen for BID in the GUI Toolbox. 
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6.3.2. Deblurring output  

Fig. 6.7 shows an overview of the GUI toolbox where the complete image is 

deblurred. The picture has been deblurred using a motion blur PSF of length 74 

pixels and angle 0 degrees using a Wiener filter.  

 

 

Fig. 6.7 BID Toolbox for non-blind image deblurring. 

 

Fig. 6.8 shows the deblurring results for a section of the image. The bounding box 

was moved to cover the blurred title of the book in the image and deblurring was 

performed. This basic GUI toolbox could initially only provide manual adjustment of 

the PSF parameters. Later on, the GUI was updated to include the different newly 

proposed BID schemes and deblurring measures.  

Fig. 6.9 shows the latest GUI for the BID toolbox which allows for the estimation of 

arbitrarily shaped PSFs. It also has features to load the blurred image and save the 

deblurred image. Other different options are also available in the main menu. The 

toolbox allows the user to select from different restoration filters and provides easy 

access to their settings. The deblurring algorithm is optimized through GA. The GA 

parameters can be set up simply. The deblurring algorithm can be optimized on a 

multiple core machine as well. The user can select from four deblurring measures as 

the fitness function for the GA. These deblurring measures are spatial and spectral 

kurtosis, RPSNR, BRISQUE and NIQE. By using the proposed BID scheme in 

Section 5.2, GA aims to estimate the PSF coefficient values for a coefficient matrix 
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whose size has to be input by the user. This toolbox therefore provides a single base 

to tackle the BID problem for images blurred by parametric and arbitrarily shaped 

PSFs using any of the deblurred measures. 

 

Fig. 6.8 BID Toolbox for image section deblurring. The bounding box’s size and position can be 
adjusted by the user.  

 

 

Fig. 6.9 GUI Toolbox for blind PSF estimation and image deblurring. User can select among 
different restoration filters, deblurring measures as well as adjust GA settings.  
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Fig. 6.10 - 6.11 shows default setups for different combinations for image deblurring.  

Fig. 6.10 shows the Popeye image being deblurred using a Wiener filter and the blur 

in the image being estimated by a parametric motion blur PSF. The GUI allows for 

the finite PSF size input which is set to 15x15 pixels. In this case the spectral kurtosis 

IQM is used for estimating the parametric motion PSF length and angle parameters. 

The GA is set to run for 500 iterations and a fitness value per iteration tolerance of 1
-

22
. The lower and upper bounds for the estimated PSF values are set as 0.001 and 0.9 

respectively. The deblurred image shows the recovery results for the Popeye image. 

 

 

Fig. 6.10 GUI Toolbox for parametric motion PSF estimation and image deblurring. Settings 
are adjusted for spectral kurtosis based PSF estimation using Wiener filter.  
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Fig. 6.11 shows the Birdie image being deblurred using the Richardson-Lucy filter 

and the blur in the image being estimated by a parametric motion blur PSF. The GUI 

allows for the finite PSF size input which is set to 7x7 pixels. In this case the 

BRISQUE IQM is used for estimating the parametric motion PSF length and angle 

parameters. The GA is set to run for 35 iterations due to small number of estimation 

parameters and a fitness value per iteration tolerance of 1
-22

. The lower and upper 

bounds for the estimated PSF values are set as 0.009 and 0.5 respectively. The 

deblurred image shows the recovery results for the Birdie image. 

 

 

Fig. 6.11 GUI Toolbox for parametric motion PSF estimation and image deblurring. Settings 
are adjusted for BRISQUE based PSF estimation using Richardson-Lucy filter.  
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Fig. 6.12 shows the DIP book image being deblurred using the Wiener filter and the 

blur in the image being estimated by a parametric motion blur PSF. The GUI allows 

for the finite PSF size input which is set to 15x15 pixels. In this case the BRISQUE 

IQM is used for estimating the parametric motion PSF length and angle parameters. 

The GA is set to run for 500 iterations due to large number of estimation parameters 

and a fitness value per iteration tolerance of 1
-22

. The lower and upper bounds for the 

estimated PSF values are set as 0.001 and 0.9 respectively. The deblurred image 

shows reasonable recovery for the blurred image. 

 

 

Fig. 6.12 GUI Toolbox for parametric motion PSF estimation and image deblurring. Settings 
are adjusted for BRISQUE based PSF estimation using Richardson-Lucy filter.  

6.4. Comparison with Other BID Toolboxes 

Other BID toolboxes are available and are their functionality is discussed in 
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comparison to the proposed BID scheme's GUI. This includes the SmartDeblur 

Toolbox. The toolbox allows for manual deblurring of out-of-focus and motion 

blurred images. The user has to manually adjust the blur parameters and search for 

the best parameter values to deblur the image. It allows the user to adjust motion blur 

length and angle parameter and radius parameter of out-of-focus blur. 

The smoothness parameter allows the user the level of deblurring residual blur and 

the correction strength allows the level of deblurring to be applied on the blur image.  

 

Fig. 6.13 SmartDeblur BID Toolbox for manual deblurring.  

6.5. Summary 

A GUI based toolbox for blind image deblurring based on IQMs and GA is 

developed and presented. The toolbox incorporates many features and provides a 

single base for parametric and non-parametric PSF estimation and deblurring. IQMs 

studied in this research work can be utilized along GA to automatically estimate the 

PSF and recover the image. The GUI was compared with other existing BID 

toolboxes however the main limitation of other BID schemes is their inability to 

function without input from the user at different processing stages. The GUI was 

developed with focus on functionality (automated BID scheme) and ease of usage for 

the users.  

The present research work has been closed under the stated aims and objectives. 

Chapter 7 presents consolidated discussion and analysis of the research work 

presented before. 
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Chapter 7  

Discussion and Analysis 

 

This research focused on the development of blind restoration schemes for real life 

blurred images. The BID scheme presented in this research is designed to be robust 

in the estimation of parametric and non-parametric PSFs and computationally 

efficient. The objective was to design a BID scheme that can use an IQM to act as a 

feedback of image quality for the deblurred image and lead to the estimation of 

blurring PSF. The blind IQM used would optimize at or around the point where the 

true PSF is located. The blind IQMs developed and studied in this research are 

independent of a reference image when computing the image quality. The blind 

IQMs used are also independent of distortion specific features, such as ringing, noise 

or blur. 

Blind IQMs spatial kurtosis, spectral kurtosis, RPSNR, BRISQUE and NIQE were 

investigated as deblurring measures for BID. A novel full-reference blind IQM, the 

RPSNR measure, was designed and used in this research work. BRISQUE, NIQE 

and spectral kurtosis are introduced for the first time as deblurring measures for BID.  

7.1. Spatial and Spectral Kurtosis IQMs 

Spectral kurtosis is introduced as an alternative to spatial kurtosis non-Gaussianity 

measure. The spatial kurtosis based BID scheme was designed and used by Yin and 

Hussain in [86]. The spatial kurtosis measure optimizes in the vicinity of true PSF 

parameter values indicating that the deblurring estimate is close to the pristine image. 
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It uses a Wiener filter in each iteration to generate a deblurred image estimate from 

the blurred image using a candidate PSF. This makes the spatial kurtosis based BID 

scheme computation-intensive due to the transformation of the frequency domain 

deblurred image, estimated by the Wiener filter, back to the time domain to calculate 

the spatial kurtosis. Also, spatial kurtosis is highly sensitive to outliers in the data. 

Due to noise amplification and ringing effects from the restoration filter the 

measured non-Gaussianity varies during the deblurring process, thus leading to a less 

precise approximation of PSF parameters. Spatial kurtosis is dependent on the 

statistical nature of the image i.e. for sub-Gaussian and super-Gaussian images; 

spatial kurtosis shows an increasing and decreasing kurtosis value respectively. 

Therefore, the BID scheme based on spatial kurtosis needs to be tuned accordingly 

for each image. Images that have normalized kurtosis value above zero are termed as 

super-Gaussian while images with normalized kurtosis value below zero are termed 

as sub-Gaussian. The above mentioned limitations make the robustness of the spatial 

kurtosis based BID scheme questionable especially in the deblurring case of real life 

blurred images with inherent noise. This limitation leads the need to develop new 

measures or investigate other existing measures, which are robust and 

computationally efficient.  

The spectral kurtosis measure was presented as an efficient and robust alternative to 

the previously used spatial non-Gaussianity measure. The spectral kurtosis measure, 

unlike the spatial kurtosis measure, is calculated in the frequency domain thus 

omitting the use of iFFT. This saved valuable computation time during the deblurring 

process. The spectral kurtosis is computationally efficient with the deblurring speed 

almost doubled for the FFT-iFFT cycle for images larger than 256 x 256 pixels. 

