64 research outputs found

    Priority realloc : a threefold mechanism for route and resources allocation in EONs

    Get PDF
    Cotutela Universitat Politècnica de Catalunya i Escola Politécnica da Universidade de São PauloBackbone networks are responsible for long-haul data transport serving many clients with a large volume of data. Since long-haul data transport service must rely on a robust high capacity network the current technology broadly adopted by the industry is Wavelength Division Multiplexing (WDM). WDM networks enable one single fiber to operate with multiple high capacity channels, drastically increasing the fiber capacity. In WDM networks each channel is associated with an individual wavelength. Therefore a whole wavelength capacity is assigned to a connection, causing waste of bandwidth in case the connection bandwidth requirement is less than the channel total capacity. In the last half decade, Elastic Optical Networks (EON) have been proposed and developed based on the flexible use of the optical spectrum known as the flexigrid. EONs are adaptable to clients requirements and may enhance optical networks performance. For these reasons, research community and data transport providers have been demonstrating increasingly high interest in EONs which are likely to replace WDM as the universally adopted technology in backbone networks in the near future. EONs have two characteristics that may limit its efficient resources use. The spectrum fragmentation, inherent to the dynamic EON operation, decreases the network capacity to assign resources to connection requests increasing network blocking probability. The spectrum fragmentation also intensifies the denial of service to higher rate request inducing service unfairness. Due to the fact EONs were just recently developed and proposed, the aforementioned issues were not yet extensively studied and solutions are still being proposed. Furthermore, EONs do not yet provide specific features as differentiated service mechanisms. Differentiated service strategies are important in backbone networks to guarantee client's diverse requirements in case of a network failure or the natural congestion and resources contention that may occur at some periods of time in a network. Impelled by the foregoing facts, this thesis objective is three-fold. By means of developing and proposing a mechanism for routing and resources assignment in EONs, we intend to provide differentiated service while decreasing fragmentation level and increasing service fairness. The mechanism proposed and explained in this thesis was tested in an EON simulation environment and performance results indicated that it promotes beneficial performance enhancements when compared to benchmark algorithms.Redes backbone sao responsáveis pelo transporte de dados à longa distância que atendem a uma grande quantidade de clientes com um grande volume de dados. Como redes backbone devem basear-se em uma rede robusta e de alta capacidade, a tecnologia atual amplamente adotada pela indústria é Wavelength Division Multiplexing (WDM). Redes WDM permitem que uma única fibra opere com múltiplos canais de alta largura de banda, aumentando drasticamente a capacidade da fibra. Em redes WDM cada canal está associado a um comprimento de onda particular. Por conseguinte, toda capacidade do comprimento de onda é atribuída a uma única conexão, fazendo com que parte da largura de banda seja desperdiçada no caso em que a requisição de largura de banda da conexão seja menor do que a capacidade total do canal. A partir da metade da última década, as Redes Ópticas Elásticas (Elastic Optical Networks - EON) têm sido propostas e desenvolvidas com base no uso flexível do espectro óptico conhecido como flexigrid. EONs são adaptáveis às requisiçes por banda dos clientes e podem, portanto, melhorar o desempenho das redes ópticas. Por estas razões, EONs têm recebido cada vez mais interesse dos meios de pesquisa e provedores de serviço e provavelmente substituirão WDM como a tecnologia universalmente adotada pela indústria em redes backbone. EONs têm duas características que podem limitar a utilização eficiente de recursos. A fragmentação do espectro, inerente à operação dinâmica das EONs, pode