993 research outputs found

    On packing and covering polyhedra in infinite dimensions

    Get PDF
    We consider the natural generalizations of packing and covering polyhedra in infinite dimensions, and study issues related to duality and integrality of extreme points for these sets. Using appropriate finite truncations we give conditions under which complementary slackness holds for primal/dual pairs of the infinite linear programming problems associated with infinite packing and covering polyhedra. We also give conditions under which the extreme points are integral. We illustrate an application of our results on an infinite-horizon lot-sizing problem. Keywords: Covering polyhedron; Packing polyhedron; Infinite linear program; Complementary slackness; Integral extreme poin

    Min-max results in combinatorial optimization

    Get PDF

    Energy of Convex Sets, Shortest Paths, and Resistance

    Get PDF
    AbstractLet us assign independent, exponentially distributed random edge lengths to the edges of an undirected graph. Lyons, Pemantle, and Peres (1999, J. Combin. Theory Ser. A86 (1999), 158–168) proved that the expected length of the shortest path between two given nodes is bounded from below by the resistance between these nodes, where the resistance of an edge is the expectation of its length. They remarked that instead of exponentially distributed variables, one could consider random variables with a log-concave tail. We generalize this result in two directions. First, we note that the variables do not have to be independent: it suffices to assume that their joint distribution is log-concave. Second, the inequality can be formulated as follows: the expected length of a shortest path between two given nodes is the expected optimum of a stochastic linear program over a flow polytope, while the resistance is the minimum of a convex quadratic function over this polytope. We show that the inequality between these quantities holds true for an arbitrary polytope provided its blocker has integral vertices

    The Strong Perfect Graph Conjecture: 40 years of Attempts, and its Resolution

    Get PDF
    International audienceThe Strong Perfect Graph Conjecture (SPGC) was certainly one of the most challenging conjectures in graph theory. During more than four decades, numerous attempts were made to solve it, by combinatorial methods, by linear algebraic methods, or by polyhedral methods. The first of these three approaches yielded the first (and to date only) proof of the SPGC; the other two remain promising to consider in attempting an alternative proof. This paper is an unbalanced survey of the attempts to solve the SPGC; unbalanced, because (1) we devote a signicant part of it to the 'primitive graphs and structural faults' paradigm which led to the Strong Perfect Graph Theorem (SPGT); (2) we briefly present the other "direct" attempts, that is, the ones for which results exist showing one (possible) way to the proof; (3) we ignore entirely the "indirect" approaches whose aim was to get more information about the properties and structure of perfect graphs, without a direct impact on the SPGC. Our aim in this paper is to trace the path that led to the proof of the SPGT as completely as possible. Of course, this implies large overlaps with the recent book on perfect graphs [J.L. Ramirez-Alfonsin and B.A. Reed, eds., Perfect Graphs (Wiley & Sons, 2001).], but it also implies a deeper analysis (with additional results) and another viewpoint on the topic

    Polyhedral proof methods in combinatorial optimization

    Get PDF

    The Polyhedral Geometry of Partially Ordered Sets

    Get PDF
    Pairs of polyhedra connected by a piecewise-linear bijection appear in different fields of mathematics. The model example of this situation are the order and chain polytopes introduced by Stanley in, whose defining inequalities are given by a finite partially ordered set. The two polytopes have different face lattices, but admit a volume and lattice point preserving piecewise-linear bijection called the transfer map. Other areas like representation theory and enumerative combinatorics provide more examples of pairs of polyhedra that are similar to order and chain polytopes. The goal of this thesis is to analyze this phenomenon and move towards a common theoretical framework describing these polyhedra and their piecewise-linear bijections. A first step in this direction was done by Ardila, Bliem and Salazar, where the authors generalize order and chain polytopes by replacing the defining data with a marked poset. These marked order and chain polytopes still admit a piecewise-linear transfer map and include the Gelfand-Tsetlin and Feigin-Fourier-Littelmann-Vinberg polytopes from representation theory among other examples. We consider more polyhedra associated to marked posets and obtain new results on their face structure and combinatorial interplay. Other examples found in the literature bear resemblance to these marked poset polyhedra but do not admit a description as such. This is our motivation to consider distributive polyhedra, which are characterized by describing networks by Felsner and Knauer analogous to the description of order polytopes by Hasse diagrams. For a subclass of distributive polyhedra we are able to construct a piecewise-linear bijection to another polyhedron related to chain polytopes. We give a description of this transfer map and the defining inequalities of the image in terms of the underlying network
    • …
    corecore