However, MATLAB based Wiener filter implementation reduced the computational 

speed for the proposed BID scheme. The spectral kurtosis with a computationally 

efficient deblurring filter can achieve even lower execution time especially when 

large size images need to be deblurred or when multiple parameters of PSF need to 

be estimated. A BID scheme with low execution time is very critical especially when 

the deblurring is done online where the resources are very limited.  

The spectral kurtosis IQM is independent of the statistical nature of image and 

always shows an increasing kurtosis value for increased blurring. This makes the 

spectral kurtosis based BID scheme easily automatable unlike the spatial kurtosis 

whose behaviour is dependent on the statistical nature of the image.  

The spectral kurtosis based BID schemes for gradient descent and GA based 
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optimization are provided. The scheme is devised to handle any type of blur that can 

be modelled in a parametric form such as Gaussian, motion and out-of-focus blur. 

The spectral kurtosis measure was investigated for parametric blurs only. Deblurring 

was performed on noise free images in the artificial blurring case and with inherent 

image noise in the real blurred case. Gradient was computed against the blurring PSF 

parameter, which is optimized in the direction of increasing spectral kurtosis value 

till the pristine image is estimated. The scheme is simple and efficient and does not 

require any prior knowledge about the image or the blurring process. The algorithms 

and gradients are derived for a number of blurs and the performance improvements 

are corroborated through a set of simulations. The benefit of using such a model of 

estimation is that it makes the same BID algorithm easily tuneable, allowing it to 

estimate any of the mentioned parametric blur types using the same IQM.  

In comparison with Shan et al. BID scheme [39], which can estimate parametric and 

arbitrarily shaped PSFs, the proposed BID scheme is designed for the estimation of 

parametric blurs only. In the artificial deblurring case for parametric blurs i.e. 

Gaussian, motion and out-of-focus blur, the proposed scheme produced better quality 

deblurred images as compared to the Shan et al. BID scheme. This is shown by high 

values of MSSIM and UQI and low values of BRISQUE and NIQE.  

In the case of deblurring of real life motion blurred images, the proposed BID 

scheme shows better quality deblurred images for the BUILDINGS and LABEL 

image for BRISQUE IQM as compared to the original blurred image. The proposed 

scheme showed even better result as compared to Shan et al. for the BUILDINGS 

image. For the LABEL image, Shan et al. scheme showed better result as compared 

to the proposed scheme. However, for DIP_BOOK and MATLAB_BOOK images 

both the proposed and Shan et al. scheme further deteriorated the original blurred 

images.  

In most of the real deblurring cases, Shan et al. BID scheme shows lower quality as 

compared to the original blurred image. The deblurred images of Shan et al. were 

marred by ringing artefacts due to kernel errors in the PSF estimation stage.  

The proposed GA based BID scheme was used to enhance the search for the PSF 

parameter values. It was also used to compare the deblurred image quality for 

multiple filters i.e. Wiener filter, Richardson-Lucy filter, Regularization filter and 

MATLAB Iterative Blind Deconvolution (IBD) filter. Wiener filter based deblurred 

image estimates show better quality images as compared to other filters based on the 

PSNR values.  
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7.2. Reblurring based PSNR (RPSNR) IQM  

A novel full-reference blind quality measure for BID, the RPSNR measure, was 

designed as an alternative deblurring measure. Reference based error computing was 

not previously possible in BID cases due to the unavailability of a reference image 

required for comparison purposes. The RPSNR measure suggests a solution to this 

problem by calculating error between blurred and reblurred image. RPSNR based 

PSF estimates produce high quality deblurred images as shown by the high PSNR 

values of the original-deblurred pair. The deblurred images when reconvolved with 

the estimated PSF produce the reblurred images. Only for the candidate PSF near to 

the original PSF, the reblurred image has a similar blurring effect as the originally 

blurred image. 

The reblurring based BID scheme based on RPSNR is limited to the deblurring of 

motion blurred images. The deblurring results for artificially blurred Gaussian and 

out-of-focus images shows that the RPSNR measure could not produce global 

maxima near the true blur parameters. This could be due to the reblurred image 

depicting less difference to the original image for small PSF parameter value. This is 

wrongly perceived by RPSNR measure and thus results in an incorrect PSF 

parameter estimation.  

7.3. BRISQUE and NIQE IQMs  

BRISQUE based PSF estimates produce much better quality deblurred images as 

compared to other IQMs for artificially and real blurred images. However, 

BRISQUE is computationally inefficient as compared to the other IQMs due to its 

usage of a support vector machine for calculating the image quality. Among the non-

reference IQMs, in most of the deblurring cases, BRISQUE based BID scheme 

shows better quality images followed by NIQE based BID scheme. 

Blind IQMs spatial kurtosis, spectral kurtosis, RPNSR, BRISQUE and NIQE are 

investigated based on their ability in estimating parametric PSF by judging the 

deblurred image quality. IQMs were employed during the research work to judge the 

deblurred image quality and include both full-reference and non-reference IQMs. 

Full-reference IQMs include the PSNR, MSSIM and UQI measures whereas non-

reference IQMs include spatial kurtosis, spectral kurtosis, BRISQUE, NIQE and 

RPSNR measures. The deblurred image quality of the IQMs is compared for 

artificial and real blurred images using PSNR, MSSIM, UQI, BRISQUE and NIQE. 
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It was difficult to isolate a single measure as the best among the non-reference IQMs 

just based on their deblurred image quality as their performance varies. In order to 

select among the multiple IQMs, the estimated NSR for the different IQMs is also 

analyzed. It is observed that the BRISQUE measure estimates the PSF parameters for 

relatively lower NSR values as compared to other IQMs. A lower NSR value for the 

Wiener filter based deconvolution results in a comparatively sharper image as 

compared to a higher NSR value. Also, low NSR values depict the presence of 

relatively higher noise. BRISQUE based BID gives better visual results for the 

deblurred images due to the presence of sharp edges and it was due to this BRISQUE 

was selected as the blind IQM to be used in the later research work. 

7.4. BID Scheme for Arbitrarily Shaped PSFs  

Real life blurred images exhibit more complex shape PSFs that cannot be modelled 

using the parametric models. The deblurring in this case is challenging to estimate 

the PSF in the blurred image and its effective removal. The estimation of arbitrarily 

shaped (non-parametric or generic) motion PSFs caused by camera handshake were 

also investigated.   

A novel blind deblurring scheme was analyzed for deblurring images corrupted by 

arbitrarily shaped PSFs. It is based on GA optimization and utilizes the BRISQUE 

measure as the fitness function for arbitrarily shaped PSF estimation. An added 

advantage of such a BID scheme is that the same method can easily be extended for 

estimating other types of blur apart from camera handshake such as atmospheric 

turbulence blur and out-of-focus blur. Also, the BID scheme based on GA is flexible 

so it can be easily incorporated with any deblurring measure as the fitness function. 

The proposed BID scheme has been compared with other deblurring schemes that 

include the single image motion deblurring scheme of Fergus et al. [17] and the 

single/noisy-paired motion deblurring scheme of Whyte et al. [18]. The proposed 

BID scheme‘s estimated PSF is similar enough to the original PSF but not exactly 

the same as the original blurring PSF. This affects the brightness and contrast of the 

deblurred images thus rendering the full-reference IQMs (PSNR, MSSIM, UQI etc) 

invalid for quantitative image quality evaluation. Therefore, non-reference IQMs 

BRISQUE and NIQE were used for image quality evaluation.  

The proposed BID scheme requires a fixed PSF size input from the user. In order to 

estimate the PSF support size, a simple technique based on visual judgement of 

ringing artefacts in the deblurred image is proposed. Initially, the GA is run for 
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different sizes of PSF for only a few iterations. The results are then visually judged 

for ringing artefacts. The ringing artefacts are severe if the initial PSF estimate is 

bigger in size than the actual blur PSF which creates estimation error among them. 

Therefore, the user can select a PSF size which shows reduced ringing for the 

deblurred image.  

The proposed BID scheme results show that it can estimate parametric and arbitrarily 

shaped PSFs for artificially blurred images. However limited for the deblurring of 

real life blurred images due to the inherent noise in the images. Also for real life 

blurred images, Fergus et al. and Whyte et al. BID scheme, could not produce 

acceptable results.  

The robustness of the proposed BID scheme is discussed as follows. For the 

BRISQUE IQM, the proposed BID scheme works well for artificial and real blurred 

images. It works well for parametric blur types for artificial and real blurred images. 

In the case of arbitrarily shaped PSF estimation, the proposed BID scheme based on 

BRISQUE works well only for artificial blurred images and fails in the case of real 

blurred images.  