diminuir a capacidade da rede em distribuir recursos ao atender às solicitações por conexões aumentando a probabilidade de bloqueio na rede. A fragmentação do espectro também intensifica a negação de serviço às solicitações por taxa de transmissão mais elevada, gerando injustiça no serviço prestado. Como EONs foram desenvolvidas recentemente, respostas às questões acima mencionadas ainda estão sob estudo e soluções continuam sendo propostas na literatura. Além disso, EONs ainda não fornecem funções específicas como um mecanismo que proveja diferenciação de serviço. Estratégias de diferenciação de serviço são importantes em redes backbone para garantir os diversos requisitos dos clientes em caso de uma falha na rede ou do congestionamento e disputa por recursos que podem ocorrer em alguns períodos em uma rede. Impulsionada pelos fatos anteriormente mencionados, esta tese possui três objetivos. Através do desenvolvimento e proposta de um mecanismo de roteamento e atribuição de recursos para EONs, temos a intenção de disponibilizar diferenciação de serviço, diminuir o nível de fragmentação de espectro e aumentar a justiça na distribuição de serviços. O mecanismo proposto nesta tese foi testado em simulações de EONs. Resultados indicaram que o mecanismo proposto promove benefícios através do aprimoramento da performance de uma rede EON quando comparado com algoritmos de referência.Les xarxes troncals son responsables per el transport de dades a llarga distància que serveixen a una gran quantitat de clients amb un gran volum de dades. Com les xarxes troncals han d'estar basades en una xarxa robusta i d'alta capacitat, la tecnologia actual àmpliament adoptada per la indústria és el Wavelength Division Multiplexing (WDM). Xarxes WDM permeten operar amb una sola fibra multicanal d'alt ample de banda, el que augmenta molt la capacitat de la fibra. A les xarxes WDM cada canal est a associat amb una longitud d'ona particular. En conseqüència, tota la capacitat del canal es assignada a una sola connexió, fent que part dels recurs siguin perduts en el cas en que l'ample de banda sol licitada sigui menys que la capacitat total del canal. A gairebé deu anys les xarxes òptiques elàstiques (Elastic Optical Networks -EON) son propostes i desenvolupades basades en el ús visible de l'espectre òptic conegut com Flexigrid. EONs són adaptables a les sol·licituds per ample de banda dels clients i per tant poden millorar el rendiment de les xarxes òptiques. Per aquestes raons, EONs han rebut cada vegada més interès en els mitjans d’investigació i de serveis i, probablement, han de reemplaçar el WDM com la tecnologia universalment adoptada en les xarxes troncals. EONs tenen dues característiques que poden limitar l'ús eficient dels recursos seus. La fragmentació de l'espectre inherent al funcionament dinàmic de les EONs, pot disminuir la capacitat de la xarxa en distribuir els recursos augmentant la probabilitat de bloqueig de connexions. La fragmentació de l'espectre també intensifica la denegació de les sol·licituds de servei per connexions amb una major ample de banda, el que genera injustícia en el servei ofert. Com les EONs s'han desenvolupat recentment, solucions als problemes anteriors encara estan en estudi i les solucions segueixen sent proposades en la literatura. D'altra banda, les EONs encara no proporcionen funcions especifiques com mecanisme de diferenciació de provisió de serveis. Estratègies de diferenciació de servei són importants en les xarxes troncals per garantir les diverses necessitats dels clients en cas d'una fallada de la xarxa o de la congestió i la competència pels recursos que es poden produir en alguns períodes. Impulsada pels fets abans esmentats, aquesta tesi te tres objectius. A través del desenvolupament i proposta d'un mecanisme d'enrutament i assignació de recursos per EONs, tenim la intenció d'oferir la diferenciació de serveis, disminuir el nivell de fragmentació de l'espectre i augmentar l'equitat en la distribució dels serveis. El mecanisme proposat en aquesta tesi ha estat provat en simulacions EONs. Els resultats van indicar que el mecanisme promou millores en el rendiment de la EON, en comparació amb els algoritmes de referència.Postprint (published version