7.5. GUI based BID Toolbox 

A GUI toolbox for non-blind image deblurring was developed during the early stages 

of the research work and was regularly updated to incorporate many additional 

features such as region based deblurring, blind IQMs etc. After the successful use of 

blind IQMs for BID, the toolbox was updated to incorporate a GA based BID 

scheme, which can use any of the blind IQMs as fitness function. It can estimate both 

parametric and arbitrarily shaped PSFs. The toolbox is built using MATLAB and its 

GUI implementation framework named GUIDE. It allows for an easy creation and 

updating of the GUI based toolbox. The GUIDE based GUI is coded by separate 

functions allowing for easy access and further modifications. The MATLAB based 

GUI also supports parallel processing by simplifying the use of its distributed 

computing techniques. The toolbox and the related GUI have features incorporated 

which allow for: 

 Deblurring of complete or section of an image.  

 Deblurring with different restoration filters. 

 Slider bar for setting up the algorithm parameter by the user. 

 Deblurring parametric and non-parametric PSFs. 
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 Ringing reduction through edge-taping technique. 

 File loading, saving and toolbox layout change. 

 Executing the BID scheme in serial or parallel mode. 

 

The overall conclusions, achievements and future research direction are presented in 

Chapter 8.  
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Chapter 8  

Conclusions, Contributions and Future 

Work 

 

This research investigated the problem of blind image deconvolution and deblurring 

in an effort to provide efficient restoration of real life blurred images. The research 

work focused on the design and development of a BID scheme for real life blurred 

images. Though summary of each research study has been provided in the relevant 

chapters, a brief outline of the key findings and suggestions for possible future 

studies is presented here.  

8.1. Conclusions 

This research was an investigation to establish that the blind image deconvolution 

problem can be solved to a fair degree of complexity by using the information 

theoretic concept, where, an independent signal has certain useful information. It 

focused on a couple of very interesting challenges in BID and proposed new 

solutions for them. The challenges include; designing/investigating a robust blind 

image deblurring measure, estimating parametric and arbitrarily shaped PSFs, 

deblurring real life blurred image data, enhancing the computational efficiency and 

the deblurring quality of the BID scheme.  

 

Blind IQMs were investigated as feedback deblurring measures to the BID. These 
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include; spatial kurtosis, spectral kurtosis, RPSNR, BRISQUE and NIQE index. 

Spatial kurtosis has been previously used for BID while existing measures, 

BRISQUE, NIQE and spectral kurtosis, are introduced for the first time as deblurring 

measures for BID. RPSNR is a novel full reference yet blind IQM designed and used 

in this research work. 

 

Starting with the spatial kurtosis based BID scheme as a reference, the spectral 

kurtosis based BID model was designed and implemented. Some of the features of 

this scheme are as follows:  

 The spectral kurtosis measure is calculated in the frequency domain thus 

limiting the need for Inverse Fourier Transform which is required for the 

calculation of spatial domain IQMs (spatial kurtosis, RPSNR, BRISQUE and 

NIQE). This makes spectral kurtosis computationally efficient. However, 

MATLAB‘s Wiener filter implementation also has other severe overheads 

losing the per iteration efficiency. 

 Spectral kurtosis maximizes for increased blurring unlike spatial kurtosis 

which increases and decreases for sub-Gaussian and super-Gaussian image. 

This makes the BID scheme based on spectral kurtosis easily automatable.  

 Experiments were carried out on a number of test images with various 

blurring parameters. Spectral kurtosis based BID scheme is robust as it is able 

to estimate the blurring parameters over a wide range of images and its 

performance is not marred by ringing artefacts and inherent deblurring noise 

in the images.  

 The proposed method‘s deblurring ability is not limited to a single blurring 

function. The algorithms and gradients are derived for a number of blurs, and 

the performance improvements are corroborated through a set of simulations. 

The benefit of using such a model of estimation is that it makes the same BID 

algorithm easily tuneable, allowing it to estimate any of the mentioned 

parametric blur types using the same IQM. 

 A gradient descent based scheme was utilized where the parameter(s) of the 

blur model were optimized in the direction of maximum spectral non-

Gaussianity. The BID scheme was later replaced by the use of a GA based 

optimization. The GA based BID scheme was used for testing of RPSNR, 

BRISQUE and NIQE measure as well. 
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A novel full-reference yet blind quality measure for BID, RPSNR, was designed as 

an alternative to the spectral kurtosis measure. 

 Reference based error computing was not previously possible in BID cases, 

due to the unavailability of a reference image required for comparison 

purposes. The RPSNR measure suggests a solution to this problem by 

calculating error between blurred and reblurred image.  

 Deblurring results for artificial and real life motion blurred images based on 

the RPSNR based BID scheme are encouraging. However, the measure‘s 

performance was limited for Gaussian and out-of-focus images.  

 

Non-reference IQMs BRISQUE and NIQE were investigated as deblurring measures 

alternate to the spatial and spectral non-Gaussianity measures.  

 BRISQUE measure based PSF estimates depict better results for deblurring of 

artificially and real life blurred images as compared to other IQMs.  

 From detailed testing of these measures with deblurring experimentation on 

the artificial and real life blurred images, BRISQUE proved to be a very 

robust but computationally costly PSF estimator. BRISQUE is 

computationally costly due to its usage of a support vector machine for 

calculating the image quality. 

 BRISQUE based BID estimates PSF for relatively lower NSR values as 

compared to other IQMs resulting in a comparatively sharper image with 

presence of deblurring noise. 

 

All the deblurring measures show absolute maxima at the true PSF parameter values 

except the spatial kurtosis measure, which maximises for super-Gaussian images and 

minimizes for sub-Gaussian images. This makes them a better choice in terms of an 

automatable measure.  

In the earlier research work, parametric forms of blurs were used for Gaussian, 

motion and out-of-focus blur to model the blurring in the images. The IQMs were 

used to successfully tackle parametric blurs for both artificial and real life blurred 

images. The parametric model is a mere approximation of the blurring that occurs in 

real life blurred images. The research study was further extended to focus on the 
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estimation of the arbitrarily shaped PSFs that present much more complex forms than 

their parametric counterparts.  

 A GA based novel BID scheme using BRISQUE measure as the fitness 

function was used to estimate the coefficients of the arbitrarily shaped PSF. 

 The scheme can estimate blurs even with a large support size. The BID 

scheme‘s setup allows for the estimation of any type of PSF i.e. atmospheric 

turbulence blur (through Gaussian approximation), motion and out-of-focus 

blur in parametric form and arbitrarily shaped as well. The BID scheme was 

also utilized for parametric blur estimation as well.  

 The proposed BID scheme‘s estimated PSF coefficients are not exactly the 

same as the original PSF but are rather a near approximation of the original 

blurring PSF. The proposed BID scheme estimates the PSF coefficients for 

limited number of iterations which produces a reasonable approximation of 

the original PSF coefficients. 

 The proposed BID scheme requires a fixed PSF size input from the user. In 

order to estimate the PSF support size, a simple technique based on visual 

judgement of ringing artefacts in the deblurred image is proposed 

 Experimentation with artificially blurred images, for parametric and 

arbitrarily shaped PSF, depicts excellent restoration results. However, the 

deblurring capability was not satisfactory when tested on real life blurred 

images corrupted by arbitrarily shaped PSFs and in presence of a low degree 

of noise.  

 Other benchmark schemes used for comparison also failed to produce any 

viable result as they were not able to estimate the right PSF 

shape/coefficients. 

 Full reference and non-reference IQMs were employed to gauge the deblurred 

image quality in the artificial blurring case. In the case of real blurred image 

restoration, only non-reference IQMs were employed due to unavailability of 

high quality image as reference. 

 

For easy usage of the BID scheme a GUI based BID toolbox was created.  

 After the successful use of blind IQMs for BID, the toolbox was updated to 

incorporate the proposed GA based BID scheme which can use any of the 
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blind IQMs as fitness function.  

 It can estimate parametric and arbitrarily shaped PSFs. 

 The MATLAB based GUI also supports parallel processing by simply using 

its distributed computing techniques. 

8.2. Contributions 

The research work contributed towards the image restoration field by introducing: 

 

 New blind IQMs; spectral kurtosis, BRISQUE and NIQE as deblurring 

measures for the first time. A novel full-reference yet blind IQM, RPSNR, 

was also designed and used for BID. The measures are able to evaluate image 

quality for different types of situations when the reference high-quality image 

is not available for comparison purposes. 

 A BID scheme has been developed that can handle the deblurring of images 

corrupted by parametric as well as arbitrarily shaped PSFs, by using a single 

algorithm for both cases. The scheme using BRISQUE IQM in conjunction 

with GA can approximate the blurring PSF coefficients for a fixed support 

size matrix thus giving it the flexibility to estimate any shape and size of PSF.  

 The developed BID scheme is totally blind and does not require any prior 

knowledge about the image or the blurring process. 

 The proposed BID scheme operates on a single-shot of the image for its 

recovery, thus making it computationally efficient and ideal for the deblurring 

of real life blurred images.  

 The developed BID method is able to handle high level of blur with small 

level of noise and moderate level of blur with moderate level of noise. 

 The developed BID scheme has benefited from the available parallel 

computing resources. On average, the IQMs show a 50 % reduction in 

computation time over four processor cores. MATLAB Optimization 

Toolbox, details in Appendix D, has been utilized for parallel code execution 

on a multiple core system for BID. It enables the BID schemes to be executed 

in less time. This is very essential especially when image deblurring includes 

large size images or the search space for PSF is wide.  

 A MATLAB based GUI has been designed and implemented for BID which 
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allows the BID algorithm to be used easily by the users. Even, users 

unfamiliar to the field of BID can easily use the GUI toolbox without much 

trouble.  

8.3. Future Work 

This research study mainly investigated the problem of BID for real blurred images. 

Though good results were achieved from the proposed BID scheme(s), the research 

boundary may still be investigated for extending its capabilities. Some research 

approaches, which are out of the scope of the current research, are also suggested.  
 

 In terms of extending this research work, new learning algorithms may be 

investigated for the proposed BID with focus on optimization and faster 

convergence rate.  

 Space invariant parametric as well as arbitrarily shaped PSFs were 

investigated in this research work. At present, the algorithm is applicable to 

space invariant blur however, as the algorithm is quite adaptive it may easily 

be tailored to handle space variant blurs (both parametric and arbitrarily 

shaped PSFs) by using small windows size for the image deblurring task.  

 Low level noise was handled in the deblurring of real life image data. The 

BID scheme‘s ability to handle high level noise may be enhanced by 

extending the developed BID scheme for blind image denoising as well. 

Different types of noise may be considered along with blurring in future. 

Knowledge from the image denoising scheme may then be incorporated with 

this research work to construct a unified blind image deblurring and 

denoising scheme. 

 The arbitrarily shaped PSF estimation scheme may be further enhanced by 

assuming seperability for the PSF. The separable PSF may help in the 

reduction of computation time as well as quick convergence of the GA. The 

arbitrarily shaped PSF estimation technique may be investigated for photo-

specific image and PSF constraints, in order to enhance the deblurring 

quality.  

 Furthermore, a variant of the existing scheme may be designed for segmented 

image deblurring applications, like moving object on a stationary background 

or a focused object on a non-focused background.  
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Appendices 

 

Appendix A 

 

Comprehensive Deblurring Results for 

Spectral Kurtosis based BID scheme 

 

This appendix relates to the testing of spectral kurtosis based BID scheme. Fig. A.1 

shows the images from Desktop Nexus image database use in experimentation. Full 

reference IQMs PSNR, MSSIM, UQI and non-reference IQMs BRISQUE and NIQE 

were used to evaluate the quality of the deblurred images. Table A.1 illustrates the 

deblurring results for Gaussian blurred images. A comparison of the spatial and 

spectral kurtosis based BID is presented. Comparison of the average quality 

measures for the two schemes reveals that the spectral kurtosis based BID scheme 

produces similar and at times better results than the spatial kurtosis based BID. For 

the motion blur case, tests were performed for the two blur parameters, angle and 

length, separately. In the first case the images were motion blurred at a certain angle 

and the length. The length information was assumed known. In the second case, the 

images were motion blurred and the angle information was assumed known. A 

comparison of the spatial and spectral kurtosis based BID is presented in Table A.2. 

Deblurring results for out-of-focus blurred images are illustrated in Table A.3.  
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Fig. A.1. (a) Test Images from the Desktop Nexus image database used in experimentation for 
spectral kurtosis based BID scheme. 
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Table A.1: Artificial deblurring results for Gaussian blurred images using spatial and spectral kurtosis 

measure. Deblurred image quality is compared using full-reference and non-reference image quality 

measures. 
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Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Img-01 1.00 1.30 1.05 5.00E-03 1.00E-04 32.64 35.91 0.94 0.97 0.99 1.00 27.06 17.90 7.63 5.61

Img-01 1.50 1.80 1.40 7.00E-03 7.00E-04 31.42 32.06 0.92 0.93 0.99 0.99 45.66 37.48 7.13 6.48

Img-02 2.00 2.25 2.25 7.00E-03 5.00E-04 29.88 29.88 0.88 0.88 0.99 0.99 55.11 55.11 6.64 6.64

Img-02 2.50 2.85 2.80 1.00E-04 1.00E-04 27.48 27.84 0.77 0.79 0.98 0.98 34.21 35.63 6.91 7.28

Img-03 3.00 2.95 3.15 2.00E-02 2.00E-03 26.91 26.87 0.80 0.80 0.98 0.98 67.23 68.46 8.24 8.19

Img-03 3.50 3.40 3.60 2.00E-02 7.00E-04 26.18 26.30 0.77 0.77 0.97 0.97 72.68 73.60 8.77 8.81

Img-04 4.00 4.05 4.00 8.00E-03 8.00E-03 25.88 25.88 0.76 0.76 0.97 0.97 74.50 74.48 8.95 8.96

Img-04 4.50 4.45 4.55 8.00E-03 8.00E-03 25.47 25.46 0.74 0.74 0.97 0.97 77.30 77.48 9.54 9.52

Img-05 5.00 4.90 5.05 6.00E-03 6.00E-04 25.22 25.20 0.73 0.73 0.97 0.97 79.11 78.78 9.86 9.88

Img-05 1.00 0.90 1.10 4.00E-03 4.00E-02 34.83 34.12 0.97 0.98 1.00 1.00 18.45 16.03 4.07 4.41

Img-06 1.50 1.30 1.35 4.00E-03 5.00E-03 32.17 32.41 0.97 0.97 0.99 0.99 31.13 31.50 5.32 5.39

Img-06 2.00 1.75 2.05 9.00E-05 9.00E-05 28.70 28.23 0.79 0.77 0.99 0.98 37.32 1.25 7.25 6.81

Img-07 2.50 2.30 2.40 1.00E-04 9.50E-07 28.13 28.34 0.83 0.84 0.98 0.99 36.46 37.15 6.75 6.80

Img-07 3.00 2.65 3.20 1.00E-03 2.00E-03 28.02 28.25 0.90 0.90 0.98 0.98 46.94 53.94 7.07 7.00

Img-08 3.50 3.50 3.50 8.00E-06 8.00E-06 27.32 27.32 0.87 0.87 0.98 0.98 66.68 66.68 8.00 8.00

Img-08 4.00 3.95 4.00 8.00E-07 8.00E-07 26.52 26.53 0.85 0.85 0.98 0.98 71.98 71.98 8.36 8.39

Img-09 4.50 4.30 4.25 8.00E-06 8.00E-06 25.74 25.63 0.82 0.82 0.97 0.97 76.24 76.47 8.90 8.99

Img-09 5.00 5.15 5.15 6.00E-06 6.00E-06 25.23 25.23 0.79 0.79 0.97 0.97 78.15 78.15 9.35 9.35

Img-10 1.00 1.15 0.85 4.00E-03 5.00E-02 30.38 33.42 0.97 0.96 1.00 1.00 40.75 29.34 4.31 3.73

Img-10 1.50 1.55 1.45 4.00E-03 7.00E-04 29.94 30.73 0.94 0.93 0.99 0.99 51.59 45.89 5.93 5.78

Img-11 2.00 1.85 2.05 1.00E-03 5.00E-04 28.67 26.46 0.88 0.89 0.99 0.99 36.87 45.07 6.32 6.39

Img-11 2.50 2.35 2.60 6.00E-05 2.00E-05 24.53 24.65 0.74 0.77 0.98 0.98 39.11 37.98 6.86 7.29

Img-12 3.00 3.10 3.25 2.00E-05 2.00E-03 23.12 22.87 0.66 0.65 0.96 0.96 35.00 30.79 8.50 8.58

Img-12 3.50 3.30 3.45 8.00E-06 7.00E-04 25.61 25.47 0.75 0.75 0.97 0.97 65.85 66.20 8.11 8.24

Img-13 4.00 4.00 4.00 8.00E-07 4.00E-06 24.58 24.58 0.72 0.72 0.97 0.97 72.39 72.39 9.02 9.02

Img-13 4.50 4.45 4.45 8.00E-06 7.00E-06 24.04 24.04 0.69 0.69 0.96 0.96 75.03 75.03 9.27 9.27

Img-14 5.00 5.00 5.05 6.00E-07 3.00E-06 23.50 23.40 0.67 0.67 0.96 0.96 77.94 77.90 9.52 9.52

Img-14 1.00 1.05 0.95 4.00E-02 4.00E-04 37.68 37.19 0.99 0.98 1.00 1.00 24.14 24.51 5.36 5.24