    Stochastische Analyse und lernbasierte Algorithmen zur Ressourcenbereitstellung in optischen Netzwerken

    Get PDF
    The unprecedented growth in Internet traffic has driven the innovations in provisioning of optical resources as per the need of bandwidth demands such that the resource utilization and spectrum efficiency could be maximized. With the advent of the next generation flexible optical transponders and switches, the flexible-grid-based elastic optical network (EON) is foreseen as an alternative to the widely deployed fixed-grid-based wavelength division multiplexing networks. At the same time, the flexible resource provisioning also raises new challenges for EONs. One such challenge is the spectrum fragmentation. As network traffic varies over time, spectrum gets fragmented due to the setting up and tearing down of non-uniform bandwidth requests over aligned (i.e., continuous) and adjacent (i.e., contiguous) spectrum slices, which leads to a non-optimal spectrum allocation, and generally results in higher blocking probability and lower spectrum utilization in EONs. To address this issue, the allocation and reallocation of optical resources are required to be modeled accurately, and managed efficiently and intelligently. The modeling of routing and spectrum allocation in EONs with the spectrum contiguity and spectrum continuity constraints is well-investigated, but existing models do not consider the fragmentation issue resulted by these constraints and non-uniform bandwidth demands. This thesis addresses this issue and considers both the constraints to computing exact blocking probabilities in EONs with and without spectrum conversion, and with spectrum reallocation (known as defragmentation) for the first time using the Markovian approach. As the exact network models are not scalable with respect to the network size and capacity, this thesis proposes load-independent and load-dependent approximate models to compute approximate blocking probabilities in EONs. Results show that the connection blocking due to fragmentation can be reduced by using a spectrum conversion or a defragmentation approach, but it can not be eliminated in a mesh network topology. This thesis also deals with the important network resource provisioning task in EONs. To this end, it first presents algorithmic solutions to efficiently allocate and reallocate spectrum resources using the fragmentation factor along spectral, time, and spatial dimensions. Furthermore, this thesis highlights the role of machine learning techniques in alleviating issues in static provisioning of optical resources, and presents two use-cases: handling time-varying traffic in optical data center networks, and reducing energy consumption and allocating spectrum proportionately to traffic classes in fiber-wireless networks.Die flexible Nutzung des Spektrums bringt in Elastischen Optischen Netze (EON) neue Herausforderungen mit sich, z.B., die Fragmentierung des Spektrums. Die Fragmentierung entsteht dadurch, dass die Netzwerkverkehrslast sich im Laufe der Zeit ändert und so wird das Spektrum aufgrund des Verbindungsaufbaus und -abbaus fragmentiert. Das für eine Verbindung notwendige Spektrum wird durch aufeinander folgende (kontinuierliche) und benachbarte (zusammenhängende) Spektrumsabschnitte (Slots) gebildet. Dies führt nach den zahlreichen Reservierungen und Freisetzungen des Spektrums zu einer nicht optimalen Zuordnung, die in einer höheren Blockierungs-wahrscheinlichkeit der neuen Verbindungsanfragen und einer geringeren Auslastung von EONs resultiert. Um dieses Problem zu lösen, müssen die Zuweisung und Neuzuordnung des Spektrums in EONs genau modelliert und effizient sowie intelligent verwaltet werden. Diese Arbeit beschäftigt sich mit dem Fragmentierungsproblem und berücksichtigt dabei die beiden Einschränkungen: Kontiguität und Kontinuität. Unter diesen Annahmen wurden analytische Modelle zur Berechnung einer exakten Blockierungswahrscheinlichkeit in EONs mit und ohne Spektrumskonvertierung erarbeitet. Außerdem umfasst diese Arbeit eine Analyse der Blockierungswahrscheinlichkeit im Falle einer Neuzuordnung des Sprektrums (Defragmentierung). Diese Blockierungsanalyse wird zum ersten Mal mit Hilfe der Markov-Modelle durchgeführt. Da die exakten analytischen Modelle hinsichtlich der Netzwerkgröße und -kapazität nicht skalierbar sind, werden in dieser Dissertation verkehrslastunabhängige und verkehrslastabhängige Approximationsmodelle vorgestellt. Diese Modelle bieten eine Näherung der Blockierungswahrscheinlichkeiten in EONs. Die Ergebnisse zeigen, dass die Blockierungswahrscheinlichkeit einer Verbindung aufgrund von einer Fragmentierung des Spektrums durch die Verwendung einer Spektrumkonvertierung oder eines Defragmentierungsverfahrens verringert werden kann. Eine effiziente Bereitstellung der optischen Netzwerkressourcen ist eine wichtige Aufgabe von EONs. Deswegen befasst sich diese Arbeit mit algorithmischen Lösungen, die Spektrumressource mithilfe des Fragmentierungsfaktors von Spektral-, Zeit- und räumlichen Dimension effizient zuweisen und neu zuordnen. Darüber hinaus wird die Rolle des maschinellen Lernens (ML) für eine verbesserte Bereitstellung der optischen Ressourcen untersucht und das ML basierte Verfahren mit der statischen Ressourcenzuweisung verglichen. Dabei werden zwei Anwendungsbeispiele vorgestellt und analysiert: der Umgang mit einer zeitveränderlichen Verkehrslast in optischen Rechenzentrumsnetzen, und eine Verringerung des Energieverbrauchs und die Zuweisung des Spektrums proportional zu Verkehrsklassen in kombinierten Glasfaser-Funknetzwerken

    Management of Spectral Resources in Elastic Optical Networks

    Get PDF
    Recent developments in the area of mobile technologies, data center networks, cloud computing and social networks have triggered the growth of a wide range of network applications. The data rate of these applications also vary from a few megabits per second (Mbps) to several Gigabits per second (Gbps), thereby increasing the burden on the Inter- net. To support this growth in Internet data traffic, one foremost solution is to utilize the advancements in optical networks. With technology such as wavelength division multiplexing (WDM) networks, bandwidth upto 100 Gbps can be exploited from the optical fiber in an energy efficient manner. However, WDM networks are not efficient when the traffic demands vary frequently. Elastic Optical Networks (EONs) or Spectrum Sliced Elastic Optical Path Networks (SLICE) or Flex-Grid has been recently proposed as a long-term solution to handle the ever-increasing data traffic and the diverse demand range. EONs provide abundant bandwidth by managing the spectrum resources as fine-granular orthogonal sub-carriers that makes it suitable to accommodate varying traffic demands. However, the Routing and Spectrum Allocation (RSA) algorithm in EONs has to follow additional constraints while allocating sub-carriers to demands. These constraints increase the complexity of RSA in EONs and also, make EONs prone to the fragmentation of spectral resources, thereby decreasing the spectral efficiency. The major objective of this dissertation is to study the problem of spectrum allocation in EONs under various network conditions. With this objective, this dissertation presents the author\u27s study and research on multiple aspects of spectrum allocation in EONs: how to allocate sub-carriers to the traffic demands, how to accommodate traffic demands that varies with time, how to minimize the fragmentation of spectral resources and how to efficiently integrate the predictability of user demands for spectrum assignment. Another important contribution of this dissertation is the application of EONs as one of the substrate technologies for network virtualization