Img-15 1.50 1.50 1.55 4.00E-03 4.00E-06 35.08 35.00 0.97 0.97 1.00 1.00 24.32 24.53 5.52 5.56

Img-15 2.00 2.05 2.05 1.00E-03 1.00E-04 32.04 32.04 0.95 0.95 0.99 0.99 30.15 30.15 5.88 5.88

Img-16 2.50 2.50 2.60 6.00E-05 6.00E-05 26.09 24.46 0.82 0.82 0.99 0.99 38.04 37.00 7.00 6.87

Img-16 3.00 3.10 3.10 2.00E-05 2.00E-05 19.15 19.15 0.72 0.72 0.97 0.97 40.66 40.66 8.84 8.84

Img-17 3.50 3.40 3.40 8.00E-06 8.00E-05 28.32 28.32 0.87 0.87 0.98 0.98 63.47 63.47 8.96 8.96

Img-17 4.00 4.05 4.00 8.00E-07 8.00E-07 27.33 27.35 0.85 0.85 0.98 0.98 67.48 67.78 9.68 9.63

Img-18 4.50 4.50 4.65 8.00E-06 7.00E-07 26.30 26.44 0.83 0.82 0.98 0.98 73.24 72.58 10.25 10.32

Img-18 5.00 5.00 5.10 6.00E-07 6.00E-08 25.54 25.69 0.80 0.80 0.97 0.97 79.04 78.49 10.75 10.77

Img-19 1.00 1.05 1.10 4.00E-02 4.00E-02 36.98 35.88 0.99 0.99 1.00 1.00 42.80 41.26 6.14 6.19

Img-19 1.50 1.65 1.60 4.00E-02 4.00E-03 32.56 32.95 0.98 0.98 1.00 1.00 54.12 54.18 7.12 7.22

Img-20 2.00 1.95 2.00 4.00E-03 1.00E-03 33.48 33.49 0.98 0.98 1.00 1.00 45.08 45.36 6.89 6.83

Img-20 2.50 2.45 2.50 1.00E-03 6.00E-05 32.25 32.27 0.96 0.96 1.00 1.00 42.83 43.37 6.95 6.86

Img-21 3.00 3.10 3.10 6.00E-05 1.00E-05 29.30 29.30 0.84 0.84 0.99 0.99 44.35 44.35 6.95 6.95

Img-21 3.50 3.35 3.25 1.00E-05 1.00E-08 25.35 25.26 0.61 0.60 0.98 0.98 34.98 44.47 6.34 7.48

Img-22 4.00 4.15 4.10 8.00E-07 8.00E-07 28.76 28.78 0.90 0.91 0.99 0.99 78.28 78.48 8.70 8.66

Img-22 4.50 4.40 4.40 1.00E-08 1.00E-08 27.97 27.97 0.90 0.90 0.99 0.99 86.08 86.08 9.15 9.15

Img-23 5.00 4.95 5.05 6.00E-07 6.00E-07 27.26 27.17 0.87 0.87 0.99 0.99 89.34 88.21 9.46 9.50

Mean 28.30 28.35 0.84 0.84 0.98 0.98 54.43 53.28 7.70 7.67

Estimated Variance Estimated NSR

Table A-1 Artificial Deblurring Results for Gaussian blurred images using spatial and spectral kurtosis measure. Deblurred image quality is also compared using full-reference and 

non-reference quality measures.

Image 
Blur 

Variance
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Table A.2: Artificial deblurring results for motion blurred images using spatial and spectral kurtosis 

measure. Deblurred image quality is compared using full-reference and non-reference image quality 

measures. 
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Kurtosis

Spectral 

Kurtosis
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Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Img-01 A 11 9.40 10.00 4.00E-03 9.00E-04 33.11 31.91 0.96 0.90 1.00 0.99 18.18 22.68 4.90 6.82

Img-02 A 17 16.40 16.30 4.00E-03 9.00E-04 30.31 29.37 0.91 0.85 0.99 0.99 27.69 30.69 4.30 6.33

Img-03 A 25 23.25 24.30 2.00E-03 4.00E-04 29.01 27.53 0.87 0.74 0.99 0.98 24.98 23.67 5.11 8.57

Img-04 A 45 43.00 44.00 4.00E-03 4.00E-04 27.42 26.09 0.86 0.69 0.98 0.97 32.49 40.83 4.56 6.63

Img-05 A 65 64.00 64.00 1.00E-03 7.00E-04 27.12 26.80 0.78 0.75 0.98 0.98 29.70 31.87 5.82 6.40

Img-06 A 11 11.00 11.50 8.00E-05 9.00E-04 25.63 29.11 0.74 0.91 0.98 0.99 76.17 30.83 9.85 6.11

Img-07 A 17 14.50 14.50 4.00E-03 9.00E-04 27.82 25.87 0.90 0.86 0.99 0.98 20.70 23.45 3.54 3.85

Img-08 A 25 25.00 25.00 4.00E-03 4.00E-04 26.86 24.76 0.88 0.77 0.98 0.98 24.10 21.64 3.34 6.24

Img-09 A 45 45.70 44.70 4.00E-04 4.00E-04 23.92 23.85 0.73 0.72 0.97 0.97 31.13 32.00 5.81 5.53

Img-10 A 65 64.30 64.20 4.00E-03 7.00E-04 26.24 24.47 0.86 0.78 0.98 0.98 23.53 28.03 4.20 5.25

Img-11 A 11 13.10 12.40 8.00E-04 9.00E-04 34.25 34.40 0.92 0.92 1.00 1.00 17.72 17.44 7.33 7.38

Img-12 A 17 17.35 17.00 1.00E-03 9.00E-04 31.35 31.53 0.89 0.88 0.99 0.99 20.17 19.87 7.13 7.08

Img-13 A 25 25.80 24.00 6.00E-04 4.00E-04 30.23 28.88 0.84 0.79 0.99 0.99 4.15 23.26 5.29 8.08

Img-14 A 45 45.60 45.60 4.00E-03 4.00E-04 29.92 26.51 0.90 0.76 0.99 0.98 19.57 27.08 5.06 6.92

Img-15 A 65 66.60 63.55 4.00E-03 7.00E-04 29.50 26.39 0.90 0.79 0.99 0.98 16.29 22.21 4.87 7.01

Img-16 A 11 13.00 11.00 4.00E-03 9.00E-04 37.99 36.95 0.97 0.93 1.00 1.00 14.51 19.59 5.89 9.88

Img-17 A 17 16.90 16.90 8.00E-04 9.00E-05 33.73 30.45 0.88 0.71 1.00 0.99 22.85 47.63 8.72 12.07

Img-18 A 25 25.80 23.85 8.00E-04 4.00E-04 32.42 31.26 0.86 0.78 1.00 0.99 2.75 19.27 6.19 10.16

Img-19 A 45 44.00 43.60 4.00E-03 4.00E-04 30.87 29.31 0.89 0.74 0.99 0.99 28.06 34.90 5.34 8.06

Img-20 A 65 65.00 64.00 4.00E-03 7.00E-04 30.43 29.44 0.90 0.79 0.99 0.99 23.89 25.46 5.33 7.96

Img-21 A 11 11.35 11.40 4.00E-03 9.00E-04 29.12 29.32 0.96 0.94 1.00 1.00 25.10 33.17 4.91 6.41

Img-22 A 17 17.00 16.45 4.00E-03 9.00E-04 26.67 27.08 0.89 0.88 0.99 0.99 28.41 31.14 4.52 5.03

Img-23 A 25 24.70 24.00 4.00E-03 4.00E-04 25.72 25.80 0.87 0.81 0.99 0.99 32.76 33.01 4.45 6.20

Img-24 A 45 45.00 44.00 4.00E-04 9.00E-04 24.79 25.06 0.85 0.81 0.98 0.98 33.45 33.65 5.04 5.24

Img-25 A 65 65.00 65.00 4.00E-03 6.00E-04 24.84 24.85 0.86 0.81 0.98 0.98 29.16 34.19 4.87 6.00

Img-01 L 7 7.00 7.00 4.00E-03 7.00E-04 31.53 30.22 0.93 0.86 0.99 0.99 26.47 38.12 4.74 7.33

Img-02 L 9 9.00 9.00 4.00E-03 5.00E-03 30.20 30.25 0.91 0.92 0.99 0.99 28.35 30.20 4.19 4.22

Img-03 L 16 14.50 17.50 4.00E-03 4.00E-03 25.30 26.52 0.82 0.78 0.98 0.98 36.93 38.92 5.07 5.22

Img-04 L 23 21.70 21.80 4.00E-03 4.00E-03 26.65 26.72 0.86 0.86 0.98 0.98 25.60 26.14 5.07 5.15