    In-operation planning in flexgrid optical core networks

    Get PDF
    New generation applications, such as cloud computing or video distribution, can run in a telecom cloud infrastructure where the datacenters (DCs) of telecom operators are integrated in their networks thus, increasing connections' dynamicity and resulting in time-varying traffic capacities, which might also entail changes in the traffic direction along the day. As a result, a flexible optical technology able to dynamically set-up variable-capacity connections, such as flexgrid, is needed. Nonetheless, network dynamicity might entail network performance degradation thus, requiring re-optimizing the network while it is in operation. This thesis is devoted to devise new algorithms to solve in-operation network planning problems aiming at enhancing the performance of optical networks and at studying their feasibility in experimental environments. In-operation network planning requires from an architecture enabling the deployment of algorithms that must be solved in stringent times. That architecture can be based on a Path Computation Element (PCE) or a Software Defined Networks controller. In this thesis, we assume the former split in a front-end PCE, in charge of provisioning paths and handling network events, and a specialized planning tool in the form of a back-end PCE responsible for solving in-operation planning problems. After the architecture to support in-operation planning is assessed, we focus on studying the following applications: 1) Spectrum fragmentation is one of the most important problems in optical networks. To alleviate it to some extent without traffic disruption, we propose a hitless spectrum defragmentation strategy. 2) Each connection affected by a failure can be recovered using multiple paths to increase traffic restorability at the cost of poor resource utilization. We propose re-optimizing the network after repairing the failure to aggregate and reroute those connections to release spectral resources. 3) We study two approaches to provide multicast services: establishing a point-to-multipoint connections at the optical layer and using multi-purpose virtual network topologies (VNT) to serve both unicast and multicast connectivity requests. 4) The telecom cloud infrastructure, enables placing contents closer to the users. Based on it, we propose a hierarchical content distribution architecture where VNTs permanently interconnect core DCs and metro DCs periodically synchronize contents to the core DCs. 5) When the capacity of the optical backbone network becomes exhausted, we propose using a planning tool with access to inventory and operation databases to periodically decide the equipment and connectivity to be installed at the minimum cost reducing capacity overprovisioning. 6) In multi-domain multi-operator scenarios, a broker on top of the optical domains can provision multi-domain connections. We propose performing intra-domain spectrum defragmentation when no contiguous spectrum can be found for a new connection request. 7) Packet nodes belonging to a VNT can collect and send incoming traffic monitoring data to a big data repository. We propose using the collected data to predict next period traffic and to adapt the VNT to future conditions. The methodology followed in this thesis consists in proposing a problem statement and/or a mathematical formulation for the problems identified and then, devising algorithms for solving them. Those algorithms are simulated and then, they are experimentally assessed in real test-beds. This thesis demonstrates the feasibility of performing in-operation planning in optical networks, shows that it enhances the performance of the network and validates the feasibility of its deployment in real networks. It shall be mentioned that part of the work reported in this thesis has been done within the framework of several research projects, namely IDEALIST (FP7-ICT-2011-8) and GEANT (238875) funded by the EC and SYNERGY (TEC2014-59995-R) funded by the MINECO.Les aplicacions de nova generació, com ara el cloud computing o la distribució de vídeo, es poden executar a infraestructures de telecom cloud (TCI) on operadors integren els seus datacenters (DC) a les seves xarxes. Aquestes aplicacions fan que incrementi tant la dinamicitat de les connexions, com la variabilitat de les seves capacitats en el temps, arribant a canviar de direcció al llarg del dia. Llavors, cal disposar de tecnologies òptiques flexibles, tals com flexgrid, que suportin aquesta dinamicitat a les connexions. Aquesta dinamicitat pot degradar el rendiment de la xarxa, obligant a re-optimitzar-la mentre és en operació. Aquesta tesis està dedicada a idear nous algorismes per a resoldre problemes de planificació sobre xarxes en operació (in-operation network planning) per millorar el rendiment de les xarxes òptiques i a estudiar la seva factibilitat en entorns experimentals. Aquests problemes requereixen d’una arquitectura que permeti desplegar algorismes que donin solucions en temps restrictius. L’arquitectura pot estar basada en un Element de Computació de Rutes (PCE) o en un controlador de Xarxes Definides per Software. En aquesta tesis, assumim un PCE principal encarregat d’aprovisionar rutes i gestionar esdeveniments de la xarxa, i una eina de planificació especialitzada en forma de PCE de suport per resoldre problemes d’in-operation planning. Un cop validada l’arquitectura que dona suport a in-operation planning, estudiarem les següents aplicacions: 1) La fragmentació d’espectre és un dels principals problemes a les xarxes òptiques. Proposem reduir-la en certa mesura, fent servir una estratègia que no afecta al tràfic durant la desfragmentació. 2) Cada connexió afectada per una fallada pot ser recuperada fent servir múltiples rutes incrementant la restaurabilitat de la xarxa, tot i empitjorar-ne la utilització de recursos. Proposem re-optimitzar la xarxa després de reparar una fallada per agregar i re-enrutar aquestes connexions tractant d’alliberar recursos espectrals. 3) Estudiem dues solucions per aprovisionar serveis multicast: establir connexions punt-a-multipunt sobre la xarxa òptica i utilitzar Virtual Network Topologies (VNT) multi-propòsit per a servir peticions de connectivitat tant unicast com multicast. 4) La TCI permet mantenir els continguts a prop dels usuaris. Proposem una arquitectura jeràrquica de distribució de continguts basada en la TCI, on els DC principals s’interconnecten per mitjà de VNTs permanents i els DCs metropolitans periòdicament sincronitzen continguts amb els principals. 5) Quan la capacitat de la xarxa òptica s’exhaureix, proposem utilitzar una eina de planificació amb accés a bases de dades d’inventari i operacionals per decidir periòdicament l’equipament i connectivitats a instal·lar al mínim cost i reduir el sobre-aprovisionament de capacitat. 6) En entorns multi-domini multi-operador, un broker per sobre dels dominis òptics pot aprovisionar connexions multi-domini. Proposem aplicar desfragmentació d’espectre intra-domini quan no es pot trobar espectre contigu per a noves peticions de connexió. 7) Els nodes d’una VNT poden recollir i enviar informació de monitorització de tràfic entrant a un repositori de big data. Proposem utilitzar aquesta informació per adaptar la VNT per a futures condicions. La metodologia que hem seguit en aquesta tesis consisteix en formalitzar matemàticament els problemes un cop aquests son identificats i, després, idear algorismes per a resoldre’ls. Aquests algorismes son simulats i finalment validats experimentalment en entorns reals. Aquesta tesis demostra la factibilitat d’implementar mecanismes d’in-operation planning en xarxes òptiques, mostra els beneficis que aquests aporten i valida la seva aplicabilitat en xarxes reals. Part del treball presentat en aquesta tesis ha estat dut a terme en el marc dels projectes de recerca IDEALIST (FP7-ICT-2011-8) i GEANT (238875), finançats per la CE, i SYNERGY (TEC2014-59995-R), finançat per el MINECO.Postprint (published version