Img-05 L 7 6.00 7.00 4.00E-03 7.00E-04 25.50 26.77 0.85 0.87 0.99 0.99 29.34 35.82 3.95 5.79

Img-06 L 9 9.10 9.00 4.00E-03 5.00E-03 27.96 28.50 0.89 0.90 0.99 0.99 23.31 24.73 3.84 3.86

Img-07 L 16 16.00 17.10 4.00E-04 4.00E-03 23.62 23.95 0.71 0.78 0.97 0.97 32.88 29.87 5.73 5.09

Img-08 L 23 23.25 22.00 4.00E-03 4.00E-03 25.29 24.51 0.86 0.85 0.98 0.98 19.44 19.99 4.23 5.08

Img-09 L 7 7.00 7.40 4.00E-03 7.00E-04 34.54 32.47 0.95 0.88 1.00 0.99 15.88 28.49 5.08 7.33

Img-10 L 9 9.00 8.90 4.00E-03 5.00E-03 32.46 32.53 0.93 0.93 0.99 0.99 16.96 19.13 4.52 4.51

Img-11 L 16 16.00 17.00 4.00E-03 4.00E-03 29.58 27.82 0.89 0.87 0.99 0.98 21.92 23.09 5.35 5.56

Img-12 L 23 23.00 21.65 4.00E-03 4.00E-03 27.93 27.75 0.90 0.88 0.98 0.98 11.16 12.57 5.51 5.42

Img-13 L 7 6.90 6.75 4.00E-03 7.00E-04 35.88 34.85 0.95 0.89 1.00 1.00 16.83 21.10 6.14 10.54

Img-14 L 9 8.90 8.90 4.00E-03 5.00E-03 33.79 33.67 0.94 0.94 1.00 1.00 20.50 22.60 5.20 5.15

Img-15 L 16 16.35 17.00 4.00E-03 4.00E-03 30.38 29.69 0.88 0.85 0.99 0.99 30.18 30.73 5.59 6.04

Img-16 L 23 22.10 22.40 4.00E-03 4.00E-03 28.94 29.06 0.90 0.90 0.99 0.99 24.09 23.93 5.75 5.56

Img-17 L 7 6.60 6.75 8.00E-04 7.00E-04 27.53 27.92 0.91 0.89 0.99 0.99 23.04 34.69 4.58 6.00

Img-18 L 9 9.35 9.00 1.00E-03 5.00E-03 26.35 26.32 0.88 0.89 0.99 0.99 31.27 30.51 4.70 4.68

Img-19 L 16 16.00 17.00 6.00E-04 4.00E-03 24.52 23.79 0.84 0.78 0.98 0.98 33.49 34.35 4.83 5.35

Img-20 L 23 22.80 22.95 4.00E-03 4.00E-03 24.11 24.12 0.86 0.86 0.98 0.98 28.71 29.18 5.33 5.29

Mean 28.92 28.32 0.88 0.84 0.99 0.99 24.97 28.04 5.24 6.41

Blur Angle (A) / 

Blur Length (L)

Table A-2 Artificial Deblurring Results for Motion blurred images using spatial and spectral kurtosis measure. Deblurred image quality is also compared using full-reference and non-reference 

quality measures.

Image 

Estimated value Estimated NSR PSNR MSSIM UQI BRISQUE NIQE
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Table A.3: Artificial deblurring results for out-of-focus blurred images using spatial and spectral kurtosis 

measure. Deblurred image quality is compared using full-reference and non-reference image quality 

measures. 

 

  

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Spatial 

Kurtosis

Spectral 

Kurtosis

Img-01 7 6.25 7.15 6.00E-04 4.00E-04 25.45 27.17 0.62 0.69 0.97 0.98 37.17 22.36 5.26 4.50

Img-02 9 9.25 9.15 4.00E-04 5.00E-04 26.13 26.55 0.68 0.72 0.97 0.97 21.17 21.47 4.17 4.33

Img-03 13 13.35 13.35 5.00E-04 6.00E-04 24.80 24.92 0.69 0.70 0.96 0.96 27.33 31.51 4.45 4.56

Img-04 17 16.95 17.10 6.00E-04 4.00E-04 23.85 23.69 0.69 0.67 0.95 0.95 31.82 22.61 5.28 4.74

Img-05 21 20.30 20.00 4.00E-04 4.00E-04 22.62 22.44 0.64 0.62 0.94 0.93 23.09 24.75 5.19 5.33

Img-06 23 21.90 21.65 4.00E-04 4.00E-04 22.33 22.05 0.63 0.60 0.93 0.93 24.37 23.40 5.13 5.43

Img-07 7 6.30 7.30 6.00E-04 6.00E-04 22.78 23.47 0.63 0.70 0.96 0.97 26.66 24.88 4.84 3.99

Img-08 9 9.00 9.00 4.00E-04 6.00E-04 22.73 23.19 0.68 0.72 0.96 0.96 17.54 21.14 4.09 3.99

Img-09 13 13.55 13.15 4.00E-04 4.00E-04 20.90 21.21 0.59 0.64 0.93 0.94 25.08 23.20 4.35 4.26

Img-10 17 17.00 17.00 4.00E-04 5.00E-04 20.14 20.26 0.62 0.64 0.92 0.92 23.96 30.12 4.52 4.75

Img-11 21 20.10 20.00 4.00E-04 6.00E-04 19.13 19.31 0.56 0.58 0.89 0.90 26.93 38.62 5.25 6.04

Img-12 23 22.00 22.00 6.00E-04 4.00E-04 18.89 18.67 0.58 0.56 0.88 0.88 41.83 29.95 6.45 5.78

Img-13 7 5.50 7.05 6.00E-04 5.00E-04 22.31 26.08 0.54 0.78 0.95 0.98 19.19 9.49 6.66 5.58

Img-14 9 9.15 9.10 4.00E-04 6.00E-04 25.57 26.31 0.74 0.80 0.97 0.98 8.42 12.10 5.09 4.97

Img-15 13 13.25 13.00 6.00E-04 4.00E-04 24.21 22.64 0.78 0.75 0.97 0.97 21.18 8.74 5.13 4.83

Img-16 17 15.00 17.00 5.00E-04 4.00E-04 19.37 23.03 0.60 0.74 0.92 0.95 17.44 13.48 5.54 4.95

Img-17 21 21.75 20.65 4.00E-04 6.00E-04 20.71 22.43 0.70 0.75 0.93 0.94 23.58 31.33 5.44 5.90

Img-18 23 23.10 23.10 4.00E-04 4.00E-04 22.29 22.29 0.73 0.73 0.93 0.93 24.50 24.50 5.51 5.51

Img-19 7 7.35 6.85 6.00E-04 6.00E-04 28.28 29.45 0.72 0.78 0.99 0.99 14.44 13.10 4.81 5.04

Img-20 9 9.35 9.35 4.00E-04 6.00E-04 27.16 27.65 0.70 0.76 0.99 0.99 11.47 16.48 4.60 4.42

Img-21 13 13.00 12.60 5.00E-04 4.00E-04 26.30 25.89 0.75 0.72 0.98 0.98 8.46 7.13 4.63 4.77

Img-22 17 18.00 17.00 6.00E-04 5.00E-04 22.30 24.42 0.61 0.74 0.96 0.97 31.49 25.42 5.90 5.48

Img-23 21 21.10 21.30 6.00E-04 6.00E-04 22.88 22.80 0.70 0.72 0.96 0.96 29.93 47.51 6.04 7.22

Img-24 23 23.50 23.25 4.00E-04 6.00E-04 22.28 22.41 0.71 0.72 0.96 0.96 49.93 50.00 7.62 7.70

Img-25 7 7.00 7.10 4.00E-04 4.00E-04 24.12 24.03 0.77 0.76 0.98 0.98 25.78 25.81 5.67 5.48

Img-26 9 9.00 9.00 6.00E-04 4.00E-04 22.92 22.85 0.76 0.74 0.97 0.97 29.69 25.85 4.89 5.17

Img-27 13 12.65 13.00 4.00E-04 4.00E-04 21.01 21.37 0.68 0.70 0.95 0.96 31.89 30.06 5.06 4.90

Img-28 17 17.00 17.00 4.00E-04 4.00E-04 19.72 19.72 0.64 0.64 0.94 0.94 36.42 36.42 5.51 5.51

Img-29 21 21.00 21.00 4.00E-04 4.00E-04 18.75 18.75 0.60 0.60 0.92 0.92 41.06 41.06 6.18 6.18

Img-30 23 22.10 22.60 5.00E-04 5.00E-04 18.11 18.31 0.55 0.57 0.90 0.91 48.50 47.67 6.99 6.54

Mean 22.60 23.11 0.66 0.69 0.95 0.95 26.68 26.00 5.34 5.26

Table A-3 Artificial Deblurring Results for Out-of-focus blurred images using spatial and spectral kurtosis measure. Deblurred image quality is also compared using full-reference and non-

reference quality measures.

Image Blur Radius

Estimated Radius Estimated NSR PSNR MSSIM UQI BRISQUE NIQE



 

167 

 

 

Appendix B 

 

Comprehensive Deblurring Results for 

BRISQUE, NIQE and RPSNR Based 

BID Scheme 

 

This appendix relates to the deblurring results of real life motion and out-of-focus 

blurred images. The images used for testing are shown in Fig. B.1 to Fig. B.9. These 

include images captured by the author as well as by from other sources.  

 

 

 

Fig. B.1. (a) Test Images with linear motion blur captured by the author. 
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Fig. B.2. (a) Test Images with linear motion blur from [133]. 

 

 

 

Fig. B.3. (a) Test Images with linear motion blur from [17] . 

 

 

 

Fig. B.4. (a) Test Images with linear motion blur captured by the author. 
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Fig. B.5. (a) Test Images with linear motion blur captured by the author. 

 

 

 

Fig. B.6. (a) Test Images with linear motion blur captured by the author. 

 

 

 

Fig. B.7. (a) Test Images with linear motion blur captured by the author. 
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Fig. B.8. (a) Test Images with out-of-focus blur captured by the author. 

 

 

 

Fig. B.9. (a) Test Images with out-of-focus blur captured by the author. 

 

 

 

PSF estimation was made using spatial kurtosis, spectral kurtosis, RPSNR, 

BRISQUE and NIQE measures. The estimated PSF parameter values and the NSR 

values are given in Table B.1. Image quality values computed for spatial kurtosis, 

spectral kurtosis, RPSNR, BRISQUE and NIQE estimates are given in Table B.2. 

The deblurring results are illustrated in Fig. B.10 to Fig. B.18.  

BRISQUE shows the best deblurring quality, on average, as compared to the other 

IQMs. RPSNR was not computed in the case of out-of-focus blur due to its inability 

to correctly estimate the blurring PSF parameters. 
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Table B.1 Deblurring results for real life motion blurred and out-of-focus blurred images.  

 

 

 

 

Table B.2 Deblurring quality for real life motion blurred and out-of-focus blurred images computed using.  

 

 

 

 

Length Angle NSR Length Angle NSR Length Angle NSR Length Angle NSR Length Angle NSR

Fig. B-1 19 80 4.00E-02 19 90 4.00E-02 19 80 4.00E-02 15 81 4.00E-02 17 87 4.00E-03

Fig. B-2 15 13 4.00E-02 15 13 4.00E-02 15 13 4.00E-02 13 13 4.00E-02 13 10 4.00E-02

Fig. B-3 16 161 4.00E-03 21 160 4.00E-03 21 156 4.00E-03 20 161 4.00E-03 17 156 4.00E-03

Fig. B-4 26 96 4.00E-03 26 96 4.00E-03 26 98 4.00E-03 22 98 4.00E-03 25 94 4.00E-03

Fig. B-5 71 -2 4.00E-03 77 3 4.00E-02 77 3 4.00E-03 71 0 4.00E-03 73 3 4.00E-03

Fig. B-6 9 7 4.00E-03 15 13 4.00E-02 15 13 4.00E-03 13 12 4.00E-03 13 7 4.00E-03

Fig. B-7 6 90 4.00E-02 10 84 4.00E-02 10 84 4.00E-03 7 84 4.00E-03 7 85 4.00E-02

NSR NSR NSR NSR NSR

Fig. B-8 4.00E-04 4.00E-05 / 4.00E-03 4.00E-03

Fig. B-9 4.00E-03 4.00E-04 / 4.00E-03 4.00E-035 3 / 4 5

Radius Radius Radius Radius Radius

13 15 / 13 13

Image

Estimated Values

Spatial Kurtosis Spectral Kurtosis RPSNR BRISQUE NIQE 

Spatial 

Kurtosis

Spectral 

Kurtosis
RPSNR BRISQUE NIQE

Spatial 

Kurtosis

Spectral 

Kurtosis
RPSNR BRISQUE NIQE

Fig. B-1 60.44 52.60 52.60 52.60 47.73 41.97 6.73 8.39 8.39 8.39 8.71 8.12

Fig. B-2 58.11 31.12 31.12 31.12 29.46 29.46 17.21 8.13 8.13 8.13 8.57 8.57

Fig. B-3 44.99 58.10 52.82 55.20 54.59 55.20 11.23 8.45 6.64 6.40 7.32 6.40

Fig. B-4 29.77 25.79 25.79 25.79 25.74 26.71 5.78 4.41 4.41 4.41 4.46 4.36

Fig. B-5 13.78 18.43 37.45 37.45 18.43 24.17 5.25 5.34 9.07 9.07 5.34 6.17

Fig. B-6 39.85 30.09 33.76 33.76 18.76 18.76 7.01 7.74 7.49 7.49 5.21 5.21

Fig. B-7 11.10 42.34 27.96 27.96 33.83 33.78 4.54 6.03 6.21 6.21 10.18 5.51

Fig. B-8 12.47 18.75 100.82 / 3.86 3.86 9.45 6.85 16.85 / 3.72 3.72

Fig. B-9 53.12 23.69 39.28 / 7.94 23.69 8.79 6.25 8.75 / 4.57 4.25

Mean 35.96 33.43 44.62 37.70 26.71 28.62 8.44 6.84 8.44 7.16 6.45 5.81

Deblurred Image Quality for Paramter 

Estimated by

BRISQUE Values NIQE Values

Image

Blurred 

Image 

Quality

Deblurred Image Quality for Paramter Estimated 

by

Blurred 

Image 

Quality
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Fig. B.10. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure (d) RPSNR measure (e) BRISQUE measure and (f) NIQE measure. 
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Fig. B.11. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure (d) RPSNR measure (e) BRISQUE measure and (f) NIQE measure. 
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(c)                                                                           (d) 
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Fig. B.12. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure (d) RPSNR measure (e) BRISQUE measure and (f) NIQE measure. 
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Fig. B.13. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure (d) RPSNR measure (e) BRISQUE measure and (f) NIQE measure. 
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(c)                                                    (d) 
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Fig. B.14. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure (d) RPSNR measure (e) BRISQUE measure and (f) NIQE measure. 
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Fig. B.15. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure (d) RPSNR measure (e) BRISQUE measure and (f) NIQE measure. 
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Fig. B.16. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure (d) RPSNR measure (e) BRISQUE measure and (f) NIQE measure. 
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Fig. B.17. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure. (d) BRISQUE measure and (e) NIQE measure. 
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Fig. B.18. (a) Blurred image. Deblurred using (b) Spatial kurtosis measure (c) Spectral kurtosis 
measure. (d) BRISQUE measure and (e) NIQE measure. 
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Appendix C 

 

Comprehensive Deblurring Results for 

Arbitrarily Shaped PSF Estimation 

Based BID Scheme 

 

This appendix relates to the blind deblurring results for the BRISQUE based 

arbitrarily shaped PSF estimation scheme. The scheme can estimate parametric and 

arbitrarily shaped PSFs using a single algorithm. The deblurring results for 

parametric Gaussian, motion and out-of-focus blur and arbitrarily shaped PSFs is 

given in Table. C.1. The deblurred image quality scores computed using the 

BRISQUE and NIQE non-reference IQMS show that, on average, the deblurred 

images are of high quality. The deblurring results for blurred images along with the 

estimated PSFs are shown in Fig. C.1 – C.13. The deblurred images appear sharper 

and detailed after restoration.   

Table C.1 Deblurring quality for images blurred by parametric and arbitrarily shaped PSFs. The BID 

scheme based on BRISQUE measure is used to estimate parametric and arbitrarily shaped PSFs using a 

single algorithm.  