    Priority realloc : a threefold mechanism for route and resources allocation in EONs

    Get PDF
    Backbone networks are responsible for long-haul data transport serving many clients with a large volume of data. Since long-haul data transport service must rely on a robust high capacity network the current technology broadly adopted by the industry is Wavelength Division Multiplexing (WDM). WDM networks enable one single fiber to operate with multiple high capacity channels, drastically increasing the fiber capacity. In WDM networks each channel is associated with an individual wavelength. Therefore a whole wavelength capacity is assigned to a connection, causing waste of bandwidth in case the connection bandwidth requirement is less than the channel total capacity. In the last half decade, Elastic Optical Networks (EON) have been proposed and developed based on the flexible use of the optical spectrum known as the flexigrid. EONs are adaptable to clients requirements and may enhance optical networks performance. For these reasons, research community and data transport providers have been demonstrating increasingly high interest in EONs which are likely to replace WDM as the universally adopted technology in backbone networks in the near future. EONs have two characteristics that may limit its efficient resources use. The spectrum fragmentation, inherent to the dynamic EON operation, decreases the network capacity to assign resources to connection requests increasing network blocking probability. The spectrum fragmentation also intensifies the denial of service to higher rate request inducing service unfairness. Due to the fact EONs were just recently developed and proposed, the aforementioned issues were not yet extensively studied and solutions are still being proposed. Furthermore, EONs do not yet provide specific features as differentiated service mechanisms. Differentiated service strategies are important in backbone networks to guarantee client's diverse requirements in case of a network failure or the natural congestion and resources contention that may occur at some periods of time in a network. Impelled by the foregoing facts, this thesis objective is three-fold. By means of developing and proposing a mechanism for routing and resources assignment in EONs, we intend to provide differentiated service while decreasing fragmentation level and increasing service fairness. The mechanism proposed and explained in this thesis was tested in an EON simulation environment and performance results indicated that it promotes beneficial performance enhancements when compared to benchmark algorithms.Redes backbone sao responsáveis pelo transporte de dados à longa distância que atendem a uma grande quantidade de clientes com um grande volume de dados. Como redes backbone devem basear-se em uma rede robusta e de alta capacidade, a tecnologia atual amplamente adotada pela indústria é Wavelength Division Multiplexing (WDM). Redes WDM permitem que uma única fibra opere com múltiplos canais de alta largura de banda, aumentando drasticamente a capacidade da fibra. Em redes WDM cada canal está associado a um comprimento de onda particular. Por conseguinte, toda capacidade do comprimento de onda é atribuída a uma única conexão, fazendo com que parte da largura de banda seja desperdiçada no caso em que a requisição de largura de banda da conexão seja menor do que a capacidade total do canal. A partir da metade da última década, as Redes Ópticas Elásticas (Elastic Optical Networks - EON) têm sido propostas e desenvolvidas com base no uso flexível do espectro óptico conhecido como flexigrid. EONs são adaptáveis às requisiçes por banda dos clientes e podem, portanto, melhorar o desempenho das redes ópticas. Por estas razões, EONs têm recebido cada vez mais interesse dos meios de pesquisa e provedores de serviço e provavelmente substituirão WDM como a tecnologia universalmente adotada pela indústria em redes backbone. EONs têm duas características que podem limitar a utilização eficiente de recursos. A fragmentação do espectro, inerente à operação dinâmica das EONs, pode diminuir a capacidade da rede em distribuir recursos ao atender às solicitações por conexões aumentando a probabilidade de bloqueio na rede. A fragmentação do espectro também intensifica a negação de serviço às solicitações por taxa de transmissão mais elevada, gerando injustiça no serviço prestado. Como EONs foram desenvolvidas recentemente, respostas às questões acima mencionadas ainda estão sob estudo e soluções continuam sendo propostas na literatura. Além disso, EONs ainda não fornecem funções específicas como um mecanismo que proveja diferenciação de serviço. Estratégias de diferenciação de serviço são importantes em redes backbone para garantir os diversos requisitos dos clientes em caso de uma falha na rede ou do congestionamento e disputa por recursos que podem ocorrer em alguns períodos em uma rede. Impulsionada pelos fatos anteriormente mencionados, esta tese possui três objetivos. Através do desenvolvimento e proposta de um mecanismo de roteamento e atribuição de recursos para EONs, temos a intenção de disponibilizar diferenciação de serviço, diminuir o nível de fragmentação de espectro e aumentar a justiça na distribuição de serviços. O mecanismo proposto nesta tese foi testado em simulações de EONs. Resultados indicaram que o mecanismo proposto promove benefícios através do aprimoramento da performance de uma rede EON quando comparado com algoritmos de referência.Les xarxes troncals son responsables per el transport de dades a llarga distància que serveixen a una gran quantitat de clients amb un gran volum de dades. Com les xarxes troncals han d'estar basades en una xarxa robusta i d'alta capacitat, la tecnologia actual àmpliament adoptada per la indústria és el Wavelength Division Multiplexing (WDM). Xarxes WDM permeten operar amb una sola fibra multicanal d'alt ample de banda, el que augmenta molt la capacitat de la fibra. A les xarxes WDM cada canal est a associat amb una longitud d'ona particular. En conseqüència, tota la capacitat del canal es assignada a una sola connexió, fent que part dels recurs siguin perduts en el cas en que l'ample de banda sol licitada sigui menys que la capacitat total del canal. A gairebé deu anys les xarxes òptiques elàstiques (Elastic Optical Networks -EON) son propostes i desenvolupades basades en el ús visible de l'espectre òptic conegut com Flexigrid. EONs són adaptables a les sol·licituds per ample de banda dels clients i per tant poden millorar el rendiment de les xarxes òptiques. Per aquestes raons, EONs han rebut cada vegada més interès en els mitjans d’investigació i de serveis i, probablement, han de reemplaçar el WDM com la tecnologia universalment adoptada en les xarxes troncals. EONs tenen dues característiques que poden limitar l'ús eficient dels recursos seus. La fragmentació de l'espectre inherent al funcionament dinàmic de les EONs, pot disminuir la capacitat de la xarxa en distribuir els recursos augmentant la probabilitat de bloqueig de connexions. La fragmentació de l'espectre també intensifica la denegació de les sol·licituds de servei per connexions amb una major ample de banda, el que genera injustícia en el servei ofert. Com les EONs s'han desenvolupat recentment, solucions als problemes anteriors encara estan en estudi i les solucions segueixen sent proposades en la literatura. D'altra banda, les EONs encara no proporcionen funcions especifiques com mecanisme de diferenciació de provisió de serveis. Estratègies de diferenciació de servei són importants en les xarxes troncals per garantir les diverses necessitats dels clients en cas d'una fallada de la xarxa o de la congestió i la competència pels recursos que es poden produir en alguns períodes. Impulsada pels fets abans esmentats, aquesta tesi te tres objectius. A través del desenvolupament i proposta d'un mecanisme d'enrutament i assignació de recursos per EONs, tenim la intenció d'oferir la diferenciació de serveis, disminuir el nivell de fragmentació de l'espectre i augmentar l'equitat en la distribució dels serveis. El mecanisme proposat en aquesta tesi ha estat provat en simulacions EONs. Els resultats van indicar que el mecanisme promou millores en el rendiment de la EON, en comparació amb els algoritmes de referència

    Survivability with Adaptive Routing and Reactive Defragmentation in IP-over-EON after A Router Outage

    Get PDF
    The occurrence of a router outage in the IP layer can lead to network survivability issues in IP-over-elastic-optical networks with consequent effects on the existing connections used in transiting the router. This usually leads to the application of a path to recover any affected traffic by utilizing the spare capacity of the unaffected lightpath on each link. However, the spare capacity in some links is sometimes insufficient and thus needs to be spectrally expanded. A new lightpath is also sometimes required when it is impossible to implement the first process. It is important to note that both processes normally lead to a large number of lightpath reconfigurations when applied to different unaffected lightpaths. Therefore, this study proposes an adaptive routing strategy to generate the best path with the ability to optimize the use of unaffected lightpaths to perform reconfiguration and minimize the addition of free spectrum during the expansion process. The reactive defragmentation strategy is also applied when it is impossible to apply spectrum expansion because of the obstruction of the neighboring spectrum. This proposed strategy is called lightpath reconfiguration and spectrum expansion with reactive defragmentation (LRSE+RD), and its performance was compared to the first Shortest Path (1SP) as the benchmark without a reactive defragmentation strategy. The simulation conducted for the two topologies with two traffic conditions showed that LRSE+RD succeeded in reducing the lightpath reconfigurations, new lightpath number, and additional power consumption, including the additional operational expense compared to 1SP