 

 

Original Blurred Deblurred Original Blurred Deblurred

Fig. C.1 Gaussian 5x5 σ
2
=0.5 14.18 25.54 18.49 4.74 4.54 4.54

Fig. C.2 Gaussian 5x5 σ
2
=1.0 20.14 37.83 27.63 4.99 5.57 4.69

Fig. C.3 Gaussian 8x8 σ
2
=1.5 19.91 29.71 28.26 5.32 6.65 5.17

Fig. C.4 Motion 5x5 L=5, A=45 9.42 9.55 27.44 4.98 4.37 4.92

Fig. C.5 Motion 3x17 L=17, A=6 47.88 82.44 57.99 6.85 16.93 8.47

Fig. C.6 Out-of-focus 5x5 R=2 13.76 16.29 26.08 4.53 4.57 5.03

Fig. C.7 Out-of-focus 11x11 R=5 14.18 41.78 61.01 4.74 5.66 10.34

Fig. C.8 Out-of-focus 15x15 R=7 6.68 42.03 59.13 5.11 5.74 10.45

Fig. C.9 Arbitrary 31x19 - 15.12 23.89 20.43 6.79 9.78 8.54

Fig. C.10 Arbitrary 3x3 - 11.19 61.47 14.49 3.94 15.46 4.10

Fig. C.11 Arbitrary 13x3 - 7.91 10.20 27.82 4.63 5.04 6.47

Fig. C.12 Arbitrary 19x13 - 32.31 51.34 53.03 3.56 10.20 7.36

Fig. C.13 Arbitrary 19x13 - 53.39 60.30 43.50 9.39 9.61 6.29

Mean 20.47 37.87 35.79 5.35 8.01 6.64

σ
2
=Variance, L=length, A=Angle, R=Radius

Figure Number Filter Size (pixels) Parameter Values
BRISQUE NIQE
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An interesting case for deblurring is that of a point filter, as shown in Fig. 5.3. The 

image was filtered using a point filter which basically feeds the deblurring algorithm 

with the same non blurred image. It was done to test the effectiveness of the 

algorithm in case a non-blurred image was provided. The deblurring scheme in such 

case still tries to find a PSF coefficient matrix that can, if possible, optimize the 

fitness function. A positive outcome of this behaviour is that if the original image in 

the artificial blurring case depicts any blurring even in its pristine form, the algorithm 

will try to remove it. Fig. 5.3 depicts this behaviour, where the deblurred image 

appears sharper than the original image.  

 

 

Fig. C.1 Deblurring result for image blurred by Gaussian PSF of size 5 x 5 pixels and variance 
0.5. (a) Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) 

Estimated PSF.  

 

 

   

                        (a)                             (b)             (c) 

 

 

(d)                   (e) 
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Fig. C.2 Deblurring result for image blurred by Gaussian PSF of size 5 x 5 pixels and variance 1. 
(a) Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated 

PSF. 

 

 

Fig. C.3 Deblurring result for image blurred by Gaussian PSF of size 8 x 8 pixels and variance 
1.5. (a) Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) 

Estimated PSF. 
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(d)                   (e) 



 

184 

 

 

Fig. C.4 Deblurring result for image blurred by motion blur PSF of length 5 pixels and angle 
45°. (a) Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) 

Estimated PSF.  

 

In the case of the Mandrill image in Fig. 5.9, the estimated PSF, though far different 

in shape than the original PSF, still shows a reasonable recovery.  

 

 

Fig. C.5 Deblurring result for image blurred by motion blur PSF of length 17 pixels and angle 
6°. (a) Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) 

Estimated PSF. 
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Fig. C.6 Deblurring result for image blurred by out-of-focus blur PSF of radius 2 pixels. (a) 
Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated PSF. 

 

 

 

Fig. C.7 Deblurring result for image blurred by out-of-focus blur PSF of radius 5 pixels. (a) 
Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated PSF. 
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Fig. C.8 Deblurring result for image blurred by out-of-focus blur PSF of radius 7 pixels. (a) 
Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated PSF. 

 

 

 

Fig. C.9 Deblurring result for Peppers image blurred by arbitrary PSF of size 3 x 3 pixels with 
central element of weight 1. (a) Original image (b) Blurred image (c) Deblurred image (d) 

Blurring PSF and (e) Estimated PSF. 
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Fig. C.10 Deblurring result for Zelda image blurred by arbitrary PSF of size 13 x 3 pixels. (a) 
Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated PSF. 

 

 

 

Fig. C.11 Deblurring result for Boat image blurred by arbitrary PSF of size 31 x 19 pixels. (a) 
Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated PSF. 
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Fig. C.12 Deblurring result for Washsat image blurred by arbitrary PSF of size 19 x 13 pixels. 
(a) Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated 

PSF. 

 

 

Fig. C.13 Deblurring result for Frog image blurred by arbitrary PSF of size 19 x 13 pixels. (a) 
Original image (b) Blurred image (c) Deblurred image (d) Blurring PSF and (e) Estimated PSF. 
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Appendix D 

 

MATLAB Optimization Toolbox  

 

This appendix relates the usage details and some of the features of MATLAB‘s 

optimization toolbox command named optimtool. The toolbox was used in this 

research work to optimize deblurring measures using GA on multiple cores. Fig. D.1 

shows the layout of the toolbox. The user input consists of entering the optimization 

function name, setting lower and upper bounds of the chromosome values as well as 

adjusting other different settings prior to simulation. It allows for the algorithm to be 

run on multiple cores without the trouble of coding threads or parallelizing code. By 

simply executing the matlabpool command, the user can set the number of 

cores/threads for the code to be executed on. The optimization can be stopped based 

on many factors including number of generations reached or average change in 

fitness function less than tolerance value. Table D.1 shows the iterative output of the 

fitness value for different iterations.  

 

Below are some of the features of the optimization toolbox and their usage 

description.  

 Problem 

Fitness function is the objective function you want to minimize. You can specify the 

function as a function handle of the form @objfun, where objfun.m is a function file 

that returns a scalar. Number of variables (required) is the number of independent 

variables for the fitness function. 

 Constraints 

Linear inequalities of the form A*x ≤ b are specified by the matrix A and the vector 

b. Linear equalities of the form Aeq*x = beq are specified by the matrix Aeq and the 

vector beq. Bounds are lower and upper bounds on the variables. Lower specifies 

lower bounds as a vector. Upper specifies upper bounds as a vector. 
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Fig. D.1. Overview of the MATLAB optimization toolbox. 
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 Population 

Population options specify options for the population of the genetic algorithm. 

Population type specifies the type of the input to the fitness function.  

Population enables you to specify an initial population for the genetic algorithm. If 

you do not specify an initial population, the algorithm creates one using the Creation 

function. You can specify fewer than Population size individuals; if you do, the 

Creation function creates the rest. 

Table D.1: Fitness function values depicted by the optimization toolbox for different iterations. The 

optimization stopped when the average change in the fitness value was less than the tolerance function 

value.  

 

 Selection 

The selection function chooses parents for the next generation based on their scaled 

values from the fitness scaling function. The selection function can be stochastic 

uniform, remainder, uniform, shift linear, roulette, tournament or a custom function. 

In this research work, roulette based selection was used to select chromosomes. 

Roulette function simulates a roulette wheel with the area of each segment 

proportional to its expectation. The algorithm then uses a random number to select 

Generation f-count Best f(x) Mean f(x)
Stall 

Generations

1 40 4.007 4.051 0

2 60 3.997 4.041 0

3 80 3.997 4.032 1

4 100 3.984 4.022 0

5 120 3.984 4.012 1

6 140 3.984 4.005 2

7 160 3.984 4.003 3

8 180 3.975 3.997 0

9 200 3.972 3.993 0

10 220 3.970 3.987 0

20 420 3.961 3.963 1

30 620 3.954 3.959 0

100 2020 3.877 3.881 2

150 3020 3.862 3.864 0

200 4020 3.855 3.856 0

250 5020 3.854 3.854 13

280 5620 3.854 3.854 23

281 5640 3.854 3.854 24

Optimization terminated: average change in the fitness value less than options.TolFun.

jar:file:///C:/Program%20Files/MATLAB/R2010a/help/toolbox/gads/help.jar%21/csh/bropvew.html


 

192 

 

one of the sections with a probability equal to its area. 

 Reproduction 

Reproduction options determine how the genetic algorithm creates children at each 

new generation. 

 Mutation 

Mutation functions make small random changes in the individuals in the population, 

which provide genetic diversity and enable the genetic algorithm to search a broader 

space. 

 Crossover 

Crossover combines two individuals, or parents, to form a new individual, or child, 

for the next generation. 

 Stopping criteria 

Stopping criteria determines what causes the algorithm to terminate. 

o Generations specifies the maximum number of iterations the genetic 

algorithm performs. 

o Time limit specifies the maximum time in seconds the genetic algorithm runs 

before stopping. 

o Fitness limit — If the best fitness value is less than or equal to the value of 

Fitness limit, the algorithm stops. 

o Stall generations — If the weighted average change in the fitness function 

value over Stall generations is less than Function tolerance, the algorithm 

stops. 

o Stall time limit — If there is no improvement in the best fitness value for an 

interval of time in seconds specified by Stall time limit, the algorithm stops. 

o Function tolerance — If the cumulative change in the fitness function value 

over Stall generations is less than Function tolerance, the algorithm stops. 

o Nonlinear constraint tolerance specifies the termination tolerance for the 

maximum nonlinear constraint violation. 

 User function evaluation 

The user can evaluate the fitness function for the population in serial or parallel mode.  
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