    A Survey on the Path Computation Element (PCE) Architecture

    Get PDF
    Quality of Service-enabled applications and services rely on Traffic Engineering-based (TE) Label Switched Paths (LSP) established in core networks and controlled by the GMPLS control plane. Path computation process is crucial to achieve the desired TE objective. Its actual effectiveness depends on a number of factors. Mechanisms utilized to update topology and TE information, as well as the latency between path computation and resource reservation, which is typically distributed, may affect path computation efficiency. Moreover, TE visibility is limited in many network scenarios, such as multi-layer, multi-domain and multi-carrier networks, and it may negatively impact resource utilization. The Internet Engineering Task Force (IETF) has promoted the Path Computation Element (PCE) architecture, proposing a dedicated network entity devoted to path computation process. The PCE represents a flexible instrument to overcome visibility and distributed provisioning inefficiencies. Communications between path computation clients (PCC) and PCEs, realized through the PCE Protocol (PCEP), also enable inter-PCE communications offering an attractive way to perform TE-based path computation among cooperating PCEs in multi-layer/domain scenarios, while preserving scalability and confidentiality. This survey presents the state-of-the-art on the PCE architecture for GMPLS-controlled networks carried out by research and standardization community. In this work, packet (i.e., MPLS-TE and MPLS-TP) and wavelength/spectrum (i.e., WSON and SSON) switching capabilities are the considered technological platforms, in which the PCE is shown to achieve a number of evident benefits

    Network Virtualization Over Elastic Optical Networks: A Survey of Allocation Algorithms

    Get PDF
    Network virtualization has emerged as a paradigm for cloud computing services by providing key functionalities such as abstraction of network resources kept hidden to the cloud service user, isolation of different cloud computing applications, flexibility in terms of resources granularity, and on‐demand setup/teardown of service. In parallel, flex‐grid (also known as elastic) optical networks have become an alternative to deal with the constant traffic growth. These advances have triggered research on network virtualization over flex‐grid optical networks. Effort has been focused on the design of flexible and virtualized devices, on the definition of network architectures and on virtual network allocation algorithms. In this chapter, a survey on the virtual network allocation algorithms over flexible‐grid networks is presented. Proposals are classified according to a taxonomy made of three main categories: performance metrics, operation conditions and the type of service offered to users. Based on such classification, this work also identifies open research areas as multi‐objective optimization approaches, distributed architectures, meta‐heuristics, reconfiguration and protection mechanisms for virtual networks over elastic optical networks

    Off-line and in-operation optical core networks planning

    Get PDF
    The ever increasing IP traffic volume has finally brought to light the high inefficiency of current wavelength-routed over rigid-grid optical networks in matching the client layer requirements. Such an issue results in the deployment of large-size, expensive and power-consuming Multiprotocol Label Switching (MPLS) layers to perform the required grooming/aggregation functionality. To deal with this problem, the emerging flexgrid technology, allowing for reduced size frequency grids, is being standardized. Flexgrid optical networks divide the spectrum into frequency slots providing finer granularity than rigid networks based on Dense Wavelength Division Multiplexing (DWDM). To find a feasible allocation, new Routing and Spectrum Allocation (RSA) algorithms for flexgrid optical networks need to be designed and evaluated. Furthermore, due to the flexibility of flexible optical networks, the aggregation functions and statistical multiplexing can be partially located in the optical layer. In addition, given the special characteristics of flexible optical networks, the traditional mechanisms for protection and recovery must be reformulated. Optical transport platforms are designed to facilitate the setting up and tearing down of optical connections (lightpaths). Combining remotely configurable optical cross-connects (OXCs) with a control plane provides the capability of automated lightpath set-up for regular provisioning, and real-time reaction to the failures, being thus able to reduce Operational Expenditures (OPEX). However, to exploit existing capacity, increase dynamicity, and provide automation in future networks, current management architectures, utilizing legacy Network Management Systems (NMS) need to be radically transformed. This thesis is devoted to design optical networks and to devise algorithms to operate them. Network design objective consists of: i. Analyzing the cost implications that a set of frequency slot widths have on the Capital Expenditures (CAPEX) investments required to deploy MPLS-over-flexgrid networks; ii. Studying recovery schemes, where a new recovery scheme specifically designed for flexgrid-based optical networks is proposed. As for network operation, we focus on: i. Studying provisioning, where two provisioning algorithms are proposed: the first one targets at solving the RSA problem in flexgrid networks, whereas the second one studies provisioning considering optical impairments in translucent DWDM networks; ii. Getting back to the recovery problem, we focus on algorithms to cope with restoration in dynamic scenarios. Several algorithms are proposed for both single layer and multilayer networks to be deployed in the centralized Path Computation Element (PCE); iii. One of the main problems in flexgrid networks is spectrum defragmentation. In view of that, we propose an algorithm to reallocate already established optical connections so as to make room for incoming requests. This algorithm is extended with elasticity to deal with time-varying traffic. The above algorithms are firstly implemented and validated by using simulation, and finally experimentally assessed in real test-beds. In view of PCE architectures do not facilitate network reconfiguration, we propose a control and management architecture to allow the network to be dynamically operated; network resources can be made available by reconfiguring and/or re-optimizing the network on demand and in real-time. We call that as in-operation network planning. It shall be mentioned that part of the work reported in this thesis has been done within the framework of several European and National projects, namely STRONGEST (FP7-247674), IDEALIST (FP7-ICT-2011-8), and GEANT (FP7-238875) funded by the European Commission, and ENGINE (TEC2008-02634) and ELASTIC (TEC2011-27310) funded by the Spanish Science Ministry.El volumen creciente del tráfico IP, finalmente, ha puesto de manifiesto la alta ineficiencia de las redes ópticas actuales de grid rígido basadas en WDM en la adecuación a los requisitos de capa de cliente. Dicho problema genera que se deba desplegar una red con capas MPLS de gran tamaño, costosa y de alto consumo energético para poder realizar la funcionalidad de agregación requerida. Para hacer frente a este problema, la tecnología flexgrid emergente, que permite grids con frecuencias de menor tamaño, está siendo estandarizada. Las redes ópticas flexgrid dividen el espectro en slots de frecuencia, lo que proporciona una granularidad más fina en comparación a las redes rígidas basadas en WDM. Para encontrar una asignación factible, nuevos algoritmos de enrutamiento y asignación de espectro (RSA) para redes ópticas flexgrid deben ser diseñados y evaluados. Además, debido a la flexibilidad de las redes ópticas flexibles, las funciones de agregación y de multiplexación estadística pueden ser parcialmente situadas en la capa óptica. Asimismo, dadas las características especiales de las redes ópticas flexibles, los mecanismos tradicionales de protección y recuperación deben reformularse. Las plataformas de transporte ópticas están diseñadas para facilitar la creación y destrucción de conexiones ópticas. La combinación de OXCs configurables remotamente con un plano de control, proporciona la capacidad de crear conexiones automáticamente para el aprovisionamiento habitual, y la reacción en tiempo real a los fallos, para así poder reducir el OPEX. Sin embargo, para aprovechar la capacidad existente, aumentar la dinamicidad y proporcionar automatización a las redes del futuro, las arquitecturas actuales de gestión, que utilizan sistemas legados de NMS, necesitan ser transformadas de manera radical. Esta tesis está dedicada al diseño de redes ópticas y a la creación de algoritmos para operarlas. El objetivo de diseño de red se compone de: 1. El análisis de las implicancias en el costo que tiene un conjunto de slots de frecuencia en el CAPEX necesario para implementar redes MPLS-over-flexgrid; 2. El estudio de esquemas de recuperación, donde se propone un nuevo esquema de recuperación diseñado específicamente para las redes ópticas basadas en flexgrid. En cuanto a la operación de la red: 1. El estudio de aprovisionamiento, donde se proponen dos algoritmos de aprovisionamiento: el primero de ellos tiene como objetivo solucionar el problema de RSA en redes flexgrid, mientras que el segundo estudia aprovisionamiento considerando la degradación óptica en redes WDM translúcidas; 2. Volviendo al problema de la recuperación, nos centramos en algoritmos de restauración para escenarios dinámicos. Se proponen varios algoritmos, tanto para redes mono-capa como multi-capa, que serán desplegados en un PCE centralizado; 3. Uno de los principales problemas en las redes flexgrid es la desfragmentación del espectro. Para ello, se propone un algoritmo para reasignar las conexiones ópticas ya establecidas con el fin de hacer espacio a las entrantes. Este algoritmo se extiende con elasticidad para ser utilizado en escenarios con tráfico variable en el tiempo. Los algoritmos anteriores son primero implementados y validados utilizando simulación, y finalmente son evaluados experimentalmente en testbeds reales. En vista de que las arquitecturas de PCE no facilitan la reconfiguración de la red, proponemos una arquitectura de control y gestión para permitir que la red pueda ser operada de forma dinámica; hacer que los recursos de la red estén disponibles mediante reconfiguración y/o re-optimización de la red bajo demanda y en tiempo real. A eso lo llamamos planificación en operación de la red. El trabajo presentado en esta tesis se ha realizado en el marco de proyectos europeos y nacionales: STRONGEST (FP7-247674), IDEALIST (FP7-2011-8), y GEANT (FP7-238875) financiados por la CE, y ENGINE (TEC2008-02634) y ELASTIC (TEC2011-27310) financiados por el MINEC
    corecore